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Motivation

Closure systems and closure operations play an important role in both
mathematics and computer science.

There are a number of concepts which are isomorphic to them. We refer
to all such concepts as closure objects.

In this work we develop relation-algebraic algorithms
@ to recognize several classes of closure objects,
@ to compute the complete lattices they constitute and
@ to transform any of these closure objects into another,

which can directly be translated into the language of the specific purpose
computer algebra system RELVIEW.

We demonstrate that the system is well suited for computing and
visualizing closure objects and their complete lattices.
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Introduction Closure Objects

Closure Objects
Closure objects base on a (finite) complete lattice (X, <). The most
important ones are:
@ Closure systems: Subsets of X which contain the greatest element
and are closed under (binary) greatest lower bounds.
@ Closure operations: Functions on X, which are extensive, monotone
and idempotent.

@ Full implicational systems: Relations — on X, which are transitive, a
super relation of > and fulfill

X—y,u—v = xUdu—ylUv
@ Join congruences Equivalence relations = on X, which fulfill
X=y = xUz=yUz

Further examples and specializations: Sperner villages, dependency
relations and topologies (if (X, <) is a powerset lattice).
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Relation Algebra

Notation
@ R is a relation with domain X and range Y
R:X<Y
X < Y is the type of R.
@ Instead of (x,y) € R we use Boolean matrix notation:

RXi.y

Signature of relation algebra
e Constants: O, L, |I.
@ Operations: RUS,RNS,RS, R,R".
o Tests: RCS,R=S.
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Modelling Sets with Relations

Row-constant Relations
A relation R : X < Y is row-constant if R = RL.

Vectors

For row-constant relations the range is irrelevant. Therefore, the normal
caseis v: X <1, where 1 := {_L} is a singleton set. Then we write vy
instead of v, | .

Vector-Representations of Sets
Given v : X <1, we define for subsets Y of X:

vrepresents Y & Y ={xe€X:vw}
S VxeX:xeY e vy

Berghammer and BraBel (CAU Kiel) Closure Objects and RELVIEW KP 2009



In elation Algebra

The Relation-Algebraic Tool RELVIEW
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Demonstration of Visualizing Closure Objects Closure Systems and Corresponding Inclusion Order

The Running Example

A Partial Order
Hasse diagram of a partial order visualized as RELVIEW graph

©

®
® ® ©
O

For a partial order R : X < X we often write x < y for R, ,.
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Demonstration of Visualizing Closure Objects

Computing all Closure Systems

Specification Closure System (finite case)

S C X is closure system iff T € S and a,b€ S imply alb e S.

Computation of all Closure Systems of a partial order R:

cls(R) := Minj((gel(R,L) "M N L(xM N pM N Inf(R)M)) ) : X <&

Closure Systems and Corresponding Inclusion Order

TT

The 24 Closure Systems of the Example Order

Each system is shown as a column of a Boolean matrix.
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Demonstration of Visualizing Closure Objects Closure Systems and Corresponding Inclusion Order

Computing all Closure Systems

Specification Closure System (finite case)
S C X is closure system iff T € S and a,b€ S imply alb e S.

Computation of all Closure Systems of a partial order R:
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The 24 Closure Systems of the Example Order
Each system is shown as a column of a Boolean matrix.
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Demonstration of Visualizing Closure Objects

Inclusion Order of the 24 Closure Systems

Closure Systems

Berghammer and BraBel (CAU Kiel)
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Closure Systems and Corresponding Inclusion Order
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Demonstration of Visualizing Closure Objects Closure Operations

From Closure System to Closure Operation C

x<y=C(x)<C(y)| x<C(x)

¢(C(x)
CCR C

= C(x)
ccc

Four of the 24 closure operations and computation from a closure system s
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Demonstration of Visualizing Closure Objects Closure Operations

Closure Operations
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losure Operation
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Demonstration of Visualizing Closure Objects Closure Operations

Closure Operations

—NM Lo

1
2
3
4
5
6
C

losure Operation

o/

Corresponding
Closure System

rghammer and BraBel (CAU Kiel) Closure Objects and RELVIEW KP 2009 11 /18



Demonstration of Visualizing Closure Objects Full Implicational Systems and Join-Congruences

Full Implicational System — (Finite Case)

Q@ ifA— B ,B— Cthen A— C FFCF
Q@ ifADBthen A— B RTCF
Q@ ifA—B,C— Dthen AUC— BUD F| F C Sup(R) F Sup(R)"

Computation of full implicational system from closure operation

AN M © AN ™SI © N M0 © AN M ©
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6

CloToFis(C,R) = CRT : X < X
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Demonstration of Visualizing Closure Objects Full Implicational Systems and Join-Congruences

Join-Congruence J

@ J is equivalence relation ICJ J=JT JJcCJ
Q if Jy, then Sz iz J|1 € Sup(R) JSup(R)"

Computation of join congruences from closure operations.

— NN <t \O — NN <t O — NN <t wn O — NN <t wn O
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CloToJc(C) = CCT: X« X
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Formal Development of Algorithms Recognizing Closure Operations

Recognizing Closure Operations

A Function C is a Closure Operation iff

@ extensive VxeX:x<C(x) CCR
@ monotonicity Vx,y € X:x <y — C(x) < C(y) RCCRCT
@ idempotency VxeX:C(C(x)) = C(x) cccc

Development of first relational specification

VxeX:x<C(x)

& Vxe X RX,C(X)

& Vx,yeX:C(x)=y— Ry,
& Vx,yeX: Gy — Ry

< CCR
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Formal Development of Algorithms Recognizing Closure Operations

Recognizing Closure Operations

A Function C is a Closure Operation iff

@ extensive VxeX:x<C(x) CCR
@ monotonicity Vx,y € X :x <y — C(x) < C(y) RCCRCT
e idempotency Vxe X:C(C(x)) = C(x) cccc

Development of second relational specification

Vx,ye X:x<y— C(x) < C(y)

& Vx,ye X: Rx,y — RC(X),C(y)

& Vx,yeX: Ry —3JabeX:C(x)=anC(y)=bAR,p
& Vx,yeX: Ryy—3aeX:GaA3beX RipyACy,
& Vx,yeX:Re, — (CRCT),,

& RCCRCT
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Formal Development of Algorithms Recognizing Closure Operations

Recognizing Closure Operations

A Function C is a Closure Operation iff

@ extensive VxeX:x<C(x) CCR
e monotonicity Vx,y € X :x <y — C(x) < C(y) RC CRCT
@ idempotency VxeX:C(C(x))=C(x) cccc

Development of third relational specification

VxeX:C(C(x))=C(x)

Vx,y,ae X:C(x)=anC(a)=y - C(x)=y
Vx,y,ae X:CGaNGCy — Gy
Vx,yeX:(Fae X:CGaNGy)— Cy

Vx,y e X 1 (CCO)xy — Csy

cccc.

tee e
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Formal Development of Algorithms Recognizing Closure Operations

Recognizing Closure Operations as RELVIEW programs
The Formulae: CCR RCCRCT cccc

Program in Declarative Style

isExt(C,R) = incl(C,R).

isMon(C,R) = incl(R,C*RxC~).

isIde(C) = incl(CxC,C).

isClos(C,R) isExt(C,R) & isMon(C,R) & isIde(C).

Program in Imperative Style

isClos(C,R)

DECL isExt, isMon, isIde

BEG isExt = incl(C,R);
isMon = incl(R,C*xR*C~);
isIde = incl(CxC,C)

RETURN isExt & isMon & isIde
END.
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Formal Development of Algorithms Computing all Closure Systems

Computing all Closure Systems

Computation of all Closure Systems of a partial order R

S C X is closure system iff T € S and a,b € S imply alb € S.
- 7T
cls(R) := Minj((gel(R,L) ' M N L(xM N pM N Inf(R)M)) ) : X =&

Condition 1: T € §

TeS
& dxe X:MysAgel(R,L)x
& (MTgel(R,L))s
& (gel(RL)™™M) g
where
M is the membership relation
gel(R, v) is greatest element of set represented by vector v
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Formal Development of Algorithms Computing all Closure Systems

Computing all Closure Systems

Computation of all Closure Systems of a partial order R

S C X is closure system iff T € S and a,b € S imply alb € S.
- 7T
cls(R) := Minj((gel(R,L) "M N L(xM N pM N Inf(R)M)) ) : X =&

Condition 2: a,b € S imply amb e S. Let u = (uy, un)
VueXxX: 1 e€SANumesS—ulMues
& YueXxX:umueSAwmweS—3dzeX:uuMuw=zANzeS$§
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Computing all Closure Systems
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Formal Development of Algorithms Computing all Closure Systems

Computing all Closure Systems

Computation of all Closure Systems of a partial order R

S C X is closure system iff T € S and a,b € S imply alb € S.
- 7T
cls(R) := Minj((gel(R,L) "M N L(xM N pM N Inf(R)M)) ) : X =&

Condition 2: a,b € S imply amb e S. Let u = (uy, un)
VueXxX: 1 e€SANumesS—-ulMues
& YueXxX:umueSAwmweS—3zeX:uuMuw=zANz€S
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Formal Development of Algorithms Computing all Closure Systems

Computing all Closure Systems

Computation of all Closure Systems of a partial order R

S C X is closure system iff T € S and a,b € S imply alb € S.

cls(R) := Minj((gel(R,L) "M N L(xM N pM N Tnf(R)M) )T)T X6 )

Condition 2: a,b € S imply amb e S. Let u = (uy, un)
VueXxX: 1 e€SANumesS—-ulMues
VueXxX:u1€SAwmeS—3zeX:uuMuw=zANz€S
VueXxX:umeSANumpeS—3ze X: Inf(R)y,,Nz€S
Vue XxX:(nM),s A(pM)ys — Fz € X : Inf(R)y- AM, s
Vue XxX:(nM),s A(pM), s — (Inf(R)M), s

te e
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Formal Development of Algorithms Computing all Closure Systems

Computing all Closure Systems

Computation of all Closure Systems of a partial order R

S C X is closure system iff T € S and a,b € S imply alb € S.

cls(R) := Minj((gel(R,L) "M N L(xM N pM N Tnf(R)M) )T)T X6

Condition 2: a,b € S imply amb e S. Let u = (uy, un)
VueXxX: 1 e€SANumesS—-ulMues
VueXxX:u1€SAwmeS—3zeX:uuMuw=zANz€S
VueXxX:umeSANumpeS—3ze X: Inf(R)y,,Nz€S
Vue XxX:(nM),s A(pM)ys — Fz € X : Inf(R)u> AM, s
Vue XxX:(nM),s A(pM), s — (Inf(R)M), s

—Jdue XxX: (7T|\/|)u75 N (pM)u’s N Inf(R) M u,S

st
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Formal Development of Algorithms Computing all Closure Systems

Computing all Closure Systems

Computation of all Closure Systems of a partial order R

S C X is closure system iff T € S and a,b € S imply alb € S.

cls(R) := Minj((gel(R,L) "M N L(xM N pM N Tnf(R)M) )T)T X6

v

Condition 2: a,b € S imply amb e S. Let u = (uy, un)
VueXxX: 1 e€SANumesS—-ulMues
VueXxX:u1€SAwmeS—3zeX:uuMuw=zANz€S
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—Ju € XxX: (7M), s A (pM), s A Inf(R)M , 5

~Jue XxX: (xMN pM N Inf(R)M) 5.4 A L,

t e
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Computing all Closure Systems

Computation of all Closure Systems of a partial order R

S C X is closure system iff T € S and a,b € S imply alb € S.
- 7T
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t e

3

(M pM N Tnf(RYM) "L
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Formal Development of Algorithms Computing all Closure Systems

vector v (here shown in transposed form)

M TN OE ¥ O T N e X P N T N O R A NI NEE VA T N OE B D= o
—amtmnorwa S ST ISR ES SR 8RR BRI N BRI ISINRERIRRARINRRRERSCSLED
S—amTnon® N TN O 0 O =M T N O YOO AN I NO VRO = TN OB AD =T

—amtmormwa S S HNIN S22 AN GAA8a8AR R ENA NSRRI YYICECRRRLNNANARERESEE3

EXT R gnyey

NN AW —
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Conclusion

Conclusion

The computer algebra system RELVIEW supports the study of closure
objects in several ways:

e Visualization (Boolean matrices, graphs, layout algorithms, labeling,
highlighting)
@ Animation (via step-wise execution)

@ Testing (random relations and graphs, specified properties and degree
of filling, generation of sets of all candidates)

Most of the presented algorithms scale well and are applicable to large
examples (due to RELVIEW's ROBDD implementation).

Only exception: Computation of all possible closure systems as their
number is exponential in general.
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