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nondeterministic search

anyof :: [a ]→ Search a
anyof [ ] = ∅
anyof (x : xs) = anyof xs⊕ return x



interface

Failure

∅ :: Search a

Success

return :: a→ Search a

Choice

(⊕) :: Search a→ Search a→ Search a



lazy lists backtrack

∅ :: [a ]
∅ = [ ]

return :: a→ [a ]
return x = [x ]

(⊕) :: [a ]→ [a ]→ [a ]
[ ] ⊕ ys = ys
(x : xs)⊕ ys = x : (xs⊕ ys) -- lazy



example

> anyof [1 . . 10 ] :: [ Int ]

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ]

> anyof [1 . . 1000000 ] :: [ Int ]
takes very long
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quadratic run time

anyof :: [a ]→ Search a
anyof [ ] = ∅
anyof (x : xs) = anyof xs⊕ return x

reverse :: [a ]→ [a ]
reverse [ ] = [ ]
reverse (x : xs) = reverse xs ++ [x ]
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accumulator

reverse :: [a ]→ [a ]
reverse xs = rev xs [ ]

rev :: [a ]→ [a ]→ [a ]
rev [ ] ys = ys
rev (x : xs) ys = rev xs (x : ys)

rev :: [a ]→ [a ]→ [a ]
rev [ ] = λys→ ys
rev (x : xs) = λys→ rev xs ((λzs→ x : zs) ys)
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difference lists

type DiffList a = [a ]→ [a ]

toList :: DiffList a→ [a ]
toList a = a [ ]



interface

empty :: DiffList a
empty = λxs→ xs

singleton :: a→ DiffList a
singleton x = λxs→ x : xs

append :: DiffList a→ DiffList a→ DiffList a
append a b = λxs→ a (b xs)



an old friend
∅ :: Search a
∅ = empty

return :: a→ Search a
return = singleton

(⊕) :: Search a→ Search a→ Search a
(⊕) = append

Nondeterministic application

flatMap :: (a→ Search b)→ Search a→ Search b
flatMap = ???
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continuation-based search

type CSearch a = ∀b.(a→ Search b)→ Search b

search :: CSearch a→ Search a
search a = a (return :: a→ Search a)



the missing piece

∅ :: CSearch a
∅ = λ → (∅ :: Search a)

return :: a→ CSearch a
return x = λc→ c x

(⊕) :: CSearch a→ CSearch a→ CSearch a
a⊕ b = λc→ (a c⊕ b c :: Search a)

flatMap :: (a→ CSearch b)→ CSearch a→ CSearch b
flatMap f a = λc→ a (λx→ f x c)



example

> toList (search (anyof [1 . . 10 ]))
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ]

> toList (search (anyof [1 . . 1000000 ]))
[1000000, 999999, 999998, 999997, ...
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difference lists + continuations

∅ = λsucc fail→ fail

return x = λsucc fail→ succ x fail

a⊕ b = λsucc fail→ a succ (b succ fail)

flatMap f a = λsucc fail→ a (λx fail′ → f x succ fail′) fail



nondeterminism monad

pytriple6 :: Int→ CSearch (Int, Int, Int)
pytriple6 n = do a← anyof [1 . . n ]

b← anyof [a . . n ]
c← anyof [b . . n ]
guard (a ∗ a + b ∗ b ≡ c ∗ c)
return (a, b, c)

> toList (search (pytriple6 10))
[(6, 8, 10), (3, 4, 5) ]



summary

efficient backtracking can be factored into two parts
• difference lists

• continuation passing

continuations provide flatMap for free

continuation passing can be reused for other strategies

http://hackage.haskell.org/package/level-monad



question menu

1 What other search strategies can be implemented like this?

2 How efficient are they?

3 Why do I need different strategies at all?

4 How can I decide which strategy to use when?

5 Why are nondeterminism monads useful?

6 Does CSearch satisfy the monad laws?

7 What are monad laws, anyway?



no upper bound

pytriple :: CSearch (Int, Int, Int)
pytriple = do a← anyof [1 . . ]

b← anyof [a . . ]
c← anyof [b . . ]
guard (a ∗ a + b ∗ b ≡ c ∗ c)
return (a, b, c)

> take 5 (toList (search pytriple))
diverges



level-wise search
type Levels a = [[a ] ]

∅ :: Levels a
∅ = [ ]

return :: a→ Levels a
return x = [[x ] ]

(⊕) :: Levels a→ Levels a→ Levels a
a⊕ b = [ ] : merge a b

merge [ ] ys = ys
merge xs [ ] = xs
merge (x : xs) (y : ys) = (x ++ y) : merge xs ys



limited-depth search

type Limited a = Int→ [a ]

∅ :: Limited a
∅ = λ → [ ]

return :: a→ Limited a
return x = λd→ if d ≡ 0 then [x ] else [ ]

(⊕) :: Limited a→ Limited a→ Limited a
a⊕ b = λd→ if d ≡ 0 then [ ] else a (d− 1) ++ b (d− 1)



fair search

> take 5 (concat (search pytriple))
[(3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17) ]

500 triples ≈ 20 seconds, 1 GB

> take 5 (iterDepth pytriple) -- iteratively increasing limit
[ (3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17) ]

500 triples ≈ 40 seconds, 2 MB


