SATIrE within ALL-TIMES Improving Timing Technology with Source Code Analysis

Gergö Barany

Institute of Computer Languages, Vienna University of Technology

15. Kolloquium Programmiersprachen und Grundlagen der Programmierung Maria Taferl

Knowledge of each task's worst-case execution time (WCET) is needed to ensure correct timing of safety-critical hard real-time systems.

Design decisions:

- Static/dynamic analysis
- Source-based/binary analysis
- Analysis algorithm
- . . .
- Various combinations are possible.

The ALL-TIMES project's goal is to integrate timing tools that use different approaches.

Knowledge of each task's worst-case execution time (WCET) is needed to ensure correct timing of safety-critical hard real-time systems.

Design decisions:

- Static/dynamic analysis
- Source-based/binary analysis
- Analysis algorithm
- . . .
- Various combinations are possible.

The ALL-TIMES project's goal is to integrate timing tools that use different approaches.

Coming up...

1 The SATIrE Framework

2 The ALL-TIMES Project

3 Tool Connections in ALL-TIMES

Gergö Barany (TU Wien)

SATIrE within ALL-TIMES

SATIrE: Static Analysis Tool Integration Engine

SATIrE is a framework for integrating source code analysis tools for C.

Currently integrated:

- ROSE: source-to-source transformation framework
- PAG: data-flow analyzer generator
- Termite: Prolog library for high-level program manipulation

The integration provides tools and representations for:

- Data-flow analysis of C programs (source code level)
- Source-to-source transformations
- Source code annotations

SATIrE Architecture

Gergö Barany (TU Wien)

SATIrE within ALL-TIMES

<PS'09 5 / 1</pre>

SATIrE's Analyzers

Analyzers provided by SATIrE:

Points-to analysis: Flow-insensitive unification-based (Steensgaard-style) almost linear analysis; with context-sensitive extensions.

Interval analysis: Abstract interpretation to determine possible value ranges of integer variables; arbitrary context-sensitivity.

Loop bounds analysis: Constructs and solves systems of inequalities describing loop behavior.

ALL-TIMES: Integrating European Timing Technology

- ALL-TIMES is a European project (12/2007-02/2010) aimed at integrating timing analysis tools.
- Six partners: Four companies, two university groups.
- Partners contribute a wide range of analysis techniques and expertise.
- SATIrE is involved in three tool connections to provide/exchange information derived from source-based analysis.

Source-Level Timing Analysis

Traditionally: Programmers annotate program with high-level information.

• Tedious and error-prone

SATIrE's role in ALL-TIMES: Generate annotations automatically

Advantages of source-code analysis for users:

- Reduce user's annotation burden
- User-checkable analysis information

Advantages of source-code vs. binary analysis:

- Symbolic pointer analysis: names, not numeric addresses
- Compound type information available

Overview of SATIrE's Connections (1/2)

To RapiTime (dynamic analyzer):

- Export function pointer information.
- Benefit: Confirm or correct dynamic information.

To aiT (static binary analyzer):

- Export function and data pointer information.
- Benefit: Improve flow and value analysis.

Overview of SATIrE's Connections (2/2)

Two-way connection to SWEET (static flow analyzer):

- Export program representation (ALF).
- Export pointer, interval, loop bound information.
- Import flow constraints.
- Benefits: Improve SWEET's analyses, communicate its flow information to other tools.

Conclusions

Conclusions

- ALL-TIMES integrates European timing analysis technology.
- Integrations combine strengths of various approaches:
 - dynamic vs. static analysis
 - binary vs. source code analysis
 - abstract execution vs. abstract interpretation
 - . . .
- SATIrE contributes source-based pointer, interval, and loop bounds analyses.

This work is supported by the research project "Integrating European Timing Analysis Technology" (ALL-TIMES) under contract No. 215068 funded by the 7th EU R&D Framework Programme. See http://www.all-times.org for more information about the ALL-TIMES project.

• □ ▶ • □ ▶ • □ ▶ •

Conclusions

Conclusions

- ALL-TIMES integrates European timing analysis technology.
- Integrations combine strengths of various approaches:
 - dynamic vs. static analysis
 - binary vs. source code analysis
 - abstract execution vs. abstract interpretation
 - . . .
- SATIrE contributes source-based pointer, interval, and loop bounds analyses.

Thank you for your attention! Questions?

This work is supported by the research project "Integrating European Timing Analysis Technology" (ALL-TIMES) under contract No. 215068 funded by the 7th EU R&D Framework Programme. See http://www.all-times.org for more information about the ALL-TIMES project.

Gergö Barany (TU Wien)

SATIrE within ALL-TIMES

S'09 11/

< ロ > < 同 > < 回 > < 回 > < 回