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• Consider the following distributed Fraglets program:
Shuttle-Service fraglets randomly send X-fraglets to a neighbor node
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A Distributed Computation Example in Fraglets
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• Consider the following distributed Fraglets program:
Shuttle-Service fraglets randomly send X-fraglets to a neighbor node

• What happens to the number of X-fraglets in each node?
This depends on how the reactions are scheduled!
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• ASAP Scheduling: Each node executes reactions as fast as possible.

• Result: X-molecules drift to nodes with high degree:

• How does nature “schedule” chemical reactions?
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Chem. Scheduler ⇐ Stochastic Molecule Collisions

• Statistical Mechanics: Prevalent molecules ⇒ more frequent collisions.

In a reaction vessel of constant volume, the collision frequency increases with a higher mol. density.

• Stochastic scheduling algorithm:

• For each reaction A + B → C, calculate the reaction interval

             number of A, B molecules; randomness due to Brownian motion.

• Sort the next reaction time of all reactions into a priority queue.

• Wait for the next reaction time.

• Execute that reaction and calculate its next reaction interval.
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τ ∼ Exp
(

1
xAxB

)

xA, xB :

[Gibson&Bruck, 2000]
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• Chemical Scheduler: Each node sleeps for a well-defined (but inherently 
stochastic) time between two reactions.

• Result: The distributed reaction network strives for an equilibrium in which a 
numerical result is present:
Each node contains the same averaged number of initial X-molecules.
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• External observer: Due to the random reaction intervals, the observer cannot 
predict which reaction is next and when it will occur.

• But we can approximate the macroscopic dynamic behavior:

• Macroscopically, all reactions obey the Law of Mass Action:
The reaction rate is proportional to the reactant concentrations;
e.g. the rate of a reaction A + B → C is

• This allows us to use ordinary differential equations to describe the reaction 
dynamics.

• Convergence proof for our distributed averaging algorithm:

• Create the ODEs from the reaction network:

• Find the fixpoint: 

• Determine whether the fixpoint is stable (perturbation analysis)

Stochastic Execution → Deterministic Prediction
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r = xAxB
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Self-Healing Programs

• The traditional approach: An infinite hierarchy of healers

• Our “chemical” approach avoids infinite regression:

• The system shall monitor and repair itself.

• Goal: Code Homeostasis: The system continuously regulates its internal 
composition to maintain a stable state.

9

repair

monitor

System

repair

monitor
...

Healer 1

Healer 2



T. Meyer & C. Tschudin: Stochastic Programming for Provable Program Dynamics and Self-Healing Programs

Self-Healing Programs - Growth

• In the first talk we presented the duplicating Quine.

• When scheduled by the Chemical Scheduler, the population of Quines 
exhibits exponential growth:
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Self-Healing Programs - Finite Reactor

• We limit the capacity (number of molecules) of the reaction vessel...
Due to limited resources, we cannot let the population of Quines grow infinitely.

• ...by randomly destroying molecules when this vessel capacity is exceeded.

• This adds selective pressure to the population of molecules:
Only molecules that continuously replicate themselves are able to “survive”.
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• Even when removing 80% of the [matchp x ...] or the [x ...] molecules...

• ... the system finds back to equilibrium.
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A Self-Healing Load-Balancing Protocol

• Goal: Balance packet stream from node src to node dest over two links.

• Node src uses of two competing Quines to send data packets to node dest.

• The Quines only replicate when receiving an acknowledgment.

• If path p2 drops packets, the replication rate of Quine 2 decreases:

• The relative concentration of Quine 1 increases; it forwards more packets.
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Conclusions

• A chemical, instead of ASAP, scheduling enables emerging equilibria.

• The solution to a computation is represented as an equilibrium of a dynamic 
system.

• Since there is no distinction between code and data:
Code can be brought to equilibrium, i.e. software becomes self-healing.

• Application fields: continuously running (distributed) processes where an 
equilibrium represents the ideal situation/solution: e.g.

• Routing protocols,

• Flow control of data traffic,

• Robotics,

• Topological self-organization of sensor/actor networks, and reactive 
systems in general
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Questions?

Thank You

match WHOM match WHAT exch nop WHOM You

match WHAT exch nop You WHAT Thank

nop Thank You

exch nop You Thank
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Stochastic Scheduling and Deterministic Prediction

• Reactions are NOT executed as fast as possible

• Reactions are rather scheduled for a later time according to the Law of Mass 
Action:
reaction rate = product of the reactant concentrations

Differential Equation Approximation:
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• Comparison of how information is encoded in traditional and chemical 
networking protocols:

Representation-Free Communication

Traditional Protocols Chemical Protocols

Representation of 
local state 
information

symbolically:
e.g. integers, flags

abundance:
number of molecules

Representation of 
exchanged 
information

symbolically:
encoded as symbols 

inside packets

rate-based:
the packet rate 

represents inform.



Petri-Net Representation

Traditional Flow-Based Protocol Model:
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Robustness of Quines to Deletion (qualitatively)
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Robustness of Quines to Deletion (quantitatively)
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Robustness of Quines to Deletion (quantitatively)



Robustness of Quines to Mutation 
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