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Introduction Closure Objects

Motivation

Closure systems and closure operations play an important role in both
mathematics and computer science.

There are a number of concepts which are isomorphic to them. We refer
to all such concepts as closure objects.

In this work we develop relation-algebraic algorithms

to recognize several classes of closure objects,

to compute the complete lattices they constitute and

to transform any of these closure objects into another,

which can directly be translated into the language of the specific purpose
computer algebra system RelView.

We demonstrate that the system is well suited for computing and
visualizing closure objects and their complete lattices.
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Introduction Closure Objects

Closure Objects
Closure objects base on a (finite) complete lattice (X ,≤). The most
important ones are:

Closure systems: Subsets of X which contain the greatest element
and are closed under (binary) greatest lower bounds.

Closure operations: Functions on X , which are extensive, monotone
and idempotent.

Full implicational systems: Relations → on X , which are transitive, a
super relation of ≥ and fulfill

x → y , u → v ⇒ x t u → y t v

Join congruences Equivalence relations ≡ on X , which fulfill

x ≡ y ⇒ x t z ≡ y t z

Further examples and specializations: Sperner villages, dependency
relations and topologies (if (X ,≤) is a powerset lattice).
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Introduction Relation Algebra

Relation Algebra

Notation

R is a relation with domain X and range Y :

R : X ↔Y

X ↔Y is the type of R.

Instead of (x , y) ∈ R we use Boolean matrix notation:

Rx ,y

Signature of relation algebra

Constants: O, L, I.

Operations: R ∪ S ,R ∩ S ,R S , R ,RT.

Tests: R ⊆ S ,R = S .
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Introduction Relation Algebra

Modelling Sets with Relations

Row-constant Relations

A relation R : X ↔Y is row-constant if R = R L.

Vectors

For row-constant relations the range is irrelevant. Therefore, the normal
case is v : X ↔ 1, where 1 := {⊥} is a singleton set. Then we write vx

instead of vx ,⊥.

Vector-Representations of Sets

Given v : X ↔ 1, we define for subsets Y of X :

v represents Y ⇔ Y = {x ∈ X : vx}
⇔ ∀ x ∈ X : x ∈ Y ↔ vx
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Introduction Relation Algebra

The Relation-Algebraic Tool RelView
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Demonstration of Visualizing Closure Objects Closure Systems and Corresponding Inclusion Order

The Running Example

A Partial Order

Hasse diagram of a partial order visualized as RelView graph

For a partial order R : X ↔X we often write x ≤ y for Rx ,y .
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Demonstration of Visualizing Closure Objects Closure Systems and Corresponding Inclusion Order

Computing all Closure Systems

Specification Closure System (finite case)

S ⊆ X is closure system iff > ∈ S and a, b ∈ S imply a u b ∈ S .

Computation of all Closure Systems of a partial order R:

cls(R) := M inj((gel(R, L)TM ∩ L(πM ∩ ρM ∩ Inf(R) M ) )
T

)
T

: X ↔S

The 24 Closure Systems of the Example Order

Each system is shown as a column of a Boolean matrix.
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Demonstration of Visualizing Closure Objects Closure Systems and Corresponding Inclusion Order

Inclusion Order of the 24 Closure Systems

Closure Systems

Hasse Diagram Inclusion Order
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Demonstration of Visualizing Closure Objects Closure Operations

From Closure System to Closure Operation C

x ≤ y ⇒ C (x) ≤ C (y) x ≤ C (x) C (C (x)) = C (x)
C ⊆ R R ⊆ CR CT CC ⊆ C

Four of the 24 closure operations and computation from a closure system s
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ClsToClo(s) := glb(R, sL ∩ RT)
T

: X ↔X
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Demonstration of Visualizing Closure Objects Closure Operations

Closure Operations
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Demonstration of Visualizing Closure Objects Closure Operations
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Demonstration of Visualizing Closure Objects Full Implicational Systems and Join-Congruences

Full Implicational System → (Finite Case)

1 if A→ B,B → C then A→ C FF ⊆ F

2 if A ⊇ B then A→ B RT ⊆ F

3 if A→ B,C → D then A ∪ C → B ∪ D F ||F ⊆ Sup(R) F Sup(R)T

Computation of full implicational system from closure operation
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Demonstration of Visualizing Closure Objects Full Implicational Systems and Join-Congruences

Join-Congruence J

1 J is equivalence relation I ⊆ J J = JT JJ ⊆ J

2 if Jx,y then Jxtz,ytz J || I ⊆ Sup(R) J Sup(R)T

Computation of join congruences from closure operations.

CloToJc(C ) = CCT : X ↔X
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Formal Development of Algorithms Recognizing Closure Operations

Recognizing Closure Operations

A Function C is a Closure Operation iff

extensive ∀ x ∈ X : x ≤ C (x) C ⊆ R

monotonicity ∀ x , y ∈ X : x ≤ y → C (x) ≤ C (y) R ⊆ CR CT

idempotency ∀ x ∈ X : C (C (x)) = C (x) CC ⊆ C

Development of first relational specification

∀ x ∈ X : x ≤ C (x)
⇔ ∀ x ∈ X : Rx ,C(x)

⇔ ∀ x , y ∈ X : C (x) = y → Rx ,y

⇔ ∀ x , y ∈ X : Cx ,y → Rx ,y

⇔ C ⊆ R
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Development of second relational specification

∀ x , y ∈ X : x ≤ y → C (x) ≤ C (y)
⇔ ∀ x , y ∈ X : Rx ,y → RC(x),C(y)

⇔ ∀ x , y ∈ X : Rx ,y → ∃ a, b ∈ X : C (x) = a ∧ C (y) = b ∧ Ra,b

⇔ ∀ x , y ∈ X : Rx ,y → ∃ a ∈ X : Cx ,a ∧ ∃ b ∈ X : Ra,b ∧ CT
b,y

⇔ ∀ x , y ∈ X : Rx ,y → (CR CT)x ,y
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Formal Development of Algorithms Recognizing Closure Operations

Recognizing Closure Operations

A Function C is a Closure Operation iff
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monotonicity ∀ x , y ∈ X : x ≤ y → C (x) ≤ C (y) R ⊆ CR CT

idempotency ∀ x ∈ X : C (C (x)) = C (x) CC ⊆ C

Development of third relational specification

∀ x ∈ X : C (C (x)) = C (x)
⇔ ∀ x , y , a ∈ X : C (x) = a ∧ C (a) = y → C (x) = y
⇔ ∀ x , y , a ∈ X : Cx ,a ∧ Ca,y → Cx ,y

⇔ ∀ x , y ∈ X : (∃ a ∈ X : Cx ,a ∧ Ca,y )→ Cx ,y

⇔ ∀ x , y ∈ X : (CC )x ,y → Cx ,y

⇔ CC ⊆ C .
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Formal Development of Algorithms Recognizing Closure Operations

Recognizing Closure Operations as RelView programs
The Formulae: C ⊆ R R ⊆ CR CT CC ⊆ C

Program in Declarative Style

isExt(C,R) = incl(C,R).
isMon(C,R) = incl(R,C*R*C^).
isIde(C) = incl(C*C,C).
isClos(C,R) = isExt(C,R) & isMon(C,R) & isIde(C).

Program in Imperative Style

isClos(C,R)
DECL isExt, isMon, isIde
BEG isExt = incl(C,R);

isMon = incl(R,C*R*C^);
isIde = incl(C*C,C)
RETURN isExt & isMon & isIde

END.
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Formal Development of Algorithms Computing all Closure Systems

Computing all Closure Systems

Computation of all Closure Systems of a partial order R

S ⊆ X is closure system iff > ∈ S and a, b ∈ S imply a u b ∈ S .

cls(R) := M inj((gel(R, L)TM ∩ L(πM ∩ ρM ∩ Inf(R) M ) )
T

)
T

: X ↔S

Condition 1: > ∈ S

> ∈ S
⇔ ∃ x ∈ X : Mx ,S ∧ gel(R, L)x

⇔ (MTgel(R, L))S

⇔ (gel(R, L)TM)
T

S

where
M is the membership relation
gel(R, v) is greatest element of set represented by vector v
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T

)
T

: X ↔S

Condition 2: a, b ∈ S imply a u b ∈ S . Let u = 〈u1, u2〉
∀ u ∈ X×X : u1 ∈ S ∧ u2 ∈ S → u1 u u2 ∈ S

⇔ ∀ u ∈ X×X : u1 ∈ S ∧ u2 ∈ S → ∃ z ∈ X : u1 u u2 = z ∧ z ∈ S

⇔ ∀ u ∈ X×X : u1 ∈ S ∧ u2 ∈ S → ∃ z ∈ X : Inf(R)u,z ∧ z ∈ S

⇔ ∀ u ∈ X×X : (πM)u,S ∧ (ρM)u,S → ∃ z ∈ X : Inf(R)u,z ∧Mz,S

⇔ ∀ u ∈ X×X : (πM)u,S ∧ (ρM)u,S → (Inf(R) M)u,S

⇔ ¬∃ u ∈ X×X : (πM)u,S ∧ (ρM)u,S ∧ Inf(R) M u,S

⇔ ¬∃ u ∈ X×X : (πM ∩ ρM ∩ Inf(R) M )
T

S ,u ∧ Lu

⇔ (πM ∩ ρM ∩ Inf(R) M )
T

L S
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Formal Development of Algorithms Computing all Closure Systems

vector v (here shown in transposed form)

Membership relation M

Result of M inj(v)T, since inj(v) : S↔ 2X is the identity function
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Conclusion

Conclusion

The computer algebra system RelView supports the study of closure
objects in several ways:

Visualization (Boolean matrices, graphs, layout algorithms, labeling,
highlighting)

Animation (via step-wise execution)

Testing (random relations and graphs, specified properties and degree
of filling, generation of sets of all candidates)

Most of the presented algorithms scale well and are applicable to large
examples (due to RelView’s ROBDD implementation).

Only exception: Computation of all possible closure systems as their
number is exponential in general.
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