
Programming Support
for

Cell/BE Multiprocessor

Enes Bajrovic and Eduard MehoferEnes Bajrovic and Eduard Mehofer

Department of Scientific Computing
University of Vienna

Motivation of Work

Architecture of current/future high-end computing systems

Application domain:
Scientific applications

New challenge: support for explicitly managed memory hierarchies.

History

Gelernter, Carriero. 1992
 Background: HPC dominated by message-passing and need for Background: HPC dominated by message passing and need for

better programming support.

 Coordination languages and their significance. Comm. ACM.
 “diversity w.r.t. language, hardware platform, physical

location … will be normal in the new era“.

 Coordination model and computation model separated.Coordination model and computation model separated.

Kennedy, Koelbel, Zima. 2007y, ,
 The rise and fall of HPF: an historical object lesson. ACM

SIGPLAN on History of programming languages.

HPC still dominated by message-passing.

Programming approach: no consensus within community.

Efficiency: Interplay Between

1. Programmer
 controls parallelization explicitly (including data controls parallelization explicitly (including data

movements).

2 Parallelization framework VIECELL2. Parallelization framework VIECELL

 supports coordination model:

• thread creationthread creation

• work distribution

• data movements

3. Native compiler
 compiles computation model for computing device and

performs optimizations:
vectorization, loop unrolling, software pipeling, etc.

Programming Framework VIECELL

Design Principles

1. Processors.
 Stream architectures with accelerators and explicitly

d lik C ll/BEmanaged memory like Cell/BE.

2. Applications.pp
 Stream-like applications in computational science.

3. Program development
 Semantically equivalent sequential version of program

available (all tools usable).available (all tools usable).

Example: Matrix-Vector Multiplication
PPU user code:

01: float A[M][N],X[N],Y[M];
02: sequential execution02: … sequential execution
03: #pragma vie parallel
03: for (int i=0;i<M;i++)
04: SPU dot pr(&A[i][0],X,&Y[i]);

SPU user code:

04: SPU_dot_pr(&A[i][0],X,&Y[i]);
05: … sequential executiuon

#pragma vie public vec1(in,N),vec2(in,N),vec3(out,1)
void SPU_dot_pr(float vec1[],float vec2[],

fl t 3[])float vec3[])
{ float sum=0;
for (int j=0;j<N;j++) {

sum+=vec1[j]*vec2[j]; }sum+=vec1[j]*vec2[j]; }
vec3[0]=sum;

}

Note: parallelism hardware independent!

Problems Handled by Parallelization Framework

Matrix-vector multiplication:

 SPU function loaded / called only once
(row-by-row streaming)

 double buffering optimization

 split blocks to fit in small memory (stream in / stream out)

 aggregation of small transfersaggregation of small transfers

 second parameter only once to SPU

Native Compiler and Opt: Ex. Vector Add (1)

Scalar code:
(Single SPU)(Single SPU)

Gflops

GCC ~0.13

XLC ~3.72XLC 3.72

01: for (i = 0; i < n; i++) {
02: c[i] = a[i] + b[i];
03: }03: }

Native Compiler and Opt: Ex. Vector Add (2)

Vector code:
(Single SPU)(Single SPU)

Gflops Speedup

GCC ~0.78 6.00

XLC ~3.72 1.00XLC 3.72 1.00

01: vector float a[n], b[n], c[n];
02:
03: for (i = 0; i < n/4; i++) {03: for (i = 0; i < n/4; i++) {
04: c[i] = spu_add(a[i], b[i]);
05: }

Native Compiler and Opt: Ex. Vector Add (3)

Several optimizations:
(Single SPU)

Gflops
(unroll 2)

Gflops
(unroll 6)

Speedup

(Single SPU)
GCC ~1.71 ~3.81 12.15 / 30

XLC ~3.72 ~3.84 1.00 / 1.03

vector float x0,x1,x2,x3,x4,x5;
vector float y0,y1,y2,y3,y4,y5;
vector float z0,z1,z2,z3,z4,z5;
...
for (i = 0; i < n/4 - 2; i+=6) {

// Store [i] - [i+5]
c[i+0] = z0; c[i+1] = z1; c[i+2]=z2;
c[i+3] = z3; c[i+4] = z4; c[i+5]=z5;
// Compute [i+1] – [i+6]
z0=spu_add(x0, y0); z1=spu_add(x1, y1); z2=spu_add(x2, y2);
z3=spu_add(x3, y3); z2=spu_add(x2, y2); z3=spu_add(x3, y3); _ _ _
// Load next a: [i+12] - [i+17]
x0 = a[i+2]; x1 = a[i+3]; x2 = a[i+4];
x3 = a[i+5]; x4 = a[i+6]; x5 = a[i+7];
// Load next b: [i+12] - [i+17]
y0 = b[i+2]; y1 = b[i+3]; y2 = b[i+4];
y3 = b[i+5]; y4 = b[i+6]; y5 = b[i+7];

}

Related Work

Graphics Community
 OpenCLOpenCL

 Cuda (NVIDIA)

 Brook+ (AMD)()

HPC Community
 OpenMP: with extensions

 PGAS: CAF, UPC, Titanium

 DARPA HPCS Program: High Productivity Computing Systems
(High Performance Software Crisis – ends 2010).(High Performance Software Crisis ends 2010).
X10 (IBM), Chapel (Cray), Fortress (Sun)

 Sequoia

Conclusion / Future Work

 For efficiency: For efficiency:
interplay

programmer parallelization framework native compilerprogrammer — parallelization framework — native compiler

(assign mangageable tasks only)

 Programmer: explicit parallel programming

 Separation coordination model and computation model

 Future work:

 Move on to GPUs.

