Reinventing Haskell Backtracking

Sebastian Fischer

Christian-Albrechts University of Kiel

KPS 2009

nondeterministic search

anyof :: $[a] \rightarrow$ Search a anyof $[] = \emptyset$ anyof (x:xs) = anyof $xs \oplus$ return x

interface

Failure

Ø :: Search a

Success

return :: $a \rightarrow Search a$

Choice

 (\oplus) :: Search a \rightarrow Search a \rightarrow Search a

lazy lists backtrack

 \emptyset :: [a] \emptyset = []

$$return :: a \to [a]$$
$$return x = [x]$$

> anyof [1..10] :: [Int]

> anyof [1..10] :: [Int] [10,9,8,7,6,5,4,3,2,1]

> anyof [1..10] :: [Int] [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

> anyof [1..1000000] :: [Int] takes very long

quadratic run time

anyof :: $[a] \rightarrow$ Search a anyof $[] = \emptyset$ anyof (x:xs) = anyof $xs \oplus$ return x

quadratic run time

anyof :: $[a] \rightarrow$ Search a anyof $[] = \emptyset$ anyof (x:xs) = anyof $xs \oplus$ return x

reverse ::
$$[a] \rightarrow [a]$$

reverse $[] = []$
reverse $(x : xs) =$ reverse $xs ++ [x]$

accumulator

reverse ::
$$[a] \rightarrow [a]$$

reverse xs = rev xs []

$$rev :: [a] \rightarrow [a] \rightarrow [a]$$

$$rev [] ys = ys$$

$$rev (x : xs) ys = rev xs (x : ys)$$

accumulator

reverse ::
$$[a] \rightarrow [a]$$

reverse xs = rev xs []

$$rev :: [a] \rightarrow [a] \rightarrow [a]$$

$$rev [] ys = ys$$

$$rev (x : xs) ys = rev xs (x : ys)$$

$$rev :: [a] \to [a] \to [a]$$

$$rev [] = \lambda ys \to ys$$

$$rev (x : xs) = \lambda ys \to rev xs ((\lambda zs \to x : zs) ys)$$

difference lists

type
$$DiffList a = [a] \rightarrow [a]$$

toList :: DiffList $a \rightarrow [a]$ toList a = a[]

interface

empty :: DiffList a empty = $\lambda xs \rightarrow xs$

singleton :: $a \rightarrow DiffList a$ singleton $x = \lambda xs \rightarrow x : xs$

append :: DiffList $a \rightarrow$ DiffList $a \rightarrow$ DiffList aappend $a b = \lambda xs \rightarrow a (b xs)$

an old friend

 \emptyset :: Search a \emptyset = empty

 $return :: a \rightarrow Search a return = singleton$

```
(\oplus) :: Search a \rightarrow Search a \rightarrow Search a
(\oplus) = append
```

an old friend

 \emptyset :: Search a \emptyset = empty

```
return :: a \rightarrow Search a
return = singleton
```

$$(\oplus)$$
 :: Search a \rightarrow Search a \rightarrow Search a
 $(\oplus) = append$

Nondeterministic application

flatMap :: $(a \rightarrow Search \ b) \rightarrow Search \ a \rightarrow Search \ b$ flatMap = ???

continuation-based search

type CSearch $a = \forall b.(a \rightarrow \text{Search } b) \rightarrow \text{Search } b$

search :: CSearch $a \rightarrow$ Search asearch a = a (return :: $a \rightarrow$ Search a)

the missing piece

 \oslash :: CSearch a $\oslash = \lambda_{-} \rightarrow (\oslash$:: Search a)

return :: $a \rightarrow CSearch a$ return $x = \lambda c \rightarrow c x$

 (\oplus) :: CSearch $a \rightarrow$ CSearch $a \rightarrow$ CSearch a $a \oplus b = \lambda c \rightarrow (a c \oplus b c :: Search a)$

flatMap :: $(a \rightarrow CSearch \ b) \rightarrow CSearch \ a \rightarrow CSearch \ b$ flatMap f $a = \lambda c \rightarrow a \ (\lambda x \rightarrow f \ x \ c)$

> toList (search (anyof [1..10])) [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

> toList (search (anyof [1..10])) [10,9,8,7,6,5,4,3,2,1]

> toList (search (anyof [1..1000000])) [1000000, 999999, 999998, 999997, ...

difference lists + continuations

 \oslash = λ succ fail \rightarrow fail

return $x = \lambda succ$ fail $\rightarrow succ x$ fail

 $a \oplus b = \lambda succ fail \rightarrow a succ (b succ fail)$

flatMap f a = λ succ fail \rightarrow a (λ x fail' \rightarrow f x succ fail') fail

nondeterminism monad

$$pytriple_{\leq} :: Int \rightarrow CSearch (Int, Int, Int)$$

$$pytriple_{\leq} n = \mathbf{do} \ a \leftarrow anyof [1..n]$$

$$b \leftarrow anyof [a..n]$$

$$c \leftarrow anyof [b..n]$$

$$guard (a * a + b * b \equiv c * c)$$

$$return (a, b, c)$$

> toList (search (pytriple ≤ 10)) [(6, 8, 10), (3, 4, 5)]

summary

efficient backtracking can be factored into two parts

- difference lists
- continuation passing

continuations provide *flatMap* for free

continuation passing can be reused for other strategies

http://hackage.haskell.org/package/level-monad

question menu

- 1 What other search strategies can be implemented like this?
- 2 How efficient are they?
- 3 Why do I need different strategies at all?
- 4 How can I decide which strategy to use when?
- 5 Why are nondeterminism monads useful?
- 6 Does CSearch satisfy the monad laws?
- 7 What are monad laws, anyway?

no upper bound

$$pytriple :: CSearch (Int, Int, Int)$$

$$pytriple = \mathbf{do} \ a \leftarrow anyof [1..]$$

$$b \leftarrow anyof [a..]$$

$$c \leftarrow anyof [b..]$$

$$guard (a * a + b * b \equiv c * c)$$

$$return (a, b, c)$$

> take 5 (toList (search pytriple)) <mark>diverges</mark>

level-wise search

type *Levels a* = [[*a*]]

 \emptyset :: Levels a $\emptyset = []$

return :: $a \rightarrow$ Levels a return x = [[x]]

 $(\bigoplus) :: Levels a \rightarrow Levels a \rightarrow Levels a$ $a \oplus b = []: merge a b$ $merge [] \quad ys = ys$ $merge xs \quad [] \quad = xs$ merge (x:xs) (y:ys) = (x + y): merge xs ys

limited-depth search

type *Limited* $a = Int \rightarrow [a]$

return :: a → Limited a return $x = \lambda d$ → if $d \equiv 0$ then [x] else []

(\oplus) :: Limited a \rightarrow Limited a \rightarrow Limited a a \oplus b = $\lambda d \rightarrow$ if d \equiv 0 then [] else a (d - 1) ++ b (d - 1)

fair search

> take 5 (concat (search pytriple)) [(3,4,5), (6,8,10), (5,12,13), (9,12,15), (8,15,17)]

500 triples \approx 20 seconds, 1 GB

> take 5 (*iterDepth pytriple*) -- iteratively increasing limit [(3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17)]

500 triples \approx 40 seconds, 2 MB