
Introduction
True-Concurrency Semantics for DPNs

Conclusion

Tree Automata for Analyzing Dynamic
Pushdown Networks

Peter Lammich

Institut für Informatik, Westfälische Wilhelms-Universität Münster, Germany

12.10.2009
KPS 2009

Peter Lammich Tree Automata for Analyzing DPNs



Introduction
True-Concurrency Semantics for DPNs

Conclusion

Motivation

DPNs: Abstract model for concurrent programs
Dynamic thread Creation

Original: Interleaving Semantics, analysis by pre∗M
Recently: True-Concurrency semantics, analysis by pre∗M
Here: True Concurrency semantics, analysis by
tree-automata techniques

Peter Lammich Tree Automata for Analyzing DPNs



Introduction
True-Concurrency Semantics for DPNs

Conclusion

Overview

Given:
DPN ∆ with executions e∆ ⊆ E
Property Φ ⊆ E

Want to know: e∆ ∩ Φ = ∅

Solution:
Have r∆ ⊆ R and α : R → E

such that: α(r∆) = e∆

Now decide: r∆ ∩ α−1(Φ) = ∅

Good News:
r∆ and α−1(Φ) are regular sets of trees

Use standard tree-automata techniques

Peter Lammich Tree Automata for Analyzing DPNs



Introduction
True-Concurrency Semantics for DPNs

Conclusion

Dynamic Pushdown Networks (DPNs)

Pushdown processes that can spawn new processes:
Rules of type: pγ

a
↪→ p′w and pγ

a
↪→ p′w B psws

Interleaving semantics: c l→∗c′
c, c′ ∈ (PΓ∗)∗ start and end configuration

Words over alphabet P ∪ Γ, with P ∩ Γ = ∅
l ∈ L∗ sequence of executed labels

Predecessor set: pre∗M(C) := {c | ∃c′ ∈ C, l . c l→∗c′}
Preserves regularity, computable in polynomial time
[Bouajjani et al., 2005]

Peter Lammich Tree Automata for Analyzing DPNs



Introduction
True-Concurrency Semantics for DPNs

Conclusion

Tree-Based Semantics

DPN rules:

p1γ
l1
↪→ p1γ1γ2

p1γ3
l2
↪→ p1γ4

p2γ
l3
↪→ p2γ2γ3

p2γ2
l4
↪→ p2

p1γ1
l5
↪→ p1γ3 B p2γ

Execution tree t :
(from p1γ)

N l1

S l5

N l3

N l4

N l2

L p2γ3

L p1γ4γ2

spawn

Schedules:
sched(t) = {

l1l5l2l3l4,
l1l5l3l2l4,
l1l5l3l4l2
}

Peter Lammich Tree Automata for Analyzing DPNs



Introduction
True-Concurrency Semantics for DPNs

Conclusion

Execution Trees

N l1

S l5

N l3

N l4

N l2

L p2γ3

L p1γ4γ2

spawn

Information contained in execution tree:

Total ordering of steps of each process
Causality induced by process creation
Reached configuration
(Implicitly) Process IDs

Peter Lammich Tree Automata for Analyzing DPNs



Introduction
True-Concurrency Semantics for DPNs

Conclusion

Regular Execution Trees

DPN rules:

p1γ
l1
↪→ p1γ1γ2

p1γ3
l2
↪→ p1γ4

p2γ
l3
↪→ p2γ2γ3

p2γ2
l4
↪→ p2

p1γ1
l5
↪→ p1γ3 B p2γ

Regular execution tree τ :
(from p1γ)

calln l1 γ2

spawn l5

callr l3

ret l4 p2 nil p2 γ3

base l2

nil p1 γ4

Peter Lammich Tree Automata for Analyzing DPNs



Introduction
True-Concurrency Semantics for DPNs

Conclusion

Regular Execution Trees

calln l1 γ2

spawn l5

callr l3

ret l4 p2 nil p2 γ3

base l2

nil p1 γ4

Idea: Make Call/Return structure visible in
execution tree
Set of regular execution trees of DPN is
tree-regular

Automata can be generated from DPN

(Tree-) regular properties transfer from
standard execution trees

Done by hand: Reachability of configuration
Indication: α is macro-tree transducer

Peter Lammich Tree Automata for Analyzing DPNs



Introduction
True-Concurrency Semantics for DPNs

Conclusion

Summary

True-Concurrency Semantics for DPN
Regular execution trees
Tree-automata techniques for model-checking

Results verified with Isabelle/HOL
Future Work

Properties with intermediate configurations
Symbolic techniques to speed-up computation

Horn-Clauses, BDDs, ...
Compare with automata-based techniques

Peter Lammich Tree Automata for Analyzing DPNs



Tree Automata for Executions

e∆ = N[p0, γ0]

[n-nil] nil pγ ∈ N[p, γ]

for pγ
l
↪→ p′ ∈ ∆ :

[r-ret] ret l p′ ∈ R[p, γ, p′]

for pγ
l
↪→ p′γ′ ∈ ∆, p̃ ∈ P :

[n-base] base l τ ∈ N[p, γ] ⇐ τ ∈ N[p′, γ′]
[r-base] base l τ ∈ R[p, γ, p̃] ⇐ τ ∈ R[p′, γ′, p̃]

for pγ
l
↪→ p′γ1γ2 ∈ ∆, p̃, p̂ ∈ P :

[n-calln] calln l τ γ2 ∈ N[p, γ] ⇐ τ ∈ N[p′, γ1]
[n-callr] callr l τc τ ∈ N[p, γ] ⇐ τc ∈ R[p′, γ1, p̂] ∧ τ ∈ N[p̂, γ2]
[r-callr] callr l τc τ ∈ R[p, γ, p̃] ⇐ τc ∈ R[p′, γ1, p̂] ∧ τ ∈ R[p̂, γ2, p̃]

for pγ
l
↪→ p′γ′ B psγs ∈ ∆, p̃ ∈ P :

[n-spawn] spawn l τs τ ∈ N[p, γ] ⇐ τs ∈ N[ps, γs] ∧ τ ∈ N[p′, γ′]
[r-spawn] spawn l τs τ ∈ R[p, γ, p̃] ⇐ τs ∈ N[ps, γs] ∧ τ ∈ R[p′, γ′, p̃]

Peter Lammich Tree Automata for Analyzing DPNs


	Introduction
	True-Concurrency Semantics for DPNs
	Conclusion
	Appendix

