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non-determinism in Haskell

purely functional, lazy

no built-in non-determinism

non-determinism is modeled by data structures

abstracted by monads
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non-determinism in Haskell

return x
I a non-deterministic computation with the single result x

mzero
I a failing computation

e1 ‘mplus‘ e2
I combines non-deterministic computations

e >>= f
I applies the non-deterministic function f non-deterministically to a

result of e
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example

perm :: [a] -> m [a]
perm [] = return []
perm (x:xs) = perm xs >>= insert x

insert :: a -> [a] -> m [a]
insert x [] = return [x]
insert x (y:ys) = return (x:y:ys)

‘mplus‘ (insert x ys >>= (return . (y:)))
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an alternative representation of non-determinism

data SearchTree a = None
| One a
| Choice (SearchTree a) (SearchTree a)
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return = One

mzero = None

mplus = Choice

None >>= _ = None
One x >>= f = f x
Choice t1 t2 >>= f = Choice (t1 >>= f)

(t2 >>= f)
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dividing the tree

fork new threads down to a given depth n

the result of the threads is combined

best choice for n depends on the number of cores and the shape of
the tree

sequential search has to be strict
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dividing the tree

overhead is limited

works only for finite trees
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bag of tasks

t

Bag of Tasks

Worker Threads

Output
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bag of tasks
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bag of tasks

t3

Bag of Tasks

Worker Threads

v1

Output

t4
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bag of tasks

works for infinite trees (until memory is exhausted)

search is complete

much synchronisation

exponential space complexity
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glasgow parallel haskell

par :: a -> b -> b

returns its second argument

first argument is stored in a spark pool

sparks are evaluated by idle processors
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search with GPH

search :: SearchTree a -> [a]
search None = []
search (One x) = [x]
search (Choice l r) = rs ‘par‘ (search l ++ rs)
where rs = search r

no explicit threads needed

search is incomplete
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benchmarks

1 permutations
I large number of results
I little effort to compute a node in the tree
I no failures

2 SAT solving with Davis-Putnam-Logemann-Loveland
I no results (with the tested instance)
I some effort to compute a node in the tree
I large number of failures
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summary

three approaches to parallel search
1 dividing the tree
2 bag of tasks
3 glasgow parallel haskell

significant speedups

room for improvements
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