
The Isabelle Refinement Framework

For Verification of Large Software Systems

Peter Lammich

TU Munich lammich@in.tum.de

Abstract. This paper overviews the techniques that we use to develop
verified large software systems inside the Isabelle/HOL theorem prover.
It is based on our development of the fully verified efficiently executable
CAVA LTL model checker.
The verification follows a stepwise refinement approach, to which we
adapted standard engineering techniques such as object orientation and
modularization. It is entirely conducted in the Isabelle/HOL theorem
prover, which results in a high confidence correctness theorem that only
depends on the small inference kernel of Isabelle/HOL.
The techniques presented in this paper cover the Isabelle Refinement
Framework, which provides a formalization of refinement calculus and
a tool chain which makes it conveniently usable. Moreover, we describe
the Isabelle Collection Framework, which provides an extensible library
of efficient verified collection data structures. We also describe the ob-
ject oriented techniques used to develop the automata library below our
model checker, and the modularization techniques used to separate the
various components of the model checker.

1 Introduction

The objective of this paper is to give an overview of the development techniques
that we use to verify large-scale software systems in the Isabelle/HOL interactive
theorem prover. We present some of the engineering techniques that we used to
develop the verified CAVA model checker [7], a fully-fledged efficient LTL model
checker.

Our development process is based on stepwise refinement, to which we adapt
standard engineering techniques for structuring large software systems, like ob-
ject orientation and modularization.

Stepwise refinement is a well-known technique to verify programs. The idea
is to refine an abstract specification to an efficient implementation via a series
of correctness preserving refinement steps. Usually, the first refinement steps
introduce the algorithmic ideas of the program, and further refinement steps
then replace the abstract data types used to describe the algorithm by efficient
implementations.

Stepwise refinement reduces the proof complexity by separation of concerns:
Instead of one big proof that deals with both, the high-level algorithmic ideas
and the implementation details, it allows for several small proofs, each focusing

on a single aspect. Our experience shows that direct correctness proofs of effi-
cient implementations tend to get unmanageable already for medium-complex
algorithms like Dijkstra’s Shortest Paths.

Refinement calculus [2] formalizes stepwise refinement in a Hoare-logic like
framework, based on rigorous mathematical foundations. Thus, it is well suited
for a theorem prover based development.

Our main tool is the Isabelle Refinement Framework[20] (cf. Section 2), which
implements a refinement calculus for shallowly embedded monadic programs. It
comes with tool support, which makes it practically usable. Besides a verifi-
cation condition generator, it also contains the Autoref tool [16], which can
automatically refine abstract data types to efficient implementations. Suitable
implementations are selected via user-adjustable heuristics.

When developing efficient algorithms, it is important to have a library of re-
usable general purpose data structures. The Isabelle Collection Framework [14]
(Section 3) provides such a library. It is based on the concepts of interfaces,
generic algorithms, and implementations. Its integration into Autoref ensures
easy usability.

The CAVA model checker operates on different types of graphs and automata.
To avoid redundancies, these are presented as a class diagram with inheritance.
In Section 4, we give a brief overview of the CAVA Automata Library [17] and
how it uses object oriented techniques inside Isabelle/HOL.

The CAVA model checker itself consists of several components, which are
separately maintained and developed. In Section 5, we review the modulariza-
tion techniques we use to ensure isolation between these components, and their
interplay with verification.

Finally, we conclude the paper in Section 6.

Note that this paper is an overview paper, presenting results that have been
detailed in [14, 20, 16, 17, 7], with some small parts of newer developments. We
have tried to indicate new developments in the paper at the points where they
are described. The main focus of this paper is on the refinement calculus and
the associated tool chains. Further engineering techniques that helped us in
developing the CAVA model checker are only briefly discussed, with references
to more detailed descriptions.

1.1 Related Work

Refinement Based on Back et al.’s initial formalization in HOL [1], there are
several formalizations of refinement calculus in different theorem provers (e. g.
[4, 23, 3]). However, they usually focus on the meta-theory of refinement calculus,
and only come with relatively small example programs that are actually verified.

For the Coq theorem prover, there is a refinement tool [5], which has been
used to refine some algebraic algorithms to use efficient data structures. Also the
Fiat-System [6] automatically synthesizes efficient implementations of database
queries phrased in an abstract query language. Both tools resemble our Autoref-
tool [16], which we use to automate canonical refinement steps.

Another implementation of data refinement is supported by the Isabelle Code
Generator [9]. However, it relies on an extension of the code generator outside
the logic. Moreover, it can only be used for deterministic algorithms, while many
abstract algorithms of a model-checker are inherently nondeterministic.

Verification of Big Software Systems There are several verifications of big soft-
ware systems, even bigger ones than the CAVA model checker. One example
is the verified C compiler CompCert [21]. Here, modularization is achieved by
splitting the compiler into several phases, which translate between different in-
termediate languages. For each translation step, bisimulation between the input
and output is proved. Other important techniques include tailoring of algorithms
to be verification friendly, and to use a-posteriori verification of results computed
by external unverified algorithm.

Another big system that has been verified is the seL4 microkernel [12]. It
uses a refinement-centric development process: First, a prototype of the kernel
was implemented in Haskell. It serves both as an executable implementation
that can be tested, and as a functional specification that can be reasoned about
in a theorem prover. Then, an efficient C version was manually implemented,
and proved to refine the Haskell prototype, which, in turn, was shown to satisfy
the abstract specification. For the refinement proof between the C program and
the Haskell prototype, the Autocorres tool [8] was developed. Similar to our
approach, it implements a refinement calculus on shallowly embedded monadic
programs. However, it features bottom-up refinement, i.e., a concrete program
is abstracted, while our approach uses top-down refinement, where an abstract
program is concretized.

2 Foundations of the Refinement Framework

The Isabelle Refinement Framework [20, 15] provides a refinement calculus [2]
that is based on a nondeterminism monad [25]. It features a stepwise refinement
based development approach, where an algorithm is first specified on an abstract
level, and then refined towards an efficient implementation in possibly many
correctness preserving steps.

Note that nondeterminism is essential for specifying abstract algorithms:
For example, a standard textbook presentation of a workset algorithm might
contain the operation ,,pick some element from the workset”. However, a precise
description of which element is picked is not possible until the data structure
for the workset has been fixed. Thus, abstractly, one has to nondeterministically
choose an element, and prove the algorithm correct for any choice.

In the remainder of this section, we briefly introduce the Isabelle Refinement
Framework and its theoretical foundations.

2.1 The Refinement Monad

The Monadic Refinement Framework represents programs inside a monad over
the type ′a nres = res ′a set | fail. A result res X means that the program non-

deterministically returns a value from the set X, and the result fail means that
an assertion failed. The subset ordering is lifted to results as follows:

res X ≤ res Y ≡ X ⊆ Y | ≤ fail ≡ True | ≤ ≡ False

Intuitively, m ≤ m′ (m refines m′) means that all possible values of m are also
possible values of m′. Note that this ordering yields a complete lattice on results,
with smallest element res {} and greatest element fail. The monad operations
return and bind (notation �=) are then defined as follows:

return x ≡ res {x}
res X �= f ≡ Sup {f x | x∈X} | fail �= f ≡ fail

Intuitively, return x is the result that contains the single value x, and m �= f
is sequential composition: Choose a value from m, and apply f to it.

As a shortcut to specify values satisfying a given predicate Φ, we define
spec Φ ≡ res {x | Φ x}. Moreover, we use a Haskell-like do-notation, and define
a shortcut for assertions: assert Φ ≡ if Φ then return () else fail. Recursion
is defined by a fixed point: rec B x ≡ do {assert (mono B); gfp B x}. As we
use the greatest fixed point, a non-terminating recursion causes the result to be
fail. This matches the notion of total correctness. We assert monotonicity of the
function’s body. Note that the standard way of defining recursion is w. r. t. a
flat ordering of results, where fail is the top element. Thus, we require mono-
tonicity w. r. t. both, the refinement ordering and the flat ordering, in which
case the greatest fixed points coincide. Note that monotonicity w. r. t. both or-
derings follows by construction [13] for any program that only uses the monad
combinators.

On top of the rec primitive, we define loop constructs like while and foreach,
with an explicit state threaded through the loop.

2.2 Data Refinement

In a typical refinement based development, one also wants to refine the repre-
sentation of data.

A data refinement is specified by a refinement relation between concrete and
abstract values. In many cases, this relation is single-valued, and can be expressed
by an abstraction function from concrete to abstract values and an invariant on
concrete values. Note, however, that refinement relations typically are neither
left nor right total.

A prototypical example is implementing sets by distinct lists, i. e. lists that
contain no duplicate elements. Here, the refinement relation 〈R〉list set rel re-
lates a distinct1 list to the set of its elements, where the elements are related
by R. This relation is not left-total, as lists with duplicate elements have no
abstract counterpart. This reflects the concrete data structure’s invariant. Also,
this relation is not right-total, as infinite sets cannot be implemented by lists.

1 Assuming R is single-valued

Given a refinement relation R, we define the function ⇓R to map results over
the abstract type to results over the concrete type:

⇓R (res A) ≡ res {c | ∃a ∈ A. (c,a) ∈ R} | ⇓R fail ≡ fail

Intuitively, ⇓R m2 is the largest concrete result, such that all its values have
abstract counterparts in m2. Thus, m1 ≤ ⇓R m2 (notation m1 ≤R m2) states
that m1 is a refinement of m2 w. r. t. the refinement relation R, i. e. all concrete
values in m1 correspond to abstract values in m2.

Note that we originally [20] defined the refinement relation differently: By
only including concrete elements for which all abstractions are contained in the
abstract result, we made ⇓R an adjoint of a Galois connection, which seemed
theoretically beautiful at first glance. However, with this definition, we could
prove some refinement rules only for single valued relations. However, during
our development of a DFS framework [19], we also required (non-single valued)
projection relations to reason with ghost variables. Thus, we changed the defini-
tions to better generalize to arbitrary relations, at the cost of loosing the Galois
connection property, which required reworking some proofs.

2.3 Refinement Calculus

For each combinator of the nres-monad, we define two refinement rules. One for
specification refinement, which proves properties of the form m ≤ spec Φ, and
one for pure data refinement, which proves properties of the form m ≤ ⇓R m′,
where m and m′ have the same top-level combinator. Intuitively, a specification
refinement replaces an abstract specification by an algorithmic implementation
(e. g. ,,Some path from u to v” by a depth-first search algorithm), and a pure
data refinement replaces abstract types by concrete data structures (e. g. set by
distinct list). For example, the rules for return and �= are the following:

Φ x =⇒ return x ≤ spec Φ
(x, x′) ∈ R =⇒ return x ≤R (return x′)

m ≤ spec (λx. f x ≤ spec Φ) =⇒ m �= f ≤ spec Φ
[[m ≤R′ m′;

∧
x x′. (x, x′) ∈ R′ =⇒ f x ≤R (f′ x′)]] =⇒ m �= f ≤R m′ �= f′

Consider a refinement goal of the form m ≤R m′. If the programs are similar
enough, i.e., they have the same structure, where m may contain an arbitrary
expression at places where m′ contains a spec and the refinement relation is Id
(note that ∀ m. ⇓Id m = m), resolution with the refinement rules leaves us with
verification conditions over the basic operations in the program. The Isabelle
Refinement Framework comes with a verification condition generator (VCG),
which automates this process, and has some additional rules to tolerate certain
structural changes.

2.4 Refinement Based Algorithm Development

In a typical development based on stepwise refinement, one specifies a series of
programs m1 ≥ . . . ≥ mn, such that m1 has the form assert pre; spec post,

and mn is the final implementation. In each refinement step (from mi to mi+1),
some aspects of the program are refined.

Refinement is modular, i.e., one can prove refinements for parts of a program
in isolation. This is important for having libraries of standard algorithms, which
can be used in the program to be developed. One such example is the Isabelle
Collection Framework (cf. Section 3). Also, it allows to independently develop
the components of larger programs, as we illustrate in Section 5.

Example 1. Given a finite set S of sets, the following specifies a set r that con-
tains at least one element from every non-empty set in S:

sel1 S ≡ do {assert (finite S); (spec r. ∀s ∈ S. s 6= {} −→ r ∩ s 6= {})}

This specification can be implemented by iteration over the outer set. In each
iteration step, the result set must not shrink, and it must contain an element
from the current inner set, if this is not empty.

sel2 S ≡ do {
assert (finite S);
foreach S (λs r. spec r′. r′ ⊇ r ∧ (s 6= {} −→ r′ ∩ s 6= {})) {}
}

Using the verification condition generator, it is straightforward to show that sel2
is a refinement of sel1:

lemma sel2 S ≤ sel1 S
unfolding sel2 def sel1 def
by (refine vcg foreach rule[where I=λit r. ∀s∈S−it. s6={} −→ r∩s 6={}])

auto

Note that the invariant for the foreach-loop is explicitly specified here. It is
parametrized over the set it of elements still to be iterated over, and the current
state r of the loop.

Next, we want to further refine the program: In each iteration, we want to
pick an arbitrary element from the current inner set, and add it to the result
set. We specify the new algorithm:

sel3 S ≡ do {
assert (finite S);
foreach S (λs r.

if s={} then return r
else do {

x←spec x. x∈s;
return (insert x r)
}

) {}
}

Note that only the body of the foreach-loop has changed. Using the VCG, it is
straightforward to show that this algorithm refines the previous one:

lemma sel3 S ≤ sel2 S
unfolding sel3 def sel2 def by (rule refine IdD,refine vcg inj on id) auto

Now assume that finding a representative element from a set is hard. Thus,
every inner set comes with an pre-computed representative. We define a refine-
ment relation between sets of sets with representatives, and sets of sets:

definition repr set rel ≡ {(S′,S).
(∗1∗) S = snd‘S′

(∗2∗) ∧ (∀(b,s)∈S′. case b of None ⇒ s={} | Some x ⇒ x∈s)
(∗3∗) ∧ (single valued (S′\<inverse>))

}

Proposition (1) ensures that the abstract set can be obtained from the concrete
set by projecting away the representatives. Proposition (2) ensures that the
attached representatives are actual representatives, where an option-type is used
to have None as representative for the empty set. Finally, proposition (3) ensures
that we do not add more than one representative for each set. This is important
to ensure that a finite abstract set must be represented by a finite concrete set,
over which iteration is well-defined.

Finally, we phrase the refined algorithm, and prove refinement:

definition sel4 S ≡ do {
assert (finite S);
foreach S (λ(b,) r.

case b of None ⇒ return r | Some x ⇒ return (insert x r)
) {}
}

lemma (S′,S)∈repr set rel =⇒ sel4x S′ ≤ sel3 S
unfolding sel4x def sel3 def
apply (rule refine IdD)
apply (refine rcg FOREACH refine rcg[where α=snd])
[. . .] (∗ Omitted 8 lines of standard Isabelle text to prove the VCs ∗)
done

2.5 Automatic Refinement

Many refinements, which are typically performed at the end of a refinement based
development, are pure data refinements, i. e. the overall structure of the program
is preserved, and only some abstract types are refined to concrete data structures.
Given which abstract types to refine to which concrete data structures, as well
as refinement rules for the required operations, the concrete program and the
refinement theorem can be automatically synthesized from the abstract program.

We have implemented such a synthesis procedure in the Autoref tool [16]. It
is based on the idea to express data refinement by relators [24].

It contains various heuristics to automatically select appropriate data struc-
tures and algorithms for the types and operations in the abstract program. The
most important ones are the homogeneity principle and priorities. The homo-
geneity principle intuitively states that the result of an operation should be
implemented by the same data structure as the operands. This avoids frequent
casts between different implementations, thus producing a cleaner and more pre-
dictable synthesis result. Priorities can be assigned to both, data structures and
algorithms. They are used to prefer efficient data structures and algorithms over
less efficient ones.

Moreover, Autoref supports instantiation of generic algorithms via recursive
synthesis. A generic algorithm implements an operation in terms of other opera-
tions. For example, union of finite sets may be implemented by iterating over one
set, and inserting its elements into the other. When Autoref encounters a union
operation, and decides to use this generic algorithm, it will try to synthesize
algorithms for iteration and insertion.

Using priorities, generic algorithms may be specialized. For example, there is
a more efficient union-operation on red-black trees. Its rule has a higher priority
than the generic algorithm, such that Autoref will try it first. Similarly, if one
can prove that the sets to be joined are disjoint, union on distinct lists can be
efficiently implemented by concatenation. This rule depends on an additional
side condition, which our tool will try to prove using some standard Isabelle
tactics. If the proof fails, the generic algorithm is used.

2.6 Code Generation

Once the program is refined to a deterministic program that only uses executable
constructs, we have to generate actual code from it. This is done in two steps:
In the first step, the program is transfered to a deterministic monad, and in the
second step, it is translated to source code of an actual programming language.

Transfer to Deterministic Program The combinators of the nres-monad
itself are defined using non-executable constructs. For execution, we define the
dres-monad over the type ′a dres = dsucceed | dreturn ′a | dfail.

The function nres of :: ′a dres ⇒ ′a nres maps a result from the dres-monad
to its corresponding result from the nres-monad. Given a deterministic program
m in the nres-monad, it is straightforward to transport it to the dres-monad, i.e.,
automatically synthesize a program m′ with nres of m′ ≤ m. Moreover, if m is
tail recursive (i.e. does not contain the rec combinator), it can be transported
to a plain HOL expression. That is, we can automatically synthesize a term m′′

with return m′′ ≤ m.

Isabelle’s Code Generator When the program is refined to the dres-monad or
to a plain expression, and all functions used by the program are executable (i.e.,
the code generator knows how to generate code for them), the code generator of
Isabelle/HOL [10] can be used to generate code in one of its supported languages,

which are currently SML, OCaml, Scala, and Haskell. Note that code generation
happens outside the logic of Isabelle/HOL, and thus belongs to the trusted code
base. However, there is a pen-and-paper proof of its correctness [10].

Example 2. Reconsider the program from Example 1. We want to implement the
input by a distinct list of distinct lists. As retrieving a representative element
from a non-empty list is simple, let’s drop our last refinement step and start at
program sel3 again.

As Autoref is often applied in the last refinement step before code generation,
it can combine the data refinement and the transportation to the dres-monad or
plain expression. Thus, an executable version of sel3 is generated as follows:

schematic lemma sel4
′ aux:

assumes [autoref rules]: (Si,S)∈〈〈Id〉list set rel〉list set rel
shows (?c::?′c,sel3 S)∈?R
unfolding sel3 def by (autoref monadic (plain))

concrete definition sel4
′ uses sel4

′ aux
prepare code thms sel4

′ def
export code sel4

′ in SML

Here, the assumes-line is an annotation that the parameter S should be
refined by a list of lists. The relation ?R for the result type is left unspecified.
Autoref also decides to use a distinct list, as it knows nothing about the (poly-
morphic) element type, and thus cannot derive an ordering or hash function,
which would be required for more efficient data structures. The (plain) option
indicates to transfer to a plain function, instead of the default transfer to the
dres-monad. Finally, the concrete definition command extracts the concrete
program from the refinement theorem and names it sel4

′. The last two lines then
generate the following SML-code:

fun sel4
′ A si =

Foldi.foldli si (fn ⇒ true)
(fn x ⇒ fn sigma ⇒

(if Autoref Bindings HOL.is Nil x then sigma
else let

val xa = List.hd x;
in

Impl List Set.glist insert (HOL.eq A) xa sigma
end))

[];

The code has the same structure as the original program. The foreach-loop has
been replaced by a fold function2, and the set operations have been replaced
by corresponding list operations. The extra parameter A contains the equality
operation on the polymorphic element type, which is required by the insert
operation.

2 The variant foldli has an additional break condition, which, however its not used
here, and thus set to fn ⇒ true.

As the generated code lives outside the logic of Isabelle, we cannot prove that
it coincides with sel4

′. However, by chaining all the refinement theorems we have
obtained on our way from the specification sel1 down to the executable version
sel4

′, we can prove that sel4
′ is actually correct w. r. t. the specification:

(S′,S) ∈ 〈〈Id〉list set rel〉list set rel =⇒ ∀s∈S−{{}}. set (sel4
′ S′) ∩ s 6= {}

3 The Isabelle Collection Framework

Having a library of re-usable standard data structures greatly reduces the effort
required to produce efficient implementations. In this section, we briefly describe
the Isabelle Collection Framework (ICF), which provides such a library.

It is seamlessly integrated into Autoref, such that many collection data struc-
tures are readily available, without any further setup. The current ICF is a de-
facto reimplementation of the original framework [14], to support nested data
structures (e.g. distinct lists of distinct lists), and make use of the Autoref tool
to instantiate generic algorithms.

The ICF is based on the concepts of interfaces, generic algorithms, and im-
plementations. Its main features are easy usability and extensibility, which is
achieved through seamless integration into the Autoref tool: Its heuristics select
appropriate data structures that the user do not even have to know about. More-
over, new interfaces, generic algorithms, and implementations can be added to
the ICF easily and without changing the original code base.

3.1 Interfaces

An interface describes an abstract data type and the operations on it. The default
interfaces which come with the ICF are map, set, priority queue, and list. All the
interfaces come with a large set of pre-defined operations, and the setup required
for Autoref to identify those operations in the abstract program.

For example, the map interface comes with an emptiness check operation, and
the abstract expressions m = Map.empty and dom m = {} may be identified as
emptiness check by Autoref.

3.2 Generic Algorithms

The ICF heavily relies on generic algorithms as a tool to avoid code duplica-
tion and allow rapid prototyping of new data structures. For example, the ICF
has generic algorithms to derive most operations on (finite) maps from five ba-
sic operations: empty-map, lookup, update, remove, and fold. Moreover, it has
generic algorithms to derive a set implementation from a map implementation,
by instantiating the value type to unit. This allows for rapid prototyping of a
new data structure, as all operations on sets and maps become available once
one has implemented the five basic map operations. Moreover, in many cases

the generic algorithms are reasonably efficient and match the default implemen-
tation of the operation for this data structure. This way, code duplication is
avoided, as the generic algorithm is shared between many data structures. If a
data structure supports a more efficient version of an operation, specialization
is used to override the generic algorithm.

3.3 Implementations

An implementation provides a concrete data structure for an interface. It consists
of a refinement relation and implementations of some of the operations, along
with their correctness lemmas.

Note that an implementation needs not provide all operations. Some of the
operations may be filled in by generic algorithms, and others may not be sup-
ported at all. The Autoref tool will only select implementations that support all
operations required by the program to be refined.

Available Implementations Examples for data structures provided by the
ICF are red-black trees and hash tables for sets and maps, distinct lists for sets,
association lists for maps, characteristic functions for sets, bit-vectors for (dense)
sets of natural numbers, and arrays for (dense) maps from natural numbers.

While the red-black tree and list based data structures are purely functional,
hash-tables, bit-vectors, and arrays are based on mutable arrays with undo-
history (called DiffArray in Haskell) which behave like functional arrays, but
use destructive update internally.

For those arrays, access to the latest version is always efficient, while access
to earlier versions gets more expensive as older the accessed version is. However,
many algorithms access their data in a linear fashion, and for linear access,
the array-based implementations are considerably faster than purely functional
implementation.

One drawback is that the mutable arrays with undo-history have to be imple-
mented outside the logic, and thus contribute to the trusted code base. In [18],
we presented an alternative approach that allows to reason about imperative
features inside the logic.

4 The CAVA Automata Library

While the ICF organizes abstract types and their implementations, it has only
limited support to establish a hierarchy on the interfaces: Type classes can be
used to define specialized interfaces, which support additional operations: For
example, the interface ordered-set constrains its elements to be in a linear order
type class, and then provides additional operations like minimum.

When we developed the CAVA Automata Library [17], which formalizes the
various graph and automata types that occur in the CAVA Model Checker, we
realized that there are many redundancies between the various types, which we
eliminated by structuring them in a class hierarchy:

fr_graph
+V: node set
+V0: node set
+E: (node × node) set
 V0 ⊆ V
 E ⊆ V × V
 finite ((frg_E G)*``frg_V0 G)

fin_graph
 finite V

igb_graph
+num_acc: nat
+acc: node → nat set
 ⋃(range (igbg_acc G)) ⊆ {0..<(igbg_num_acc G)}
 ∀q. igbg_acc G q ≠ {} ⇒ q ∈ V

gb_graph
+F: node set set
 F ⊆ Pow V
 finite F

fin_gb_graph

igba
+L: node → label → bool
 ∀q l. L q l ⇒ q ∈ V

gba
+L: node → label → bool
 ∀q l. L q l ⇒ q ∈ V

fin_gba

b_graph
+F: node set
 F ⊆ V

sa
+L: node → label

 F := {{q . i ∈ acc q} | i. i < num_acc}
 L := L

 F := {F}

Each class inherits the fields and invariants of its base classes, and may add
new fields and invariants. Moreover, some of the classes may be specializations of
other classes, as indicated by solid arrows. For example, Büchi automata can be
seen as generalized Büchi automata with a single acceptance class, as indicated
by the solid arrow from class b graph to gb graph.

Internally, classes are implemented by a mixture of locales [11] and records [22].
The records provide a mechanism to declare the fields of the classes, and exploit
polymorphism to have subtyping, i.e., the type of a base class matches on the
type of its subclasses. However, they are restricted to single inheritance, which
was not a problem for our design3.

Locales provide a mechanism to capture the invariants of a class. Moreover,
inside a class’ locale, concepts can be defined and theorems can be proven, which
are inherited to the subclasses. For example, the class fr graph defines the concept
of a path between two nodes, and proves theorems about it. These are available
in all subclasses.

Methods with static binding correspond to functions that take a parameter
of a class’ record type. Inside such a method, we may re-use the corresponding
method from the superclass. For example, renaming the states of an automaton
is implemented as first renaming the nodes of the underlying graph, and then
renaming the set of accepting states.

Definition of methods with dynamic binding (i. e. virtual methods) is more
tricky. We avoided this in our Automata library, and leave it to future research
to evaluate the different possible approaches.

Implementation is done via the Autoref-Tool, defining the classes as abstract
types, and relating them with implementations. The implementations are also

3 Note that we actually support multiple inheritance as long as all the fields can be
added by following a single path up the hierarchy.

structured via records, such that implementations of base classes may be re-
used to implement subclasses. For example, a gb graph may be implemented by
augmenting an implementation of an fr graph with an acceptance set.

5 The CAVA LTL Model Checker

LTL-to-GBA

LTL-Formula

Indexed GBA

Kripke Structure

Synchronous Product

Indexed GBG

Emptiness Check

Result

LTL-to-GBA

Gerth's algorithm

to-index conversion

GBA

Emptiness Check

SCC-based

Degeneralization

Nested DFS

Büchi graph

BoolProg Promela

⟦⟧ ⟦⟧

Fig. 1: Structure of the CAVA Model
Checker

Figure 1 shows the overall architec-
ture of CAVA. It follows a standard
approach for LTL model checkers:
The input is an LTL formula and a
model, which is described either as a
while program over Boolean variables
or in Promela, the modeling language
of SPIN. The model is converted to a
Kripke structure, i. e. a directed graph
with sets of atomic propositions anno-
tated at the nodes.

The LTL formula is converted to
a generalized Büchi automaton, which
accepts all infinite words that do not
satisfy the formula.

Then, the synchronous product of
the Kripke structure and the gen-
eralized Büchi automaton is com-
puted, resulting in an generalized
Büchi graph. Finally, the generalized
Büchi graph is checked for emptiness
by either using a strongly connected
component algorithm, or by degeneralizing it and using nested depth first search.
The result of the emptiness check either declares the automaton as empty, in
which case the model satisfies the formula, or it returns a counterexample, which
is a representation of an infinite run of the model that violates the formula.

The different components of CAVA are implemented and maintained by dif-
ferent developers. Thus, it is important to decouple them as much as possible.
The interfaces between the components are based on the classes of the CAVA
Automata Library.

The components are linked on two levels: the specification level and the imple-
mentation level. The specification level describes the abstract components’ effect
on the abstract automata data structures, using nondeterminism to leave room
for different implementations. For example, the result of the intersection may
be any automaton whose language is the intersection of the Büchi-automata’s
language with the system’s runs.

The link at the implementation level is realized as generic algorithm: Given
consistent implementations of the components which satisfy their specifications,
a model-checker is constructed and proven correct. To obtain the actual model-

checker and correctness proof, the generic algorithm is instantiated with the
actual implementations.

These are the only points where the different components of the model
checker are connected. Thus, changes to the components remain local, and do
not affect the rest of the system. This greatly increases the maintainability and
extensibility of the system. For example, we added the SCC-based emptiness
check algorithm to the system later. After formalizing and proving the new al-
gorithm correct, we could simply replace the original emptiness check component
by a dispatcher component, which selects the algorithm based on a flag.

6 Conclusion

We have presented an infrastructure to develop large-scale verified software sys-
tems. It is based on stepwise refinement, which reduces proof complexity by
splitting the correctness proof into independent parts. Our verification process
is done entirely inside the Isabelle/HOL theorem prover. Thus, our correctness
theorems only depend on the small inference kernel of Isabelle/HOL, which gives
them a very high confidence. The user of our framework is supported by a tool
chain which simplifies the proving process by automating canonical tasks.

Using the fully verified CAVA LTL model checker as a case study, we have
shown how to adapt standard engineering techniques like object orientation and
modularization to our development process.

References

1. Back, R.J.R., von Wright, J.: Refinement concepts formalized in higher order logic.
Formal Aspects of Computing 2 (1990)

2. Back, R.J., von Wright, J.: Refinement Calculus — A Systematic Introduction.
Springer (1998)

3. Boulmé, S.: Intuitionistic refinement calculus. In: Typed Lambda Calculi and Ap-
plications, LNCS, vol. 4583, pp. 54–69. Springer (2007)

4. Butler, M., L̊angbacka, T.: Program derivation using the refinement calculator. In:
TPHOLs, LNCS, vol. 1125, pp. 93–108. Springer (1996)

5. Cohen, C., Dénès, M., Mörtberg, A.: Refinements for free! In: Gonthier, G., Norrish,
M. (eds.) CPP, LNCS, vol. 8307, pp. 147–162. Springer (2013)

6. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: Deductive synthesis
of abstract data types in a proof assistant. SIGPLAN Not. 50(1), 689–700 (Jan
2015), http://doi.acm.org/10.1145/2775051.2677006

7. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.G.:
A fully verified executable LTL model checker. In: CAV, LNCS, vol. 8044, pp.
463–478. Springer (2013)

8. Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff:
Formal verification of C code without the pain. In: PLDI. pp. 429–439. ACM (jun
2014)

9. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in isabelle/hol.
In: ITP, LNCS, vol. 7998, pp. 100–115. Springer (2013)

10. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Functional and Logic Programming (FLOPS 2010). LNCS, Springer (2010)

11. Kammüller, F., Wenzel, M., Paulson, L.C.: Locales - A sectioning concept for
isabelle. In: TPHOLs. pp. 149–166 (1999)

12. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: formal verification of an OS kernel. In: Matthews, J.N., Anderson,
T.E. (eds.) Proc. ACM Symp. Operating Systems Principles. pp. 207–220. ACM
(2009)

13. Krauss, A.: Recursive definitions of monadic functions. In: PAR. vol. 43, pp. 1–13
(2010)

14. Lammich, P., Lochbihler, A.: The Isabelle Collections Framework. In: ITP. LNCS,
vol. 6172, pp. 339–354. Springer (2010)

15. Lammich, P.: Refinement for monadic programs. In: Archive of Formal Proofs.
http://afp.sf.net/entries/Refine Monadic.shtml (2012), formal proof development

16. Lammich, P.: Automatic data refinement. In: Interactive Theorem Proving, LNCS,
vol. 7998, pp. 84–99. Springer Berlin Heidelberg (2013)

17. Lammich, P.: The CAVA automata library. In: Isabelle Workshop (2014)
18. Lammich, P.: Refinement to imperative/hol. In: Interactive Theorem Proving,

LNCS, vol. 9236, pp. 84–99. Springer (2015)
19. Lammich, P., Neumann, R.: A framework for verifying depth-first search algo-

rithms. In: CPP. pp. 137–146 (2015)
20. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to

Hopcroft’s algorithm. In: ITP. LNCS, vol. 7406, pp. 166–182. Springer (2012)
21. Leroy, X.: A formally verified compiler back-end. J. Automated Reasoning 43,

363–446 (2009)
22. Naraschewski, W., Wenzel, M.: Object-oriented verification based on record sub-

typing in higher-order logic. In: TPHOLs. pp. 349–366 (1998)
23. Preoteasa, V., Back, R.J.: Invariant diagrams with data refinement. Formal Aspects

of Computing 24(1), 67–95 (2012)
24. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP

Congress. pp. 513–523 (1983)
25. Wadler, P.: Comprehending monads. In: Mathematical Structures in Computer

Science. pp. 61–78 (1992)

