Reinventing
Haskell Backtracking

Sebastian Fischer

Christian-Albrechts University of Kiel

KPS 2009

nondeterministic search

anyof:: [a] — Search a
anyof [] =Q
anyof (x:xs) = anyof xs & return x

interface

Failure

@ :: Search a
Success

return ::a — Search a
Choice

() :: Search a — Search a — Search a

lazy lists backtrack

@::|a]
=]

return::a — |[a]
return x = [X]

(€)::[a] — [a] — [a]
(] ©ys=ys
(x:xs)®Bys=x:(xs®ys) - lazy

example

> anyof [1..10] :: [Int]

example

> anyof [1..10] :: [Int]
[10,9,8,7,6,5,4,3,2,1]

example

> anyof [1..10] :: [Int]
[10,9,8,7,6,5,4,3,2,1]

> anyof [1..1000000] :: [Int]

quadratic run time

anyof :: [a] — Search a
anyof [] =0
anyof (x:xs) = anyof xs & return x

quadratic run time

anyof :: [a] — Search a
anyof [] =0
anyof (x:xs) = anyof xs & return x

reverse :: [a] —
reverse []
reverse (X :Xs)

al
=]
=re

verse xs H- [x]

accumulator

reverse :: [a] — [a]
reverse xs = rev xs ||

rev:: [a] — [a] — [a]
rev [] ys = ys
rev (x:xs) ys = rev xs (x:ys)

accumulator

reverse :: [a] — [a]
reverse xs = rev xs ||

rev:: [a] — [a] — [a]
rev [] ys = ys
rev (x:xs) ys = rev xs (x:ys)

rev:: [a] — [a] — [a]
rev [] = Ays — ys
rev (x:xs) = Ays — rev xs ((Azs — x:zs) ys)

difference lists

type DiffList a = [a] — [a]

toList :: DiffList a — [a]
tolLista = a []

interface

empty :: DiffList a
empty = AXs — X§

singleton :: a — DiffList a
singleton x = Axs — x:xs

append :: DiffList a — DiffList a — DiffList a
append a b = Axs — a (b xs)

an old friend

@ :: Search a
© = empty

return :: a — Search a
return = singleton

(&) :: Search a — Search a — Search a
() = append

an old friend

@ :: Search a
© = empty

return :: a — Search a
return = singleton

(&) :: Search a — Search a — Search a
() = append
Nondeterministic application

flatMap :: (a — Search b) — Search a — Search b
flatMap = ?2?

continuation-based search

type CSearch a = Vb.(a — Search b) — Search b

search :: CSearch a — Search a
search a = a (return::a — Search a)

the missing piece

@ :: CSearch a
@ =A_— (D::Search a)

return :: a — CSearch a
return x = Ac — Cc x

() :: CSearch a — CSearch a — CSearch a
a®b=Ac— (ac®bc:: Search a)

flatMap :: (a — CSearch b) — CSearch a — CSearch b
flatMap fa = Ac — a (Ax — fx c)

example

> tolist (search (anyof [1..10]))
[10,9,8,7,6,5,4,3,2,1]

example

> tolist (search (anyof [1..10]))
[10,9,8,7,6,5,4,3,2,1]

> tolist (search (anyof [1..1000000]))
(1000000, 999999, 999998, 999997, ...

difference lists + continuations

%) = Asucc fail — fail
return x = Asucc fail — succ x fail
adb = Asucc fail — a succ (b succ fail)

flatMap f a = Asucc fail — a (Ax fail' — fx succ fail’) fail

nondeterminism monad

pytriple< :: Int — CSearch (Int, Int, Int)
pytriple< n = do a < anyof [1..n]
b «— anyof [a..n]
c < anyof [b..n]
guard (axa+bx*xb = cx*c)
return (a, b, c)

> tolist (search (pytriple< 10))
[(6,8,10), (3,4,5)]

summary

efficient backtracking can be factored into two parts
o difference lists

e continuation passing

continuations provide flatMap for free

continuation passing can be reused for other strategies

http://hackage.haskell.org/package/level-monad

NS G e W N

question menu

What other search strategies can be implemented like this?
How efficient are they?

Why do | need different strategies at all?

How can | decide which strategy to use when?

Why are nondeterminism monads useful?

Does CSearch satisfy the monad laws?

What are monad laws, anyway?

no upper bound

pytriple :: CSearch (Int, Int, Int)
pytriple = do a < anyof [1..]
b «— anyof [a..]
c < anyof [b..]
guard (axa+bxb=cxc)
return (a, b,)

> take 5 (tolList (search pytriple))

level-wise search

type Levels a = [[a]]

@ :: Levels a
@ =]

return::a — Levels a
return x = [[x]]

() :: Levels a — Levels a — Levels a

adb=1[]:mergeab
merge || ys =ys
merge xs [] = XS

merge (x:xs) (y:ys) = (x Hy) : merge xs ys

limited-depth search

type Limited a = Int — [a]

@ :: Limited a
NN

return ::a — Limited a
return x = Ad — if d = 0 then [x] else []

(@) :: Limited a — Limited a — Limited a
a®b=Ad—ifd=0then[]elsea (d—1)+H b (d—1)

fair search

> take 5 (concat (search pytriple))
[(3,4,5), (6,8,10), (5,12,13), (9, 12, 15), (8, 15,17)]

500 triples ~ 20 seconds, 1 GB

> take 5 (iterDepth pytriple) - iteratively increasing limit
[(3,4,5), (6,8,10), (5,12,13), (9,12, 15), (8,15, 17)]

500 triples =~ 40 seconds, 2 MB

