
13.10.09 Incremental Parsers 1

Generating Incremental Parsers

Christoph Höger – TU-Berlin

13.10.09 Incremental Parsers 2

PaGe

● „An LR(0) item (item for short) of a grammar G is a
production of G with a dot at some position of the
body.“
[Compilers – Principles, Techniques & Tools]

● This may not be the best method to teach LR

● PaGe (Parser Generator) uses „Actions“:

Aw⇒ Aw➀

13.10.09 Incremental Parsers 3

PaGe

● PaGe transforms the input Grammar

● 1st Target: „Normalform“:

(L(G) is kept unchanged)
A t Zm

⋯
Zn➀

13.10.09 Incremental Parsers 4

PaGe

● 2nd Target: Erase original productions:

● Note the Pseudo Terminal A
● A production can be deleted!

A t Zm
⋯

B AZ k

A t Zm
⋯

B AZ k
B t ZmZ k

13.10.09 Incremental Parsers 5

PaGe

● 3rd Target: Remove Left recursion, leftfactor
common start symbols

● L(G) has not been changed yet!

All rules start with (Pseudo-)
Terminals (shift) or Actions (reduce)

● This implies a LR Parse table

Zn A Z k
Zn t ZmZ k
Zn➀

13.10.09 Incremental Parsers 6

Incremental Parsing - What?

● Incremental Parser
● Input: An AST and a diff describing the changed

input tokens
● Output: An AST which reuses as much Nodes as

possible from the input AST

● Works well for most real life grammars, but
yields no general advantage over batch
parsers!

13.10.09 Incremental Parsers 7

Incremental Parsing - Why?

● Why not use it for make?
● Loading the last AST from disk will probably take

longer than parsing from scratch.
● Creating the diff is non-trivial

● So, why should one write an incremental
parser?

13.10.09 Incremental Parsers 8

Incremental Parsing - Why?

● Programmers need
help!
● This needs an AST to

walk on.
● User expects no

delay.
● Parsing needs to be

in „realtime“

13.10.09 Incremental Parsers 9

Incremental Parsing - How?

● Tree input:
● Some nodes clearly
reusable

● Some not
● Some maybe

N
0

t1 t2 t3 t4 t5 t6

N
3

N
4

N
1

N
5

N
6

N
7

N
2

N
8

ChangeLhs Rhs

13.10.09 Incremental Parsers 10

Incremental Parsing - How?

● We will not simply save Parser configurations
(although that would be trivial)

● Basic idea: „Short circuiting the parser“
● We know what the parser did for a given input

● Two Phase design.
● First phase handle left hand side AST
● Second phase: handle change spot and right hand

side

13.10.09 Incremental Parsers 11

Incremental Parsing - How?

● Batch parsing:

t1 t2 t3 t4

t2 t3 t4N
3

t3 t4N
3 t2

t3 t4N
3

N
4

t3 t4N
1

Tokenstack Inputstack
t1 t2 t3 t4

t2 t3 t4N
3

t3 t4N
3 t2

t3 t4N
3

N
4

t3 t4N
1

Tokenstack Inputstack

13.10.09 Incremental Parsers 12

Phase 1

● We can directly calculate the final configuration
by looking at N

1
, because:

● It has no changed children
● The parser is deterministic
● It is a valid reduction in the current state

● Phase 1 is:
● Descend the tree
● If the Node is unchanged, simulate its reduction
● else test check its children

13.10.09 Incremental Parsers 13

Phase 2

● Phase 2 is a little bit trickier:
● Use parent references (new terminals have none)
● Check for the highest parent node that can be

reused
● (The parse table allows us to check this)
● This allows reusage of nodes even in new subtrees

(!)
● Use the batch parse steps when needed

13.10.09 Incremental Parsers 14

Phase 2

● Phase 2:

Tokenstack Inputstack

N
5

N
6 t5 t6

N
7

N
8

N
5

N
6

N
2

N
5

N
1

N
7

N
5

N
6 t6

13.10.09 Incremental Parsers 15

Runtime

● We assume a balanced AST with n nodes
● Runtime O(|change| +log²(n)) :

● Phase 1 descends the tree: O(log(n))
● The change is parsed in linear time O(|change|)
● Phase 2 ascends at least one step after checking

O(log(n)) parent nodes: O(log²(n))

● Space: None (except parent links, but you'll
need them anyway)

13.10.09 Incremental Parsers 16

Optimizing Phase 2

● O(log²(n)) can be dropped to O(log(n)):
● After reusage directly check for sibling reusage
● If no sibling, check parents sibling
● This eliminates unnecessary ascensions
● Needs some kind of sibling references
● Sounds cool, but in fact can lead to performance

regressions (worst case tree is very unlikely)

13.10.09 Incremental Parsers 17

Object Reusage

● Remember the yellow nodes?
● Why recreate them?
● We construct bottom up: If one child node already

has a parent, reuse it!
● This would take O(k) time, where k is the maximum

amount of child nodes.
● In PaGe we use Lists, k is not constant
● But: Only the first and last child need to be

checked, since there is only one change

13.10.09 Incremental Parsers 18

Conclusion

● Incremental Parsers are valuable in IDEs
● For changes with constant length, one can

reconcile the AST in O(log(n)) and with no
additional space cost

● This is practical realtime for normal source files
(< 64kb)

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

