
A Sound, Complete and Usable Hoare-Style Logic
for a Sequential Java Subset

Progress Report

Christoph Feller

8.10.2009



Overview

1. Motivation

2. Reached goals

3. Technical details

4. Conclusion and Future Work



Motivation

Proofing a program logic sound and complete is not a new idea.

Then why do it?

I Preparation for modular program logic

I We want to have a usable logic



Reached goals

Definitions:

I AST of Java Subset Java-KE

I Notion of welltyped states and a big-step semantic

I Logic rules



Reached goals

Theorems:

I Type safety of Java-KE:

S :: pp → SQ ∧ pp in prog pp ⇒ wtr SQ pp

I Soundness of the logic rules:

A ` {P}pp{Q} ∧ pp in prog pp
⇒ ∀N.((∀tr ∈ A.tr rsem tr N ∧
∀L S SQ.P LS ∧ S :: pp − N → SQ)⇒ Q L SQ)

Definitions and theorems all in Isabelle/HOL



Old invocation rule

Γ,A ` {Normal P} ∀a.Γ,A ` {Q ← val a}args⇒̇{R a}
∀a vs D l . Γ,A ` {(R a← Vals vs ∧ .

(λ(x , s).D = target mode s a md ∧ l = locals s); .
init lvars ΓD(mn, pTs)mode a vs) ∧ .

(λσ. normalσ −→ Γ ` mode → D � t)}
Methd D(mn, pTs)− � {set lvars l .; S}

Γ,A ` {Normal P}{t,md ,mode}e..mn({pTs}args)− � {S}



New invocation rule

stypv([n]x := y .m(e)) y = Some(RefT rid)
A ` {P}VirMeth m rid{Q}

A ` {(λL S . S [y ]v 6= Null ∧
P L (S [this ← S [y ]v ]v [par ← S [e]e ]v ))}
Stmnt([n]x := y .m(e)) {Q[x/res]vv}



Static types

Every statement in our AST is unique.

We can get the static type of a variable just by supplying the
relevant statement.

Example:

stypv([n]x = y .m(e)) y = RefT Object



Conclusion and Future Work

Conclusion

I Usable logic rules are possible

I There is room for improvement

Future Work

I Completeness is missing


	Motivation
	Reached Goals
	Technical Details
	Usability
	Static types

	Conclusion and Future Work

