
Reinventing
Haskell Backtracking

Sebastian Fischer

Christian-Albrechts University of Kiel

KPS 2009

nondeterministic search

anyof :: [a]→ Search a
anyof [] = ∅
anyof (x : xs) = anyof xs⊕ return x

interface

Failure

∅ :: Search a

Success

return :: a→ Search a

Choice

(⊕) :: Search a→ Search a→ Search a

lazy lists backtrack

∅ :: [a]
∅ = []

return :: a→ [a]
return x = [x]

(⊕) :: [a]→ [a]→ [a]
[] ⊕ ys = ys
(x : xs)⊕ ys = x : (xs⊕ ys) -- lazy

example

> anyof [1 . . 10] :: [Int]

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

> anyof [1 . . 1000000] :: [Int]
takes very long

example

> anyof [1 . . 10] :: [Int]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

> anyof [1 . . 1000000] :: [Int]
takes very long

example

> anyof [1 . . 10] :: [Int]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

> anyof [1 . . 1000000] :: [Int]
takes very long

quadratic run time

anyof :: [a]→ Search a
anyof [] = ∅
anyof (x : xs) = anyof xs⊕ return x

reverse :: [a]→ [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

quadratic run time

anyof :: [a]→ Search a
anyof [] = ∅
anyof (x : xs) = anyof xs⊕ return x

reverse :: [a]→ [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

accumulator

reverse :: [a]→ [a]
reverse xs = rev xs []

rev :: [a]→ [a]→ [a]
rev [] ys = ys
rev (x : xs) ys = rev xs (x : ys)

rev :: [a]→ [a]→ [a]
rev [] = λys→ ys
rev (x : xs) = λys→ rev xs ((λzs→ x : zs) ys)

accumulator

reverse :: [a]→ [a]
reverse xs = rev xs []

rev :: [a]→ [a]→ [a]
rev [] ys = ys
rev (x : xs) ys = rev xs (x : ys)

rev :: [a]→ [a]→ [a]
rev [] = λys→ ys
rev (x : xs) = λys→ rev xs ((λzs→ x : zs) ys)

difference lists

type DiffList a = [a]→ [a]

toList :: DiffList a→ [a]
toList a = a []

interface

empty :: DiffList a
empty = λxs→ xs

singleton :: a→ DiffList a
singleton x = λxs→ x : xs

append :: DiffList a→ DiffList a→ DiffList a
append a b = λxs→ a (b xs)

an old friend
∅ :: Search a
∅ = empty

return :: a→ Search a
return = singleton

(⊕) :: Search a→ Search a→ Search a
(⊕) = append

Nondeterministic application

flatMap :: (a→ Search b)→ Search a→ Search b
flatMap = ???

an old friend
∅ :: Search a
∅ = empty

return :: a→ Search a
return = singleton

(⊕) :: Search a→ Search a→ Search a
(⊕) = append

Nondeterministic application

flatMap :: (a→ Search b)→ Search a→ Search b
flatMap = ???

continuation-based search

type CSearch a = ∀b.(a→ Search b)→ Search b

search :: CSearch a→ Search a
search a = a (return :: a→ Search a)

the missing piece

∅ :: CSearch a
∅ = λ → (∅ :: Search a)

return :: a→ CSearch a
return x = λc→ c x

(⊕) :: CSearch a→ CSearch a→ CSearch a
a⊕ b = λc→ (a c⊕ b c :: Search a)

flatMap :: (a→ CSearch b)→ CSearch a→ CSearch b
flatMap f a = λc→ a (λx→ f x c)

example

> toList (search (anyof [1 . . 10]))
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

> toList (search (anyof [1 . . 1000000]))
[1000000, 999999, 999998, 999997, ...

example

> toList (search (anyof [1 . . 10]))
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

> toList (search (anyof [1 . . 1000000]))
[1000000, 999999, 999998, 999997, ...

difference lists + continuations

∅ = λsucc fail→ fail

return x = λsucc fail→ succ x fail

a⊕ b = λsucc fail→ a succ (b succ fail)

flatMap f a = λsucc fail→ a (λx fail′ → f x succ fail′) fail

nondeterminism monad

pytriple6 :: Int→ CSearch (Int, Int, Int)
pytriple6 n = do a← anyof [1 . . n]

b← anyof [a . . n]
c← anyof [b . . n]
guard (a ∗ a + b ∗ b ≡ c ∗ c)
return (a, b, c)

> toList (search (pytriple6 10))
[(6, 8, 10), (3, 4, 5)]

summary

efficient backtracking can be factored into two parts
• difference lists

• continuation passing

continuations provide flatMap for free

continuation passing can be reused for other strategies

http://hackage.haskell.org/package/level-monad

question menu

1 What other search strategies can be implemented like this?

2 How efficient are they?

3 Why do I need different strategies at all?

4 How can I decide which strategy to use when?

5 Why are nondeterminism monads useful?

6 Does CSearch satisfy the monad laws?

7 What are monad laws, anyway?

no upper bound

pytriple :: CSearch (Int, Int, Int)
pytriple = do a← anyof [1 . .]

b← anyof [a . .]
c← anyof [b . .]
guard (a ∗ a + b ∗ b ≡ c ∗ c)
return (a, b, c)

> take 5 (toList (search pytriple))
diverges

level-wise search
type Levels a = [[a]]

∅ :: Levels a
∅ = []

return :: a→ Levels a
return x = [[x]]

(⊕) :: Levels a→ Levels a→ Levels a
a⊕ b = [] : merge a b

merge [] ys = ys
merge xs [] = xs
merge (x : xs) (y : ys) = (x ++ y) : merge xs ys

limited-depth search

type Limited a = Int→ [a]

∅ :: Limited a
∅ = λ → []

return :: a→ Limited a
return x = λd→ if d ≡ 0 then [x] else []

(⊕) :: Limited a→ Limited a→ Limited a
a⊕ b = λd→ if d ≡ 0 then [] else a (d− 1) ++ b (d− 1)

fair search

> take 5 (concat (search pytriple))
[(3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17)]

500 triples ≈ 20 seconds, 1 GB

> take 5 (iterDepth pytriple) -- iteratively increasing limit
[(3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17)]

500 triples ≈ 40 seconds, 2 MB

