
Communication-based Specification Stream Processing Haskell Java

Communication-based Development of Systems
Using Standard Programming Languages

Dr. Annette Stümpel

Institute of Software Technology and Programming Languages

University of Lübeck

KPS’09

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck

Communication-based Specification Stream Processing Haskell Java

Motivation

Communication-based
specification

Program

s t r
-

-
-

�

-
-

� -

? C O D E

message sequence charts
sequence diagrams
stream processing
...

Java
Haskell
Erlang
...

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck

Communication-based Specification Stream Processing Haskell Java

Graphical Communication-based Specification

Example Transmission of a message d from a sender to a receiver
via an unreliable transmission with acknowledgements

sender transmission receiver

-
d

-
d

-
†

�
⊖

-
d

-
d

�
⊕

-
d

loopunsuccsessful

transmission

succsessful

transmission

Architecture: sender receiver
transmit

�

A

-C-D
-D -D

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck

Communication-based Specification Stream Processing Haskell Java

Stream Processing

Streams record the sequence of messages transmitted via a
communication line.
Finite streams: A⋆ = {〈〉}

︸︷︷︸

empty

stream

∪ A×A⋆

︸ ︷︷ ︸

non-empty

streams

x ⊳ X

Infinite streams arise as limit points.

A stream function f : A⋆

1 × . . . ×A⋆

m → B⋆

1 × . . . × B⋆

n maps input
streams to output streams:

sender
-D
-

A

-D

monotonicity Previous output messages can not be cancelled.
continuity The behaviour on infinite input streams is

approximated by the behaviour on finite streams.

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck

Communication-based Specification Stream Processing Haskell Java

Example Sender: Input / Output Behaviour

Interface send : D⋆ ×A⋆ → D⋆

Behaviour

send(〈〉, A) = 〈〉

send(d ⊳ D, A) = d ⊳ wait(d)(D, A)

wait(d)(D, 〈〉) = 〈〉

wait(d)(D,⊕ ⊳ A) = send(D, A)

wait(d)(D,⊖ ⊳ A) = d ⊳ wait(d)(D, A)

sender

-
d

-
d

-
⊖

-
d

-
⊕

loop

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck

Communication-based Specification Stream Processing Haskell Java

Example Sender: Input / Output Behaviour

Interface send : D⋆ ×A⋆ → D⋆

Behaviour

send(〈〉, A) = 〈〉

send(d ⊳ D, A) = d ⊳ wait(d)(D, A)

wait(d)(D, 〈〉) = 〈〉

wait(d)(D,⊕ ⊳ A) = send(D, A)

wait(d)(D,⊖ ⊳ A) = d ⊳ wait(d)(D, A)

sender

-
d

-
d

-
⊖

-
d

-
⊕

loop

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck

Communication-based Specification Stream Processing Haskell Java

Example Sender: Input / Output Behaviour

Interface send : D⋆ ×A⋆ → D⋆

Behaviour

send(〈〉, A) = 〈〉

send(d ⊳ D, A) = d ⊳ wait(d)(D, A)

wait(d)(D, 〈〉) = 〈〉

wait(d)(D,⊕ ⊳ A) = send(D, A)

wait(d)(D,⊖ ⊳ A) = d ⊳ wait(d)(D, A)

Eliminating wait:

send(〈〉, A) = 〈〉

send(d ⊳ D, 〈〉) = 〈d〉

send(d ⊳ D,⊕ ⊳ A) = d ⊳ send(D, A)

send(d ⊳ D,⊖ ⊳ A) = d ⊳ send(d ⊳ D, A)

sender

-
d

-
d

-
⊖

-
d

-
⊕

loop

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck

Communication-based Specification Stream Processing Haskell Java

Communication-based Programming in Haskell

Laziness makes Haskell an interesting candidate for
communication-based programming.

channels lazy lists

〈〉 =̂ ⊥

x ⊳ X =̂ x : X

components list functions

composition network of mutually recursive equations naming the
channels

! caution with patterns for lazy lists

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck

Communication-based Specification Stream Processing Haskell Java

Example in Haskell

send : : [a] −> [Bool] −> [a]
send [] as = []
send (d : xs) as = d : wa i t d xs as

where wa i t d xs [] = []
wa i t d xs (True : as) = send xs as
wa i t d xs (False : as) = d : wa i t d xs as

t r a n sm i t : : [Int] −> [a] −> [Maybe a] . . .
r e c e i v e : : [Maybe a] −> ([a] , [Bool]) . . .

network o r a c l e xs = ys
where ds = send xs as

c s = t r a n sm i t o r a c l e ds
(ys , as) = r e c e i v e c s

send receive
transmit

�

as

-cs-ds
-xs -

ys

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck

Communication-based Specification Stream Processing Haskell Java

Example in Haskell

send : : [a] −> [Bool] −> [a]
send [] as = []
send (d : xs) as = d : wa i t d xs as

where wa i t d xs [] = []
wa i t d xs (True : as) = send xs as
wa i t d xs (False : as) = d : wa i t d xs as

t r a n sm i t : : [Int] −> [a] −> [Maybe a] . . .
r e c e i v e : : [Maybe a] −> ([a] , [Bool]) . . .

network o r a c l e xs = ys
where ds = send xs as

c s = t r a n sm i t o r a c l e ds
(ys , as) = r e c e i v e c s

send receive
transmit

�

as

-cs-ds
-xs -

ys

works fine

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck

Communication-based Specification Stream Processing Haskell Java

Example in Haskell without Auxiliary wait Function

send : : [a] −> [Bool] −> [a]
send [] as = []
send (d : xs) [] = [d]
send (d : xs) (True : as) = d : send xs as
send (d : xs) (False : as) = d : send (d : xs) as

t r a n sm i t : : [Int] −> [a] −> [Maybe a] . . .
r e c e i v e : : [Maybe a] −> ([a] , [Bool]) . . .

network o r a c l e xs = ys
where ds = send xs as

c s = t r a n sm i t o r a c l e ds
(ys , as) = r e c e i v e c s

send receive
transmit

�

as

-cs-ds
-xs -

ys

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck

Communication-based Specification Stream Processing Haskell Java

Example in Haskell without Auxiliary wait Function

send : : [a] −> [Bool] −> [a]
send [] as = []
send (d : xs) [] = [d]
send (d : xs) (True : as) = d : send xs as
send (d : xs) (False : as) = d : send (d : xs) as

t r a n sm i t : : [Int] −> [a] −> [Maybe a] . . .
r e c e i v e : : [Maybe a] −> ([a] , [Bool]) . . .

network o r a c l e xs = ys
where ds = send xs as

c s = t r a n sm i t o r a c l e ds
(ys , as) = r e c e i v e c s

send receive
transmit

�

as

-cs-ds
-xs -

ys

ERROR (control stack overflow)

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck

Communication-based Specification Stream Processing Haskell Java

Communication-based Programming in Java

Threads make Java suitable for communication-based
programming.

channels threads realizing FiFo queues

components threads accessing input and output ports

composition manual setting of channels as input and output ports

support STREAMS! tool

State transition tables form the basis for the implementation of the
components.

State transition table for the sender:

current state input next state output
control data mess ack control data

send d wait d 〈d〉
wait d ⊕ send 〈〉
wait d ⊖ wait d 〈d〉

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck

Communication-based Specification Stream Processing Haskell Java

Example in Java

A component must contain a method which implements the
transitions of the state transition table:

pub l i c void p r o c e s sS t e p () throws . . . {
switch (cS t a t e) {

case SENDING : i f (! i sEmpty (0)) {
cS ta t e = CState .WAITING ;}
dSta te = ((I n t e g e r) ge t (0)) . i n tVa l u e () ;
s e t (0 , dSta te) ;
}

break ;
case WAITING : . . .

break ;
}

}

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck

Communication-based Specification Stream Processing Haskell Java

Conclusion

Communication-based
specification

State-based specification Program

s t r
-

-
-

�

-
-

� -

state input state output

C O D E

message sequence charts
sequence diagrams
stream processing
...

state transition machines
state diagrams
state charts
...

Java
Haskell
Erlang
...

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck

	Communication-based Specification
	Stream Processing
	Haskell
	Java

