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constraints could be supported. Furthermore, there is currently no technique
available to simplify preconditions. Their approach relies on manual proofs, rather
than automated methods, which renders the technique inaccessible to domain
experts.

In [5] we have presented an assertion language together with a technique to
automatically generate preconditions for a core update language. These precondi-
tions guarantee that integrity constraints are maintained. As the constraints can
be complex, we developed a technique that allows to simplify the preconditions
to a minimal form. In particular, we do not want to check the full set of integrity
constraints of the manipulated XML data at every call site. Many constraints are
unaffected by an update and remain true, so they need not be checked over and
over. Other affected constraints can be checked by a much smaller incremental
check. By using this technique, we are able to present minimal preconditions to
the programmer in a readable form, so he can prevent individual constraints from
failing and knows how to react to the failure of others. We have implemented the
weakest precondition generation and simplification in a prototype system, which
exploits an SMT-solver to aid in simplification.

Overview. Section 2 describes our approach in more detail and gives an illustrating
example. Section 3 introduces the formalization on which the rest of the paper is
based. Section 4 and 5 define the schema and the update language, respectively.
Section 6 concludes the paper.

2 XML Data as Abstract Datatype

We propose to view XML data as an abstract datatype and interface it with
a target language by a set of interface procedures. To perform more complex
tasks, programs can be written that use the interface procedures as primitive
operations. In this way, the intricacies of the constraint handling are hidden
from the programmer. The interface procedures are developed together with the
schema by domain experts in a light-weight XML manipulation language which
incorporates concepts for constrained data. We explain the manipulation language
that we developed together with a tiny usage scenario: Clients exchanging packets.
Each packet has a packet header represented as constrained data. Here is the
schema that a domain expert might develop for packet headers:

packetheader {
capacity { INT [ sum(//kind/count) ≤ . ] } &

kind ∗ {
count { INT [ . > 0 ] }

}
}

A header consists of an integer expressing the capacity of the packet and
a set of kind elements. A kind element records for each kind of item in the

Schema:
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Schema:

packet the count of items of that kind. Implicitly, the schema defines for each

element an identifier attribute. If elements can occur with an arbitrary multiplicity,

like the kind elements, all their identifiers have to be pairwise distinct. This

implicit uniqueness constraint is enforced to make sure that elements are always

structurally distinguishable. In addition, the above schema defines two integrity

constraints: A count has always to be positive and the capacity of the packet

has to be larger than the sum of the counts. These constraints are expressed by

the embedded context rules enclosed in brackets. The dot refers to the element to

which the context rule is attached.

For the manipulation of packet headers, the domain expert writes interface

procedures. The following interface procedure adds amount items of kind k to an

implicit packet header argument. If the amount is negative or zero, procedure

add fails. Otherwise it creates a new element for items of kind k if necessary and

increases the count:

add(ident k, int amount) {
assume amount > 0;

if not //kind[k] then

new //kind[k];

new //kind[k]/count;

//kind[k]/count := 0

fi

//kind[k]/count := //kind[k]/count + amount

}

We are able to automatically generate weakest preconditions for such proce-

dures and translate them to languages like Java. The example procedure add
would result in a member method of a type Packetheader with the following

signature:

// Precondition:
// amount > 0 ( AssumptionException )
// sum (//kind/count) + amount <= //capacity ( CapacityException )
Packetheader add(Ident k, Integer amount) { ... }

In Java programs, the interface procedures are used to manipulate data of

the schema type and realize more complex tasks. The Ident type is provided by

the generated API and can be assumed to subsume at least all Strings. The

exceptions raised by failing preconditions are generated as unchecked exceptions,

as programmers should have the liberty to ignore them in contexts where they

are sure they cannot arise. A Java method for packing a list of items and sending

them to other clients could look like this:

void pack(List<Ident> items) {
Packetheader cur = new Packetheader(42); // 42 is packet capacity
for(Ident item : items) {

try { cur.add(item, 1); }
catch(CapacityException e) {

Procedure:
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sendPacket(cur);
cur = new Packetheader(42).add(item, 1);

}
}
sendPacket(cur);

}

The method creates new packets and fills them up with items. The programmer

has to make sure that whenever he calls the add method, he can either guarantee

the precondition or handle its failure. As the amount is set to the constant 1, the

only thing that can possibly go wrong is that the packet is already full. In this

case, the add method will abort without changing anything in the packet. The

pack method then sends the full packet and creates a new one. Adding the item

to the new packet will now never result in an exception, so the call is safe.

3 Paths and Documents

As usual in the domain of XML, we will refer to constrained XML data as

documents. The basis of our approach is a path representation and logical

embedding of such documents. Paths are an intuitive concept known to domain

experts. At the same time, however, paths are the key to using automated

methods to ensure schema correctness of manipulating procedures. We use paths

to identify and give an identity to elements in a document. Documents can then

easily be defined as sets of paths with attached values.

We present an enhanced version of the original formalization described in

[5], which is in particular prepared to handle arbitrary values. The weakest

precondition generation and simplification techniques described there easily

extend to these changes.

Our formalization supports identifiers, strings, integers and the special complex

value clx, which marks elements without value and inner elements of a document.

There can be arbitrary many constants c and variables v of each value type and

it is possible to cast values to the base types.

values V ::= I | S | Z | clx | D(P )
identifier I ::= cI | vI | null | castI(V )

strings S ::= cS | vS | castS(V )
integer Z ::= 0 | 1 | vZ | Z + Z | Z ∗ Z | −Z | castZ(V )

| sum(V ∗) | count(V ∗) | rcount(V, V ∗)

Identifiers I and strings S are words over the alphabets ΣI and ΣS and we

assume those words can be distinguished. Z represents the integer numbers with

common arithmetic connectives. The constant null refers to the empty identifier.

D(P ) denotes reading a value from document D at path P .

Paths represent the different elements in a document. The root path is denoted

by root. Longer paths can be constructed by extending another path with a

label, to select an element with that name, and an identifier, which separates
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try { cur.add(item, 1); }
catch(CapacityException e) {
sendPacket(cur);
cur = new Packetheader(42).add(item, 1);

}
}
sendPacket(cur);

}

The method creates new packets and fills them up with items. The programmer

has to make sure that whenever he calls the add method, he can either guarantee

the precondition or handle its failure. As the amount is set to the constant 1, the

only thing that can possibly go wrong is that the packet is already full. In this

case, the add method will abort without changing anything in the packet. The

pack method then sends the full packet and creates a new one. Adding the item

to the new packet will now never result in an exception, so the call is safe.

3 Paths and Documents

As usual in the domain of XML, we will refer to constrained XML data as

documents. The basis of our approach is a path representation and logical

embedding of such documents. Paths are an intuitive concept known to domain

experts. At the same time, however, paths are the key to using automated

methods to ensure schema correctness of manipulating procedures. We use paths

to identify and give an identity to elements in a document. Documents can then

easily be defined as sets of paths with attached values.

Example path: /packetheader/kind[k]/count

We present an enhanced version of the original formalization described in

[7], which is in particular prepared to handle arbitrary values. The weakest

precondition generation and simplification techniques described there easily

extend to these changes.

Our formalization supports identifiers, strings, integers and the special complex

value clx, which marks elements without value and inner elements of a document.

There can be arbitrary many constants c and variables v of each value type and

it is possible to cast values to the base types.

values V ::= I | S | Z | clx | D(P )
identifier I ::= cI | vI | null | castI(V )

strings S ::= cS | vS | castS(V )
integer Z ::= 0 | 1 | vZ | Z + Z | Z ∗ Z | −Z | castZ(V )

| sum(V ∗) | count(V ∗) | rcount(V, V ∗)

Identifiers I and strings S are words over the alphabets ΣI and ΣS and we

assume those words can be distinguished. Z represents the integer numbers with

common arithmetic connectives. The constant null refers to the empty identifier.

D(P ) denotes reading a value from document D at path P .

Paths represent the different elements in a document. The root path is denoted
by root. Longer paths can be constructed by extending another path with a
label, to select an element with that name, and an identifier, which separates
this element from others with that name. Labels L are non-empty words on the
alphabet ΣL, like packetheader or capacity in the example.

labels L ::= cL

paths P ::= root | P/L[I]
documents D ::= blank | D[P → V ] | D[P →] | $

The example path from above has the following formal representation:
Formal path: root/packetheaderL[null]/kindL[kI ]/countL[null]

A document consequently is a finite map from paths to values, where the
blank document represents an initial document, which only contains the root
path mapping to clx. We support local modifications in the form of adding (or
replacing) a single path-value-pair and removing all pairs for a path and all its
extensions. The dollar symbol is the only variable we use for documents. For
example, the initial document with count of kind k set to zero is expressed with
the following expression, in slightly abbreviated path syntax:

Example document: $
ˆ
/packetheader/kind[k]/count→ 0

˜

The sorts V ∗ and P ∗ represent value and path multisets and offer the usual
singleton and union operations. We allow variables vm on value multisets, have a
constant named ’all’, representing complete I, and can convert path multisets
to value multisets by reading from the document using the syntax D(P ∗). Path
multisets can also be created by extending all paths in another multiset with a
label and an identifier from a value multiset, using the same syntax ./.[.] as for
single paths.

value multisets V ∗ ::= {V } | V ∗ ∪ V ∗ | D(P ∗) | all | vm

path multisets P ∗ ::= {P} | P ∗ ∪ P ∗ | P ∗/L[V ∗]

To sum up all the count elements in the example, we first create a path
multiset representing all these elements and then read their values from the
document. Within our schema, the expression sum(//kind/count) expands to:

Example: sum
`
$

`
{root}/packetheaderL[{null}]/kindL[all]/countL[{null}]

´´

4 Schema Language

In this section, we show by example how a schema language accessible by domain
experts can look like. Any paradigm and feature, which can be translated into
propositions on the terms of Section 3, can be supported.

We choose to combine the simplicity of a pattern-based approach in the spirit
of abbreviated Relax NG [2, 3] with a rule-based approach. The patterns define the
structure of documents, while the rules define arbitrary integrity constraints. By
embedding paths directly into the logic, integrity constraints can be understood
and written by domain experts and read by programmers.

Paths represent the different elements in a document. The root path is denoted
by root. Longer paths can be constructed by extending another path with a
label, to select an element with that name, and an identifier, which separates
this element from others with that name. Labels L are non-empty words on the
alphabet ΣL, like packetheader or capacity in the example.

labels L ::= cL

paths P ::= root | P/L[I]
documents D ::= blank | D[P → V ] | D[P →] | $

The example path from above has the following formal representation:
Formal path: root/packetheaderL[null]/kindL[kI ]/countL[null]

A document consequently is a finite map from paths to values, where the
blank document represents an initial document, which only contains the root
path mapping to clx. We support local modifications in the form of adding (or
replacing) a single path-value-pair and removing all pairs for a path and all its
extensions. The dollar symbol is the only variable we use for documents. For
example, the initial document with count of kind k set to zero is expressed with
the following expression, in slightly abbreviated path syntax:

Example document: $
ˆ
/packetheader/kind[k]/count→ 0

˜

The sorts V ∗ and P ∗ represent value and path multisets and offer the usual
singleton and union operations. We allow variables vm on value multisets, have a
constant named ’all’, representing complete I, and can convert path multisets
to value multisets by reading from the document using the syntax D(P ∗). Path
multisets can also be created by extending all paths in another multiset with a
label and an identifier from a value multiset, using the same syntax ./.[.] as for
single paths.

value multisets V ∗ ::= {V } | V ∗ ∪ V ∗ | D(P ∗) | all | vm

path multisets P ∗ ::= {P} | P ∗ ∪ P ∗ | P ∗/L[V ∗]

To sum up all the count elements in the example, we first create a path
multiset representing all these elements and then read their values from the
document. Within our schema, the expression sum(//kind/count) expands to:

Example: sum
`
$

`
{root}/packetheaderL[{null}]/kindL[all]/countL[{null}]

´´

4 Schema Language

In this section, we show by example how a schema language accessible by domain
experts can look like. Any paradigm and feature, which can be translated into
propositions on the terms of Section 3, can be supported.

We choose to combine the simplicity of a pattern-based approach in the spirit
of abbreviated Relax NG [2, 3] with a rule-based approach. The patterns define the
structure of documents, while the rules define arbitrary integrity constraints. By
embedding paths directly into the logic, integrity constraints can be understood
and written by domain experts and read by programmers.

4.1 Syntax

We support a usual base of patterns, namely the empty pattern, groups, choice,
element definitions and repetition of elements. The content of elements can be
complex, a type or an enumeration (cf. pattern example in Section 2).

pattern Q ::= � | Q&Q | Q|Q | L{C} | L ∗ {C}
content C ::= Q | T | E
enums E ::= V | E|E

Integrity constraints are defined in a rule-based approach, as propositions on
paths and values. We support the normal boolean connectives, equality, integer
comparisons and top level quantification over identifier variables. To formulate
structural constraints and guards, we can also express that a path is contained
in a document and that a value has a specific type.

formulas G ::= ∀vI .G | F
F ::= false | F ∧ F | F ∨ F | ¬F

| α = α | Z < Z | P ∈ D
types T ::= INT | ID | STR | CLX | typeOf(V )

4.2 Semantics

Patterns The semantics of patterns are given in terms of the assertion language,
i.e. patterns are completely translated into formulas. Each element definition in
a pattern defines a set of paths using the same labels, but different identifiers.
The existence of each of these paths is tied to that of other paths, like the parent
path or non-optional children.

To formulate these dependencies, we define the characterizing path of an
element definition. To compute the characterizing path of an element, the charac-
terizing path of the next enclosing element definition is extended with the label
of the element and the null identifier. For repeated elements, we choose a fresh
variable as identifier instead, which is quantified in the context. If there is no
next enclosing element definition, we extend the root path instead.

The characterizing paths for all element definitions of the example schema
are the following:

/packetheader /packetheader/kind[x]

/packetheader/capacity /packetheader/kind[x]/count

Using these paths, the relations defined by patterns can be expressed as
propositions. For each element, for example, a proposition is created, which
ensures the existence of its parent:

∀x. /packetheader/kind[x]/count ∈ $ → /packetheader/kind[x] ∈ $

Groups of elements exist if both patterns exist. For patterns combined in a
choice, at least one of them has to exist. Both the empty pattern and a repeated
element always exist, as the latter can also be an empty sequence.

Elements containing non-complex content, i.e. a datatype or enumeration

of values, are translated into similar propositions. The typeOf function is used

to guarantee that an assigned value has the appropriate type. Enumerations

translate into a disjunction of equalities testing the different values.

Example: ∀x. /packetheader/kind[x]/count ∈ $ →
typeOf

`
$(/packetheader/kind[x]/count)

´
= INT

Propositions The semantics of propositions are given in terms of the respective

models of values, paths, multisets and documents, with respect to an interpreta-

tion of all variables, called evaluation environment E. We denote an evaluation

in environment E with
�
·
�

E
. In order for the techniques of [7] to work and to

facilitate static analysis, the semantics have to be carefully designed. Nevertheless,

we are able to support the intuition behind the connectives.

Due to space limitations, we do not define them formally here and point out

the important aspects instead. For simplicity of the logic, both the read function

and all cast functions are defined as total, i.e. they return default values for

invalid parameters. Section 4.4 explains how to deal with this behavior. The

multiset operations sum and ./.[.], as well as .(.), are selective in the sense that

they ignore values of the wrong type or paths which are not present in the

document, respectively. This leads to much simpler specifications and allows

to use infinite path multisets to create finite value multisets by reading from

documents.

4.3 Embedding Rules

We now extend the classical pattern-based structural schema language with the

possibility to embed rules. A rule is a single proposition attached to an element

definition. This approach has the following benefits:

– By tying rules to a structural schema, the paths in rules can be checked for

validity, resulting in the detection of more errors at compile time.

– Paths in rules can use the usual convenience axes, like parent or descendants.
– The context of a rule is implicitly given by the location of the rule in the

pattern, allowing to use much shorter relative paths starting with the dot.

Rules can be embedded in any element definition, regardless if it is repeated

or not, by enclosing it in brackets. Defining a rule at the top level is also possible,

which means it has the root path as context. To support more navigational axes

and relative paths, we extend the sort P ∗ as follows and allow explicit conversions

of singleton sets to paths using castP .

paths P ::= root | P/L[I] | castP (P ∗
)

path multisets P ∗
::= {P} | P ∗ ∪ P ∗ | P ∗/L[V ∗

]

| . | P ∗/.. | P ∗/.L | P ∗//L[V ∗
]

The dot refers to the characterizing path of the enclosing element definition.

The double dot can be used to navigate to a direct parent, whereas the single
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Path-based Formalization

4.1 Syntax

We support a usual base of patterns, namely the empty pattern, groups, choice,
element definitions and repetition of elements. The content of elements can be
complex, a type or an enumeration (cf. pattern example in Section 2).

pattern Q ::= � | Q&Q | Q|Q | L{C} | L ∗ {C}
content C ::= Q | T | E
enums E ::= V | E|E

Integrity constraints are defined in a rule-based approach, as propositions on
paths and values. We support the normal boolean connectives, equality, integer
comparisons and top level quantification over identifier variables. To formulate
structural constraints and guards, we can also express that a path is contained
in a document and that a value has a specific type.

formulas G ::= ∀vI .G | F
F ::= false | F ∧ F | F ∨ F | ¬F

| α = α | Z < Z | P ∈ D
types T ::= INT | ID | STR | CLX | typeOf(V )

4.2 Semantics

Patterns The semantics of patterns are given in terms of the assertion language,
i.e. patterns are completely translated into formulas. Each element definition in
a pattern defines a set of paths using the same labels, but different identifiers.
The existence of each of these paths is tied to that of other paths, like the parent
path or non-optional children.

To formulate these dependencies, we define the characterizing path of an
element definition. To compute the characterizing path of an element, the charac-
terizing path of the next enclosing element definition is extended with the label
of the element and the null identifier. For repeated elements, we choose a fresh
variable as identifier instead, which is quantified in the context. If there is no
next enclosing element definition, we extend the root path instead.

The characterizing paths for all element definitions of the example schema
are the following:

/packetheader /packetheader/kind[x]

/packetheader/capacity /packetheader/kind[x]/count

Using these paths, the relations defined by patterns can be expressed as
propositions. For each element, for example, a proposition is created, which
ensures the existence of its parent:

∀x. /packetheader/kind[x]/count ∈ $ → /packetheader/kind[x] ∈ $

Groups of elements exist if both patterns exist. For patterns combined in a
choice, at least one of them has to exist. Both the empty pattern and a repeated
element always exist, as the latter can also be an empty sequence.

4.1 Syntax

We support a usual base of patterns, namely the empty pattern, groups, choice,
element definitions and repetition of elements. The content of elements can be
complex, a type or an enumeration (cf. pattern example in Section 2).

pattern Q ::= � | Q&Q | Q|Q | L{C} | L ∗ {C}
content C ::= Q | T | E
enums E ::= V | E|E

Integrity constraints are defined in a rule-based approach, as propositions on
paths and values. We support the normal boolean connectives, equality, integer
comparisons and top level quantification over identifier variables. To formulate
structural constraints and guards, we can also express that a path is contained
in a document and that a value has a specific type.

formulas G ::= ∀vI .G | F
F ::= false | F ∧ F | F ∨ F | ¬F

| α = α | Z < Z | P ∈ D
types T ::= INT | ID | STR | CLX | typeOf(V )

4.2 Semantics

Patterns The semantics of patterns are given in terms of the assertion language,
i.e. patterns are completely translated into formulas. Each element definition in
a pattern defines a set of paths using the same labels, but different identifiers.
The existence of each of these paths is tied to that of other paths, like the parent
path or non-optional children.

To formulate these dependencies, we define the characterizing path of an
element definition. To compute the characterizing path of an element, the charac-
terizing path of the next enclosing element definition is extended with the label
of the element and the null identifier. For repeated elements, we choose a fresh
variable as identifier instead, which is quantified in the context. If there is no
next enclosing element definition, we extend the root path instead.

The characterizing paths for all element definitions of the example schema
are the following:

/packetheader /packetheader/kind[x]

/packetheader/capacity /packetheader/kind[x]/count

Using these paths, the relations defined by patterns can be expressed as
propositions. For each element, for example, a proposition is created, which
ensures the existence of its parent:

∀x. /packetheader/kind[x]/count ∈ $ → /packetheader/kind[x] ∈ $

Groups of elements exist if both patterns exist. For patterns combined in a
choice, at least one of them has to exist. Both the empty pattern and a repeated
element always exist, as the latter can also be an empty sequence.

Example Paths:

try { cur.add(item, 1); }
catch(CapacityException e) {
sendPacket(cur);
cur = new Packetheader(42).add(item, 1);

}
}
sendPacket(cur);

}

The method creates new packets and fills them up with items. The programmer

has to make sure that whenever he calls the add method, he can either guarantee

the precondition or handle its failure. As the amount is set to the constant 1, the

only thing that can possibly go wrong is that the packet is already full. In this

case, the add method will abort without changing anything in the packet. The

pack method then sends the full packet and creates a new one. Adding the item

to the new packet will now never result in an exception, so the call is safe.

3 Paths and Documents

As usual in the domain of XML, we will refer to constrained XML data as

documents. The basis of our approach is a path representation and logical

embedding of such documents. Paths are an intuitive concept known to domain

experts. At the same time, however, paths are the key to using automated

methods to ensure schema correctness of manipulating procedures. We use paths

to identify and give an identity to elements in a document. Documents can then

easily be defined as sets of paths with attached values.

Example path: /packetheader/kind[k]/count

We present an enhanced version of the original formalization described in

[7], which is in particular prepared to handle arbitrary values. The weakest

precondition generation and simplification techniques described there easily

extend to these changes.

Our formalization supports identifiers, strings, integers and the special complex

value clx, which marks elements without value and inner elements of a document.

There can be arbitrary many constants c and variables v of each value type and

it is possible to cast values to the base types.

values V ::= I | S | Z | clx | D(P )
identifier I ::= cI | vI | null | castI(V )

strings S ::= cS | vS | castS(V )
integer Z ::= 0 | 1 | vZ | Z + Z | Z ∗ Z | −Z | castZ(V )

| sum(V ∗) | count(V ∗) | rcount(V, V ∗)

Identifiers I and strings S are words over the alphabets ΣI and ΣS and we

assume those words can be distinguished. Z represents the integer numbers with

common arithmetic connectives. The constant null refers to the empty identifier.

D(P ) denotes reading a value from document D at path P .

Paths represent the different elements in a document. The root path is denoted
by root. Longer paths can be constructed by extending another path with a
label, to select an element with that name, and an identifier, which separates
this element from others with that name. Labels L are non-empty words on the
alphabet ΣL, like packetheader or capacity in the example.

labels L ::= cL

paths P ::= root | P/L[I]
documents D ::= blank | D[P → V ] | D[P →] | $

The example path from above has the following formal representation:
Formal path: root/packetheaderL[null]/kindL[kI ]/countL[null]

A document consequently is a finite map from paths to values, where the
blank document represents an initial document, which only contains the root
path mapping to clx. We support local modifications in the form of adding (or
replacing) a single path-value-pair and removing all pairs for a path and all its
extensions. The dollar symbol is the only variable we use for documents. For
example, the initial document with count of kind k set to zero is expressed with
the following expression, in slightly abbreviated path syntax:

Example document: $
ˆ
/packetheader/kind[k]/count→ 0

˜

The sorts V ∗ and P ∗ represent value and path multisets and offer the usual
singleton and union operations. We allow variables vm on value multisets, have a
constant named ’all’, representing complete I, and can convert path multisets
to value multisets by reading from the document using the syntax D(P ∗). Path
multisets can also be created by extending all paths in another multiset with a
label and an identifier from a value multiset, using the same syntax ./.[.] as for
single paths.

value multisets V ∗ ::= {V } | V ∗ ∪ V ∗ | D(P ∗) | all | vm

path multisets P ∗ ::= {P} | P ∗ ∪ P ∗ | P ∗/L[V ∗]

To sum up all the count elements in the example, we first create a path
multiset representing all these elements and then read their values from the
document. Within our schema, the expression sum(//kind/count) expands to:

Example: sum
`
$

`
{root}/packetheaderL[{null}]/kindL[all]/countL[{null}]

´´

4 Schema Language

In this section, we show by example how a schema language accessible by domain
experts can look like. Any paradigm and feature, which can be translated into
propositions on the terms of Section 3, can be supported.

We choose to combine the simplicity of a pattern-based approach in the spirit
of abbreviated Relax NG [2, 3] with a rule-based approach. The patterns define the
structure of documents, while the rules define arbitrary integrity constraints. By
embedding paths directly into the logic, integrity constraints can be understood
and written by domain experts and read by programmers.

Paths represent the different elements in a document. The root path is denoted
by root. Longer paths can be constructed by extending another path with a
label, to select an element with that name, and an identifier, which separates
this element from others with that name. Labels L are non-empty words on the
alphabet ΣL, like packetheader or capacity in the example.

labels L ::= cL

paths P ::= root | P/L[I]
documents D ::= blank | D[P → V ] | D[P →] | $

The example path from above has the following formal representation:
Formal path: root/packetheaderL[null]/kindL[kI ]/countL[null]

A document consequently is a finite map from paths to values, where the
blank document represents an initial document, which only contains the root
path mapping to clx. We support local modifications in the form of adding (or
replacing) a single path-value-pair and removing all pairs for a path and all its
extensions. The dollar symbol is the only variable we use for documents. For
example, the initial document with count of kind k set to zero is expressed with
the following expression, in slightly abbreviated path syntax:

Example document: $
ˆ
/packetheader/kind[k]/count→ 0

˜

The sorts V ∗ and P ∗ represent value and path multisets and offer the usual
singleton and union operations. We allow variables vm on value multisets, have a
constant named ’all’, representing complete I, and can convert path multisets
to value multisets by reading from the document using the syntax D(P ∗). Path
multisets can also be created by extending all paths in another multiset with a
label and an identifier from a value multiset, using the same syntax ./.[.] as for
single paths.

value multisets V ∗ ::= {V } | V ∗ ∪ V ∗ | D(P ∗) | all | vm

path multisets P ∗ ::= {P} | P ∗ ∪ P ∗ | P ∗/L[V ∗]

To sum up all the count elements in the example, we first create a path
multiset representing all these elements and then read their values from the
document. Within our schema, the expression sum(//kind/count) expands to:

Example: sum
`
$

`
{root}/packetheaderL[{null}]/kindL[all]/countL[{null}]
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4 Schema Language

In this section, we show by example how a schema language accessible by domain
experts can look like. Any paradigm and feature, which can be translated into
propositions on the terms of Section 3, can be supported.

We choose to combine the simplicity of a pattern-based approach in the spirit
of abbreviated Relax NG [2, 3] with a rule-based approach. The patterns define the
structure of documents, while the rules define arbitrary integrity constraints. By
embedding paths directly into the logic, integrity constraints can be understood
and written by domain experts and read by programmers.

4.1 Syntax

We support a usual base of patterns, namely the empty pattern, groups, choice,
element definitions and repetition of elements. The content of elements can be
complex, a type or an enumeration (cf. pattern example in Section 2).

pattern Q ::= � | Q&Q | Q|Q | L{C} | L ∗ {C}
content C ::= Q | T | E
enums E ::= V | E|E

Integrity constraints are defined in a rule-based approach, as propositions on
paths and values. We support the normal boolean connectives, equality, integer
comparisons and top level quantification over identifier variables. To formulate
structural constraints and guards, we can also express that a path is contained
in a document and that a value has a specific type.

formulas G ::= ∀vI .G | F
F ::= false | F ∧ F | F ∨ F | ¬F

| α = α | Z < Z | P ∈ D
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4.2 Semantics

Patterns The semantics of patterns are given in terms of the assertion language,
i.e. patterns are completely translated into formulas. Each element definition in
a pattern defines a set of paths using the same labels, but different identifiers.
The existence of each of these paths is tied to that of other paths, like the parent
path or non-optional children.

To formulate these dependencies, we define the characterizing path of an
element definition. To compute the characterizing path of an element, the charac-
terizing path of the next enclosing element definition is extended with the label
of the element and the null identifier. For repeated elements, we choose a fresh
variable as identifier instead, which is quantified in the context. If there is no
next enclosing element definition, we extend the root path instead.

The characterizing paths for all element definitions of the example schema
are the following:

/packetheader /packetheader/kind[x]
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Using these paths, the relations defined by patterns can be expressed as
propositions. For each element, for example, a proposition is created, which
ensures the existence of its parent:
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Groups of elements exist if both patterns exist. For patterns combined in a
choice, at least one of them has to exist. Both the empty pattern and a repeated
element always exist, as the latter can also be an empty sequence.

Elements containing non-complex content, i.e. a datatype or enumeration

of values, are translated into similar propositions. The typeOf function is used

to guarantee that an assigned value has the appropriate type. Enumerations

translate into a disjunction of equalities testing the different values.

Example: ∀x. /packetheader/kind[x]/count ∈ $ →
typeOf
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Propositions The semantics of propositions are given in terms of the respective

models of values, paths, multisets and documents, with respect to an interpreta-

tion of all variables, called evaluation environment E. We denote an evaluation

in environment E with
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E
. In order for the techniques of [7] to work and to

facilitate static analysis, the semantics have to be carefully designed. Nevertheless,

we are able to support the intuition behind the connectives.

Due to space limitations, we do not define them formally here and point out

the important aspects instead. For simplicity of the logic, both the read function

and all cast functions are defined as total, i.e. they return default values for

invalid parameters. Section 4.4 explains how to deal with this behavior. The

multiset operations sum and ./.[.], as well as .(.), are selective in the sense that

they ignore values of the wrong type or paths which are not present in the

document, respectively. This leads to much simpler specifications and allows

to use infinite path multisets to create finite value multisets by reading from

documents.
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possibility to embed rules. A rule is a single proposition attached to an element

definition. This approach has the following benefits:
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multiset operations sum and ./.[.], as well as .(.), are selective in the sense that

they ignore values of the wrong type or paths which are not present in the

document, respectively. This leads to much simpler specifications and allows

to use infinite path multisets to create finite value multisets by reading from

documents.

4.3 Embedding Rules

We now extend the classical pattern-based structural schema language with the

possibility to embed rules. A rule is a single proposition attached to an element

definition. This approach has the following benefits:

– By tying rules to a structural schema, the paths in rules can be checked for

validity, resulting in the detection of more errors at compile time.

– Paths in rules can use the usual convenience axes, like parent or descendants.
– The context of a rule is implicitly given by the location of the rule in the

pattern, allowing to use much shorter relative paths starting with the dot.

Rules can be embedded in any element definition, regardless if it is repeated

or not, by enclosing it in brackets. Defining a rule at the top level is also possible,

which means it has the root path as context. To support more navigational axes

and relative paths, we extend the sort P ∗ as follows and allow explicit conversions

of singleton sets to paths using castP .

paths P ::= root | P/L[I] | castP (P ∗
)

path multisets P ∗
::= {P} | P ∗ ∪ P ∗ | P ∗/L[V ∗

]

| . | P ∗/.. | P ∗/.L | P ∗//L[V ∗
]

The dot refers to the characterizing path of the enclosing element definition.

The double dot can be used to navigate to a direct parent, whereas the single
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Path-based Formalization

4.1 Syntax

We support a usual base of patterns, namely the empty pattern, groups, choice,
element definitions and repetition of elements. The content of elements can be
complex, a type or an enumeration (cf. pattern example in Section 2).

pattern Q ::= � | Q&Q | Q|Q | L{C} | L ∗ {C}
content C ::= Q | T | E
enums E ::= V | E|E

Integrity constraints are defined in a rule-based approach, as propositions on
paths and values. We support the normal boolean connectives, equality, integer
comparisons and top level quantification over identifier variables. To formulate
structural constraints and guards, we can also express that a path is contained
in a document and that a value has a specific type.

formulas G ::= ∀vI .G | F
F ::= false | F ∧ F | F ∨ F | ¬F

| α = α | Z < Z | P ∈ D
types T ::= INT | ID | STR | CLX | typeOf(V )

4.2 Semantics

Patterns The semantics of patterns are given in terms of the assertion language,
i.e. patterns are completely translated into formulas. Each element definition in
a pattern defines a set of paths using the same labels, but different identifiers.
The existence of each of these paths is tied to that of other paths, like the parent
path or non-optional children.

To formulate these dependencies, we define the characterizing path of an
element definition. To compute the characterizing path of an element, the charac-
terizing path of the next enclosing element definition is extended with the label
of the element and the null identifier. For repeated elements, we choose a fresh
variable as identifier instead, which is quantified in the context. If there is no
next enclosing element definition, we extend the root path instead.

The characterizing paths for all element definitions of the example schema
are the following:

/packetheader /packetheader/kind[x]

/packetheader/capacity /packetheader/kind[x]/count

Using these paths, the relations defined by patterns can be expressed as
propositions. For each element, for example, a proposition is created, which
ensures the existence of its parent:

∀x. /packetheader/kind[x]/count ∈ $ → /packetheader/kind[x] ∈ $

Groups of elements exist if both patterns exist. For patterns combined in a
choice, at least one of them has to exist. Both the empty pattern and a repeated
element always exist, as the latter can also be an empty sequence.

4.1 Syntax

We support a usual base of patterns, namely the empty pattern, groups, choice,
element definitions and repetition of elements. The content of elements can be
complex, a type or an enumeration (cf. pattern example in Section 2).

pattern Q ::= � | Q&Q | Q|Q | L{C} | L ∗ {C}
content C ::= Q | T | E
enums E ::= V | E|E

Integrity constraints are defined in a rule-based approach, as propositions on
paths and values. We support the normal boolean connectives, equality, integer
comparisons and top level quantification over identifier variables. To formulate
structural constraints and guards, we can also express that a path is contained
in a document and that a value has a specific type.

formulas G ::= ∀vI .G | F
F ::= false | F ∧ F | F ∨ F | ¬F

| α = α | Z < Z | P ∈ D
types T ::= INT | ID | STR | CLX | typeOf(V )

4.2 Semantics

Patterns The semantics of patterns are given in terms of the assertion language,
i.e. patterns are completely translated into formulas. Each element definition in
a pattern defines a set of paths using the same labels, but different identifiers.
The existence of each of these paths is tied to that of other paths, like the parent
path or non-optional children.

To formulate these dependencies, we define the characterizing path of an
element definition. To compute the characterizing path of an element, the charac-
terizing path of the next enclosing element definition is extended with the label
of the element and the null identifier. For repeated elements, we choose a fresh
variable as identifier instead, which is quantified in the context. If there is no
next enclosing element definition, we extend the root path instead.

The characterizing paths for all element definitions of the example schema
are the following:

/packetheader /packetheader/kind[x]

/packetheader/capacity /packetheader/kind[x]/count

Using these paths, the relations defined by patterns can be expressed as
propositions. For each element, for example, a proposition is created, which
ensures the existence of its parent:

∀x. /packetheader/kind[x]/count ∈ $ → /packetheader/kind[x] ∈ $

Groups of elements exist if both patterns exist. For patterns combined in a
choice, at least one of them has to exist. Both the empty pattern and a repeated
element always exist, as the latter can also be an empty sequence.

Example Paths:

4.1 Syntax

We support a usual base of patterns, namely the empty pattern, groups, choice,
element definitions and repetition of elements. The content of elements can be
complex, a type or an enumeration (cf. pattern example in Section 2).

pattern Q ::= � | Q&Q | Q|Q | L{C} | L ∗ {C}
content C ::= Q | T | E
enums E ::= V | E|E

Integrity constraints are defined in a rule-based approach, as propositions on
paths and values. We support the normal boolean connectives, equality, integer
comparisons and top level quantification over identifier variables. To formulate
structural constraints and guards, we can also express that a path is contained
in a document and that a value has a specific type.

formulas G ::= ∀vI .G | F
F ::= false | F ∧ F | F ∨ F | ¬F

| α = α | Z < Z | P ∈ D
types T ::= INT | ID | STR | CLX | typeOf(V )

4.2 Semantics

Patterns The semantics of patterns are given in terms of the assertion language,
i.e. patterns are completely translated into formulas. Each element definition in
a pattern defines a set of paths using the same labels, but different identifiers.
The existence of each of these paths is tied to that of other paths, like the parent
path or non-optional children.

To formulate these dependencies, we define the characterizing path of an
element definition. To compute the characterizing path of an element, the charac-
terizing path of the next enclosing element definition is extended with the label
of the element and the null identifier. For repeated elements, we choose a fresh
variable as identifier instead, which is quantified in the context. If there is no
next enclosing element definition, we extend the root path instead.

The characterizing paths for all element definitions of the example schema
are the following:

/packetheader /packetheader/kind[x]

/packetheader/capacity /packetheader/kind[x]/count

Using these paths, the relations defined by patterns can be expressed as
propositions. For each element, for example, a proposition is created, which
ensures the existence of its parent:

∀x. /packetheader/kind[x]/count ∈ $ → /packetheader/kind[x] ∈ $

Groups of elements exist if both patterns exist. For patterns combined in a
choice, at least one of them has to exist. Both the empty pattern and a repeated
element always exist, as the latter can also be an empty sequence.

4.1 Syntax

We support a usual base of patterns, namely the empty pattern, groups, choice,
element definitions and repetition of elements. The content of elements can be
complex, a type or an enumeration (cf. pattern example in Section 2).

pattern Q ::= � | Q&Q | Q|Q | L{C} | L ∗ {C}
content C ::= Q | T | E
enums E ::= V | E|E

Integrity constraints are defined in a rule-based approach, as propositions on
paths and values. We support the normal boolean connectives, equality, integer
comparisons and top level quantification over identifier variables. To formulate
structural constraints and guards, we can also express that a path is contained
in a document and that a value has a specific type.

formulas G ::= ∀vI .G | F
F ::= false | F ∧ F | F ∨ F | ¬F

| α = α | Z < Z | P ∈ D
types T ::= INT | ID | STR | CLX | typeOf(V )

4.2 Semantics

Patterns The semantics of patterns are given in terms of the assertion language,
i.e. patterns are completely translated into formulas. Each element definition in
a pattern defines a set of paths using the same labels, but different identifiers.
The existence of each of these paths is tied to that of other paths, like the parent
path or non-optional children.

To formulate these dependencies, we define the characterizing path of an
element definition. To compute the characterizing path of an element, the charac-
terizing path of the next enclosing element definition is extended with the label
of the element and the null identifier. For repeated elements, we choose a fresh
variable as identifier instead, which is quantified in the context. If there is no
next enclosing element definition, we extend the root path instead.

The characterizing paths for all element definitions of the example schema
are the following:

/packetheader /packetheader/kind[x]

/packetheader/capacity /packetheader/kind[x]/count

Using these paths, the relations defined by patterns can be expressed as
propositions. For each element, for example, a proposition is created, which
ensures the existence of its parent:

∀x. /packetheader/kind[x]/count ∈ $ → /packetheader/kind[x] ∈ $

Groups of elements exist if both patterns exist. For patterns combined in a
choice, at least one of them has to exist. Both the empty pattern and a repeated
element always exist, as the latter can also be an empty sequence.

Elements containing non-complex content, i.e. a datatype or enumeration

of values, are translated into similar propositions. The typeOf function is used

to guarantee that an assigned value has the appropriate type. Enumerations

translate into a disjunction of equalities testing the different values.

Example: ∀x. /packetheader/kind[x]/count ∈ $ →
typeOf

`
$(/packetheader/kind[x]/count)

´
= INT

Propositions The semantics of propositions are given in terms of the respective

models of values, paths, multisets and documents, with respect to an interpreta-

tion of all variables, called evaluation environment E. We denote an evaluation

in environment E with
�
·
�

E
. In order for the techniques of [7] to work and to

facilitate static analysis, the semantics have to be carefully designed. Nevertheless,

we are able to support the intuition behind the connectives.

Due to space limitations, we do not define them formally here and point out

the important aspects instead. For simplicity of the logic, both the read function

and all cast functions are defined as total, i.e. they return default values for

invalid parameters. Section 4.4 explains how to deal with this behavior. The

multiset operations sum and ./.[.], as well as .(.), are selective in the sense that

they ignore values of the wrong type or paths which are not present in the

document, respectively. This leads to much simpler specifications and allows

to use infinite path multisets to create finite value multisets by reading from

documents.

4.3 Embedding Rules

We now extend the classical pattern-based structural schema language with the

possibility to embed rules. A rule is a single proposition attached to an element

definition. This approach has the following benefits:

– By tying rules to a structural schema, the paths in rules can be checked for

validity, resulting in the detection of more errors at compile time.

– Paths in rules can use the usual convenience axes, like parent or descendants.
– The context of a rule is implicitly given by the location of the rule in the

pattern, allowing to use much shorter relative paths starting with the dot.

Rules can be embedded in any element definition, regardless if it is repeated

or not, by enclosing it in brackets. Defining a rule at the top level is also possible,

which means it has the root path as context. To support more navigational axes

and relative paths, we extend the sort P ∗ as follows and allow explicit conversions

of singleton sets to paths using castP .

paths P ::= root | P/L[I] | castP (P ∗
)

path multisets P ∗
::= {P} | P ∗ ∪ P ∗ | P ∗/L[V ∗

]

| . | P ∗/.. | P ∗/.L | P ∗//L[V ∗
]

The dot refers to the characterizing path of the enclosing element definition.

The double dot can be used to navigate to a direct parent, whereas the single

Elements containing non-complex content, i.e. a datatype or enumeration

of values, are translated into similar propositions. The typeOf function is used

to guarantee that an assigned value has the appropriate type. Enumerations

translate into a disjunction of equalities testing the different values.

Example: ∀x. /packetheader/kind[x]/count ∈ $ →
typeOf

`
$(/packetheader/kind[x]/count)

´
= INT

Propositions The semantics of propositions are given in terms of the respective

models of values, paths, multisets and documents, with respect to an interpreta-

tion of all variables, called evaluation environment E. We denote an evaluation

in environment E with
�
·
�

E
. In order for the techniques of [7] to work and to

facilitate static analysis, the semantics have to be carefully designed. Nevertheless,

we are able to support the intuition behind the connectives.

Due to space limitations, we do not define them formally here and point out

the important aspects instead. For simplicity of the logic, both the read function

and all cast functions are defined as total, i.e. they return default values for

invalid parameters. Section 4.4 explains how to deal with this behavior. The

multiset operations sum and ./.[.], as well as .(.), are selective in the sense that

they ignore values of the wrong type or paths which are not present in the

document, respectively. This leads to much simpler specifications and allows

to use infinite path multisets to create finite value multisets by reading from

documents.

4.3 Embedding Rules

We now extend the classical pattern-based structural schema language with the

possibility to embed rules. A rule is a single proposition attached to an element

definition. This approach has the following benefits:

– By tying rules to a structural schema, the paths in rules can be checked for

validity, resulting in the detection of more errors at compile time.

– Paths in rules can use the usual convenience axes, like parent or descendants.
– The context of a rule is implicitly given by the location of the rule in the

pattern, allowing to use much shorter relative paths starting with the dot.

Rules can be embedded in any element definition, regardless if it is repeated

or not, by enclosing it in brackets. Defining a rule at the top level is also possible,

which means it has the root path as context. To support more navigational axes

and relative paths, we extend the sort P ∗ as follows and allow explicit conversions

of singleton sets to paths using castP .

paths P ::= root | P/L[I] | castP (P ∗
)

path multisets P ∗
::= {P} | P ∗ ∪ P ∗ | P ∗/L[V ∗

]

| . | P ∗/.. | P ∗/.L | P ∗//L[V ∗
]

The dot refers to the characterizing path of the enclosing element definition.

The double dot can be used to navigate to a direct parent, whereas the single

Derived Constraints, e.g.:

try { cur.add(item, 1); }
catch(CapacityException e) {
sendPacket(cur);
cur = new Packetheader(42).add(item, 1);

}
}
sendPacket(cur);

}

The method creates new packets and fills them up with items. The programmer

has to make sure that whenever he calls the add method, he can either guarantee

the precondition or handle its failure. As the amount is set to the constant 1, the

only thing that can possibly go wrong is that the packet is already full. In this

case, the add method will abort without changing anything in the packet. The

pack method then sends the full packet and creates a new one. Adding the item

to the new packet will now never result in an exception, so the call is safe.

3 Paths and Documents

As usual in the domain of XML, we will refer to constrained XML data as

documents. The basis of our approach is a path representation and logical

embedding of such documents. Paths are an intuitive concept known to domain

experts. At the same time, however, paths are the key to using automated

methods to ensure schema correctness of manipulating procedures. We use paths

to identify and give an identity to elements in a document. Documents can then

easily be defined as sets of paths with attached values.

Example path: /packetheader/kind[k]/count

We present an enhanced version of the original formalization described in

[7], which is in particular prepared to handle arbitrary values. The weakest

precondition generation and simplification techniques described there easily

extend to these changes.

Our formalization supports identifiers, strings, integers and the special complex

value clx, which marks elements without value and inner elements of a document.

There can be arbitrary many constants c and variables v of each value type and

it is possible to cast values to the base types.

values V ::= I | S | Z | clx | D(P )
identifier I ::= cI | vI | null | castI(V )

strings S ::= cS | vS | castS(V )
integer Z ::= 0 | 1 | vZ | Z + Z | Z ∗ Z | −Z | castZ(V )

| sum(V ∗) | count(V ∗) | rcount(V, V ∗)

Identifiers I and strings S are words over the alphabets ΣI and ΣS and we

assume those words can be distinguished. Z represents the integer numbers with

common arithmetic connectives. The constant null refers to the empty identifier.

D(P ) denotes reading a value from document D at path P .

Paths represent the different elements in a document. The root path is denoted
by root. Longer paths can be constructed by extending another path with a
label, to select an element with that name, and an identifier, which separates
this element from others with that name. Labels L are non-empty words on the
alphabet ΣL, like packetheader or capacity in the example.

labels L ::= cL

paths P ::= root | P/L[I]
documents D ::= blank | D[P → V ] | D[P →] | $

The example path from above has the following formal representation:
Formal path: root/packetheaderL[null]/kindL[kI ]/countL[null]

A document consequently is a finite map from paths to values, where the
blank document represents an initial document, which only contains the root
path mapping to clx. We support local modifications in the form of adding (or
replacing) a single path-value-pair and removing all pairs for a path and all its
extensions. The dollar symbol is the only variable we use for documents. For
example, the initial document with count of kind k set to zero is expressed with
the following expression, in slightly abbreviated path syntax:

Example document: $
ˆ
/packetheader/kind[k]/count→ 0

˜

The sorts V ∗ and P ∗ represent value and path multisets and offer the usual
singleton and union operations. We allow variables vm on value multisets, have a
constant named ’all’, representing complete I, and can convert path multisets
to value multisets by reading from the document using the syntax D(P ∗). Path
multisets can also be created by extending all paths in another multiset with a
label and an identifier from a value multiset, using the same syntax ./.[.] as for
single paths.

value multisets V ∗ ::= {V } | V ∗ ∪ V ∗ | D(P ∗) | all | vm

path multisets P ∗ ::= {P} | P ∗ ∪ P ∗ | P ∗/L[V ∗]

To sum up all the count elements in the example, we first create a path
multiset representing all these elements and then read their values from the
document. Within our schema, the expression sum(//kind/count) expands to:

Example: sum
`
$

`
{root}/packetheaderL[{null}]/kindL[all]/countL[{null}]

´´

4 Schema Language

In this section, we show by example how a schema language accessible by domain
experts can look like. Any paradigm and feature, which can be translated into
propositions on the terms of Section 3, can be supported.

We choose to combine the simplicity of a pattern-based approach in the spirit
of abbreviated Relax NG [2, 3] with a rule-based approach. The patterns define the
structure of documents, while the rules define arbitrary integrity constraints. By
embedding paths directly into the logic, integrity constraints can be understood
and written by domain experts and read by programmers.

Paths represent the different elements in a document. The root path is denoted
by root. Longer paths can be constructed by extending another path with a
label, to select an element with that name, and an identifier, which separates
this element from others with that name. Labels L are non-empty words on the
alphabet ΣL, like packetheader or capacity in the example.

labels L ::= cL

paths P ::= root | P/L[I]
documents D ::= blank | D[P → V ] | D[P →] | $

The example path from above has the following formal representation:
Formal path: root/packetheaderL[null]/kindL[kI ]/countL[null]

A document consequently is a finite map from paths to values, where the
blank document represents an initial document, which only contains the root
path mapping to clx. We support local modifications in the form of adding (or
replacing) a single path-value-pair and removing all pairs for a path and all its
extensions. The dollar symbol is the only variable we use for documents. For
example, the initial document with count of kind k set to zero is expressed with
the following expression, in slightly abbreviated path syntax:

Example document: $
ˆ
/packetheader/kind[k]/count→ 0

˜

The sorts V ∗ and P ∗ represent value and path multisets and offer the usual
singleton and union operations. We allow variables vm on value multisets, have a
constant named ’all’, representing complete I, and can convert path multisets
to value multisets by reading from the document using the syntax D(P ∗). Path
multisets can also be created by extending all paths in another multiset with a
label and an identifier from a value multiset, using the same syntax ./.[.] as for
single paths.

value multisets V ∗ ::= {V } | V ∗ ∪ V ∗ | D(P ∗) | all | vm

path multisets P ∗ ::= {P} | P ∗ ∪ P ∗ | P ∗/L[V ∗]

To sum up all the count elements in the example, we first create a path
multiset representing all these elements and then read their values from the
document. Within our schema, the expression sum(//kind/count) expands to:

Example: sum
`
$

`
{root}/packetheaderL[{null}]/kindL[all]/countL[{null}]

´´

4 Schema Language

In this section, we show by example how a schema language accessible by domain
experts can look like. Any paradigm and feature, which can be translated into
propositions on the terms of Section 3, can be supported.

We choose to combine the simplicity of a pattern-based approach in the spirit
of abbreviated Relax NG [2, 3] with a rule-based approach. The patterns define the
structure of documents, while the rules define arbitrary integrity constraints. By
embedding paths directly into the logic, integrity constraints can be understood
and written by domain experts and read by programmers.

4.1 Syntax

We support a usual base of patterns, namely the empty pattern, groups, choice,
element definitions and repetition of elements. The content of elements can be
complex, a type or an enumeration (cf. pattern example in Section 2).

pattern Q ::= � | Q&Q | Q|Q | L{C} | L ∗ {C}
content C ::= Q | T | E
enums E ::= V | E|E

Integrity constraints are defined in a rule-based approach, as propositions on
paths and values. We support the normal boolean connectives, equality, integer
comparisons and top level quantification over identifier variables. To formulate
structural constraints and guards, we can also express that a path is contained
in a document and that a value has a specific type.

formulas G ::= ∀vI .G | F
F ::= false | F ∧ F | F ∨ F | ¬F

| α = α | Z < Z | P ∈ D
types T ::= INT | ID | STR | CLX | typeOf(V )

4.2 Semantics

Patterns The semantics of patterns are given in terms of the assertion language,
i.e. patterns are completely translated into formulas. Each element definition in
a pattern defines a set of paths using the same labels, but different identifiers.
The existence of each of these paths is tied to that of other paths, like the parent
path or non-optional children.

To formulate these dependencies, we define the characterizing path of an
element definition. To compute the characterizing path of an element, the charac-
terizing path of the next enclosing element definition is extended with the label
of the element and the null identifier. For repeated elements, we choose a fresh
variable as identifier instead, which is quantified in the context. If there is no
next enclosing element definition, we extend the root path instead.

The characterizing paths for all element definitions of the example schema
are the following:

/packetheader /packetheader/kind[x]

/packetheader/capacity /packetheader/kind[x]/count

Using these paths, the relations defined by patterns can be expressed as
propositions. For each element, for example, a proposition is created, which
ensures the existence of its parent:

∀x. /packetheader/kind[x]/count ∈ $ → /packetheader/kind[x] ∈ $

Groups of elements exist if both patterns exist. For patterns combined in a
choice, at least one of them has to exist. Both the empty pattern and a repeated
element always exist, as the latter can also be an empty sequence.

Elements containing non-complex content, i.e. a datatype or enumeration

of values, are translated into similar propositions. The typeOf function is used

to guarantee that an assigned value has the appropriate type. Enumerations

translate into a disjunction of equalities testing the different values.

Example: ∀x. /packetheader/kind[x]/count ∈ $ →
typeOf

`
$(/packetheader/kind[x]/count)

´
= INT

Propositions The semantics of propositions are given in terms of the respective

models of values, paths, multisets and documents, with respect to an interpreta-

tion of all variables, called evaluation environment E. We denote an evaluation

in environment E with
�
·
�

E
. In order for the techniques of [7] to work and to

facilitate static analysis, the semantics have to be carefully designed. Nevertheless,

we are able to support the intuition behind the connectives.

Due to space limitations, we do not define them formally here and point out

the important aspects instead. For simplicity of the logic, both the read function

and all cast functions are defined as total, i.e. they return default values for

invalid parameters. Section 4.4 explains how to deal with this behavior. The

multiset operations sum and ./.[.], as well as .(.), are selective in the sense that

they ignore values of the wrong type or paths which are not present in the

document, respectively. This leads to much simpler specifications and allows

to use infinite path multisets to create finite value multisets by reading from

documents.

4.3 Embedding Rules

We now extend the classical pattern-based structural schema language with the

possibility to embed rules. A rule is a single proposition attached to an element

definition. This approach has the following benefits:

– By tying rules to a structural schema, the paths in rules can be checked for

validity, resulting in the detection of more errors at compile time.

– Paths in rules can use the usual convenience axes, like parent or descendants.
– The context of a rule is implicitly given by the location of the rule in the

pattern, allowing to use much shorter relative paths starting with the dot.

Rules can be embedded in any element definition, regardless if it is repeated

or not, by enclosing it in brackets. Defining a rule at the top level is also possible,

which means it has the root path as context. To support more navigational axes

and relative paths, we extend the sort P ∗ as follows and allow explicit conversions

of singleton sets to paths using castP .

paths P ::= root | P/L[I] | castP (P ∗
)

path multisets P ∗
::= {P} | P ∗ ∪ P ∗ | P ∗/L[V ∗

]

| . | P ∗/.. | P ∗/.L | P ∗//L[V ∗
]

The dot refers to the characterizing path of the enclosing element definition.

The double dot can be used to navigate to a direct parent, whereas the single
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to guarantee that an assigned value has the appropriate type. Enumerations

translate into a disjunction of equalities testing the different values.
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typeOf

`
$(/packetheader/kind[x]/count)

´
= INT

Propositions The semantics of propositions are given in terms of the respective

models of values, paths, multisets and documents, with respect to an interpreta-

tion of all variables, called evaluation environment E. We denote an evaluation

in environment E with
�
·
�

E
. In order for the techniques of [7] to work and to

facilitate static analysis, the semantics have to be carefully designed. Nevertheless,
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the important aspects instead. For simplicity of the logic, both the read function
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invalid parameters. Section 4.4 explains how to deal with this behavior. The

multiset operations sum and ./.[.], as well as .(.), are selective in the sense that

they ignore values of the wrong type or paths which are not present in the

document, respectively. This leads to much simpler specifications and allows

to use infinite path multisets to create finite value multisets by reading from

documents.

4.3 Embedding Rules

We now extend the classical pattern-based structural schema language with the

possibility to embed rules. A rule is a single proposition attached to an element

definition. This approach has the following benefits:

– By tying rules to a structural schema, the paths in rules can be checked for

validity, resulting in the detection of more errors at compile time.

– Paths in rules can use the usual convenience axes, like parent or descendants.
– The context of a rule is implicitly given by the location of the rule in the

pattern, allowing to use much shorter relative paths starting with the dot.

Rules can be embedded in any element definition, regardless if it is repeated

or not, by enclosing it in brackets. Defining a rule at the top level is also possible,

which means it has the root path as context. To support more navigational axes

and relative paths, we extend the sort P ∗ as follows and allow explicit conversions

of singleton sets to paths using castP .

paths P ::= root | P/L[I] | castP (P ∗
)

path multisets P ∗
::= {P} | P ∗ ∪ P ∗ | P ∗/L[V ∗

]

| . | P ∗/.. | P ∗/.L | P ∗//L[V ∗
]

The dot refers to the characterizing path of the enclosing element definition.

The double dot can be used to navigate to a direct parent, whereas the single
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Example
Schema:
  inventory {
    time { INT [. >= 0] },
    capacity { INT [. > 0] },

    kind * { size { INT [. > 0] [. <= //capacity] }}
    item * {
      since { INT [. >= 0] [. <= //time] },
      kindref { ID [ //kind[.] ] }
    },

    [ ./capacity >= sum (./kind[./item/kindref]/size) ]
  }

Procedure:
  changeKind(ident id, ident kind) {
    set //item[id]/kindref kind;
  }

Preconditions:
  1) /inventory/item[id]/kindref
  2) /inventory/kind[kind]
  3) sum (/inventory/kind[/inventory/item*/kindref]/size)
       + /inventory/kind[kind]/size
       - /inventory/kind[/inventory/item[id]/kindref]/size
       <= /inventory/capacity
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Summary

Support for XML + integrity constraints in programs.
XML data as abstract datatype:

With an interface of atomic procedures.
Automatically derive minimal preconditions.
Automatically generated library.

Domain experts define schemata and procedures.
They are able to read and understand the preconditions.
They can react to violations of constraints as they happen. 
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