
Static Timing Analysis for Hard Real-Time
Systems

Sebastian Altmeyer

Saarland University

KPS 2009, Maria Taferl

Hard Real-Time System

• Embedded controllers are expected to finish their tasks
reliably within time bounds.

• Task scheduling must be performed.

• Essential: upper bound on the execution times of all tasks
statically known (Commonly called the Worst-Case Execution
Time (WCET)).

• Timing Analysis provides the abstraction for Scheduling

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 2 / 32

Timing Analysis

Given:

1 required reaction time

2 task (binary)

3 a hardware platform, on which to execute the software

Derive: bound on the worst case execution time (WCET)

Requirements:

1 safe upper bound (no underestimation)

2 tight (close to real worst-case execution time)

3 tolerable analysis effort

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 3 / 32

What does Execution Time Depend on? (Task)

• the input,

• the initial execution state of the platform
(caches, pipeline, branch target buffer, etc.), and

• interferences from the environment
(preemptive scheduling, interrupts, shared caches).

Problem: exhaustive measurements not possible

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 4 / 32

What does Execution Time Depend on? (Instruction)

Modern processors increase performance by using: Caches,
Pipelines, Branch Prediction, Speculation

Execution times of instructions vary widely

• Best case - everything goes smoothly: no cache miss,
operands ready, needed resources free, branch correctly
predicted

• Worst case - everything goes wrong: all loads miss the cache,
resources needed are occupied, operands are not ready

Span may be several hundred cycles

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 5 / 32

Example

x = a+b

LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

Figure: MPC 5xx

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 6 / 32

Example

x = a+b

LOAD r2, _a
LOAD r1, _b
ADD r3,r2,r1

Figure: PPC 755

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 7 / 32

Execution Time is History-Sensitive

Contribution of the execution of an instruction to a programs
execution time depends on

• the execution state, e.g. the time for a memory access
depends on the cache state

• the execution state depends on the execution history, i.e.,
cannot be determined in isolation

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 8 / 32

Timing Accidents and Penalties

Timing Accident cause for an increase of the execution time of an
instruction

Timing Penalty the associated increase

Types of timing accidents

• Cache misses

• Pipeline stalls

• Branch mispredictions

• Bus collisions

• Memory refresh of DRAM

• TLB miss

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 9 / 32

Our Approach to Timing Analysis

Static Analysis of behavior of programs on the execution platform

• invariants about the set of execution states at all program
points

• safety properties from these invariants: certain timing
accidents never happen

Example:
At program point p, instruction fetch will never cause a cache miss.

⇒

The more accidents excluded, the lower/tighter the upper bound.

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 10 / 32

Structure of the Timing Analysis

1 Control-Flow Analysis
• determines infeasible paths,
• computes loop bounds,
• missing information as annotation by user

2 Micro-architecture Analysis:
• Uses static program analysis
• Excludes as many Timing Accidents as possible
• Determines upper bounds for basic blocks

3 Worst-case Path Determination
• Maps control flow to integer linear program
• Determines upper bound for the whole program and an

associated path

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 11 / 32

Structure of the Timing Analysis

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 12 / 32

Example: Cache Analysis

CPU wants to read/write at memory address a
sends a request for a to the bus

Cache Hit memory block a contained in the cache
data available in the next cycle

Cache Miss memory block a not contained in the cache
a transfered from main memory to cache
may replace other cached memory blocks (depending
on replacement strategies: LRU, PLRU, FIFO, ...)

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 13 / 32

Example: Cache Analysis

How to statically precompute cache contents:

Must Analysis: For each program point, which blocks are definitely
in the cache → predicts cache-hits.

May Analysis: For each program point, which blocks may be in the
cache. Complement says what is definitely not in the
cache → predicts cache-misses.

Cache Analysis can not keep track of concrete cache state.
Abstract cache semantics needed (set of memory blocks).

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 14 / 32

Example: Must-Cache Analysis - Transfer
Access to memory block s:

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 15 / 32

Example: Must-Cache Analysis - Join

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 16 / 32

Pipeline Analysis

• Processor (pipeline, cache, memory, inputs) viewed as a big
state machine, performing transitions every clock cycle

• Starting in an initial state for an instruction, transitions are
performed, until a final state is reached:

• End state: instruction has left the pipeline
• # transitions: execution time of instruction

• However, model only contains components influencing the
timing

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 17 / 32

Path Analysis - IPET

Searching for path with highest execution time by using
Implicit Path Enumeration Technique (IPET)

1

2

n1

3

n2

4
n4

n5

5

n6

n3

variables ni denote how often edge i is traversed

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 18 / 32

Path Analysis - IPET

Searching for path with highest execution time by using
Implicit Path Enumeration Technique (IPET)

1

2

n1

3

n2

4
n4

n5

5

n6

n3

n1 = 1;

first node is entered exactly once

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 18 / 32

Path Analysis - IPET

Searching for path with highest execution time by using
Implicit Path Enumeration Technique (IPET)

1

2

n1

3

n2

4
n4

n5

5

n6

n3

n1 = 1;

n1 = n2 + n3;

n2 + n5 = n4 + n6;
n4 = n5;

sum of successors traversals equals sum of predecessor traversals

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 18 / 32

Path Analysis - IPET

Searching for path with highest execution time by using
Implicit Path Enumeration Technique (IPET)

1

2

n1

3

n2

4
n4

n5

5

n6

n3

n1 = 1;

n1 = n2 + n3;

n2 + n5 = n4 + n6;
n4 = n5;

n4 <= bLn2;

loop L is executed bL times as often as it is entered
(bL is the loop bound)

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 18 / 32

Path Analysis - IPET

Searching for path with highest execution time by using
Implicit Path Enumeration Technique (IPET)

1

2

n1

3

n2

4
n4

n5

5

n6

n3

n1 = 1;

n1 = n2 + n3;

n2 + n5 = n4 + n6;
n4 = n5;

n4 <= bLn2;

n3 + n6 = 1;

last node is entered exactly once

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 18 / 32

Path Analysis - IPET

Searching for path with highest execution time by using
Implicit Path Enumeration Technique (IPET)

1

2

n1

3

n2

4
n4

n5

5

n6

n3

n1 = 1;

n1 = n2 + n3;

n2 + n5 = n4 + n6;
n4 = n5;

n4 <= bLn2;

n3 + n6 = 1;

max :
∑

i

(∑
∀j :nj enters Bi

cinj

)
objective function: maximize execution time by maximizing cinj

(ci = WCET of basic block nJ enters)

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 18 / 32

Conclusions

• Timing analysis possible, using abstract semantics of
processor/task and ILP

• Tool available under http://www.absint.com/ (not free)

• successfully used in practise, for instance for Airbus A380

Ongoing work/Open problems

• Incorporation of preemption-caused costs

• Semi-automatic derivation of abstract processor models

• Timing analysis of heap-manipulating programs

• Timing analysis for multicores

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 19 / 32

Still some time left? Questions?

CAMA - Cache Aware Memory Allocation
Current WCET analyses fail to give precise WCET bounds for
programs that use dynamic memory allocation!

...
x = malloc(8);

...

x->data = y->data + 2;
...

 How long will
malloc take?

allocation
to cache sets

unknown!

effects of
calls to malloc

on cache?

 Is the access to y
 a cache hit?

y = malloc(4);

1
2

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 21 / 32

CAMA - Cache Aware Memory Allocation
We are investigating two approaches to enable precise WCET
analyses on programs that dynamically allocate memory:

(1) Using a predictable memory
allocator that allocates blocks
mapped to a given cache set

(2) Automatically transform
dynamic memory allocation
into static allocation

...
x = camalloc(8,2);

...

x->data = y->data + 2;
...

 How long will
camalloc take?

allocation
to cache sets

known!

effects of
calls to camalloc
on cache known!

 Is the access to y
 a cache hit?

y = camalloc(4,32);

1
2

constant response
times!

...
x = 0xFD2;

...

x->data = y->data + 2;
...

 How long will
allocation take?

allocation
to cache sets

known!

no additional
effects on the cache!

 Is the access to y
 a cache hit?

y = 0xFF0;

1
2

no or constant time
spent on allocation

http://rw4.cs.uni-sb.de/people/jherter

Jörg Herter, Jan Reineke
Static Timing Analysis for Hard Real-Time Systems

Sebastian Altmeyer KPS 2009, Maria Taferl 22 / 32

Determination of context-switch costs (CSC)

A memory block m at a program point P is useful cache block
(UCB), if

a) it may be cached at P

b) it may be reused at program point Q reached from P
without being evicted on this path

Data-flow analyses:

• a) Reaching memory block (forward)

• b) Live memory block (backward)

Schedulability analysis: WCET + CSC

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 23 / 32

• UCB analysis safely overapproximates context switch costs

• WCET analysis safely overapproximates execution time

⇒ very pessimistic results if combined

Some accesses are accounted for as a cache-miss by
WCET analysis and UCB analysis

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 24 / 32

Definitely Cached UCB (DC-UCB)

A memory block m at a program point P is useful cache block, if it

a) must be cached at P and on the path to its reuse

b) may be reused at program point Q reached from P

• UCB analysis possibly underapproximates context switch costs

• No cache-miss counted twice

• Overapprox. (WCET) subsumes underapprox. (UCB)

⇒ tight and safe results if combined

Sebastian Altmeyer, Claire Burguière

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 25 / 32

Motivation

Problems

• [Availability/Accessibility of hardware specification]

• Processor specification too large to be used in aiT

• Specification needs to be abstracted

Idea

• Use of static methods to derive an abstracted model that is
suitable for use in aiT

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 26 / 32

Overview of the derivation process

variable z is

Std_logic_vector(0 to 1);

case x is

when „00“ => …

when „01“ => …

when others => …

end case;

variable irq is

std_logic_vector(0 to 1);

case x is

when „00“ => …

when „01“ => …

when others => …

end case;

variable x is

std_logic_vector(0 to 1);

case x is

when „00“ => …

when „01“ => …

when others => …

end case;

Static Analyses/
AbstractionsVHDL2Crl2

Code Generation
VHDL Specification

variable work_package_x is

std_logic_vector(0 to 1);

if work_package_x = „00“

then A

elsif x = „01“

then B

else C

endif;

std_logic work_package_x[2];

if(work_package_x[0]==0

&& work_package_x[1]==0){
A

}else{

if(work_package_x[0]==0
&& work_package_x[1]==1){

B
}else{

C
}

}

C-Code

Abstracted VHDL

O
b
je

c
tiv

e

Timing Analyser

CFG Builder

Value Analysis

Cache/Pipeline
Analysis

Static Analyses

ILP-Generator

LP-Solver

Path Analysis

WCET
Estimation

Legend

Completed action

Ongoing work

Objective

Markus Pister, Marc Schlickling, Mohamed Abdel Maksoud

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 27 / 32

Parametric Timing Analysis

• timing analysis essential for hard real-time systems

• many systems depend on input parameters
(operating system schedulers, etc.)

• only two possible solutions:

1 assume upper bounds on the unknown parameters
⇒ highly overapproximated WCET

2 restart the analysis for all parameter assignments
⇒ very high analysis time

• parametric timing analysis delivers timing formula instead of a
numeric value

Sebastian Altmeyer

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 28 / 32

Architecture

Predictability:

• Hard to quantify

• Predictable cores are a prerequisite for predictable multi-cores

• General problem: Sharing of ressources
• Main memory, caches
• Busses
• I/O
• Flash memory

• Sharing may be
• fundamental (necessary access to application global variables)
• incidental (processors happen to use the same bus for access

to non-shared devices)

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 29 / 32

Predictability of Caches

Several new notions regarding cache replacement policies:

• Predictability:
quantitative measure of how fast information about cache
state can be gained

• Competitiveness:
quantitative measure of how numbers of hits and misses of
different policies relate

• Sensitivity:
quantitative measure of how the number of hits and misses
are influenced by intial cache state

Gives a sound and precise quantitative definition of predictability of
caches

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 30 / 32

Predictable Architectures

Classification of architectures:

• Timing compositional (e. g., ARM7):
No timing anomalies present,
local worst-case behaviour safely approximates global
worst-case behaviour

• Compositional with bounded effects (e. g., TriCore
(probably)):
No timing anomalies present,
local worst-case behaviour safely approximates global
worst-case behaviour up to a constant, additive factor

• Non-compositional architectures (e. g., PPC 755):
Timing anomalies, domino effects,
all global paths have to be considered

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 31 / 32

PROMPT

Minimise sharing in multi-processor architectures:

• Do not incidentally introduce sharing

• When introducing sharing, minimise its influence

PROMPT (Predictability Of Multi-Processor Timing)

• Start with a generic, parameterizable architecture with
predictable (fully timing compositional) cores

• Instantiate architecture for given set of applications, based on
their resource requirements

Static Timing Analysis for Hard Real-Time Systems
Sebastian Altmeyer KPS 2009, Maria Taferl 32 / 32

	Hard Real-Time System
	Conclusions
	Cache aware memory allocation
	Determination of context-switch costs
	Derivation of Abstract Architecture Models
	Parametric timing analysis
	Design Principles for predictable Multi-Processors

