
Checking Spring Annotations

Konrad Fögen, Vincent von Hof, and Herbert Kuchen

University of Münster, IS Department, Leonardo Campus 3, D-48149 Münster,
konrad.foegen@uni-muenster.de, von.hof@wi.uni-muenster.de,

kuchen@uni-muenster.de,
WWW: https://www.wi.uni-muenster.de/department/groups/pi/

Abstract. Dependency injection frameworks such as the Spring frame-
work rely on dynamic language features of Java. Errors arising from
the improper usage of these features bypass the compile-time checks of
the Java compiler. This paper discusses the application of static code
analysis as a means to restore compile-time checking for Spring-related
configuration errors. First, possible errors in the configuration of Spring
are identified and classified. Attributed grammars are applied in order
to formally detect the errors and a prototypical compiler extension is
implemented based on Java’s pluggable annotation processing API.

1 Introduction

The Java programming language is one of the most popular programming lan-
guages in general and especially in the field of enterprise applications1 [Wal14,
p.3]. In addition, dependency injection (DI) is frequently used to support and
simplify the development of Java applications. DI is a creational design pattern
that abstracts away the process of object creation and composition [GHJV95,
p.94]. Typical implementations are generic and make no assumptions about the
objects they manage. Instead, they rely on an external configuration [Pra09,
p.17].

However, the generic implementation requires the use of dynamic language
features such as the Java Reflection API [Ora15]. Despite its necessity and
usefulness, the Java Reflection API has a downside, since errors arising from the
improper application cannot be detected by available Java compilers. Thereby,
the detection of errors is shifted from compile-time to runtime.

Since the errors are not automatically detected at compile-time and the man-
ual detection is tedious, developers have a particular interest in automatic solu-
tions to detect them as early as possible, preferably at compile-time during the
development.

There are quite a few tools for the static analysis of Java programs such
as FindBugs [APM+07], Checkstyle [Bur03], PMD [PMD15], SonarQube

1 See http://www.langpop.com or http://lang-index.sourceforge.net/ as indicators for
Java’s popularity.

Spring Context
Dependent Independent

Analysis
Level

Above
Method Level

Group I
(13 errors)

Group II
(13 errors)

Below
Method Level

Group III
(8 errors)

Group IV
(4 errors)

Table 1. Classification of Spring Configuration Errors

[Son15], Java Language Extender [VWKBJ06], ESC/Java2 [CK05], Jas-
tAddJ [EH07], JavaCOP [MME+10], JQual [GF07], and the Checker frame-
work [PAC+08]. All these tools are general purpose inspection tools. To the best
of our knowledge, there is no tool for the static detection of Spring configuration
errors.

Our approach is based on attributed grammars [Knu68] and a compiler ex-
tension to detect errors arising from the improper application of the Spring
framework [Piv15] at compile-time. Spring is chosen as a representative for the
multitude of different DI implementations for Java, since it is one of the most
popular implementations. Furthermore, its configuration is based on Java anno-
tations which makes it very suitable for pluggable annotation processing.

This paper is structured as follows. In Section 2, Spring configuration er-
rors are identified and classified. In Section 3, attributed grammars are provided
which formally describe the detection of Spring configuration errors. Using these
attributed grammars, a prototypical compiler extension based on Java’s plug-
gable annotation processing API is described in Section 4. The insights gained
by the development of the prototype are used to evaluate the approach in Section
5. In Section 6, we conclude and point out future work.

2 Spring Configuration Errors

The Spring framework is an open source framework which implements the de-
pendency injection design pattern. At its core, the Spring context component
provides its clients with requested and dependent objects, so-called beans which
can be any kind of simple, Plain Old Java Objects (POJOs) [Wal14, p.4].

Several different context implementations exist which mainly differ in terms
of their configuration format, e.g. Java-based or XML-based configurations. In
general, configurations consist of features referring to the actual Spring context
as well as to a set of Spring bean definitions.2 Besides that, three different ways
of defining Spring beans are supported by Spring: explicit configurations via
Java and XML as well as implicit configurations via Java annotations. For more
information about Spring, please refer to [Wal14], [Pra09] or [Joh15].

A literature review of the Spring framework reference [Joh15] and expert
interviews have been conducted in order to identify different types of errors.
As a result, 38 distinct error types have been identified and classified into four
groups as depicted in Table 1. In the present paper, the core container and the

2 This work focuses only on Java-based configurations.

data access / integration modules are considered, since they can be used by any
Spring-based Java application. The classification depends on the core features of
the Spring framework and the usage of these features determines the assignment
of an error to a certain dimension. Four groups are formed by two dimensions
each featuring two manifestations. The spring context dimension determines
whether or not the analysis requires information derived from the Spring context.
Analysis level is the second dimension and determines whether or not the analysis
requires information about the control flow that concerns language constructs
below the method-level, e.g. method invocations or variable assignments. In the
following, exemplary errors are described for further illustration of the different
error types.

Group I. Errors belonging to this group depend on the Spring context and an-
other component which uses a related Spring-specific annotation. The errors
occur above the method level, e.g. declarations of classes, methods or member
variables. Viewed in isolation, the Spring context configuration and the compo-
nent may not be erroneous but their interaction is.

As an example, Spring’s transaction infrastructure encapsulates the internals
of specific transaction management APIs and offers a declarative model for the
integration into applications [Joh15, chap.12.3]. A Spring context which defines
a transaction manager as well as a @EnableTransactionManagement annotation
are required to enable the transaction management. Once enabled, the @Trans-
actional annotation can be attached to methods in order to enable transactional
support for the method. Listing 1.1 illustrates the correct usage.

1 @Configuration
2 @EnableTransactionManagement
3 public class Spr ingConf ig {
4 @Bean
5 public PlatformTransactionManager transact ionmanager () {

. . . }
6 }
7

8 @Component
9 public class P r i n t e r S e r v i c e {

10 @Transact ional
11 public void pr in t () {. . . }
12 }

Listing 1.1. Illustration of Spring’s Transaction Management

In this situation, errors occur if transaction management is enabled but not
used because no methods are annotated with @Transactional, i.e. when line 10 is
removed from the listing. Or - the opposite situation - if @Transactional methods
exist but the transaction management is not enabled, i.e. a situation where line
2 is removed from the listing.

Group II. Errors in group II are Spring context-independent and occur above the
method level. They consist of annotated language constructs which - at the same

time - have some other attributes or other annotations which are incompatible
to that original annotation.

For instance, the Spring framework uses the @Autowired annotation to mark
methods or fields for annotation-based injection [Wal14, p.39]. Sometimes, de-
pendencies are ambiguous and the Spring context finds several bean definitions
that match and then has to choose between them [Wal14, p.75]. The @Qualifier
annotation can be used in conjunction with @Autowired to narrow the result set.
It is an error to use @Qualifier without a corresponding @Autowired annotation.

The @Qualifier annotation can also be used indirectly. There is no difference
between the usage of @Qualifier and the usage of annotation types annotated
with @Qualifier. Both, the error and the indirect usage of @Qualifier are illus-
trated in Listing 1.2.

1 @Qual i f i e r
2 @inte r f a c e DinA4Format {. . . }
3

4 @Component
5 @DinA4Format
6 class DinA4DocumentFormatter implements DocumentFormatter {

. . . }
7

8 @Component
9 class P r i n t e r S e r v i c e {

10 //@Autowired i s miss ing
11 @DinA4Format
12 public P r i n t e r S e r v i c e (DocFormatter f) {. . . }
13 }

Listing 1.2. Illustration of @Qualifier Without @Autowired

Group III. Similar to errors in group I, the errors in this group also depend
on specific Spring context configurations. But in contrast, they also depend on
language constructs below the method level. For instance, the lifecycle of a bean
is an important aspect described by its bean definition. The lifecycle of a bean
starts after the corresponding Spring context is initialized and ends right before
the Spring context shuts down. In between that timeframe, the lifecycle of a bean
is defined by its scope [Wal14, p.81]. The singleton scope is the default scope
for beans, where only one shared instance of the bean exists per Spring context
and it exists until the context shuts down [Joh15, chap.5.5.1]. In contrast, beans
defined with the prototype scope are created as new instances every time they
are requested.

One important aspect regarding prototype scope is that the Spring context
does not manage the complete lifecycle of these beans. Even though prototype
and singleton beans are initialized the same way, their destruction is differ-
ent, since the Spring context does not store references to prototyped beans and
therefore cannot initiate their destruction. A Spring bean definition is explicitly
defined by attaching the @Bean annotation to a method or implicitly defined by
adding the @Component annotation to a class declaration.

Furthermore, Spring allows to define lifecycle callbacks, e.g. methods called
by the Spring context when a bean is constructed or destructed [Wal14, p.33].
Among other ways, they can be defined by annotating a corresponding method
with @PostConstruct or @PreDestroy.

Since the Spring context cannot initiate the destruction process of prototyped
beans, methods that qualify as destruction lifecycle callbacks are considered er-
roneous, if the beans are defined with the prototype scope. Listing 1.3 illustrates
this error where the component contains a close method to cleanup resources
which is never invoked due to the prototype scope.

1 @Configuration
2 public class Spr ingConf ig {
3 @Bean
4 @Scope (” prototype ”)
5 public P r i n t e r S e r v i c e p r i n t e r S e r v i c e () {
6 return new P r i n t e r S e r v i c e () ;
7 }
8 }
9

10 public class P r i n t e r S e r v i c e {
11 @PreDestroy
12 public void c l o s e () { // w i l l not be invoked
13 this . usbConnection . c l o s e () ;
14 }
15 }

Listing 1.3. Illustration of Callbacks on Prototyped Beans

Group IV. This group also comprises errors that occur below the method level
and do not depend on the Spring context. An example is related to Spring’s
JdbcTemplate component which provides an abstraction layer covering specific
details of Java’s JDBC API. Here, SQL is used to interact with databases. The
corresponding code is linguistically separated from the surrounding code written
in Java. Therefore, the compiler cannot check whether or not SQL code is com-
pliant to the language definition of SQL. A typical use case in this context is a
developer who creates and tests SQL statements in a database tool. Once the
SQL statement is ready, he copies it into a Java String and uses it. Statements
which are executed in a database tool often require to be terminated with a
semicolon. However, having that semicolon at the end of a SQL String in Java
results in a runtime exception.

These kinds of problems can be detected by applying pluggable type systems
similar to the one for regular expressions by the Checker framework [SDE12].
Therefore, such errors are not further discussed in this paper.

3 Error Detection via Attributed Grammars

Static code analysis is an analytical approach to detect lexical, syntactic, and
also some semantic errors. The source code of software is analyzed in order to

understand its structure (syntax) and meaning (semantics) [ALSU07, p.21]. The
gained understanding is then used to identify errors within the source code.
Regular expressions and context-free grammars can be used to define the lexical
and syntactic structure of a programming language and errors can be detected
by identifying mismatches between the defined structure and the actual source
code.

Beyond syntactical checks, compilers may also check for the static semantics,
e.g. whether a method is invoked with the right number and types of arguments.
Or, in our case, that Spring configurations and annotations are used in a correct
manner.

In 1968, Knuth introduced attributed grammars as a formal approach to
express and handle semantical aspects of a programming language [Knu68]. At-
tributed grammars are context-free grammars extended with attributes and se-
mantic rules [SK95, pp.66-67]. Each nonterminal of the context-free grammar
may have several attributes. Each attribute can either be synthesized or inher-
ited and it has a value which is defined by a semantic rule associated with a
production of the context-free grammar.

Roughly, if A ::= B1 . . . Bn (for n ∈ IN) is a context-free rule with nontermi-
nals A,B1, . . . , Bn, all of which have a synthesized attribute s and an inherited
attribute i, then corresponding semantic rules can define the values of the at-
tributes A.s,B1.i, . . . , Bn.i as follows:

A.s← f(A.i, B1.s, . . . , Bn.s) (1)

Bj .i← g(A.i, B1.s, . . . , Bj−1.s, Bj+1.s, . . . , Bn.s) (2)

where f and g are functions mapping attribute values to another attribute value
and j ∈ {1, . . . , n}. If the context-free rules contain terminal symbols and / or
nonterminals have several synthesized and inherited attributes, the formulas (1)
and (2) have to be generalized accordingly (see [ALSU07] for a full description
of attributed grammars).

The following notation is used within this paper to represent attributes, se-
mantic rules, and conditions. Semantic rules are enclosed by curly brackets and
are placed behind the body of the corresponding production. $0.a is used to refer
to attribute a of the symbol on the left hand side (lhs) of the production, $1.a
is used to refer to the leftmost symbol of the right hand side (rhs) and so forth.
A reversed arrow ← is used to represent the value assignment from the value
on the rhs of a semantic rule to the attribute on the lhs. For the rhs, we use a
syntax similar to that of C or Java.

After constructing a syntax tree (via lexical and syntactic analysis), the at-
tribute values of the symbols in that tree can be determined by applying the
semantic rules [ALSU07, p.54]. The order in which the attributes can be eval-
uated has to reflect the dependencies of the attributes caused by the semantic
rules. In general, there is no guarantee that an order exists in which all attributes
of all nodes can be evaluated. Though, there are subclasses of attributed gram-
mars which restrict the usage of attributes and semantic rules to guarantee the
existence of an evaluation order [ALSU07, p.313].

〈root〉 ::= 〈typedecllist〉 | $

〈typedecllist〉 ::= 〈typedecl〉 〈typedecllist〉 | ε

〈typedecl〉 ::= 〈modifiers〉 〈typedecltype〉

〈modifiers〉 ::= ‘public’ 〈modifiers〉 | ‘private’ 〈modifiers〉
| 〈annotation〉 〈modifiers〉 | ε

〈annotation〉 ::= ‘@’ 〈identifier〉 〈annoarguments〉

〈typedecltype〉 ::= 〈annotypedecl〉 | 〈classdecl〉 | 〈interfacedecl〉

〈annotypedecl〉 ::= ‘@interface’ 〈identifier〉 ‘{’ 〈annotypebody〉 ‘}’

〈classdecl〉 ::= ‘class’ 〈identifier〉 〈superclass〉 〈interfaces〉 ‘{’ 〈classbody〉 ‘}’

〈interfacedecl〉 ::= ‘interface’ 〈identifier〉 〈superinterface〉 ‘{’ 〈interfacebody〉 ‘}’

〈classbody〉 ::= 〈modifiers〉 〈type〉 〈identifier〉 〈classbodytype〉 〈classbody〉 | ε

Fig. 1. Java Grammar in BNF Notation (Excerpt).

Two subclasses relevant for this work are S- and L-attributed grammars: S-
attributed grammars are grammars that only contain synthesized attributes and
no inherited attributes [ALSU07, p.313]. They allow a bottom-up evaluation of
attributes. L-attributed grammars also guarantee the existence of an evaluation
order. Roughly, they allow the evaluation of attributes bottom up and left to
right. See [ALSU07] for details.

We use an LL(1)-compliant context-free grammar which describes the subset
of Java language constructs relevant for the detection of Spring configuration
errors. Figure 1 provides an overview of the productions which are relevant for
the succeeding analyses.

The semantic rules used for attributed grammars are based on the following
constants and operations: error is used to indicate that an error has been de-
tected, emptySet creates an empty set, newSet creates a set containing a single
element, intersects returns true if and only if an intersection of two sets is not
empty and union computes the union of two sets. The function value operates
on identifiers and returns the actual value as a string.

In the following, an exemplary attributed grammars is provided which allow
to expose an error explained in of Section 2.

Spring context-dependent errors that occur above the method level can be
generically depend on the presence or absence of annotations. The presence or
absence can be described via two synthesized boolean attributes enabled (1) and
used (2). A boolean expression using the two attributes describes whether an
error is present or not.

Consider again the error introduced in Listing 1.1. It can be exposed as
follows. The attribute enabled is set to true, if a Spring configuration exists and
if this configuration is annotated with @EnableTransactionManagement. The

Nonterminal Symbols Synthesized Attributes

〈root〉 -

〈typedecllist〉 enabled, used

〈typedecl〉 enabled, used

〈typedecltype〉 used

〈classdecl〉 used

〈classbody〉 used

〈interfacedecl〉 used

〈interfacebody〉 used

〈modifiers〉 names

〈annotation〉 name
Table 2. Overview of Nonterminals and Synthesized Attributes.

attribute used is set to true, if a method annotated with @Transactional exists.
Otherwise, the attributes are set to false. The error occurs if the attribute enabled
is true and at the same time the attribute used is false. The condition can thus
be expressed as the boolean expression enabled ∧ ¬used.

The detection can be described by an S-attributed grammar with four syn-
thesized attributes enabled, used, name and names whereby enabled refers to
occurrences of @EnableTransactionManagement and used refers to occurrences
of @Transactional. name refers to the identifier of an annotation and names is
a set of a names.

In the following, the semantic rules and the synthesis are described in greater
detail. Table 2 provides an overview of the relevant nonterminals and their syn-
thesized attributes. Figure 2 shows a corresponding S-attributed grammar. The
synthesis starts with the collection of 〈annotation〉 names. 〈annotation〉 ele-
ments delegate their name to the enclosing 〈modifiers〉 element which collects
them. For 〈classbody〉 and 〈interfacebody〉, the used attribute is set to true if
the collected set of modifiers contains the @Transactional annotation.

The value of the used attribute is then propagated to the 〈type〉 declara-
tion. The used attribute value for annotation types is always false since they
cannot use the @Transactional semantics. The 〈typedecl〉 propagates the used
value to the enclosing 〈typedecllist〉. In addition, it is checked whether the type
declaration itself uses the @Transactional annotation. Besides that, it is checked
whether the type declaration is the actual Spring context configuration class
and if so, whether the transaction management is enabled or not. The enabled
attribute represents the value of that check.

The semantic rules of 〈typedecllist〉 collect the attributes of each enclosed
type declaration. The attributes are set to true if they are true for at least one
type declaration. The attributes are then validated at the root production. An
error is detected, if the transaction management is enabled but no method uses
the @Transactional annotation.

Consider again Listing 1.1 where an error occurs if the transaction manage-
ment is enabled but not used because no methods are annotated with @Trans-

〈annotation〉 ::= ‘@’ 〈identifier〉 {$0.name← value($1); }

〈modifiers〉 ::= ‘public’ 〈modifiers〉 {$0.names← $1.names; }
| ‘private’ 〈modifiers〉 {$0.names← $1.names; }
| 〈annotation〉 〈modifiers〉 {$0.names← union(newSet($1.name), $2.names); }
| ε {$0.names← emptySet(); }

〈classbody〉 ::= 〈modifiers〉 〈type〉 〈identifier〉 〈classbodytype〉 〈classbody〉
{$0.used← intersects(newSet(‘Transactional’), $1.names); }

| ε {$0.used← false; }

〈interfacebody〉 ::= 〈modifiers〉 〈type〉 〈identifier〉 〈methoddecl〉 〈interfacebody〉
{$0.used← intersects(newSet(‘Transactional’), $1.names); }

| ε {$0.used← false; }

〈classdecl〉 ::= ‘class’ 〈identifier〉 〈superclass〉 〈interfaces〉 ‘{’ 〈classbody〉 ‘}’
{$0.used← $4.used; }

〈interfacedecl〉 ::= ‘interface’ 〈identifier〉 〈superinterface〉 ‘{’ 〈interfacebody〉 ‘}’
{$0.used← $3.used; }

〈typedecltype〉 ::= 〈annotypedecl〉 {$0.used← false; }
| 〈classdecl〉 {$0.used← $1.used; }
| 〈interfacedecl〉 {$0.used← $1.used; }

〈typedecl〉 ::= 〈modifiers〉 〈typedecltype〉
{$0.used← $2.used ‖ intersects(newSet(‘Transactional’), $1.names);
$0.enabled← intersects(newSet(‘Configuration’), $1.names)

&& intersects(newSet(‘EnableTransactionManagement’), $1.names); }

〈typedecllist〉 ::= 〈typedecl〉 〈typedecllist〉
{$0.enabled← $1.enabled ‖ $2.enabled; $0.used← $1.used ‖ $2.used; }

| ε {$0.enabled← false; $0.used← false; }

〈root〉 ::= 〈typedecllist〉 {if($1.enabled && !$1.used){error(); }} | $

Fig. 2. S-attributed Grammar for detection of Transactional error (excerpt).

actional, i.e. when line 10 is removed from the listing. An excerpt of the abstract
syntax tree (AST) annotated with the results from applying the before-discussed
attributed grammar to Listing 1.1 is provided in Figure 3. The rounded rect-
angles represent attributes and their values belonging to a node and the dotted
lines illustrate the bottom-up flow of the computation. The excerpt depicts the
evaluation of the SpringConfig class declaration where the value of the used at-
tribute is false since the declaration does not contain any methods annotated
with @Transactional. However, the value of the enabled attribute is true because
the class declaration is a Spring configuration and the transaction management
is enabled.

Other errors above the method level can be detected by similar attributed
grammars. For errors in group II, we use L-attributed grammars.

Fig. 3. Annotated parse tree for SpringConfig (excerpt).

For errors that occur below the method level, we transform the abstract
syntax tree to a control-flow graph (CFG) [ALSU07], which is more suitable for
dealing with the dynamic behavior of the code. On the CFG, we then perform
a reaching definitions analysis [Muc97, p.218].

Using this analysis, we can e.g. detect the error regarding destruction meth-
ods of prototype-scoped beans as presented in Listing 1.3.

4 Prototypical Implementation

Our approach is based on the attributed grammars explained above. Technically,
the corresponding analysis has been implemented using the pluggable annotation
processing API. This API is specified by Java Specification Request (JSR) 269
and enables the processing of annotations at compile-time [Dar06]. It defines a
language model representing the source code of a processed Java project. The
design of the language model can be described by the composite design pattern
([GHJV95, p.183]).

Besides that, the API defines how compiler extensions can be declared and
executed. Figure 4 illustrates the architecture of the Java compiler. It is based on
a pipe and filter architecture as described in [LL12, p.432]. The extension depicts
how our prototype is plugged into the compilation process via the pluggable
annotation processing API. Once the compiler finishes the lexical and syntactical
analysis of the source code, it invokes the prototype through the plugin interface.
The SpringAnnotationProcessor component uses the aforementioned composite
structure provided by the compiler to perform analyses based on the attributed
grammars as described in Section 3.

Fig. 4. Pipe and Filter Architecture of the Java Compiler

Detected errors are delegated to the Messager component which adds them
to the compilers error messages. Next, the semantic analysis of the compiler
is performed and the resulting decorated AST is passed to the prototypes De-
faultAnnotationTaskListener which then utilizes the data-flow based analysis as
described in Section 3. Again the detected errors are delegated to the compiler.

It has to be noted that the before-mentioned language model only represents a
subset of Java. Language constructs which are embedded within method bodies
such as assignments or method invocations are not included. Another API is
required in order to access language constructs below the method level. Oracle’s
javac compiler provides a compiler-specific API called compiler tree API [Ora14].
This lower-level API provides a composite structure that represents the required
whole AST created by javac.

5 Evaluation

The developed prototype has been used in several Java projects in order to
demonstrate its functionality and to evaluate its performance.

All example applications are based on the Spring framework 3.11: The Spring
Pet Clinic3 is a sample application provided by the Spring framework. It is se-
lected because it demonstrates the usage of all Spring features which are consid-
ered by the annotation processor such as annotation-based dependency injection,
transaction management and caching. Broadleaf Commerce4 is an open-source e-
commerce framework based on Java and Spring, which consists of about 115.000

3 See https://github.com/spring-projects/spring-petclinic
4 See https://github.com/BroadleafCommerce/BroadleafCommerce

lines of code (LoC). It represents an actual real-world use case in which de-
velopers build modules of comparable size multiple times a day. Besides that,
12 examples5 are considered, each of which includes an instance of one of the
identified Spring-configuration error types. They do not represent practical ap-
plications but are used to ensure that the prototype is actually able to detect
such errors.
Since the prototype has to be integrated into the third party projects (Spring
Pet Clinic, Broadleaf Commerce), it is also possible to evaluate the integration
efforts from the user perspective.

In order to assess the performance of the prototype, the build times of the
projects including and excluding the prototype are compared to each other. Since
all considered projects are based on Maven, the time measured by Maven itself is
used. To ensure the comparability of the measured times, all builds are performed
on the same machine and unchanged configuration. In addition, multiple builds
are performed to minimize the possible influence of external factors of other
processes performed by the operating systems.
Each project is build 41 times whereby the first build fulfills two functions: First,
it is used by Maven to download and manage third party dependencies, which
potentially falsifies the results. Second, the Java virtual machine requires some
time for initialization when started, which also potentially falsifies the results. 40
additional builds are used to actually measure the build times. 20 of these builds
are performed with the prototype and 20 are performed without the prototype.

The conducted tests reveal the following results. No Spring-related errors
have been deteted within the Spring Pet Clinic and Broadleaf Commerce projects,
which is not surprising, since they are sufficiently mature. In contrast, the errors
placed on purpose in the example projects are detected.

The runtimes required to build the projects with and without the annotation
processor differ by an acceptable amount (see Table 3). The time differences
are less than one second for the small projects. Tests with an empty annotation
processor, which performs no checks, show similar results. Hence, it is likely that
a large part of the difference results from locating and initializing the annotation
processor. The largest absolute difference observed at the Broadleaf Commerce
project is ∼2 seconds, a 3% increase, for 115, 000 LoC. However, it has to be
noted that the project consists of seven modular projects and the Java plugin is
invoked individually for each of them. Hence, the annotation processor is seven
times located and initialized.

Up to now, our prototype handles 12 of the identified error types and, as
our experiments have shown, it is able to detect instances of these error types
successfully. The implementation of the detection of remaining error types is still
pending.

In order to improve the acceptance of our tool, the prototype is required to
minimize the occurrences of false reports. The following can be stated w.r.t. the
correctness and completeness of our tool. All errors above the method level are
reported properly and there are no reports of errors which actually don’t occur.

5 See https://github.com/vvhof/DetectingSpringConfigurationErrorsExamples

Avg. Build Times in ms

Sample Project LoC Disabled Enabled Diff.

Error Type 1 29 2 568 2 971 16%

Error Type 2 156 2 675 2 932 10%

Error Type 3 36 2 544 2 741 8%

Error Type 4 37 2 535 2 825 11%

Error Type 5 37 2 524 2 870 14%

Error Type 6 69 2 524 2 915 15%

Error Type 7 56 2 558 2 756 8%

Error Type 8 53 2 501 2 629 5%

Error Type 9 39 2 463 2 725 11%

Error Type 10 39 2 469 2 668 8%

Error Type 11 54 2 502 2 764 11%

Error Type 12 54 2 516 2 748 9%

Spring PetClinic 1 390 9 912 11 448 15%

Broadleaf Commerce 115 902 55 108 56 970 3%

Table 3. Build Times with enabled and disabled prototype.

Below the method level, we are using a static analysis based on the control-flow
graph in addition to an attributed grammar. Due to the unavoidable loss of
precision in that analysis, it may happen that errors are reported, which can-
not occur thanks to data dependencies which the reaching definitions analysis
ignores. Fortunately, such errors rarely happen in practice, since it is bad pro-
gramming style to let the correctness of the configuration depend on the control
and data flow. One may even argue that such cases should be reported. Our cur-
rent implementation does not yet support inter-method analysis. Thus, errors
which can only be detected with such an analysis are currently not yet covered.

There are two limitations of our approach. As explained above, the limits of
static code analysis are also the limits of our approach. Second, the pluggable
annotation processing API restricts the usage of annotation processors to a Java
compiler. The usage of the compiler tree API also binds the annotation processor
to Oracle’s specific Java compiler javac.

6 Conclusion and Future Work

Dependency injection is an elegant design pattern. However using it, configu-
ration errors may occur which available Java compilers cannot detect. These
erroneous configurations are hence only detected at runtime, which requires dif-
ficult debugging and causes nasty delays during the development of software.
We have developed a compiler-plugin for the javac compiler which is able to find
such configuration errors at compile time. Conceptually, the plugin is based on
attributed grammars and the Java pluggable annotation processing API.

For the popular framework Spring and based on a literature review and expert
interviews, we have first of all collected a set of 38 possible types of configuration

errors. Then, we have classified these error types into four categories. The clas-
sification depends on two aspects. First, we check whether an error requires an
analysis above or below the method level. Secondly, we check whether the error
is depending on the Spring context or not. For each of these classes of errors,
we have developed a scheme for an S- or L-attributed grammar and instantiated
this scheme for every considered possible error. By combining the attributed
grammars of each error type, we obtain one large L-attributed grammar. For er-
rors which require an analysis of the control flow, a reaching definitions analysis
based on the control-flow graph has been added.

In experiments based on a couple of small and two big applications, we have
evaluated that the compiler plugin produces an acceptable runtime overhead.
Moreover, it was able to find all configuration errors which we have inserted.
Due to the imprecision of the reaching definitions analysis, false positives may
happen in principle. In practice, this did not happen.

Our plugin is a valuable tool for Spring developers and used in practice by
our project partner in industry. It has helped to speedup software development
using Spring considerably.

Our current implementation handles 12 out of 38 identified types of errors.
As future work, we would like to extend the plugin such that the remaining error
types are also covered. For all but 5 error types, this will be straightforward and
we just have to instantiate our general schemes again. The remaining 5 errors
will require some inter-method analysis.

7 Acknowledgments

We thank our project partner viadee GmbH for the fruitful collaboration.

References

[ALSU07] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, & Tools. Addison-Wesley Publishing Com-
pany, USA, 2nd edition, 2007.

[APM+07] Nathaniel Ayewah, William Pugh, J David Morgenthaler, John Penix, and
YuQian Zhou. Evaluating static analysis defect warnings on production
software. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering, pages 1–8. ACM,
2007.

[Bur03] Oliver Burn. Checkstyle, 2003.
[CK05] David R Cok and Joseph R Kiniry. Esc/java2: Uniting esc/java and jml.

In Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices, pages 108–128. Springer, 2005.

[Dar06] Joseph D. Darcy, 2006.
[EH07] Torbjörn Ekman and Görel Hedin. The jastadd extensible java compiler.

In Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems and applications, OOPSLA ’07, pages 1–18,
New York, NY, USA, 2007. ACM.

[GF07] David Greenfieldboyce and Jeffrey S Foster. Type qualifier inference for
java. In ACM SIGPLAN Notices, volume 42, pages 321–336. ACM, 2007.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[Joh15] Rod et al. Johnson. Spring framework reference documentation, 2015.
[Knu68] Donald E. Knuth. Semantics of context-free languages. In Mathematical

Systems Theory, pages 127–145, 1968.
[LL12] Jochen Ludewig and Horst Lichter. Software Engineering: Grundlagen,

Menschen, Prozesse, Techniken. dpunkt. verlag, 2012.
[MME+10] Shane Markstrum, Daniel Marino, Matthew Esquivel, Todd Millstein,

Chris Andreae, and James Noble. Javacop: Declarative pluggable types
for java. ACM Transactions on Programming Languages and Systems
(TOPLAS), 32(2):4, 2010.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[Ora14] Oracle Corporation. Openjdk compiler tree api specification, 2014.
[Ora15] Oracle Corporation. ”package java.lang.reflect”, 2015.
[PAC+08] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jr., Jeff H. Perkins,

and Michael D. Ernst. Practical pluggable types for java. In Proceedings
of the 2008 International Symposium on Software Testing and Analysis,
ISSTA ’08, pages 201–212, New York, NY, USA, 2008. ACM.

[Piv15] Pivotal Sofware, Inc. Spring framework, 2015.
[PMD15] PMD. Pmd, 2015.
[Pra09] Dhanji R. Prasanna. Dependency Injection. Manning Publications Co.,

Greenwich, CT, USA, 1st edition, 2009.
[SDE12] Eric Spishak, Werner Dietl, and Michael D. Ernst. A type system for

regular expressions. In Proceedings of the 14th Workshop on Formal Tech-
niques for Java-like Programs, FTfJP ’12, pages 20–26, New York, NY,
USA, 2012. ACM.

[SK95] Kenneth Slonneger and Barry Kurtz. Formal Syntax and Semantics of
Programming Languages: A Laboratory Based Approach. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1995.

[Son15] SonarSource S.A. Sonarqube, 2015.
[VWKBJ06] Eric Van Wyk, Lijesh Krishnan, Derek Bodin, and Eric Johnson. Adding

domain-specific and general purpose language features to java with the
java language extender. In Companion to the 21st ACM SIGPLAN Sym-
posium on Object-oriented Programming Systems, Languages, and Appli-
cations, OOPSLA ’06, pages 728–729, New York, NY, USA, 2006. ACM.

[Wal14] Craig Walls. Spring in Action. Manning Publications Co., Greenwich,
CT, USA, 4th edition, 2014.

