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Graphical Communication-based Specification

Example Transmission of a message d from a sender to a receiver
via an unreliable transmission with acknowledgements
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Stream Processing

Streams record the sequence of messages transmitted via a
communication line.
Finite streams: A⋆ = {〈〉}

︸︷︷︸

empty

stream

∪ A×A⋆

︸ ︷︷ ︸

non-empty

streams

x ⊳ X

Infinite streams arise as limit points.

A stream function f : A⋆

1 × . . . ×A⋆

m → B⋆

1 × . . . × B⋆

n maps input
streams to output streams:

sender
-D
-

A

-D

monotonicity Previous output messages can not be cancelled.
continuity The behaviour on infinite input streams is

approximated by the behaviour on finite streams.
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Example Sender: Input / Output Behaviour

Interface send : D⋆ ×A⋆ → D⋆

Behaviour

send(〈〉, A) = 〈〉

send(d ⊳ D, A) = d ⊳ wait(d)(D, A)

wait(d)(D, 〈〉) = 〈〉

wait(d)(D,⊕ ⊳ A) = send(D, A)

wait(d)(D,⊖ ⊳ A) = d ⊳ wait(d)(D, A)
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Example Sender: Input / Output Behaviour

Interface send : D⋆ ×A⋆ → D⋆

Behaviour

send(〈〉, A) = 〈〉

send(d ⊳ D, A) = d ⊳ wait(d)(D, A)

wait(d)(D, 〈〉) = 〈〉

wait(d)(D,⊕ ⊳ A) = send(D, A)

wait(d)(D,⊖ ⊳ A) = d ⊳ wait(d)(D, A)
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Example Sender: Input / Output Behaviour

Interface send : D⋆ ×A⋆ → D⋆

Behaviour

send(〈〉, A) = 〈〉

send(d ⊳ D, A) = d ⊳ wait(d)(D, A)

wait(d)(D, 〈〉) = 〈〉

wait(d)(D,⊕ ⊳ A) = send(D, A)

wait(d)(D,⊖ ⊳ A) = d ⊳ wait(d)(D, A)

Eliminating wait:

send(〈〉, A) = 〈〉

send(d ⊳ D, 〈〉) = 〈d〉

send(d ⊳ D,⊕ ⊳ A) = d ⊳ send(D, A)

send(d ⊳ D,⊖ ⊳ A) = d ⊳ send(d ⊳ D, A)

sender

-
d

-
d

-
⊖

-
d

-
⊕

loop
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Communication-based Programming in Haskell

Laziness makes Haskell an interesting candidate for
communication-based programming.

channels lazy lists

〈〉 =̂ ⊥

x ⊳ X =̂ x : X

components list functions

composition network of mutually recursive equations naming the
channels

! caution with patterns for lazy lists
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Example in Haskell

send : : [ a ] −> [ Bool ] −> [ a ]
send [ ] as = [ ]
send ( d : xs ) as = d : wa i t d xs as

where wa i t d xs [ ] = [ ]
wa i t d xs ( True : as ) = send xs as
wa i t d xs ( False : as ) = d : wa i t d xs as

t r a n sm i t : : [ Int ] −> [ a ] −> [Maybe a ] . . .
r e c e i v e : : [Maybe a ] −> ( [ a ] , [ Bool ] ) . . .

network o r a c l e xs = ys
where ds = send xs as

c s = t r a n sm i t o r a c l e ds
( ys , as ) = r e c e i v e c s

send receive
transmit

�

as

-cs-ds
-xs -

ys
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Example in Haskell

send : : [ a ] −> [ Bool ] −> [ a ]
send [ ] as = [ ]
send ( d : xs ) as = d : wa i t d xs as

where wa i t d xs [ ] = [ ]
wa i t d xs ( True : as ) = send xs as
wa i t d xs ( False : as ) = d : wa i t d xs as

t r a n sm i t : : [ Int ] −> [ a ] −> [Maybe a ] . . .
r e c e i v e : : [Maybe a ] −> ( [ a ] , [ Bool ] ) . . .

network o r a c l e xs = ys
where ds = send xs as

c s = t r a n sm i t o r a c l e ds
( ys , as ) = r e c e i v e c s

send receive
transmit

�

as

-cs-ds
-xs -

ys

works fine
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Example in Haskell without Auxiliary wait Function

send : : [ a ] −> [ Bool ] −> [ a ]
send [ ] as = [ ]
send ( d : xs ) [ ] = [ d ]
send ( d : xs ) ( True : as ) = d : send xs as
send ( d : xs ) ( False : as ) = d : send ( d : xs ) as

t r a n sm i t : : [ Int ] −> [ a ] −> [Maybe a ] . . .
r e c e i v e : : [Maybe a ] −> ( [ a ] , [ Bool ] ) . . .

network o r a c l e xs = ys
where ds = send xs as

c s = t r a n sm i t o r a c l e ds
( ys , as ) = r e c e i v e c s

send receive
transmit

�

as

-cs-ds
-xs -

ys

Communication-based Development with Standard Programming Languages Annette Stümpel, University of Lübeck
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Example in Haskell without Auxiliary wait Function

send : : [ a ] −> [ Bool ] −> [ a ]
send [ ] as = [ ]
send ( d : xs ) [ ] = [ d ]
send ( d : xs ) ( True : as ) = d : send xs as
send ( d : xs ) ( False : as ) = d : send ( d : xs ) as

t r a n sm i t : : [ Int ] −> [ a ] −> [Maybe a ] . . .
r e c e i v e : : [Maybe a ] −> ( [ a ] , [ Bool ] ) . . .

network o r a c l e xs = ys
where ds = send xs as

c s = t r a n sm i t o r a c l e ds
( ys , as ) = r e c e i v e c s

send receive
transmit

�

as

-cs-ds
-xs -

ys

ERROR (control stack overflow)
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Communication-based Programming in Java

Threads make Java suitable for communication-based
programming.

channels threads realizing FiFo queues

components threads accessing input and output ports

composition manual setting of channels as input and output ports

support STREAMS! tool

State transition tables form the basis for the implementation of the
components.

State transition table for the sender:

current state input next state output
control data mess ack control data

send d wait d 〈d〉
wait d ⊕ send 〈〉
wait d ⊖ wait d 〈d〉
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Example in Java

A component must contain a method which implements the
transitions of the state transition table:

pub l i c void p r o c e s sS t e p ( ) throws . . . {
switch ( cS t a t e ) {

case SENDING : i f ( ! i sEmpty ( 0 ) ) {
cS ta t e = CState .WAITING ;}
dSta te = ( ( I n t e g e r ) ge t ( 0 ) ) . i n tVa l u e ( ) ;
s e t (0 , dSta te ) ;
}

break ;
case WAITING : . . .

break ;
}

}
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Conclusion
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