
Towards a parallel search for solutions of
non-deterministic computations

Fabian Reck Sebastian Fischer

October 12, 2009

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 1 / 15



non-determinism in Haskell

purely functional, lazy

no built-in non-determinism

non-determinism is modeled by data structures

abstracted by monads

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 2 / 15



non-determinism in Haskell

return x
I a non-deterministic computation with the single result x

mzero
I a failing computation

e1 ‘mplus‘ e2
I combines non-deterministic computations

e >>= f
I applies the non-deterministic function f non-deterministically to a

result of e

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 3 / 15



example

perm :: [a] -> m [a]
perm [] = return []
perm (x:xs) = perm xs >>= insert x

insert :: a -> [a] -> m [a]
insert x [] = return [x]
insert x (y:ys) = return (x:y:ys)

‘mplus‘ (insert x ys >>= (return . (y:)))

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 4 / 15



an alternative representation of non-determinism

data SearchTree a = None
| One a
| Choice (SearchTree a) (SearchTree a)

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 5 / 15



an alternative representation of non-determinism

data SearchTree a = None
| One a
| Choice (SearchTree a) (SearchTree a)

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 5 / 15



an alternative representation of non-determinism

data SearchTree a = None
| One a
| Choice (SearchTree a) (SearchTree a)

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 5 / 15



return = One

mzero = None

mplus = Choice

None >>= _ = None
One x >>= f = f x
Choice t1 t2 >>= f = Choice (t1 >>= f)

(t2 >>= f)

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 6 / 15



dividing the tree

fork new threads down to a given depth n

the result of the threads is combined

best choice for n depends on the number of cores and the shape of
the tree

sequential search has to be strict

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 7 / 15



dividing the tree

fork new threads down to a given depth n

the result of the threads is combined

best choice for n depends on the number of cores and the shape of
the tree

sequential search has to be strict

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 7 / 15



dividing the tree

fork new threads down to a given depth n

the result of the threads is combined

best choice for n depends on the number of cores and the shape of
the tree

sequential search has to be strict

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 7 / 15



dividing the tree

fork new threads down to a given depth n

the result of the threads is combined

best choice for n depends on the number of cores and the shape of
the tree

sequential search has to be strict

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 7 / 15



dividing the tree

overhead is limited

works only for finite trees

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 8 / 15



bag of tasks

t

Bag of Tasks

Worker Threads

Output

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 9 / 15



bag of tasks

Bag of Tasks

Worker Threads

Output

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 9 / 15



bag of tasks

Bag of Tasks

Worker Threads

Output

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 9 / 15



bag of tasks

t1

Bag of Tasks

Worker Threads

Output

t2

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 9 / 15



bag of tasks

Bag of Tasks

Worker Threads

Output

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 9 / 15



bag of tasks

Bag of Tasks

Worker Threads

Output

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 9 / 15



bag of tasks

t3

Bag of Tasks

Worker Threads

v1

Output

t4

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 9 / 15



bag of tasks

works for infinite trees (until memory is exhausted)

search is complete

much synchronisation

exponential space complexity

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 10 / 15



glasgow parallel haskell

par :: a -> b -> b

returns its second argument

first argument is stored in a spark pool

sparks are evaluated by idle processors

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 11 / 15



search with GPH

search :: SearchTree a -> [a]
search None = []
search (One x) = [x]
search (Choice l r) = rs ‘par‘ (search l ++ rs)
where rs = search r

no explicit threads needed

search is incomplete

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 12 / 15



benchmarks

1 permutations
I large number of results
I little effort to compute a node in the tree
I no failures

2 SAT solving with Davis-Putnam-Logemann-Loveland
I no results (with the tested instance)
I some effort to compute a node in the tree
I large number of failures

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 13 / 15



benchmarks

0

20

40

60

80

1 2 3 4

dividedivide

bag of tasksbag of tasks

gphgph

listlist

Permutations

cores

se
co

nd
s

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 14 / 15



benchmarks

0

100

200

300

400

1 2 3 4

dividedivide

bag of tasksbag of tasks

gphgph

listlist

SAT solving

cores

se
co

nd
s

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 14 / 15



summary

three approaches to parallel search
1 dividing the tree
2 bag of tasks
3 glasgow parallel haskell

significant speedups

room for improvements

Fabian Reck, Sebastian Fischer Parallel Search October 12, 2009 15 / 15


	Non-Determinism
	Non-Determinism Monads
	Example

	Approaches to a parallel search
	Dividing the tree
	Bag of Tasks
	Explicit Parallelism

	Benchmark results
	Summary

