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Setting the Scene
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Languages and Their Perceived Performance

Translation
(straight forward)

!

High level

(e.g., Java, C++)

Language

Common perception

Low level

High
Performance

Low

(e.g., Assembler)

» High level languages/abstraction give low level of

performance.
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The Optimizing Compiler to the Rescue

( Programming\
_Language

11
1.2
13
1.4
115
. 1.6
Compiler e
1.8
Optimizer
Transformations e Data Flow Analysis
© Code Motion ~——"—= / ®Istermtaailable?
® Constant Propagation P ® s the value of term t a constant?
®Dead Code Eliminati ® Is variable v dead?
o B ,"’ .
Data Flow Analysis B

Machine
Language
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Translation vs. Optimizing Compilation

Translation (straight forward)

» preserves semantics but does not exploit specific
opportunities of lower level languages with respect to
performance.

Optimizing compilation /optimization

» is performance-aware and strives to improve performance
in the course of compilation.
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Optimizing Compilation/Optimization

...aims at closing the performance gap.

Optimization

'f

Translation
(straight forward)
High level Low level
Language

High
Performance

Low

11
1.2
18

1.6
1.7
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Selected Common Optimizations

...and optimization sequences for illustration and motivation.

Optimization ‘ Before ‘ After
Algebraic Simplification | x9 1
Function Inlining y=inc(x); y=x+1;
Dead Code Elimination | b=0; if(b>0) x=x+1;
(DCE) y=f(x); b=0; y=f(x);
Constant Propagation x=21; y=2xXx; x=21; y=2x%21;
(CP)
CP + DCE x=21; y=2xx; y=2x%21;
Constant Folding (CF) y=2%21; y=42;
CP + DCE + CF x=21; y=2x%Xx; y=42;
Copy Propagation (CpP) | x=y; ...; z=x; X=Y; ... Z=Y;
CpP + DCE X=Y; ... Z=X; ) Z=Y,
Code Motion if(b>0) {x=a+b;y=f(x)} | x=a+Db;

else x=a+b; if(b>0) y=f(x);
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Constant Propagation: Orig. & Opt. Program

Original program After simple constant propagation
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Typical Optimization Aspects

v

Avoid redundant computations

» reuse available results
» move loop invariant computations outside loops

> e

v

Avoid superfluous computations

» results known not to be needed
» results known already at compile time

> ...

v

Avoid costly computations
» results can be computed less costly

L
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Optimization Considered Schematically

Optimization

IR ) IR+Results . IR
- Analysis Transformation

Y

Optimization is a (repeatedly applied) two-stage process
consisting of
» Analysis
» determines properties of program
» safe, pessimistic assumptions

» Transformation

» based on analysis results
33/1777



Optimization: The |deal Case

...the performance gap is closed.

Optimization
ideal case)

7 A

] (straight forward)

High level
Language

Note

» The term optimization is a misnomer: usually we do not
achieve an “optimal” solution — but it is the ideal case)

Low level

High
Performance

Low
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Chapter 1.2

An Extensive lllustrating Example
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The Runnning Example

...adding two 2-dimensional matrices:

int a[m][n], blm][n], clm][n];

for(int i=0; i<m; ++i) {
for(int j=0; j<n; ++j) {
alil [j1=bl[i1[j1+c[il[j];
}
}

Note: There are no obvious optimizing/improving
transformations recommending themselves for application.
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Step 1: Lowering the High-level Code to IR

...revealing the address computation:

i=0;
while(i<m) {
3=0;
while(j<n) {
temp=Base (a)+i*n+j;
*(temp)=+(Base (b)+i*n+j)+*(Base(c)+i*n+j) ;
j=j+1;
}
i=i+1;

}

Note: Lowering the high-level code to intermediate-level code
revealing the address computation for array accesses enables
several optimizing/improving transformations.
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Step 2: Optimizations on IR

1. Analysis: Available expressions analysis
~> Transformation: Common subexpression elimation
2. Analysis: Loop invariants detection
~» Transformation: Loop invariant code motion
3. Analysis: Induction variables detection
~ Transformation: Strength reduction
4. Analysis: Copy analysis
~> Transformation: Copy propagation
5. Analysis: Dead variables analysis
~> Transformation: Dead code elimination
6. Analysis: LFTR candidates detection
~> Transformation: Linear function test replacement
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Ist Analysis: Available Expressions Analysis

...determines for each program point, which expression must
have already been computed, and not later modified, on all
paths to the program point.

i=0;
while(i<m) {
j=0;
while(j<n) {
temp = (Base(a)+i*n+j);
*temp = *(Base(b)+) + *(Base(c)+);
j=j+1;
}
i=itl;

}
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Ist Opt.: Common Subexpression Elimination

» Analysis: Available expressions analysis
> Transformation: Eliminate recomputations of [i«n+j]

» Introduce -
» Use [«1] instead of

i=0;

while(i<m) {
j=0;
while(j<n) {

3=+t
}

i=i+l;

i=0;
while(i<m) {
j=0;
while(j<n) {
Eemp=(Blse(a)+[]);
*temp = *(Base(b)+[::])
+ *(Base(c)+[::]);
Jj=j+1;
}

i=i+1;
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2nd Analysis: Loop Invariants Detection

...a loop invariant is an expression that is always computed to
the same value in each iteration of the loop.

1.2

i=0;
while(i<m) {
3=0;
while(j<n) {
ERECYSE
temp = (Base(a)+tl);
*temp = *(Base(b)+tl) + x(Base(c)+tl);
J=3+s
}
i=i+1;

}

411777



2nd Opt.: Loop Invariant Code Motion

» Analysis: Loop invariant detection
» Transformation: Move loop invariant outside loop

» Introduce [:2-i+n] and replace by [:2] s
» Move [2-i+1] outside loop

i=0;
while(i<m) {
3=0;

while(j<n) {
t1=]in o
temp = (Base(a)+tl);
*temp = *(Base(b)+t1)
+ *(Base(c)+tl);
j=3*1;
}

i=i+1;

i=0;
while(i<m) {
j=0;
while(j<n) {
t1 2 ]+5;
temp = (Base(a)+tl);
*temp = *(Base(b)+tl)
+ *(Base(c)+tl);
J=i+1s
}

i=i+l;
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3rd Analysis: Induction Variables Detection

Basic Induction Variables

5 . » Variables i whose only s
Whljl:eo(:(m) { definitions within a loop
= are of the form i =i+ ¢
while(j<n) { ori=i—candcisa
t1=t2+j; loop invariant.
temp = (Base(a)+tl);
*temp = x(Base(b)+t1) Derived Induction Variables
o, *(Base (e tl); > Variables j defined only
} once in a loop whose
[1=i+1]; value is a linear function
} of some basic induction

variable.
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3rd Optimization: Strength Reduction (1)

...replaces a repeated series of expensive (“strong”) opera-
tions with a series of that
compute the same values.

Classical example:

» Replacing integer multiplications based on a loop index
with equivalent additions.

Note: This particular case arises routinely from expansion of
array and structure addresses in loops.
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3rd Optimization: Strength Reduction (2)

» Analysis: Induction variables (IVs) detection
» Transformation: Move multiplications outside of loop

» Introduce [3-i+n] before the loop, replace by [+3]
» Add [t3-t3+i+c] at every update site of [ ]

i=0 |;

while(i<m) {
j=0;
=)
while(j<n) {
t1=t2+j;
temp = (Base(a)+tl);
*temp = *(Base(b)+t1)
+ *(Base(c)+tl);
J=j+1;
}
()

i=0;

[za=0];

while(i<m) {

j=0;

t2=[::];

while(j<n) {
t1=t2+j;
temp = (Base(a)+tl);
*temp = *(Base(b)+t1)

+ *(Base(c)+t1);

Jj=j+1;

}

i=i+1;

R

1.2
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4th Analysis: Copy Analysis

...determines for each program point the copy statements
x =y that still are relevant (i.e., neither x nor y have been
redefined) when control reaches that point. 12

i=0;
t3=0;
while(i<m) {
j=0;
=5
while(j<n) {
t1] 2 3
temp = (Base(a)+tl);
*xtemp = *(Base(b)+tl)
+ *(Base(c)+tl);
J=j+1;
}
i=i+1;

t3=t3+n;
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4th Optimization: Copy Propagation

» Analysis: Copy analysis and def-use chains computation

(ensure only one definition reaches the use of x)
» Transformation: Replace the use of x by y

i=0;
t3=0;
while(i<m) {
j=0;
[z},
while(j<n) {
t1=+j;
temp = (Base(a)+tl);
*temp = *(Base(b)+t1)
+ x(Base(c)+t1);
j=3+1
}
i=i+1;

t3=t3+n;

i=0;
t3=0;
while(i<m) {
j=0;
t2=t3;
while(j<n) {
t1=[::]+j;
temp = (Base(a)+tl);
*temp = *(Base(b)+t1)
+ x(Base(c)+t1);
J=j+1;
}
i=i+1;

t3=t3+n;
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5th Analysis: Dead Variables Analysis (1)

A variable is

» live at a program point if there is a path from this
program point to a use of the variable that does not
re-define the variable.

» dead at a program point, if it is not live at that point.

A live (dead) variables analysis

» determines for each program point, which variable may be
live (is dead) at the exit from that point.
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5th Analysis: Dead Variables Analysis (2)

i=0;
t3=0;
while(i<m) {
j=0;
=t3;
while(j<n) {
t1=t3+5;
temp = (Base(a)+tl);
xtemp = *(Base(b)+tl)
+ *(Base(c)+tl);
Jj=j+1;
}
i=i+l;

t3=t3+n;

» Only variables are marked.
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5th Optimization: Dead Code Elimination

» Analysis: Dead variables analysis

» Transformation: Remove all assighments to dead variables

i=0;
t3=0;
while(i<m) {
j=0;
(]
while(j<n) {
t1=t3+j;
temp = (Base(a)+tl);
*xtemp = *(Base(b)+t1)
+ x(Base(c)+tl);
j=j+1;
}
i=itl;
t3=t3+n;

i=0;

t3=0;

while(i<m) {
j=0;

while(j<n) {
t1=t3+j;
temp = (Base(a)+tl);
*temp = *(Base(b)+t1)

+ *(Base(c)+tl);

J=j+1;

}

i=i+l;

t3=t3+n;
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6th Analysis: LFTR Candidates Detection

...determines so-called LFTR candidates: these are |Vs that
are only used in the loop-closing test, and can be replaced by
other Vs, i.e., by linear function expressions on these |Vs.

while((i<n]) {

j=0;

while(j<n) {
t1=+j H
temp = (Base(a)+tl);
*temp = *(Base(b)+t1)

+ *(Base(c)+tl);

J=j+1;

1.2

T

i=i+1 [;

t3=t3+n |;
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6th Opt.: Linear Function Test Replacement

» Analysis: Determine Vs that are only used in the
loop-closing test, and can be replaced by other Vs
» Transformation: Remove all assignments to replaceable
IVs and insert compensation code (LFTR)
[i=0];
:£§E§]; t3=0;
while(i<n]) { [ t4=nxn |

j=0; while( ) {

while(j<n) { j=0;
t1=t3+j; while(j<n) {
temp = (Base(a)+tl); t1=t3+j;
*temp = *(Base(b)+t1) temp = (Base(a)+tl);
+ x(Base(c)+t1); *temp = *(Base(b)+t1)
Jj=j+1; + *(Base(c)+t1);
} j=j+1;
[=ir1s }
t3=t3+n |;
} t3=t3+n;
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Summary of Optimizations

. applied in this example.

Analyses

Transformations

Available expr. analysis
Loop invariants detection
Induction variables detection
Copy analysis

Dead variables analysis
LFTR candidates detection

Common subexpr. elimination
Loop invariant code motion
Strength reduction

Copy propagation

Dead code elimination

Linear Function Test Repl.
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The Application of Many Optimizations

. as in the preceeding example is quite typical in practice:

“Compiler optimisations are like bullets.

Each bullet is ineffective for many programs;

but each gives a big payoff for a few programs
whose inner loop it strikes.

Good compilers simply deploy a hail of bullets,
so that few programs will survive unoptimised.”

Clement A. Baker-Finch, Kevin Glynn, Seymon Peyton Jones
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Challenging Problem

...the order in which to apply the various optimizations:

Some optimizations
» are independent of each other.
» enable another optimization.

» prevent another optimization.
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Are their further Optimizations?

In fact, there is a plethora of further optimizations, i.e., pairs
of analyses and transformations. 12

For example

» Optimizations for
» object-oriented languages
» logical and functional languages
» parallel and distributed languages

> ...

v

Array analysis and optimization

v

Pointer /alias/shape analysis and optimization

v

Heap analysis, garbage collection
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Note

In the preceding example

» all optimizations could have been done by the
programmer, too.

This, however,

» would lead to the loss of all advantages and benefits of
using programming abstractions offered by high-level
languages, and effectively enforce programming on an
intermediate code level.

Requiring and insisting on it

» would put an undue burden onto programmers, reduce
their productivity, and be highly error-prone.
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For lllustration

...compare the initial and the final program of the running

example for adding two matrices:

int a[m] [n], b[m] [n], c[m][n];

for(int i=0; i<m; ++i) {

for(int j=0; j<n; ++j) {
alil [j1=b[il [j1+c[i][j];

}
}

t3=0;
t4=n*m;
while(t3<t4) {
j=0;
while(j<n) {
t1=t3+5;
temp = (Base(a)+tl);
*temp = *(Base(b)+t1)
+ *(Base(c)+tl);
j=i+L
}

t3=t3+n;
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Key Questions

Would you like to program matrix addition

» as shown on the right-hand side

...or prefer programming it

» taking advantage of the abstraction of 2-dimensional
arrays offered by high-level languages as shown on the
left-hand side?
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Most likely

...you would even prefer programming matrix addition

» using an even higher language offering an abstraction
allowing us to write

int a[m] [n], blm] [n], c[m][n];
a=b+c;

As a matter of fact

» Optimizing compilation is the key to render this possible!
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Chapter 1.3
The Impact of Optimization: A Case Study
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Case Study: C++4STL Code Optimization

...on the impact of programming style and optimization on
performance.

» Different programming styles for iterating on a container
and performing operation on each element

» Use different levels of abstractions for iteration, container,
and operation on elements

» Optimization levels O1-3 compared with GNU 4.0
compiler
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Concrete Example

We iterate on container 'mycontainer’ and perform an 13
operation on each element.

Container is a vector

v

v

Elements are of type numeric_type (double)

v

Operation of adding 1 is applied to each element
Evaluation Cases EC1 thru EC6

v

Acknowledgement: This study is joint work of Markus Schordan
and Rene Heinzl.
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Programming Styles - 1&2

EC1: Imperative Programming

for (unsigned int i = 0; i < mycontainer.size(); ++i)
{
mycontainer [i] += 1.0;

3

EC2: Weakly Generic Programming

for (vector<numeric_type>::iterator

it = mycontainer.begin();
it != mycontainer.end();
++it)

{
*it += 1.0;

}
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Programming Style - 3

EC3: Generic Programming

for_each(mycontainer.begin(),
mycontainer.end (),
plus_n<numeric_type>(1.0) );

Functor

template<class datatype>
struct plus_n
{
plus_n(datatype member):member (member) {}
void operator () (datatype& value) {
value += member;
}
private:
datatype member;

3
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Programming Style - 4

EC4: Functional Programming with STL 13

transform(mycontainer.begin(),
mycontainer.end (),
mycontainer.begin(),
bind2nd (std::plus<numeric_type>(),1.0));

» plus: binary function object that returns the result of
adding its first and second arguments

» bind2nd: Templatized utility for binding values to
function objects
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Programming Styles - 5&6

EC5: Functional Programming with Boost::lambda

std::for_each(mycontainer.begin(),
mycontainer.end (),
boost::lambda::_1 +=1.0 );

EC6: Functional Programming with Boost::phoenix

std::for_each(mycontainer.begin(),
mycontainer.end (),
phoenix::argl += 1.0 );

» Use of unnamed function object.
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Evaluation: EC1-6 w/out optimization

A
1.1
14.0 Ect [ e
- Ecz I L4
1.5
105 EC3 [N -
Ec4 [ ] o
70 T ECs [
Ece I
351
0 1
-00

v

Compiler: GNU g++ 4.0
Evaluation Cases: EC1 thru EC6
Container size: 1,000

» Time measured in milliseconds

v

v
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Evaluation: EC1-6 w/ optimization levels O1-3

11

13
1.4

1.6

1.8

Jp

» Compiler: GNU g++ 4.0

» The actual run-time with different optimization levels
-01, -02, -03 for each programming style EC1-6

» An almost identical run-time is achieved at level -03.
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In this Case Study

...the performance gap is closed! .

13

1.4

1.6
1.7

Optimization L
ideal case) .
High
'ﬂ
' / Performance

Translation

— (straight forward) Low

High level Low level

Language
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Chapter 1.4

Compilers, Optimizing Compilers, and their
Structure
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Generic Structure of an Optimizing Compiler

i Source

Front End

LIR

Optimizer

‘IR

Back End

L Target

Goal of code optimization

» Discover, at compile-time, information about the run-time
behavior of the program and use that information to
improve the code generated by the compiler.
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Model of a Low Level Optimizer

l String of characters

Lexical analyzer 11
1.2

L String of tokens 1.3

14

Parser 15

1.6

1.7

L Parse Tree e

Semantic analyzer

¢ Parse Tree

Translator

; Low-level intermediate code

Optimizer

L Low-level intermediate code

Final assembly

L Relocatable object module
or runnable machine code

» All optimization is done on a low level intermediate code.
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Model of a Mixed Level Optimizer

Lexical analyzer
1.1

String of tokens 1.2

18

14

85

Parse tree 16

Semantic analyzer Ll
1.8

Parse tree

Intermediate code

generator

Medium-level intermediate code
Optimizer

Medium-level intermediate code

Low-level intermediate code

Postpass optimizer|

Relocatable object module
or runnable machine code

» Optimization is divided into two phases, one operating on

a medium level and one on a low level.
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Model of a High Level Cache Optimizer

i String of characters

Lexical analyzer

i String of tokens

Parser

P T~ S S S,
SIS

L Parse tree or high—level intermediate code

Semantic analyzer

L High-level intermediate code

Data—cache
optimizer

¢ Medium- or low—level intermediate code

Adding data-cache optimization to an optimizing compiler

» Data-cache optimizations are most effective when applied

to a high-level intermediate form.
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Examples

» High-Level optimizations
» IBM's PowerPC compiler: first translates to LL code
(XIL) and then generates a HL representation (YIL) =
from it to do data-cache optimization.
» Source-To-Source Optimizer Tools: Sage++,
LLNL-ROSE, JTransformer.

» Mixed model
» Sun Microsystem's compilers for SPARC.
» Intel’s compilers for the 386 architecture family.
» Silicon Graphic's compilers for MIPS.

» Low level model

» IBM’s compilers for PowerPC.
» Hewlett-Packard's compilers for PA-RISC.
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Practice: m-2-n Compilers and Optimizers

i Source | l Source 2 i Source m
Front End 1 Front End 2 - Front End m
S e - _ i3
Optimizer
/ IR \
Back End 1 BackEnd2 | = e Back End n
l Target 1 L'l‘urg:l 2 l Target n

Idea: Decoupling of Compiler Front Ends from Back Ends

» Without IR: m source languages, n targets ~» m x n
compilers

» With IR: m Front Ends, n Back Ends

» Problem: Appropriate choice of the level of IR (possible
solution: multiple levels of IR)
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IR-Decoupling of Compiler Front/Back Ends

...Is an application of Conway's famous UNCOL concept:

1
| PL 1| | PL 2 | | PLn | -
————————————————————————— 14

1.5

| | | .

1.7

I 1.8
\/ Universal
—————————— Computer Oriented
| UNCOL | Language
—————————— (UNCOL)
|
| | |
\/ \/ \/
| ML 1 | | ML 2 | | ML m |

» Melvin E. Conway. Proposal for an UNCOL. Communi-
cations of the ACM 1(3):5, 1958.
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Intermediate Representation (IR)

» High level
» quite close to source language, e.g., abstract syntax tree
» code generation issues are quite clumsy at high-level
» adequate for high-level optimizations (cache, loops)

» Medium level
> represent source variables, temporaries, (and registers)
» reduce control flow to conditional and unconditional
branches
» adequate to perform machine independent optimizations

» Low level

» correspond to target-machine instructions
» adequate to perform machine dependent optimizations
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Chapter 1.5

Optimizations: Objectives and
Categorization
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Optimizations: Kinds and Objectives

...different kinds of optimizations for different purposes, e.g.:

» Speed
» Speeding up execution of compiled code (awaiting the
next generation of processors is not always a viable 15
option)
» Size

» of compiled code when committed to read-only memory
where size is an economic constraint
» or code is transmitted over a limited-bandwidth
communications channel
» Response
» to real-time events when dealing with (safety-critical)
real-time systems: worst-case execution time (WCET)
analysis and optimization
Energy consumption
Parallelization

v

v
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Considerations for Optimization

» Safety

» correctness: generated code must have the same
meaning as the input code
» meaning: is the observable behavior of the program

» Profitability
» improvement of code
» trade offs between different kinds of optimizations

» Problems
» reading past array bounds, pointer arithmetics, etc.
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Scope of Optimization (1)

Local

» Expressions

» optimal code generation for expressions
» Basic blocks

» statements are executed sequentially
» if any statement is executed the entire block is executed

» limited to improvements that involve operations that all
occur in the same block
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Scope of Optimization (2)

Global

» Intra-procedural (whole procedure)
» entire procedure
» procedure provides a natural boundary for both analysis 15
and transformation
» procedures are abstractions encapsulating and insulating
run-time environments
» opportunities for improvements that local optimizations
do not have
» Inter-procedural (whole program)

» entire program
» exposes new opportunities but also new challenges

>

>
>
>
>

name-scoping
parameter binding
virtual methods
recursive methods (number of variables?)
scalability to program size
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Optimization Taxonomy

Optimizations are categorized by the effect they have on the
code.

» Machine independent
» largely ignore the details of the target machine
» in many cases profitability of a transformation depends
on detailed machine-dependent issues, but those are
ignored

» Machine dependent
» explicitly consider details of the target machine
» many of these transformations fall into the realm of code
generation
» some are within the scope of the optimizer (some cache
optimizations, some expose instruction level parallelism)
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Machine Independent Optimizations (1)

» Dead code elimination

» eliminate useless or unreachable code
» algebraic identities

» Code motion

» move operation to place where it executes less frequently
» loop invariant code motion, hoisting, constant
propagation

» Specialize
» to specific context in which an operation will execute
» operator strength reduction, constant propagation,
peephole optimization
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Machine Independent Optimizations (2)

» Eliminate redundancy
» replace redundant computation with a reference to
previously computed value
» e.g., common subexpression elimination, value
numbering

» Enable other transformations

» rearrange code to expose more opportunities for other
transformations
» e.g., inlining, cloning
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Machine Dependent Optimizations

» Take advantage of special hardware features
» Instruction selection

» Manage or hide latency

» Arrange final code in a way that hides the latency of
some operations
» Instruction scheduling

» Manage bounded machine resources
» Registers, functional units, cache memory, main memory
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Chapter 1.6

Tools for Compiler Construction and
Optimization
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Compilers and Compiler Writing Tools

On-line Resources 12

[ German National Research Center for Information "
Technology, Fraunhofer Institute for Computer 18
Architecture and Software Technology. The Catalog of
Compiler Construction Tools, 1996-2006.
http://catalog.compilertools.net/

[§ Compilers.net Team. Search Machine on Compilers and
Programming Languages, Directory of Compiler and
Language Resources, 1997-2007.
http://www.compilers.net
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In this course

...we will focus on

» LLNL-ROSE: Source-to-Source C/C++ Optimization e
Framework, Lawrence Livermore National Laboratory
(LLNL), CA, USA, http://rosecompiler.org/

» SATIrE: Static Analysis and Tool Integration Engine, TU
Vienna, Austria,
http://www.complang.tuwien.ac.at/satire/

» PAG: Program Analysis Generator, AbsInt Angewandte
Informatik GmbH, Saarbriicken, Germany,
https://www.absint.com/pag/index.htm
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SATIrE: Abstract Architecture

Static Analysis and Tool Integration Engine (SATIrE)

Annotated | |_|
Program

Tool IR Tool IR . Tool IR
Builder 1 Builder 2 Builder n
SATIFE Tool 1 Tool 2 -+ | Tooln
Tool IR Tool IR Tool IR
Mapper 1 Mapper 2 Mapper n

Program
Annotator

Annotated |_|
Program’
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SATIrE: Concrete Architecture

Annotated
Program

EDG
C/C++
Front End

ICFG Term
Builder Builder

Fortran D Prolog
PAG
SATIrE Looj Term
ptimrzer Analyzer | | manipulator

Analysis
Results
Mapper

(Oct'07)
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SATIrE Components (1)

Basic components

» C/C++ Front End: Edison Design Group.

» Annotation Mapper: maps source-code annotations to an
accessible representation in the ROSE-AST.

» Program Annotator: annotates programs with analysis
results; combined with the Annotation Mapper this allows
to make analysis results persistent in source-code for
subsequent analysis and optimization.

» C/C++ Back End: generates C++ code from
ROSE-AST.
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SATIrE Components (2)

» Integration 1: Loop Optimizer (Rice University, LLNL)

» Loop Optimizer: ported from the Fortran D compiler
and integrated in LLNL-ROSE.

» Integration 2: PAG (Saarland University, AbsInt GmbH,
Saarbriicken)

» ICFG Builder: Interprocedural Control Flow Graph
Generator, addresses full C++.

» PAG Analyzer: a program analyzer, generated with
AbslInt’s Program Analysis Generator (PAG) from a
user-specified program analysis.

» Analysis Results Mapper: maps analysis results from
ICFG back to ROSE-AST, makes them available as
AST-attributes.
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SATIrE Components (3)

» Integration 3: Termite (TU Vienna)

» Term Builder: generates an external textual term
representation of the ROSE-AST (Term is in Prolog
syntax).

» Term-AST Mapper: parses the external textual program
representation and translates it into a ROSE-AST.
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Chapter 1.7
Summary, Looking Ahead
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Optimization: The General Schema

Optimization

IR ) IR+Results ) IR
> Analysis ™ Transformation >

Optimization, a combination of

» Analysis
» determines properties of program.
» relies on safe, pessimistic assumptions.

» Transformation
» based on analysis results.
» must preserve the program semantics, i.e., the

observable program behaviour.
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Program Analysis: The Essence (1)

...offers techniques for predicting statically at compile-time
safe and efficient approximations to the set of configurations 1
or behaviors arising dynamically at run-time.

» Safe: faithful to the semantics

» Efficient: implementation with
» good time performance

» low space consumption
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Program Analysis: The Essence (2)

Important Approaches for Program Analysis

11

» Data Flow Analysis -

18
1.4

» Abstract Interpretation .
» Model Checking -
» Symbolic Analysis, Symbolic Execution

» Theorem Proving

» Integer Linear Programming

» Graph Theory, Graph Algorithms

...for many of these approaches we will see examples in the
course of the lecture.
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Assessing the Power/Success of Optimization

...via validation and/or verification.

Validation

» Experimentally: Benchmark Suite(s)

» General purpose suites (ACET-focused): SPEC
(Standard Performance Evaluation Corporation),
Dhrystone, Whetstone,...

» Special purpose suites (WCET-focused): TACLe (EU
FP7 COST Action “Timing Analysis on Code Level”),
Marlardalen, ...

Verification

» Analytically: Formal Program and Cost Models
» Rigorous mathematical proving
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Key Issues in Optimization

...and in this lecture:

Optimal
» Program Analysis

» Program Transformation

...and based thereon:

Optimal Optimization

» Meaningful terms? If so, what do they mean?
» Achievable? If so, when and how?

» If not, how to proceed then?
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Chapter 1.8

References, Further Reading
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Chap. 2

Chapter 2
Classical Gen/Kill Data Flow Analyses
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Classical Gen/Kill Data Flow Analyses (1)

Chap. 2
Gen /Kill Data Flow Analyses are ubiquitious in data flow
analysis and there is a huge number of them.

Next, we focus on a canonical collection of four analyses:

v

Reaching Definitions

v

Available Expressions

Live Variables

v

v

Very Busy Expressions
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Classical Gen/Kill Data Flow Analyses (2)

...are classifyable according to the direction of the information
flow:

» Forward Problems

» Reaching Definitions
» Available Expressions

» Backward Problems

» Live Variables
» Very Busy Expressions

Chap. 2
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Classical Gen/Kill Data Flow Analyses (3)

...and their dependency on a quantification of program paths:

Forward Problems

» Existential/may: Reaching Definitions
» A definition d of a variable v reaches a program point u,
if d occurs on some path from the beginning of the
program to u and is not followed by any other definition
of v on this path.

» Universal/must: Available Expressions
» An expression e is available at a program point v if all
paths from the beginning of the program to u contain a
computation of e which is not followed by an assignment
to any of its operands.

Chap. 2
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Classical Gen/Kill Data Flow Analyses (4)

Backward Problems chep- 2
» Existential/may: Live Variables
» A variable v is live at a program point u if some path 26
from u to the end of the program contains a use of v
which is not preceded by its definition.

» Universal/must: Very Busy Expressions
» An expression e is very busy at a program point v if all
paths from u to the end of the program contain a
computation of e which is not preceeded by an
assignment to any of its operands.
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In the following sections

Chap. 2

...we will consider these information flow problems (each
together with a typical application) in more detail following
the approach of Nielson, Nielson, and Hankin:

» Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. Springer-V., 2nd edition,
2005.
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Chapter 2.1

Programs, Flow Graphs
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Formalising the Development

» the programming language of interest

» abstract syntax
> labelled program fragments

» abstract flow graphs

» control and data flow between labelled program
fragments

» extract equations from the program

» specify the information to be computed at entry and exit
of labeled fragments

» compute the solution to the equations
» work list algorithms
» compute entry and exit information at entry and exit of
labelled fragments

21
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WHILE Language

Syntactic categories
21

a € AExp arithmetic expressions
b € BExp boolean expressions
S € Stmt statements

x,y € Var variables
n € Num numerals

l € Lab labels
op, € Op, arithmetic operators

opp € Op, boolean operators
op, € Op, relational operators
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Abstract Syntax

a = x|n|a;op;a
b = true | false | not b | by opp by | a1 op, a> 21
S = [x=a]’| [skip]

| if [b]¢ then S; else S,
| while [b]* do S od
| 51; 52

Assignments and tests are (uniquely) labelled to allow analyses
to refer to these program fragments — the labels correspond to
pointers into the syntax tree. We use abstract syntax and
insert parentheses to disambiguate syntax.

We will often refer to labelled fragments as elementary blocks.
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A Program and its Flow Graph

Example:
[y :==x]%; [z := 1]%; while[y > 1]3do[z:=z * y]*; [y :=y — 1]° od; [y := 0]°

21

flow(S,) = {(1,2),(2,3), (3,4),
(4,5),(5,3),(3,6)}
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Auxiliary Functions for Flow Graphs

labels(S)
init(S)

final(S)
flow(S)
flowR(S)

blocks(S)

set of nodes of flow graphs of S

initial node of flow graph of S; the unique node
where execution of program starts

final nodes of flow graph for S; set of nodes where
program execution may terminate

edges of flow graphs for S (used for forward
analyses)

reverse edges of flow graphs for S (used for
backward analyses)

set of elementary blocks in a flow graph

21
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Computing the Auxiliary Information (1)

) labels(S) init(S) | final(S)

[x = a]’ {l} 14 {4}

[skip]* {3 ¢ {£}

51; 5 labels(S;) U | init(S1) | final(Sy)
labels(S,)

if [b]¢ then (Sy) else (Sy) | {4} Ul final(S;)U
labels(S;) U final(S,)
labels(S,)

while [b]* do S od {¢}Ulabels(S) | ¢ {0}

129/177



Computing the Auxiliary Information (2)

S flow(S) blocks(S)

[x = a] 0 {[x = a]} 21

[skip]‘ 0 {[skip]}

515 flow(S1) U flow(S;) U | blocks(S;) U
{(¢,init(S2)) | ¢ € | blocks(S,)
final(51)}

if [b]* then (S;) else (S,)

while [b]* do S od

flow®(S) =

flow(S1) U flow(S,) U
{(¢,init(S1)), (4, init(S2))}

{(¢,init(S))} U flow(S) U
{(¢,0) | ¢ €final(S)}

{(6,0") | (¢, 0) € flow(S)}

{l't U
blocks(S;) U
blocks(S,)
{1y U
blocks(S)
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Further Notations (1)

We shall use the following notation for a program of interest:

>

S, to represent the program being analyzed (the “top 1
level” statement)

Lab, to represent the labels (labels(S,)) appearing in S,
Var, to represent the variables (FV(S,)) appearing in S,
Blocks, to represent the elementary blocks (blocks(S,))
occuring in S,

AExp, to represent the set of non-trivial arithmetic
subexpressions in S,; an expression is trivial if it is a single
variable or constant

AExp(a), AExp(b) to refer to the set of non-trivial
arithmetic subexpressions of a given arithmetic,
respectively boolean, expression
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Further Notations (2)

Free Variables FV(a)

The free variables of an arithmetic expression, a € AExp, are "
defined to be variables occuring in it.

Compositional definition of subset FV(a) of Var:

Similarly for boolean expressions, b € BExp, and statements,
S € Stmt, such that Var, = FV(S,).
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[[lustration

Example: 21

[y :=x]}[z:=1]%while[y > 1]¥do[z:=z x y]*; [y :==y — 1]° od; [y := 0]°

labels(S,) = {1,2,3,4,5,6}
init(S,) = 1
final(S,) = {6}
flow(S,) = {(1,2),(2,3),(3,4),(4,5),(5,3),(3,6)}
flow®(S,) = {(6,3),(3,5),(5,4),(4,3),(3,2),(2, 1)}
blocks(S,) = {ly:=x}[z:= 1%y > 1]},

[Z =Z* y]4? [y =Yy - 1]57 [y = 0]6}
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Simplifying Assumptions

The program of interest S, is often assumed to satisfy:

» S, has isolated entries if there are no edges leading into 21
init(S,):
Ve (¢,init(S,)) ¢ flow(S,)

» S, has isolated exits if there are no edges leading out of
labels in final(S,):

Ve € final(S,), Ve : (¢,0') ¢ flow(S,)
» S, is label consistent if
VB! BS € blocks(S,) : {1 =l — By = B,
This holds if S, is uniquely labelled.
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Chapter 2.2

Forward Analyses
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Chapter 2.2.1

Reaching Definitions
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Reaching Definitions Analysis
Definition 2.2.1.1 (Reaching Definitions)

A definition of variable v at label / reaches the entry from a
label /" if there is a path from / to I’ that does not re-define v.
Reaching Definitions Analysis

...determines for each program point, which assignments may
have been made and not overwritten, when program execution
reaches this point along some path.

Example:

[y ;= x]%; [z := 1]%,, while[y > 1]3do[z:=z x y]*; [y :=y — 1]° od; [y := 0]°
» The assignments labelled 1,2,4,5 reach the entry at 4.
» Only the assignments labelled 1,4,5 reach the entry at 5.
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RD Analysis Information and Characteristics

‘ A RD,(42)
[X = a]Z 221
l RD.,(¢) )\[.L{]E/RDO(E)

Analysis information: RD,(¢),RD,(¢) : Lab, —P(Var,xLab’)

» RD,(¢): the definitions that reach entry of block /.
» RD,(¢): the definitions that reach exit of block /.

Analysis characteristics:
» Direction: forward

» May analysis with combination operator J
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Analysis of Elementary Blocks: Gen/Kill-Defs.

| RD.(¢) | RD.(1) | RD.(¢)

[x =4’ [b] [skip]‘
l RD.(¢) l RD.(¢) l RD.(¢)

22,1,

l

gengp([x = 4] (x,0)}
genRD([b]E

)
)
gengp ([skip]‘)
)
)
)

SN S

killrp ([x := a]*
killrp ([5]°
ki”RD([Skip]g

(x, )} U{(x,#) | B”is assignment to x}

Example:
[x:=y]% [x = x + 3]
> gengp([x == y]') = {(x,1)}
- il (bx = y1) = {(x )} U {(x, 1), (x,2)}
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Analysis of the Program: The RD Equations

[.]o BE
[ | R[]);(@ RD.(el\ / RD.(L2)
X :=a U
[RD.(0) LR

{(x,?) | x € FV(5,)} o if £ = init(S,)
U{RD.(¢)|(¢, ¢) € flow(S,)} : otherwise
RD.(¢) = (RD,(¢)\killrp(B*)) U gengp(B*) where B € blocks(S,)
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[[lustration

Example:

[y ;= x]%; [z := 1]%, while[y > 1]3do[z:=z x y]*; [y :=y — 1]° od; [y := 0]°

Equations: Let

S O WS
P A e A
===

v,?),(z, )} RDe(1) =
De(2) =
RDe(2) U RD4(5) RD.(3) =
RDe(4) =
RDe(5) =
RDe(6) =
RD. ()
{x?).(v1).(z?)}
{(x7).(z2).(v1)}

(18) (v 1)} | {(x7).(2.4).(2.2),(v.5).(v1)}
(5).(x 1)} | {(z4).(x7).(v5).(v1)}

{(24).(x7).(v.5)}

{(z.4),(x.?).(z.2).(v.6)}

U {ly, 1}
U {(z,2)}

U {(z,4)}
U {(r,5)}
U {(y,6)}



Solving the RD Equations: The Algorithm (1)

Input

» A set of reaching definitions equations

221,

Output

» The least solution to the equations: RD,

Data structures
» The current analysis result for block entries: RD,

» The worklist W: a list of pairs (¢, ¢') indicating that the
current analysis result has changed at the entry to the

block ¢ and hence the information must be recomputed
for /.
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Solving the RD Equations: The Algorithm (2)

W:=nil;

foreach (¢,¢') € £low(Ss) do W := cons((4,¢'),W); od;

foreach { € labels(S.) do
if ¢ € init(S4) then
RDo(€) := {(x,?) | x € FV(Sx)}
else
RDo(4) := 0
fi
od
while W # nil do
(£,€') := head(W);
W := tail(W);

if (RDo(£)\killpp(B¢)) U gengy(BY) € RDo(¢') then
RDo (') := RDo(¢) ‘U (RDo(£)\killep(BY)) U gengy(BY);

foreach ¢ with (¢,¢") in flow(S4) do
W := cons((¢,¢"),W);
od
fi
od

221,
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Application /Usage of RD Information

...for constructing Use-Definition and Definition-Use Chains:

221,

» Use-Definition chains or ud chains

each use of a variable is linked to all assignments that
reach it
[x == 0]%; [x := 5% [y :== x]; [z := x]*

» Definition-Use chains or du chains

each assignment of a variable is linked to all uses of it
[x == 0]%; [x := 5% [y :== x]; [z := x]*

|
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UD/DU Chains: Defined via RDs

UD,DU : Var, x Lab, — P(Lab,)
are defined by

UD(x, () = { éé/ | (x, ') € RD,(€)} : if x € used(B")

. otherwise

where used([x := a]°) = FV(a), used([b]*) = FV(b),

used([skip]?) = a

and
DU(x,¢) ={¢ | ¢ € UD(x, ')}
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2.2.2

Chapter 2.2.2

Available Expressions
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Available Expressions Analysis
Definition 2.2.2.1 (Available Expressions)

An expression is available at the entry from a label if, no
matter what path is taken from the entry of the program to
that label, the expression is computed without that any of the
variables occurring in it is redefined afterwards.

2.2.2

Available Expression Analysis

...determines for each program point, which expressions must
have already been computed, and not later modified, on all
paths to the program point.

Example:
[x :=a+b]'; [y := axx]?; while [y > a+b]®do[a:=a + 1]*;/[x:=a + b]® od
» No expression is available at the start of the program.

» The expression a+b is available every time execution

reaches the test in the loop at 3.
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AE Analysis Information and Characteristics

l AE,(¢) AE 1" -1
‘ (7 AE.((,)
[x == a]°
l AE,(¢) \[?]K/AEO(@

Analysis information: AE,(¢),AE4(¢) : Lab, —P(AExp,)
» AE,(¢): the expressions that have been comp. at entry of
block ¢.
» AE,(¢): the expressions that have been comp. at exit of
block .
Analysis characteristics:
» Direction: forward
» Must analysis with combination operator [
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Analysis of Elementary Blocks: Gen/Kill-Defs.

AE,(¢)
[x := a]’

AE,(0)

| AE.(0)

[b]°

l AE.(¢)

| AE.(0)

[skip]*

l AE.(¢)

‘)
genAE([b] )
genAE([Sk'p] )
kl”AE([X = a] )
)

)

l
killag([b]¢
kI”AE([SkIp]Z

{a" € AExp(a) | x ¢ FV(a')}

AExp(b)
0

{d" € AExp, | x € FV(d)}

0
0

Example: [x := a+b]!; [y := axx]?;
> genag([x = a+b]')={a+b}
> killag([x := a+b])={a*x}
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Analysis of the Program: The AE Equations

| AE.(0)

AE, (7, AE,(f2) %
x =l n
[AE.(0) L]0
0 cif £ =init(S)
AE.(¢) = { N{A (', 0) € flow(S,)} : otherwise

>
M
L[]
—~
N
Il

(AEo(£) \klIIAE(BZ)) U genae(BY)  where BY € blocks(S,)
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[[lustration

Example:

[x := a+b]!; [y := axx]?; while [y > a+b]®do [a :=a + 1]*;[x := a + b]® od

Equations:
AEo(1) = 0
AEo,(2) = AEl(1)
AEo(3) = AEl(2) N AE.(5)
AEo(4) = AE.(3)
AE,(5) = AE.(4)
¢ | AEo(0) | AEL(9)
10 {a+b}

2 | {a+b} | {a+b,a*x}
3| {a+b} | {a+b}

4| {atb} | O

510 {a+b}

AE.(1)
AE.(2)
AE,.(3)
AE.(4)
AE.(5)

ABo(1) \ {axx} U {a+ b}
AEo(2) \ 0 U {axx}

AEo(3)\ 0 U {a+ b}

AEo(4) \ {a+ b,axx,a+1} U D
AEo(5) \ {a*x} U {a+ b}

Remark: predefined AE Analysis in PAG/WWW includes boolean

expressions
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Solving AE Equations: The Algorithm (1)

Input

» A set of available expressions equations

Output

» The largest solution to the equations: AE,

Data structures
» The current analysis result for block entries: AE,

» The worklist W: a list of pairs (¢, ¢') indicating that the
current analysis result has changed at the entry to the

block ¢ and hence the information must be recomputed
for /.

2.2.2
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Solving AE Equations: The Algorithm (2)

W:=nil;
foreach (¢,¢') € £low(Ss) do W := cons((4,¢'),W); od;
foreach { € labels(S.) do

if ¢ € init(S4) then

AE,(£) := 0
else

AE({) := AExp,
fi

od
while W # nil do
(¢,€) := head(W);
W := tail(W);
if (AEo(£)\killpe(BY)) U genp(BY) 2 AEo(¢') then
AEo(¢') := AEo(¢') N (AEo(£)\killae(B?)) U gen,;(B%);
foreach ¢ with (¢,¢) in flow(S,) do
W := cons((¢,0"),W);
od
fi
od

2.2.2
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Ist Application/Usage of AE-Information

Common Subexpression Elimination (CSE)

...aims at finding computations that are always performed at
least twice on a given execution path and to eliminate the
second and later occurrences; it uses Available Expressions
Analysis to determine the redundant computations.

Example:

[x := a+b]}; [y := a#x]?; while [y > a+b]*do [a :=a + 1]*; [x := a + b]° od

» Expression a+b is computed at 1 and 5 and recomputa-
tion can be eliminated at 3.
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The Optimization: CSE

Let S*N be the normalized form of S, such that there is at
most one operator on the right hand side of an assignment.

For each [...a...]" in SN with a € AE,(¢) do
» determine the set {[y; := a]®*, ..., [yx := a|%} of

» create a fresh variable u and
» replace each occurrence of [y; := a]’ with
[u:=al%[y; = u]l for 1<i<k
» replace [...a...]¢ with [...u...]¢
[x := a]” reaches [...a...]* if there is a path in flow(SN) from ¢
to ¢ that does not contain any assignments with expression a
on the right hand side and no variable of a is modified.

222
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Computing the “reaches” Information

to ¢ that does not contain any assignments with expression a
on the right hand side and no variable of a is modified. 222

The set of elementary blocks that reaches |[...a...]° can be
computed as reaches,(a, f) where

reacheso(a,£) = { 0 L iPe= |'n|t(5*)
Ureachese(a,¢') : otherwise
{B%} . if B¢ has the form[x := a]* and x ¢ FV(a)
reachese(a,f) = { 1] . if B has the form[x := ...]¢* and x € FV(a)
reacheso(a,¢) : otherwise
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lllustration: CSE

Example:

[x := a+b]!; [y := a*x]%; while [y > a+b]*do [a := a + 1]*; [x := a + b]® od

2.2.2

AE,(¢)
0
{a+b}
{a+b}
{a+b}
0

reaches(a+b,3)={[x := a+ b}, [x :== a + b]°}

U‘I-kal\.)l—“m

Result of CSE optimization wrt reaches(a+b,3):

[u:=a+b]'; [x := u]l; [y := a*x]?; while [y > u]¥ do [a :=a + 1]* [u:=a + b]®; [x := u]5 od

157/177



2nd Application/Usage of AE-Information (1)

Copy Analysis

...aims at determining for each program point ¢, which copy
statements [x := y|’ that still are relevant (i.e., neither x nor
y have been redefined) when control reaches point ¢ 222

Example:

[a := b]};if [x > b]? then ([y := a]3) else ([b := b + 1]*; [y := a]®); [skip]°

] C(0) | C(0)

1[0 {(a,b)}

2 | {(a,b)} | {(ab)}

3 {(ab)} | {(va).(ab)}
4 {(a,b)} | 0

510 {(v.a)}

6| {(va)} | {(va)}
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2nd Application/Usage of AE-Information (2)

Copy Propagation
...aims at finding copy statements [x := y]% and eliminating
them if possible.

2.2.2

If x is used in BY then x can be replaced by y in BY provided
that

» [x := y]% is the only kind of definition of x that reaches
BY: this information can be obtained from the def-use
chain.

» on every path from ¢; to ¢’ (including paths going through
' several times but only once through ¢;) there are no
redefinitions of y: this can be detected by Copy Analysis.
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The Optimization: Copy Propagation

For each copy statement [x := y]% in S, do

» determine the set {[..x...]%, ..., [..x..]%},1 <i < k, of
elementary blocks in S, that uses [x := y]% — this can be
computed from DU(x,¢;)

{(xX,y') € Co(¥) | X' = x} ={(x,y)}; if so then [x :=y]
is the only kind of definition of x that reaches ¢; from all
¢;.
» if this holds for all i (1 < i < k) then
» remove [x 1= y]¥

» replace [...x...]% with [...y...]5 for 1 < i < k.

2.2.2
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llustration: Copy Propagation (1)

2.1
2.2.2

Example 1 24

[u:=a+b]'; [x := u]l; [y := a*x]%; while [y > u3 do[a ;= a + 1] [u:=a + b]%; [x := u]® o;i

becomes after Copy Propagation

[u:=a+b]V; [y := a%u]?; while [y > u]® do [a:=a + 1]*; [u:=a + b]%; [x := u]® od
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llustration: Copy Propagation (2)

Example 2

[a:=2]%;if[y > u]®then ([a :=a + 1]3; [x := a]*;) else ([a := a * 2]°; [x := a]%;)[y := y*x]|";

becomes after Copy Propagation

[a:=2]%;if [y > u]® then ([a:=a + 1]3; ;) else ([a :=a * 2]5; Dy = y*a]’;

Example 3
[a:=10]%; [b:= a]?; while [a > 1]3 do [a:=a — 1]% [b:=a]® od [y := y*b]®;
becomes after Copy Propagation

[a:=10]%; ;while [a > 1]3 do [a:=a — 1]%; iod [y :=y*a]®;
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Chapter 2.2.3

Summary: Forward Analyses
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Summary: Forward Analyses, RD and AE (1)

L] [
A0 A
‘ (1) ()
[x := a]* L]
l A.(0) \[ ]/(13)
B LA if £ =init(S,)

A(l) = { LIa{As(£)|(¢,0) € flow(S,)} : otherwise
AJ0) = (A (0)\killa(BY)) U geny(B*)  where B € blocks(S,)

Analysis ‘ RD ‘ AE
where LA {(x,?) | x € FV(5,)} | 0

Lla M
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Summary: Forward Analyses, RD and AE (2)

This means effect functions of blocks are of the form
fo = (A(0)\killa(B*)) U genn(BY) where B € blocks(S,) a5

where kill, and gen, are auxiliary functions for invalidating and
generating information for an elementary block:

> killa(B*): information that is invalidated by an elementary
block.

» gen,(BY): information that is generated by an elementary
block.
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Chapter 2.2.4

References, Further Reading
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Chapter 2.3

Backward Analyses
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Chapter 2.3.1

Live Variables
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Live Variable Analysis
Definition 2.3.1.1 (Live Variables)

A variable is live at the exit from a label if there is a path from
the label to a use of the variable that does not re-define the

variable. 231

Live Variables Analysis

...determines for each program point, which variables may be
live at the exit from the point.

Example
[y := 0]% [u := a+b]%; [y := a*u]?; while [y > u]*do [a :=a + 1]*;[u :=a + b]®; [x := u]® od

» y is dead (i.e., not live) at the exit from label 0

» x is dead (i.e., not live) at the exit from label 6
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LV Analysis Information and Characteristics

T LV, (¢) [ V. (0)
[x := a]
T a0 LV, eil ]l/ \ ]'2/ o(2)

Analysis information: LV, (¢),LV.(¢) : Lab, —P(Var,)
» LV, (¢): the variables that are live at entry of block £.
» LV,(¢): the variables that are live at exit of block ¢.
Analysis characteristics:
» Direction: backward

» May analysis with combination operator J

2.3.1
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Analysis of Elementary Blocks: Gen/Kill-Defs.

L. L. Lv.(o)
[x = a]’ [6]" [skip]
T LV.(¢) T LV.(0) T LVa(¢)
genyy([x == 3]Z) = FV(a)
geny([b]Y) = FV(b)
genyy([skip]) = 0
killoy([x == alY) = {x}
killw ([b]°) = 0
killoy([skip]) = 0

Example: [u := a+b]!;
> genyy([u:= a+b]')={a b}
> killoy([u := a+b])={u}
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Analysis of the Program: The LV Equations

LVO(K) 231
T
LV (0)
LVo(€) = (LVe(£)\killv(B?)) U geny(BY)  where B € blocks(S,)
0 . if £ = final(S,)

U{LVo(£)[(, €) € flowR(S,)} :  otherwise
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[[lustration

Example

Program LV.(¢) LV, () 0| killoy(€) | genyy(€)

[y :==0]% {a, b} {a, b} 0| {y} 0

[u:=a+b]*; {u, a, b} {a, b} 1] {u} {a,b}

[y := a*u]?; {u, a, b, y} | {u, a, b} 2 | {y} {a,u}

whilely > u]*do | {a, b, y} {u,a, by} 3|0 {y,u}
[a:=a+ 1]% | {a, b, y} {a, b, y} 4 | {a} {a}
[u:=a+b]> | {u a b y}|{a b, y} 5| {u} {a,b}
[x:=ul®od |{u a b, y}|{uabyt 6] {x} {u}

[skip]” 0 0 710 0
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Application /Usage of LV Information

Dead Code Elimination (DCE):

An assignment [x := a]’ is dead if the value of x is not used

before it is redefined. Dead assignments can be eliminated.
231

» Analysis: Live Variables Analysis

» Transformation: For each [x := a]’ in S, with x & LV,()
(i.e., dead) eliminate [x := a]* from the program.

Example:

Before DCE:

[y := 0]% [u := a+b]%; [y := a*u]?; while [y > u]®*do [a :=a + 1]*;[u :=a + b]?; [x := u]® od

After DCE:
[u:= a+b]%; [y := a*u]?; while [y > u]® do [a :=a + 1]*;[u:=a + b]?; od
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Combining Optimizations
...usually strengthens the overall impact.

Example:

2.3.1

[x := a+b]!; [y := a*x]%; while [y > a+b]*do [a := a + 1]*; [x := a + b]® od

1. Common Subexpression Elimination gives

[u:= a+b]1l; [x ;= u]'; [y := a*x]®; while[y > u]¥do [a :=a + 1]*;[u:=a + b]5/; [x := u]® od

2. Copy Propagation gives

[u:= a+b]1l; [y := a%u]?;while [y > u]® do [a:=a + 1]*;[u:=a + b]5/; [x :=u]® od
3. Dead Code Elimination gives

[u:=a+b]l; [y := a*u]?; while [y > u]® do [a:=a + 1]*;[u:=a + b]?; od

What are the results for other optimization sequences?
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Faint Variables

...generalize the notion of dead variables.

Consider the following program consisting of three statements: 231
b= 171 b = 207 [y o= <P

Clearly x is dead at the exit from 1 and y is dead at the exit of
3. But x is live at the exit of 2 although it is only used to
calculate a new value for y that turns out to be dead.

We shall say that a variable is a faint variable if it is dead or if
it is only used to calculate new values for faint variables;
otherwise it is strongly live.
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Chapter 2.3.2
Very Busy Expressions
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Very Busy Expressions Analysis

Definition 2.3.2.1 (Very Busy Expressions)

An expression is very busy at the exit from a label if, no matter
what path is taken from the label, the expression is always
used before any of the variables occurring in it is redefined.

232

Very Busy Expression Analysis

...determines for each program point, which expressions must
be very busy at the exit from the point.

Example
if [a > b]! then ([x := b—a]?; [y := 13) else ([y := b—a]*; [x := 1°)

> b-a and are very busy at the exit from label 1
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VB Analysis Information and Characteristics

T VB, (¢) [ B.(()
[x == a]°
T VB.(g) [ )]{( \ ]\5(2B (62) 232

Analysis information: VB,(¢),VB,(¢) : Lab, —P(AExp,)
» VB,({): the expressions that are very busy at entry of
block /.
» VB,(/): the expressions that are very busy at exit of
block ¢.
Analysis characteristics:
» Direction: backward
» Must analysis with combination operator [
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Analysis of Elementary Blocks: Gen/Kill-Defs.

VB, (0) VB, (0) VB.(f)
VB.(0) VB.(0) VB.(0)
genyg([x :=a]’) = AExp(a)
genyg([b]) = AExp(b)
genyg([skip]) = 0

ki”VB([X = a]z)
killvg([b]¢)
killyg ([skip]*)

{a' € AExp, | x € FV(a')}

0

Example: [x := a+b]%; [y := a#x]?; [z := xxb]3;
> genyg([x := a+b]')={a+b}
> killyg([x := a+b]')={a*x,x*b}
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Analysis of the Program: The VB Equations

232

VB.(£) = (VB.(¥)\killvg(B?)) U genyg(B*) where B € blocks(S,)
0 . if £ = final(S,)
VB.(f) = { NHVBL ()€, £) € lowR(S,)} : otherwise
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[[lustration

Example

if [a > b]* then ([x := b—a]?; [y := 2 b]®) else ([y := b—a]*; [x := 2 b]®)}a2
(| VB4(¢) VB, (¢) ¢ | killyg(¢) | genyg()
1[{a—b,b—a}|{a—b b—a} 1[0 0
2 | {a—b} {a—b, b—a} 2|0 {b—a}
310 {a—b} 310 {a=bj
4 | {a—b} {a—b,b—a} 4|0 {b—a}
5|0 {a—b} 50 {a—b}
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Application/Usage of VB Information

Code Hoisting

...finds expressions that are always evaluated following some

point in the program regardless of the execution path — and

moves them to the earliest point (in execution order) beyond 232
which they would always be executed.

Example:

Before Code Hoisting:
if [a > b]! then ([x := b—a]?; [y := 13) else ([y := b—a]*; [x := %)

After Code Hoisting:
[t1 := a—b]% [t2 := b—a]®;
if [a > b]! then ([x := t2]%; [y := t1]3) else ([y := t2]*; [x := t1]°)
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Chapter 2.3.3

Summary: Backward Analyses
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Summary: Backward Analyses, LV and VB (1)

As(l) = (As(0)\killa(BY)) U gena(B*) where BY € blocks(S,)
A = { LA :if £ = final(S,)
* LH{A()|(,€) € flow®(S,)} : otherwise
Anﬂyﬂs‘ UV‘ VB
where LA [} 0
MR
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Summary: Backward Analyses, LV and VB (2)

This means effect functions of blocks are of the form
fo = (As(0)\killa(BY)) U genn(B*) where B® € blocks(S,)

where kill, and gen, are auxiliary functions for invalidating and
generating information for an elementary block:

> killa(B*): information that is invalidated by an elementary
block.

» gen,(BY): information that is generated by an elementary
block.
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Chapter 2.3.4

References, Further Reading
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Chapter 2.4
Taxonomy of Gen/Kill Analyses

190/177



Taxonomy of Gen/Kill Analyses

Analysis | may (existential) | must (universal)
Forward Reaching Definitions | Available Expressions
Backward Live Variables Very Busy Expressions
Analysis may (existential) must (universal)
Combination Op. || U N

Solution of equ. smallest largest

Analysis H Extremal labels set ‘ Abstract flow graph
Forward {init(5,)} flow(S,)
Backward final(S,) flow®(S,)
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Chapter 2.5
Summary, Looking Ahead
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Gen/Kill Data Flow Analyses

...are also known as 25

» Bitvector Data Flow Analyses.

This notion refers to a common implementation strategy for

» Gen/Kill Data Flow Analyses.
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Bit Vectors and Bit Vector Analyses

The classical Gen/Kill analyses operate over elements of P(D)
where D is a finite set.

The elements can be represented as bit vectors. Each element 25
of D can be assigned a unique bit position / (1 <i < n). A
subset S of D is then represented by a vector of n bits:

» if the /’th element of D is in S then the i'th bit is 1.

» if the i'th element of D is not in S then the /'th bit is 0.

Then we have efficient implementations of
» set union as logical ‘or’

» set intersection as logical ‘and’
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More Bit Vector Framework Examples

» Dual available expressions determines for each program
point which expressions may not be available when
execution reaches that point (forward may analysis)

215}

» Copy analysis determines whether there on every
execution path from a copy statement x := y to a use of
x there are no assignments to y (forward must analysis).

» Dominators determines for each program point which
program points are guaranteed to have been executed
before the current one is reached (forward must analysis).

» Upwards exposed uses determines for a program point,
what uses of a variable are reached by a particular
definition (assignment) (backward may analysis).
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Some Non-Bit Vector Framework Examples (1)

» Constant propagation determines for each program point
whether or not a variable has a constant value whenever
execution reaches that point (forward must analysis,
cf. Chapter 5).

» Detection of signs analysis determines for each program
point the possible signs that the values of the variables
may have whenever execution reaches that point (forward
must analysis).

215}

» Faint variables determines for each program point which
variables are faint: a variable is faint if it is dead or it is
only used to compute new values of faint variables
(backward must analysis, cf. Chapter B.4).
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Some Non-Bit Vector Framework Examples (2)

» May be uninitialized determines for each program point 26

which variables have dubious values: a variable has a
dubious value if either it is not initialized or its value
depends on variables with dubious values (forward may

analysis).
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Flow-Sensitive /Flow-Insensitive DFA Problems

...another categorization of DFA problems and analyses:

» Flow-sensitive problems and analyses
» The validity of a property at some program point
depends on the control flow path(s) involving it.
E.g., Gen/Kill Problems (RD, AE, LV, VB, etc.), 26
constant propagation and folding, partial redundancy
elimination, etc.

» Flow-insensitive problems and analyses
» The validity of a property at some program point is
independent of the control flow path(s) involving it.
E.g., type analysis (for many programming languages,
e.g., C but not Ruby), Procedure_X_Can_Modify_
Variable_V, Procedure_X_Can_Have_Side_Effects, etc.

Note: Flow insensitivity is often used for trading precision for

efficiency and scalability.
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Outlook

Gen/Kill Data Flow Analyses

215}

» are most important in practice,

» will be reconsidered in detail and from various angles
(soundness, completeness, optimality, implementation,
etc.) in Chapter 4,

» will be considered in the context of practically relevant
optimizations in Chapter 7 and Chapter 8.
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Part 1l

Intraprocedural Data Flow Analysis
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Chap. 3

Chapter 3
The Intraprocedural DFA Framework
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Chapter 3.1

Preliminaries
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Outlook

&l

Next, we (re-) consider:

» Flow graphs and notions on flow graphs
» Lattices and properties of functions on lattices

» DFA specifications and problems
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Flow Graphs

Definition 3.1.1 (Flow Graph)

A (non-deterministic) flow graph is a quadruple tuple 31
G=(N,E,s,e) with

node set N

edgeset EC N x N

distinguished start node s w/out any predecessors

v

v

v

v

distinguished end node e w/out any successors

Nodes represent the program points, edges the branching
structure of G. Every node of G is assumed to lie on a path
from s to e.
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Node-labelled vs. Edge-labelled Flow Graphs

Program instructions (i.e., assignments, tests) can be
represented by

31
» nodes

» edges

Depending on the choice this leads to

» node-labelled flow graphs
» edge-labelled flow graphs

respectively.
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A Node-Labelled Flow Graph

&l
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An Edge-Labelled Flow Graph

s=1

e=9'
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Edge-Labelled Flow Graph after Cleaning Up

a) b)

s=1

s=1

atb <0

a+b <0 T (a+b<0)

p:=a*b

e=9'
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Reverse Flow Graph

Definition 3.1.2 (Reverse Flow Graph)

Let G=(N, E,s,e) be a flow graph. The reverse flow graph

Grey Of G is a quadruple with G, = (N, E’, s/, €') with 31
» node set N'=4 N

edge set E'=4 {(n,m)|(m,n) € E}

distinguished start node s'=4r e

distinguished end node e'=4s

v

v

v

Note

» Like s and e, s’ and €' do not have any predecessors and
successors, respectively.
» Every node in G, lies on a path from s’ to €'.
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In the following

...we consider 31

» edge-labelled flow graphs

Pragmatics, i.e., advantages and disadvantages of choosing a
specific flow graph variant, are discussed in

» Appendix B: Pragmatics of Flow Graph Representations
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Notations for Flow Graphs (1)

Let G=(N, E,s,e) be a flow graph, let m, n be two nodes of
N.

Predecessor and Successor Nodes
» predg(n)=q4r { m|(m, n) € E} denotes the set of
predecessor nodes of n.

» succg(n)=qr { m|(n,m) € E} denotes the set of
successor nodes of n.

&l
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Notations for Flow Graphs (2)

Paths

» Pg[m, n] denotes the set of all paths from m to n (inclu-
ding m and n). 31

» Ps[m, n| denotes the set of all paths from m to a pre-
decessor of n.

» P¢]m, n| denotes the set of all paths from a successor of
m to n.

» P¢]m, n| denotes the set of all paths from a successor of
m to a predecessor of n.

Note: If G is obvious from the context, we drop G as index
and write pred, succ, and P instead of predg, succg, and Pg,
respectively.
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Partially Ordered Sets, Complete Lattices

Definition 3.1.3 (Partially Ordered Set)

Let S be aset and ) # R C S x S be a relation on S. Then
(S, R) is called a partially ordered set iff R is reflexive,
transitive, and anti-symmetric.

&l

Definition 3.1.4 (Lattice, Complete Lattice)
Let (P,C) be a partially ordered set.
Then (P,C) is a

» lattice, if every finite nonempty subset P’ of P has a least
upper bound and a greatest lower bound in P.

» complete lattice, if every subset P’ of P has a least upper
bound and a greatest lower bound in P.
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Examples: Complete Lattices

a) {abc)

T

{a,b} {a,c} {b,c}

b)

True

False

0 /\
"/
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Examples: Partially Ordered Sets and Lattices

a) b) c) d)
T T
3.1
| | | | 3
3 3 3 3 3.4
| | | | -
| \ | | 58
. 1 1 1 3.9
\ \ | |
0 0 0 0
| |
-1 -1
\ \
-2 -2
\ \
-3 -3
1
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Notations for Lattices

Let (C,C) be a complete lattice, and let C" C C be a subset
of C. Then

&l

» [ ] C’ denotes the greatest lower bound of C'.

» | | C’ denotes the least upper bound of C'.

» L =4 []C= |0 denotes the least element of C.

» T =4 || C=[1]0 denotes the greatest element of C.

This gives rise to write a complete lattice as a quintuple
»C=(C,C,N,u, L,T)

where M, U, 1, and T are read as meet, join, bottom, and
top, respectively.
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Descending, Ascending Chain Condition

Definition 3.1.5 (Chain Condition)
Let C = (C,C,M, U, L, T) be a lattice.

&l

C satisfies the

1. descending chain condition, if every descending chain gets
stationary, i.e., for every chainc J oo 3 ... J¢c, O ...
there is an index m > 1 with ¢, = ¢ for all j € IN.

2. ascending chain condition, if every ascending chain gets
stationary, i.e., for every chaingg C oo C...C ¢, C ...
there is an index m > 1 with ¢, = ¢y for all j € IN.
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Monotonicity, Distributivity, and Additivity
...are important properties of functions on lattices:

Definition 3.1.6 (Monotonicity)
Let C= (C,C,M, U, L, T) be a complete lattice and f : C—C
be a function on C. Then f is
» monotonic iff Ve, € C. ¢ C ¢! = f(c) C f(c')
(Preservation of the order of elements)

&l

Definition 3.1.7 (Distributivity, Additivity)
Let C= (C,C,M,U, L, T) be a complete lattice and f : C—C
be a function on C. Then f is
> distributive iff ¥ C' C C. F([1C") = [1{f(c)|c e C}
(Preservation of greatest lower bounds)
» additive iff VC' C C. (| JC') = |l {f(c)|ce C'}
(Preservation of least upper bounds)
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Characterizing Monotonicity

...In terms of the preservation of greatest lower and least
upper bounds: 31

Lemma 3.1.8
Let C=(C,C,M,U, L, T) be a complete lattice and f : C—C
be a function on C. Then:

f is monotonic <— V' C C. f(l_IC’ I_l{f c)|ceC'}
= vccc f|c) | |{f(c)lceC}
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Useful Results

Let C= (C,C,M,u, L, T) be a complete lattice and f : C—C
be a function on C.

&l

Lemma 3.1.9
f is distributive iff f is additive.

Lemma 3.1.10

f is monotonic if f is distributive (additive).
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Chapter 3.2
DFA Specification, DFA Problem
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DFA Specification
Let G=(N, E,s,e) be an edge-labelled flow graph.

Definition 3.2.1 (DFA Specification)

A DFA specification for G is a quadruple S¢ = (5,[[ ], ¢, d) 2
with

» C=(C,C,M, U, L, T) a complete lattice

v

[1: E—(C—C) alocal abstract semantics

v

s € C an initial information /assertion

v

d € {fw, bw} a direction of information flow

Note:
» fw and bw stand for forward and backward, respectively.
» The validity of ¢ € C at s needs to be ensured by the

calling context of G.
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Notations for DFA Specifications
Let S¢ = ((/Z\7 [ 1,cs,d) be a DFA specification for G.

Then

32
» The elements of C represent the data flow information
of interest.

» The functions [ e], e € E, abstract the concrete
semantics of instructions to the level of the analysis.

Thus

» Cis called a DFA lattice.
» [ ] is called a DFA functional.
» [e], e € E, is called a (local) DFA function.
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DFA Problem

Definition 3.2.2 (DFA Problem)

A DFA specification S¢ = (C, [ ], ., d) defines a DFA problem
for G.
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Example: Availability of a Term t (1)

DFA Specification for the Availability of a Term t

» DFA lattice R
C=(C,MU,C, L, =4 (B, A, V, <, false, true) =1 32

» DFA functional
[1. : E—(IB—IB) where

Vec EVbeB.[e].,(b)=ar (bV Compl) A Transp,
» Initial information: bs € IB

» Direction of information flow: forward

In total

» Availability Specification: S&"f = (B, [ 1%, bs, fw)
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Example: Availability of a Term t (2)

..where IB denotes the data-flow lattice and Compl,, Mod",
and Transp, three local predicates associated with edges.

~

» IB=4 (B, A, Vv, <, false, true)
...lattice of Boolean truth values: least element false,
greatest element true, false < true, logical A and logical
V as meet and join operation, respectively.

32

» Comp’ ...is true, if t is computed by the instruction at
edge e, otherwise false.

» Mod?} ...is true, if t is modified by the instruction at edge
e, otherwise false.

» Transp.=4r =Mod! ...is true, if e is transparent for t (i.e.,
no operand of t is assigned a new value by the instruction
at edge e), otherwise false.
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Practically Relevant DFA Problems

...DFA problems are practically relevant, if they are

» monotonic
» distributive (additive)

and satisfy the

» descending (ascending) chain condition.

82
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Example: Availability of a Term t (1)

Lemma 3.2.3 (Data Flow Functions)

Cstirue  if Compl A Transpl,
VecE. [e]., =< lds if ~Comp. A Transp}
Cstgse Otherwise

where
» Cstirye, Cstrse - IB— IB (constant functions on IB)

Vb € IB. Cstype(b)=gqr true
VbeIB. Cstfalse(b):df false

» ldg : IB— IB (identity on IB)
Vb e B. /d|B(b):df b

82

231/177



Example: Availability of a Term t (2)

Lemma 3.2.4 (Descending Chain Condition)

IB satisfies the descending chain condition. 32

Lemma 3.2.5 (Distributivity)
|[e]]2v, e € E, is distributive.

Proof. Immediately with Lemma 3.2.3.

Corollary 3.2.6 (Monotonicity)

[eli, e€ E, is monotonic.
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Properties of DFA Functionals

Definition 3.2.7 (Properties of DFA Functionals) 22
Let Se=ur (C,[ ]. &, d) be a DFA specification for G.

The DFA functional [ ] : E — (C — C) of S¢ is
» monotonic/distributive/additive

iff for every e € E the local DFA function [ e] is
» monotonic/distributive/additive, respectively.
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Properties of DFA Problems

Definition 3.2.8 (Properties of DFA Problems)
Let Sg=4r (C,[ ]. G, d) be a DFA specification for G.

The DFA problem induced by S¢

» is monotonic/distributive/additive iff the DFA functional
[ ] of Sg is monotonic/distributive/additive.

» satisfies the descending (ascending) chain condition iff
the DFA lattice C of S¢ satisfies the descending
(ascending) chain condition.

82
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Example: Availability of a Term t

82

Corollary 3.2.9

The DFA problem induced by the DFA specification
82t — (1B, [ 1., bs, fw) for the availability of a term t is

» distributive

» satisfies the descending chain condition.
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Towards a Global Abstract Semantics

...globalizing a local abstract semantics for instructions to a
global abstract semantics for flow graphs.

82

Actually, we introduce two globalization approaches:

» Meet over all Paths (MOP) Approach
~» defines the specifying solution of a DFA problem

» Maximum Fixed Point (MaxFP) Approach
~> induces a computable solution of a DFA problem
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Chapter 3.3
The Meet Over All Paths Approach
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The Meet Over All Paths (MOP) Approach

Let Sg=g¢ (C,[ ]. . fw) be a DFA specification.

Definition 3.3.1 (Extending [ ] to Paths)

The DFA functions [ e], e € E, are extended onto paths 33
p = (e1,e,...,€e) in G by defining:

Ide ifg<l

[pl=ar { [(e2,....eq)]o[er] otherwise

where Ide : C — C denotes the identical mapping on C, i.e.,
lde(c)=c, c€C.

lllustrating the extension of [ ] from edges to paths:

eo [er] ¢, [eall e [ea] o5 [leall ea [les] e
o o
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The Meet Over All Paths (MOP) Solution

Definition 3.3.2 (The MOP Solution) =
The MOP solution of S¢ is defined by:

MOPs_ : N —C

Vn e N. MOPs.(n)=a[ [{[P1(c)|p € P[s.nl}
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lllustrating MOP Approach and MOP Solution




The Specifying Solution of a DFA Problem

...as illustrated by the previous figure:

» The MOP solution is for every program point n the

» strongest DFA information valid at n (wrt Sg).

This gives rise to consider the MOP solution the

» specifying solution of a DFA problem.

3.3
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Conservative and Optimal DFA Algorithms

Definition 3.3.4 (Conservative DFA Algorithm)

A DFA algorithm A is MOP conservative for Sg, if A
terminates with a lower approximation of the MOP solution of

Se.

3.3

Definition 3.3.5 (Optimal DFA Algorithm)

A DFA algorithm A is MOP optimal for Sg, if A terminates
with the MOP solution of Sg.
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Unfortunately

...the MOP approach itself does not induce an

» effective computation procedure 3

for computing the MOP solution (think of loops in a flow
graph).

Even worse, the MOP solution is

» not even decidable!
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Undecidability of the MOP Solution

Theorem 3.3.3 (Undecidability, Kam&Ullman 1977)
There is no algorithm A satisfying:
» The input of A are 33
» a DFA specification Sg = (C, [ ], cs, fw)
» algorithms for the computation of the meet, the equality

test, and the application of monotonic functions on the
elements of a complete lattice

» The output of A is the MOP solution of Sg.

(John B. Kam, Jeffrey D. Ullman. Monotone Data Flow
Analysis Frameworks. Acta Informatica 7, 305-317, 1977)
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Towards a Conservative and Optimal DFA Alg.

Because of the preceding negative result(s) we introduce in
addition to the MOP approach an orthogonal second
globalization approach of a local abstract semantics, the

3.3

» Maximum Fixed Point (MaxFP) Approach.

The MaxFP approach leads to the

» Maximum Fixed Point (MaxFP) Solution
of a DFA problem and an

» effective computation procedure

computing the MaxFP solution (under certain conditions).
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Chapter 3.4
The Maximum Fixed Point Approach
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The Maximum Fixed Point (MaxFP) Approach
Let Se=ar (C,[ ], ., fw) be a DFA specification.

Equation System 3.4.1 (MaxFP Equation System)

Gs if n=s 34

inf(n) = { [1{[(m,n)](inf(m))| m € pred(n)} otherwise

llustrating the MaxFP Approach (n # s):
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The Maximum Fixed Point (MaxFP) Solution

Let
» inf (n), ne N

denote the greatest solution of Equation System 3.4.1.

Definition 3.4.2 (The MaxFP Solution)
The MaxFP solution of S¢ is defined by:

MaxFPs. : N —C

Vne N. MaxFPs (n)=gf inf7 (n)
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The MaxFP Approach

...Is practically relevant because the MaxFP Equation System 34
3.4.1 induces a generic

» iterative computation procedure (Algorithm 3.4.3)

approximating its greatest solution, i.e., the MaxFP solution.
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The Generic Fixed Point Algorithm 3.4.3 (1)

Input: A DFA specification Sg=4r (CA,|[ I, s, d). If d=bw,
Gre, is used by the algorithm instead of G.

Output: On termination of the algorithm (cf. Termination
Theorem 3.4.4), the variables inf[n] store the MaxFP solution
of S¢ at node n.

Additionally, we have (cf. Safety Theorem 3.5.1 and
Coincidence Theorem 3.5.2): If

» [ ] distributive: inf[n] stores

» [ ] monotonic: inf|[n] stores a lower approximation of
the MOP solution of Sg at node n.

Remark: The variable workset controls the iterative process.
It temporarily stores a set of nodes of G, whose annotations
have recently been changed and thus can impact the

annotations of their neighbouring nodes.
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The Generic Fixed Point Algorithm 3.4.3 (2)

( Prologue: Initializing inf and workset )
FORALL n € N\{s} DO inf[n]:= T OD;
inf[s] := cs;
workset := N;
(Main loop: The iterative fixed point computation )
WHILE workset # () DO
CHOOSE m € workset;
workset := workset\{ m };
( Updating the annotations of all successors of node m)
FORALL n € succ(m) DO
meet := [ (m, n) |(inf[m]) T inf[n];
IF inf[n] O meet
THEN
inf[n] := meet;
workset := workset U {n}
FI
OD ESOOHC OD.
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Termination

Theorem 3.4.4 (Termination)

The Generic Fixed Point Algorithm 3.4.3 terminates with the
MaxFP solution of Sg¢, if

1. [ ] is monotonic

2. C satisfies the descending chain condition.
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The Computable Solution of a DFA Problem

...together the Generic Fixed Point Algorithm 3.4.3 and the 34
Termination Theorem 3.4.4 give rise to consider the MaxFP
solution a (the)

» computable solution of a DFA problem.
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Flow Sensitivity and May/Must Problems

For flow-sensitive DFA problems we must distinguish
(cf. Chapter 2)

» may/must forward problems (e.g., RD, AE)
» may/must backward problems (e.g., LV, VB)

Obviously, the Generic Fixed Point Algorithm 3.4.3 is
formulated for

» must forward problems.

This raises the question

» How can we handle instances of the other three kinds?
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Uniform Handling of All Four Problem Kinds

The Generic Fixed Point Algorithm 3.4.3 allows us to handle
instances of all four problem kinds uniformly:

» must/forward: directly 34
» may/forward: defining C in terms of J
» must/backward: using G, instead of G

» may/backward: using G, instead of G and definining C
in terms of J

...this will be illustrated in detail in Chapter 4.
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Chapter 3.5

Safety and Coincidence
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MOP / MaxFP Solution of a DFA Specification

...how are they related?

Sc=df (5,[ 1, e, fw)

MOP Approach MaxFP Approach
MOP Solution: MaxP Solution:
Specifying ? Computable

Solution of S, L Solution of S
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Safety

Theorem 3.5.1 (Safety)

The MaxFP solution of S¢ is a safe (i.e., lower) approximation 3%
of the MOP solution of S¢, i.e.,

Vne N. MaxFPs.(n) C MOPs,(n)

if the DFA functional [ ] is monotonic.
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Coincidence

Theorem 3.5.2 (Coincidence)

The MaxFP solution of S¢ and the MOP solution of S¢ 35
coincide, i.e.,

Vn e N. MaxFPs (n) = MOPs_(n)

if the DFA functional [ ] is distributive.
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MOP / MaxFP Solution of a DFA Specification

...and their relationship:

SG:df (é\a |[ ]]7 GCs, fW)

MOP Approach MaxFP Approach

[[ ]] distributive

MOP Solution: — MaxP Solution:
Specifying - Computable
Solution of S — Solution of S

[[ :[l monotonic

260/177



Conservativity, Optimality of Algorithm 3.4.3

Corollary 3.5.3 (MOP Conservativity)

Algorithm 3.4.3 is MOP conservative for S¢ (i.e., it terminates
with a lower approximation of the MOP solution of Sg), if [ | s
is monotonic and C satisfies the descending chain condition.

Corollary 3.5.4 (MOP Optimality)
Algorithm 3.4.3 is MOP optimal for S¢ (i.e., it terminates

with the MOP solution of Sg), if [ ] is distributive and C
satisfies the descending chain condition.
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Chapter 3.6

Soundness and Completeness
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Soundness and Completeness (1)

Analysis Scenario:
» Let ¢ be a program property of interest (e.g., availability
of an expression, liveness of a variable, etc.).
> Let Sg be a DFA specification designed for ¢.
Definition 3.6.1 (Soundness)

82 is sound for ¢, if, whenever the MOP solution of 32
indicates that ¢ is valid, then ¢ is valid.

Definition 3.6.2 (Completeness)

S¢ is complete for ¢, if, whenever ¢ is valid, then the MOP
solution of Sg indicates that ¢ is valid.
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Soundness and Completeness (2)

Intuitively
» Soundness means: MOP .. implies ¢.
G

» Completeness means: ¢ implies MOP ..
G
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Soundness and Completeness (3)

If 82 is sound and complete for ¢, this intuitively means:

We compute .

» the property of interest, 30
» the whole property of interest, 39

» and only the property of interest.

In other words

» We compute the program property of interest accurately!
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Chapter 3.7

A Uniform Framework and Toolkit View

to DFA
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Intraprocedural DFA: A Holistic Uniform View

...considering intraprocedural DFA from a holistic angle:

» A Uniform Framework and Toolkit View

i aproceduralle)

pFA  []
C,

s

S, d

Intraprocedural y Theory | Practice K ) Tool Kit

Framework
i Termination | Theorem
Program’ < Soundness > ('“'““"’”“’ Theorem Termination Theorem
————> [ MoP-Solution =/ (Computed Solution)
Pr°$eny Completeness /=2
L

Safety Theorem J{
D 3 )
2
Proof & % )
Obligations: Equivalence Optimality/Conservativity Effectivity
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Intraprocedural DFA in Practice

...working with framework and toolkit, a three-stage process:

The Three-Stage Process

1. ldentifying a Program Property of Interest
Identify a program property of interest (e.g., availability ‘
of an expression, liveness of a variable, etc.), say ¢, and 37
define ¢ formally.

2. Designing a DFA Specification
Design a DFA specification S2 = (C, [ |, , d) for ¢.

3. Accomplishing Proof Obligations, Obtaining Guarantees
Verify a fixed set of proof obligations about the
components of Sg and the relation of its MOP solution

and ¢ to obtain guarantees that its MaxFP solution is

sound or even sound and complete for ¢.
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Proof Obligations and Guarantees (1)

Proof obligations and guarantees in detail:

» Proof Obligations 1a), 1b): Descending Chain Condition
for C, Monotonicity for [ ]
Guarantees:

» Effectivity: Termination of Algorithm 3.4.3 with the
MaxFP solution of Sg.

» Conservativity: The MaxFP solution of Sg is MOP
conservative.

» Proof Obligation 2): Distributivity for [ |
Guarantee:
» Optimality: The MaxFP solution of S‘é is MOP optimal.
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Proof Obligations and Guarantees (2)

» Proof Obligation 3): Equivalence of I\/IOPSED and ¢

Guarantees:

» Whenever the MOP solution of Sg indicates the validity .
of ¢, then it is valid: Soundness. 35

~+ We compute the property of interest, and only the o
property of interest.

» Whenever ¢ is valid, this is indicated by the MOP
solution of Sg: Completeness.

~» We compute the whole property of interest.

Guarantee of combined Soundness and Completeness:

» We compute program property ¢ accurately!
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Chapter 3.8
Summary, Looking Ahead
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The Holistic View to Intraprocedural DFA

Tntraprocedural C

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L1
S, &

o l 31

! 3.2

Intraprocedural Theory || Practice Tool Kit 3.3

DFA 3.4

Framework 35

3.6

Generic :
MaxFP Algorithm Shrg
3.8

- Termination | Theorem
Coincidence Theorem

Program’ Termination Theorem

Propert; > MOP-Solution MaxFP-Solution = (Computed Sotution|
HEE Completeness o
(]) 1« afety Theoren l

) 2R ax .
2
Proof ‘\?/“ N ‘\l,b/)‘ @

Obligations: Equivalence Optimality/Conservativity Effectivity

...reconsidered from the angle of correctness and precision.
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Reconsidering Correctness and Precision

Essentially, there are two sites where correctness and precision
issues are handled in the framework/toolkit view of DFA:

Framework/Toolkit internally: captured by

» Safety ~» Correctness

» Coincidence ~+ Precision

...relating MaxFP and MOP solution.

Framework/Toolkit externally: captured by

» Soundness ~ Correctness

» Completeness ~» Precision

...relating MOP solution and ¢.
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llustrating

...the sites of internal and external correctness and precision
handling:

e aprocedurall
e - DFA  []
: c,
: Sa d
: Intraprocedural - Theory | Practice Tool Kit
| DFA
| Framework

Ger
MaxF}

Termination | Theorem

Tigmination Theokm
MaxFP-Solution = (Computed Solution

undness

Completeyless

Safgly Theorem

— \
2
2
Proof X "}/‘ u,, J ‘\1,}‘\)
Obligations: Equivalence Optimality/Conservativity Effectivity
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Outlook: The Holistic Uniform View to DFA

In the course of this lecture, we will see
» The Uniform Framework and Toolkit View of DFA

...Is achievable beyond the base case of intraprocedural DFA. 33

DFA
Specification

DFA y Theory
Framework g
® Intraprocedural
o Interprocedural
o Parallel
o Object-oriented
® Conditional
...

Toolkit

Practice

Termination @ Theorem

Termination Theorem
= Computed Solutior

/=
Safety Theorem

Program Soundness Coincidence T/hwr em
Property <:> MOP-Solution =/ MaxFP-Solution

Completeness
L
2 () AN
3 (2)
Proof (\,/ N 1b)
Obligations: Equivalence Optimality/Conservativity Effectivity
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Next

...we will consider applications of the intraprodural DFA :
framework for 26

» Gen/Kill DFA problems (cf. Chapter 4) o
» Constant Propagation (cf. Chapter 5)
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Chapter 3.9
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Chap. 4

Chapter 4
Gen/Kill Analyses Reconsidered
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Gen/Kill Analyses

...are common examples of

» distributive DFA problems.

In this chapter, we reconsider Gen/Kill analyses under the
perspective of the

» Intraprocedural DFA Framework of Chapter 3
using
» reaching definitions (forward/may DFA problem)
» very busy expressions (backward/must DFA problem)

for illustration.

Chap. 4
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Remarks

Note that

» available expressions (forward/must DFA problem)
» live variables (backward/may DFA problem)

can be dealt with analogously.

Throughout Chapter 4, let
» G=(N,E,s,e)
be an edge-labelled flow graph.

Chap. 4
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Chapter 4.1

Reaching Definitions
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Chapter 4.1.1

Reaching Definitions for a Single Definition
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Scenario 1: The Setting (1)

...reaching definitions for a single definition Def (vQ@é) = dY.

Lattice
» IBy =4 (IB, V, A, >, true, false)
...lattice of Boolean truth values: least element true,

greatest element false, true > false, logical V and logical
A as meet and join operation, respectively.

Special Functions
» Constant Functions Cstye, Cstrse @ IB— 1B
Vb € IB. Cstype(b)=gr true
Vb € IB. Cstpse(b)=ar false
» ldentity /dg : IB—IB
Vb € IB. Idg(b)=4 b
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Scenario 1: The Setting (2)

Let 1o = x:= exp be the instruction at edge e.

Local Predicates
» At
...true, if e= ¢, otherwise false.
» Mod

...true, if v is modified by ¢, (i.e., L assigns a new value
to v), otherwise false.

203/177



Scenario 1: DFA Specification
DFA Specification

» DFA lattice
C= (Cv l_lv |—,a E7 J—a T):df

(IB, vV, A, >, true, false) =B,

> DFAV functional
[1%: E— (IB—IB) where

Vec EVbelB. [e]%(b)=g (bA—Mod?)V At
» Initial information: bs € IB

» Direction of information flow: forward

Reaching Definitions Specification for dY

> Specification: Sp'% = (1B, [ %, bs, fw)
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Towards Termination and Optimality

Lemma 4.1.1.1 (Data Flow Functions)

. Cstirue if At
VecE. [e],i=1< lds if At A =Mod
Csteyse Otherwise 9

Lemma 4.1.1.2 (Descending Chain Condition)

@7 satisfies the descending chain condition (wrt J =, <).
Lemma 4.1.1.3 (Distributivity)

I ]]Zf: is distributive (wrt M=g4¢ V).

Proof. Immediately with Lemma 4.1.1.1.

Corollary 4.1.1.4 (Monotonicity)

I ]]‘:jv is monotonic.
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Termination and Optimality

Theorem 4. 1 15 (Termination)

Applied to S % = (IBV, I ]]rd, bs, fw), Algorlthm 343
terminates with the MaxFP solution of S

Proof. Immediately with Lemma 4.1.1.2, Corollary 4.1.1.4, and
and Termination Theorem 3.4.4.

Theorem 4. 1 1.6 (Optimality)

Applied to S % = (IBV,|[ ]]rd, bs, fw), Algorithm 3.4.3 is
MOP optimal for 8 % (i.e., it terminates with the MOP
solution of SG )

Proof. Immediately with Lemma 4.1.1.3, Coincidence
Theorem 3.5.2, and Termination Theorem 4.3.1.5.
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Chapter 4.1.2

Reaching Definitions for a Set of Definitions
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Scenario 2: The Setting

...reaching definitions for a set of definitions
{d,...,d} =DY, k € IN.

e’ k

4.1.2

Lattice

> (Dg)uzdf(P(Dg),u,m,;,D‘E/,@)
...power set lattice over DE_V: least element DEV, greatest
element (), superset relation O as ordering relation, set
union U and set intersection M as meet and join
operation, respectively.
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Scenario 2: DFA Specification
DFA Specification

» DFA lattice

C=(C,Mu,C, L, T)=u

(P(DY),U,n, 2, DY, 0) = P(DY),

> DFA functlonal 412

I ]],d (P(D‘E/) — P(Dg) ) where

Vee EVD e P(DY). [e]nf (A)=a

{dy (dY € AN=Mod?)V At}

> Initial information: Ds € P(DY)
» Direction of information flow: forward

Reaching Definitons Specification for DEV

. rd, DY TRV DY
> Specification: S¢ ™ ¢ = (P(DY)u, [ 1,4 Ds, fw)
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Towards Termination and Optimality

Lemma 4.1.2.1 (Descending Chain Condition)

—

P(Dl‘:{)u satisfies the descending chain condition (wrt
C =4 2).

Lemma 4.1.2.2 (Distributivity) i
[ 1.5 is distributive (wrt M=g¢ U).

CoroIIary 4.1.2.3 (Monotonicity)

I ]]rd is monotonic.
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Termination and Optimality

Theorem 4.1.2.4 (Termination)
rd,DY TRV 14
Applied to Sg & = (P(DY)u, [ 1 . Ds, fiw), Algorithm 3.4.3

rd,DY
terminates with the MaxFP solution of S *©
Proof. Immediately with Lemma 4.1.2.1, Corollary 4.1.2.3, 412
and Termination Theorem 3.4.4.

Theorem 4.1.2 (Optlmallty)
Applied to S=7¢ (P(DV)U,[[ 158 D, fw), Algorithm 3.4.3

V

is MOP optimal for SG £ (i.e., it terminates with the MOP

v

. rd, DY
solution of S~ ).

Proof. Immediately with Lemma 4.1.2.2, Coincidence
Theorem 3.5.2, and Termination Theorem 4.1.2.4.
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Chapter 4.1.3

Reaching Definitions for a Set of
Definitions: Bitvector Implementation

413
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Scenario 3: The Setting (1)

...reaching definitions for a set of definitions
{d}! ,daf ) = DY, k € IN.

el,..

Lattice
> IBY, =ar (IB", Vpw, Apw, = pw, true, false)

413

...n-ary cross-product lattice over IB: least element

true=gf (true, ..., true) € IB", greatest element
false=,4r (false, .. ., false) € IB", orderlng relation >,,, as
pointwise extension of > from IBv to IB” .,V pw and

A pw as pointwise extensions of logical V and logical A
from IB to IBY, as meet and join operation, respectively.
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Scenario 3: The Setting (2)

Auxiliary Functions
> var : Df =V, edge : D{ — E defined by
Vdy € Df. var(dy)=ar v, edge(dy)=ar é

> ix:Dg—>{1,...,n}, ix‘l:{l,...,n}—ﬂ?g

...bijective mappings which map every definition d} € Dl‘___f .
to a number in {1,...,n} and vice versa.

The ix(dY)™ element of an element

b= (bl, cey be(dé’)7 ey bn) € IB"

is the reaching definitions information for dY stored in b.

» - IB"—={1,...,n} —1IB

...projection function which yields the i*" element of an
element b€ IB", ie.,, Vi€ {1,...,n}. bl; =4 b;.
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Scenario 3: DFA Specification
DFA Specification

» DFA lattice
C=(C,MU,C, L, T)=g
(IB”, Vpwy, Ay = s, Ertie, false) = B,
> DFA functlonal
I ]]rd s - E— (IB"— IB”) where

Veec EVd{ €IB". [e ]]rdcps( b)=yr b/
where Vi € {1,...,n}. Bl =ar
(bi, /\ﬁMOdV‘"(’X ())) \/Atedge(lx (1))
» Initial information: bs € IB"

» Direction of information flow: forward

R'ing Def’s Specification for D‘f Cross- product spec. (cps)

413

D ,Cps

» Specification: S (IB" |[]]rdcps,bs,fw)
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Scenario 3: Bitvector Implementation (1)

d,DY
Bitvector Implementation of Sr e

> IB"v can efficiently be implemented in terms of bitvectors
bv=|di,...,dy), d;€{0,1}, 1 <i < n, of length n.

» Let BY" denote the set of all bitvectors of length n.
> Let bv[i]=d; for all by =[dy,...,d,] € BV", 1<i<n.

413

> Let 0=4[0,...,0] € BV" and 1=4[1,...,1] € BV".

» Let mingy, and maxgy, be the bitwise minimum ( “logical
A") and the bitwise maximum function (“logical V") over

bitvectors, i.e., V bvy, bv, € BV" Vi € {1,...,n}.

(bv1 mingy bV2)[ ] df mln(bvl[ ] bV2[ ])
(bv1 maxgy sz)[] df maX(bVl[] bV2[ 1)
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Scenario 3: Bitvector Implementation (2)

Auxiliary Functions

» Vp=g4r {var(d))|d} € D“E/}

Ep=or {edges(dy) | dy € DY}
> ix: DY —{1,....n}, ix ' {l,...,n} > DY .

...bijective mappings which map every definition d} & D‘E{
to a number in {1,..., n} and vice versa.

The ix(dY)™ element of a bitvector
bv = [dl, ceey dix(dé’)u ooy dn)] c BVn
is the reaching definitions information for df stored in bv.
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Scenario 3: Bitvector Implementation (3)

Extending and Transforming Local Predicates to Bitvectors

.
» Mod!>c BY"
.
Vie{l,...,n}. Mod!” [i|=q4 {

413

1 if Mod 2 (x"()
0 otherwise
.
> AthE BY"
1 if Ardeelx ()

—
Vie{l,...,n}. At® [i]=
i€ {L,....n}. At [i]=ar { 0 otherwise
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Scenario 3: Bitvector Implementation (4)
Bitvector Implementation

» DFA lattice
C= (C7 |_|7 l—'a E7 La T):df

(BV", maxpay, min[gv, ZBV, I, 6) == anmax
> DFA funct|ona|
I ]]rd pi i E—=(BY"— BV”) where

Vee EVbveBY" [[e]]rd,bw-(bV):df
N —
(bHv mingy —~ModY?) maxgy Ath
» Initial information: bv, € BY"
» Direction of information flow: forward

R'ing Def's Spec. for DV bitvector implementation (bvi)
rd,D 4 -
> Specification: Sg £ = (BVI [ TnEpuis bV, fw)

413
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Towards Termination and Optimality

Lemma 4.1.3.1 (Descending Chain Condition)

BV"maX satisfies the descending chain condition (wrt

J =ar <nv). 11

Lemma 4.1.3.2 (Distributivity)

I ]],d b 18 distributive (wrt M=4 maxgy).

CoroIIary 4.1.3.3 (Monotonicity)

I ]]rd by 1S Monotonic.
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Termination

Theorem 4.1.3.4 (Termination)

D ,bvi DY — .
Applied to S (BV" [ 1.4 5> bvs, fw), Algorithm 413
rd, 'DV ,bvi

max?

3.4.3 terminates with the MaxFP solution of S

Proof. Immediately with Lemma 4.1.3.1, Corollary 4.1.3.3,
and Termination Thereom 3.4.4.
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Optimality
Theorem 4.1.3.5 (Optimality)

D ,bvi DY - .
Applied to S (BVZW’ [ 1.4 5> bvs, fw), Algorithm
3.4.3 is MOP optimal for S i (i.e., it terminates with the
MOP solution of S "”’).

Proof. Immediately with Lemma 4.1.3.2, Coincidence
Theorem 3.5.2, and Termination Theorem 4.1.3.4.

Note

» All results of Chapter 4 1.3 hold for
rdD ,CPS

SG (IB” |I ]]rd ,cps? b57 fW) too.

» Applied to 8 d.Dg b (BV"maX,[[ ]]rd’bw-, b_\}s, fw),

Algorithm 3. 4 3 takes advantage of the efficient bitvector
operations of actual processors.

413
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Chapter 4.1.4

Reaching Definitions for a Set of
Definitions: Gen/Kill Implementation
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Scenario 4: The Setting

...reaching definitions for a set of definitions

{dg!,...,dy} =D{, k€N, s
Defining Gen/Kill Predicates j}f
DY .
> Gene® =4 {dy € DY | Atc}
DY
> Kille £ =4 {d¥ € DY | Mod}
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Scenario 4: DFA Specification
DFA Specification

> QFA lattice
C=(C,M UL L T)=g

(P(D‘E“/)a Ua ma 27 Dga ®) — P(DE\/)U
> DFA functlonal

II]]rdgk E—(P(D g)—ﬂ)( ))Where avs
Vee EVD e P(DY). [e ]]rdgk( )=d

v v
D\K,//f £)U Geng £
> Initial information: Ds € P(D)

» Direction of information flow: forward

Reaching Definitions Specification for Dg
rdD gk

— v
» Specification: S =(P(Df)u, [ ]]sz_gkaps, fw)
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Towards Termination and Optimality

Compare

s [ 106, E—(P(DY)—P(DY)) where
Vee EVD e P(DY). [e]nfyu(D)=ar
(D\KIlLE ) U Geno
s [1Lf 1 E— (P(DY)—P(DY)) where

v
Vee EVD e P(DY). [e] .t (D)=ur
v 14 v v é
{dY € DY | (df € DA-Mod?)V AL}

4.1.4

Obviously
Lemma 4.1.4.1 (Equality)

DY DY
|[ ]]rdE :l[ ]]rd‘j_gk
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Termination and Optimality

Theorem 4. 1 4.2 (Termination)
Applied to S i (P(DV)U,[[ ]]rd “zk> Ds, fw), Algorithm
3.4.3 terminates with the MaxFP solution of SrdD &
Proof. Immediately with Lemma 4.1.4.1, Lemma 4.1.2.1,
Corollary 4.1.2.3, and Termination Thereom 3.4.4. b
Theorem 4.1.4.3 (Optimality)
. rd, DY gk ST DY )
Applied to S £ =(P(Df)us [ 1,4 gk Ds: fw), Algorithm
rd, DY
3.4.3 is MOP optimal for SGd’DE’gk (i.e., it terminates with the
rd, DY
MOP solution of S £ %),

Proof. Immediately with Lemma 4.1.4.1, Lemma 4.1.2.2, Co-
incidence Theorem 3.5.2, and Termination Theorem 4.1.4.2.
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Recalling the MaxFP Equation System

Equation System 3.4.1 (MaxFP Equation System) .

| . if n=s £
inf(n) = { [T{ [ (m, n) [(inf(m))| m € pred(n)}

. 43
otherwise
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The MinFP Equation System

Equation System 3.4.1,,;, (MinFP EQS)

if n=s

inf(n) = { |_S|{ [ (m, n)(inf(m))|m € pred(n) } otherwise

4.1.4

Specializing Equation System 3.4.1,,;, for Reaching Definitions
yields:

EQS 4.1.4.4 (EQS 3.4.1,,;, for Reaching Def's)
Reaches(n) =

{ D if n=s
UL (m,n) ]]Zf”gk(Reaches(m)) |m € pred(n) } otherwise
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Specializing EQS 3.4.1,,,;, for Reaching Def's

Vv
Expanding [ ]]ffgk in EQS 4.1.4.4 yields:

EQS 4.1.4.5 (EQS 3.4.1,,, for Reaching Def's)
Reaches(n) =

(m,n)

D, if n=s
v Vv
U{ (Reaches(m)\Ki//(Drf?n)) U Gen, £
| m € pred(n) } otherwise

4
4.1.1
>

4.1.4
4.15
2
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Recalling the RD Analysis of Chapter 2.1.1 (1)

RD.(f1) RD.((2)
v RD,(¢)
L
(0 ©if £ = init(S,)
RD.(f) U{RD(£)[(€',€) € flow(S.)} : otherwise
RD.(¢) = (RDo(¢)\killrp(B%)) U gengp(B’) where B € blocks(S,)

EQS 4.1.45 (EQS 3.4.1,,, for R'g Def's) — recalled
Reaches(n) =

Ds if n=s
v v
U{ (Reaches(m)\Ki//(D,f n)) U Genzf ")
| m € pred(n) } otherwise
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Recalling the RD Analysis of Chapter 2.1.1 (2)

RD.(f) | RD.(0) | RD.(0)
[x = a]f [b] [skip]©
RD.(¢) l RD.(?) l RD.(/)
gengp([x = 4 (x,0)}

genRD([b]e
gengp([skip]’

)

)

)

ki”RD([X = a]z)
killrp ([6]%)
killro ([skip]*)

SN S

(x,)} U {(x, ) | B"is assignment to x}
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Summing up

The Reaching Definitions Equations of

» Equation System 4.1.4.5
» Chapter 2.2.1

4.1.4

are equivalent up to the insignificant formal difference of
considering

» edge-labelled
» node-labelled

flow graphs, respectively.
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Chapter 4.1.5

Reaching Definitions Analysis: Soundness
and Completeness
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Closing the Proof Final Gap

. rd,dY
...proving soundness and completeness of S

reaching definitions property:

Tntraprocedural C

L]
C\
Sq d

for the

Intraprocedural P e Theory | Practice
DFA P

Framework

) Tool Kit

L

Termination

Termination Theorem

Completeness

Program Soundness Coincidence
Property <:> 'MOP-Solution

Generic
MaxFP Algorithm

Theorem

Computed Solutio

Ok ®/ (@)

®

Proof
Obligations: Equivalence Optimality/Conservativity Effectivity

v
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Defining Reaching Definitions Informally
...intuitively:

» A definition reaches a node if there is a path from the
node of the definition to the node without any
redefinition of the left-hand side variable of the definition
along this path (cf. Definition 2.2.1.1).

Note

» The informal “definition” of reaching definitions does not
foresee the possibility of a definition that reaches the
procedure entry itself.

» Situations where this reaching definition property is
ensured by the calling context of the procedure, are thus
not captured and can not be dealt with.
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Useful Notation

Let G=(N, E,s,e) be a flow graph, and let Predicate be a
predicate defined for edges e € E.

We define for paths:
> Let p=(ey,...,e) € P[m,nl.

» pi, 1 < i< g, denotes the it" edge €; of p. s
> Pk, denotes the subpath (exy1,..., ) of p.
» )\p denotes the length of p, i.e., the number g of edges

of p.

We define for paths and predicates:
> Predicate\; <= V1< i<\, Predicate,,

> Predicate?, <= d1 <7 <\, Predicate,,
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Defining Reaching Definitions Formally

Definition 4.1.5.1 (Reaching Definitions)

Let G=(N, E,s,e) be a flow graph, let d} be a definition, let

rds € IB the reaching definitions information at s ensured by

the calling context of G. o

Reaches® (n) <= g4
rds ifn=s

dp € PJ[s, n].
(rds A=Mod")) Vv
i < A Atf,i A (i:)\p\/—\/\/lod"ﬁ\f],-Ap]) otherwise
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lllustrating the Essence of Definition 4.1.5.1
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Context Edges

...introducing a context edge would allow a simpler uniform
definition of reaching definitions:

Sclx

[(sm's)] =g 411

— (a+b < 0)

— (a>2%z)
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Context Edges and Reaching Definitions

Sctx
rdg
—Mod
S

[
—Mod é)ﬁ Mod
Mod Def(v@e) | | —Mod
0
BV N ] R v
5

O
— M()L%\ﬁ\\/lod —Mod
Mod / —Mod
n

e

...leading to:
Vn € N\{sc}. Reaches™(n) <= g4

E' p € P[sctxa n]' EII S )\P' Atﬁé?i A (I - >\p v ﬁMOdVZ]i’Ap])
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Closing the Final Proof Gap

Theorem 4.1.5.2 (Soundness and Completeness)

Let G=(N, E,s,e) be a flow graph, let d} be a definition, let
rds € IB be the reaching definitions information at s ensured
by the calling context of G, and let MOP S be the MOP

4.15

solution of the DFA specification S % = (IBV,|[ ]]rd, rds, fw).

Then:

Vn € N. Reaches® (n) <= MOPSrd,dé’(n)
G
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Gap Closed: Soundness& Completeness Proven

rd,dY
...soundness and completeness of S "¢

definitions proven:

for reaching

411
Tntraprocedural C 412
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr [C] 413
s s 414
o
g 415
4.2

Intraprocedural
DFA
Framework

Completeness

Program Soundness Coincidence
Property ) (et

Theory || Practice Tool Kit 4.3
44

Generic
MaxFP Algorithm

Termination | Theorem

Termination Theorem
= Computed Solutio

It

)
Proof A=
Obligations: Equivalence

®

Optimality/Conservativity

(@) v

~ Effectivity
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Chapter 4.2
Very Busy Expressions
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Chapter 4.2.1
Very Busyness for a Single Term
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Scenario 1: The Setting (1)

...very busyness for a single term t.

Lattice
> B=y4 (IB, A, Vv, <, false, true)
...lattice of Boolean truth values: least element false, 421

greatest element true, false < true, logical A and logical
V as meet and join operation, respectively.

Special Functions
» Constant Functions Cstyye, Cstrse @ 1B — 1B
Vb € IB. Cstype(b)=qr true
Vb € IB. Cstpyse(b)=ar false
» ldentity /dg : IB—IB
Vb € IB. Idg(b)=4 b
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Scenario 1: The Setting (2)
Let 1. = x:= exp be the instruction at edge e.

Local Predicates

» Comp!

4.2.1

...true, if t is computed by ¢, (i.e., t is a subterm of the
right-hand side expression exp of (), otherwise false.

» Mod!

...true, if t is modified by ¢ (i.e., te assigns a new value
to some operand of t), otherwise false.

» Transp.=q4r =~Mod!

...true, if e is transparent for t (i.e., 1. does not assign a
new value to any operand of t), otherwise false.
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Scenario 1: DFA Specification

DFA Specification

> QFA lattice R
C=(C,mU,C, L, M=4 (B, A, V, <, false, true) =1

» DFA functional
[1.,: E—(IB—IB) where

Vec EVbeB. [e].,(b)=ar (bA Transp.)V Comp:
» Initial information: be € IB

» Direction of information flow: backward

Very Busyness Specification for t

> Specification: S = (B, [ 10, be, bw)

4.2.1
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Towards Termination and Optimality

Lemma 4.2.1.1 (Data Flow Functions)

Cstirue if Comp
VecE.[e],= < ldg if =Comp’ A Transp},
Cstpe Otherwise

Lemma 4.2.1.2 (Descending Chain Condition) :

IB satisfies the descending chain condition.

Lemma 4.2.1.3 (Distributivity)

[ 10, is distributive.

Proof. Immediately with Lemma 4.2.1.1.
Corollary 4.2.1.4 (Monotonicity)

[ 1}, is monotonic.
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Termination and Optimality

Theorem 4.2.1.5 (Termination)

Applied to S2f = (IB, [ 1%, be, bw), Algorithm 3.4.3
terminates with the MaxFP solution of SVb £

Proof. Immediately with Lemma 4.2.1.2, Corollary 4.2.1.4, o
and Termination Theorem 3.4 .4.

Theorem 4.2.1.6 (Optimality)

Applied to S"bt (IB [ 1., be, bw), Algorithm 3.4.3 is MOP
optimal for SVb * (i.e., it terminates with the MOP solution of
Séb,t).

Proof. Immediately with Lemma 4.2.1.3, Coincidence
Theorem 3.5.2, and Termination Theorem 4.2.1.5.
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Chapter 4.2.2

Very Busyness for a Set of Terms
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Scenario 2: The Setting

...very busyness for a set of terms T, T finite.

Lattice
> P(T)=ar (P(T),N,U,C,0,7)
...power set lattice over T: least element (), greatest
element T, subset relation C as ordering relation, set
intersection M and set union U as meet and join
operation, respectively.

422
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Scenario 2: DFA Specification
DFA Specification

> [A)FA lattice -
C= ((z’ MU, 5, J—’<T_):::df (7:>( 7-)a Ny, C, Qb, 7-) ::‘Z)( 7-)

» DFA functional
[1L:E—=(P(T)=P(T)) where

Vec EVT € P(T). [e]lL(T)=ar
{te T | (te T A Transp.)V Comp.}
» Initial information: T, € P(T)

» Direction of information flow: backward

Very Busyness Specification for T
> Specification: S&>7 = (f(?), [ 1L, Te, bw)
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Towards Termination and Optimality

Lemma 4.2.2.1 (Descending Chain Condition)

—

P(T) satisfies the descending chain condition. .

Lemma 4.2.2.2 (Distributivity)

[ 1., is distributive. s

Corollary 4.2.2.3 (Monotonicity)

[ 1., is monotonic.
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Termination and Optimality

Theorem 4.2.2.4 (Termination)
Applied to ST =(P(T),[ 1L, Te, bw), Algorithm 3.4.3
terminates with the MaxFP solution of Séb’T.

Proof. Immediately with Lemma 4.2.2.1, Corollary 4.2.2.3,
and Termination Theorem 3.4.4. e

Theorem 4.2.2.5 (Optimality)

Applied to SZ7 = (5(?),[[ 1%, Te, bw), Algorithm 3.4.3 is
MOP optimal for S7 (i.e., it terminates with the MOP
solution of SZ>'7).

Proof. Immediately with Lemma 4.2.2.2, Coincidence
Theorem 3.5.2, and Termination Theorem 4.2.2.4.
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Chapter 4.2.3

Very Busyness for a Set of Terms: Bitvector
Implementation

423
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Scenario 3: The Setting (1)

...very busyness for a set of terms T, T finite, | T|=n.

Lattice
> 1B "=4r (IB", Apw, Vpw, <pw, false, true) s

...n-ary cross-product lattice over IB: least element
false=,r (false, . .., false) € IB", greatest element
true=qr (true, ..., true) € IB", ordering relation <, as
pointwise extension of < from IB to B”, A A pw and V5,
as pointwise extensions of logical A and logical vV from
IB to IB” as meet and join operation, respectively.
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Scenario 3: The Setting (2)

Auxiliary Functions
» ix: T—{1,....n}, x':{1,....n} =T

...bijective mappings which map every term t € T to a
number in {1,...,n} and vice versa.

The ix(t)™ element of an element

b:(bl,...,bix(t),...,bn)Ean _

is the very busyness information for t stored in b.
» - |:IB"={1,...,n} —>1IB

...projection function which yields the i*" element of an
element b€ IB", ie.,, Vi€ {1,...,n}. bl; =4 b;.
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Scenario 3: DFA Specification

DFA Specification
> QFA lattice
C - (C, |_|, l_l, E, L, T):df
(IB", Apw, V pws <pw, false, true) = IB"

» DFA functional
II ]]\-/,;) ,CpS : E — ( IBn — |Bn ) Where 423

Vee EVvelB" e ﬂvbcps( b)=gr b/
where Vie {1,...,n}. bl =4
(Bl; A TranspX ') v Comp ()
» Initial information: b, € IB"
» Direction of information flow: backward

Very Busyness Specification for T, cross-product spec. (cps)

> Specification SVb Theps — (IB” II ]]vb ,Cps”? be7 bW) 349/177



Scenario 3: Bitvector Implementation (1)

Bitvector Implementation of Sébﬁcps

> I/I§\" can efficiently be implemented in terms of bitvectors
bv=|di,...,dy), di €{0,1}, 1 <i < n, of length n.

» Let BY" denote the set of all bitvectors of length n.

> Let bv[i]=d; for all by =[dy,...,d,] e BV, 1<i<n

> Let 0=gr [0,...,0] € BV and T=4[1,...,1] € BV".

» Let mingy, and maxgy be the bitwise minimum ( “logical
A") and the bitwise maximum function (“logical V") over

bitvectors, i.e., ¥V bvi, b, € BV" Vi € {1,...,n}.
> (bvi mingy bvy)[il=gr min(bvy[i], b,[i])
» (bvi maxgy bva)[i]=q4r max(bwili], bva[i])
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Scenario 3: Bitvector Implementation (2)

Auxiliary Functions
» ix: T—{1,....n}, ixt:{1,...,n} =T

...bijective mappings which map every term t € T to a 423
number in {1,..., n} and vice versa.

The ix(t)"" element of a bitvector
bv = [dl, Ceey d,'X(t), Ce dn)] e BY"
is the very busyness information for t stored in bv.
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Scenario 3: Bitvector Implementation (3)

Extending and Transforming Local Predicates to Bitvectors

—
» Comp!l € BY"

— ; (i
_ , 1 if Comp> () “2e
v 1,...,n}. Comp! [i]= y

i €{1,...,n}. Comp, [i]=ar { 0 otherwise

—

» Transp] € BY"
— ; (i
. _ 1 if Transp™ (@
v 1,...,n} Ti I [il= ;
i €{L,...,n}. Transp, [i]=or { 0 otherwise
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Scenario 3: Bitvector Implementation (4)

Bitvector Implementation

> QFA lattice
C= ((Zv nu., 1, _T-):::df

(BV", mingy, maxgy, <sy, 0, f) —BY"

» DFA functional

II ]]\Z),bvi . E—> (an — an) Where 423
Vee EVbve BV ﬂeﬂ\z,bvi(b_‘;):df
- —

(bHv mingy Transp!) maxgy, Compl
» Initial information: b;e e BY"

» Direction of information flow: backward

Very Busyness Specification for T, bitvector impl. (bvi)

» Specification: Séb’T’bVi:(W',[[ ]]wa-,b;e,bw)
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Towards Termination and Optimality

Lemma 4.2.3.1 (Descending Chain Condition)

BV" satisfies the descending chain condition. a1

Lemma 4.2.3.2 (Distributivity)

I[ ]]‘,Tb byi 1 distributive. i3

Corollary 4.2.3.3 (Monotonicity)

[ ]]va,bv; is monotonic.
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Termination

Theorem 4.2.3.4 (Termination)
Applied to Séb’T’bVi: BV ]]wa., bve, bw), Algorithm ias
3.4.3 terminates with the MaxFP solution of S‘(’;b’T’bV".

Proof. Immediately with Lemma 4.2.3.1, Corollary 4.2.3.3,
and Termination Theorem 3.4.4.
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Optimality

Theorem 4.2.3.5 (Optimality)

Applied to S& T = (BV",[ 11, i bve, bw), Algorithm
3.4.3 is MOP optimal for S{> 7" (i.e., it terminates with the
MOP solution of S>72).

Proof. Immediately with Lemma 4.2.3.2, Coincidence
Theorem 3.5.2, and Termination Theorem 4.2.3.4.

423

Note

» All results of Chapter 4.2.3 hold for
SeTers — (IB”, [ 1L, aosr b be, bw), too.

> Applied to SP> TP = (BV”, I ﬂvb by bve, bw), Algorithm
3.4.3 takes advantage of the efficient bitvector operations
of actual processors.
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Chapter 4.2.4

Very Busyness for a Set of Terms: Gen/Kill
Implementation
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Scenario 4: The Setting

...very busyness for a set of terms T, T finite.

Defining Gen/Kill Predicates 2

» Gen] =4 {t € T | Comp.} 424
> KillT =4 {t € T| Mod®}

Note

» Killl ={t € T|-Transp.}
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Scenario 4: DFA Specification
DFA Specification

> QFA lattice -
C=(C,M,U,C, L, T)=¢ (P(T),N,U,C,0, T)=P(T)

» DFA functional
T
[ ]]vb7gk :E—(P(T)—P(T)) where

Vec EVT € P(T). [ellyulT)=ar
(T'\Killl) U Gen]
» Initial information: T, € P(T)

» Direction of information flow: backward

Very Busyness Specification for T
» Specification: Séb’T’gk:(f(?),[[ ]]L’gk7 Te, bw)
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Towards Termination and Optimality
Compare
| ]]‘Lgk :E—(P(T)—P(T)) where
Vec EVT € P(T). [elyul(T)=ar

(T'\Killl) U Gen]

> HH\Z'E%( P(T)—P(T)) where
Vec EVT € P(T). [ell(T)=ur
{te T | (te T' A Transp.)V Comp.}

Obviously
Lemma 4.2.4.1 (Equality)

[10=1 Db
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Termination and Optimality

Theorem 4.2.4.2 (Termination)
Applied to S&* T = (P(T),[ 1y g Te: bw), Algorithm 3.4.3
terminates with the MaxFP solution of S¢&> 78,

Proof. Immediately with Lemma 4.2.4.1, Corollary 4.2.2.3,
and Termination Theorem 3.4.4.

Theorem 4.2.4.3 (Optimality)

Applied to ST = (P(T), [ 17, 4o Te bw), Algorithm 3.4.3
is MOP optimal for Séb’T’gk (i.e., it terminates with the MOP
solution of S 784

Proof. Immediately with Lemma 4.2.4.1, Lemma 4.2.2.2, Co-

incidence Theorem 3.5.2, and Termination Theorem 4.2.4.2.
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Recalling the MaxFP Equation System

Equation System 3.4.1 (MaxFP Equation System) -

inf(n) =

|f n=s 425
. 43
otherwise

{ [ (m, n) [(inf (m)) | m € pred(n) }
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The Backward MaxFP Equation System

Equation System 3.4.1%" (Backward MaxFP EQS)

_ B Co if n=e
inf(n) = { [1{[(n,m)](inf(m))| m & succ(n) } otherwise

Specializing Equation System 3.4.1°" for Very Busyness yields:

EQS 4.2.4.4 (EQS 3.4.1;, for Very Busyness)
VeryBusy(n) =

Te if n=e
{ N{[(n,m) ]]‘Z,gk(VeryBusy(m)) | m € succ(n) } otherwise

363/177



Specializing EQS 3.4.1°" for Very Busyness

Expanding [ ]]\Za,gk in EQS 4.2.4.4 yields:

422

EQS 4.2.4.5 (EQS 3.4.1%" for Very Busyness) 23
VeryBusy(n) =

Te if n=e
{ NA{ (VeryBusy(m)\Ki/l(Tn’m)) U Gen(Tn’m) | m € succ(n)} otherwise
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Recalling the VB Analysis of Chapter 2.3.2 (1)

VB, ()
[x := 4]’
Tve.(z)
VB.(f) = (VB.(0)\killyg(BY)) U genyg(B’) where B € blocks(S,)
_ 0 o if £ = final(S,)
VB.(5) = { N{vB 0) € flow®(S,)} : otherwise

EQS 4.2.4.5 (EQS 3.4.1% for V. B'ness) — recalled
VeryBusy(n) =

Ts if n=e
{ N{ (VeryBusy(m)\Ki//Z;,,m)) U Gen(t,’m) | m € succ(n)} otherwise
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Recalling the VB Analysis of Chapter 2.3.2 (2)

| VB.(0) [ vB.() [ vB.()
[x := a] [b]* [skip]*
T VB, (¢) I VB, (/) I VB, (/)
genyg([x == a]z) = AExp(a)
genyg([b])) = AExp(b)
genyg([skip]?) = 0
killvg([x = a]) = {a € AExp, | x € FV(d)}
killve([b]) = 0
kI“VB([SkIp]Z) = @
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Summing up

The Very Busyness Equations of

» Equation System 4.2.4.5
» Chapter 2.3.2

4.2.4

are equivalent up to the insignificant formal difference of
considering

» edge-labelled
» node-labelled

flow graphs, respectively.
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Chapter 4.2.5

Very Busyness Analysis: Soundness and
Completeness
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Closing the Final Proof Gap

...proving soundness and completeness of Séb’t for the very
busyness property:

Tntraprocedural C

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L1
S
Sg d

Intraprocedural fbe. ., Theory
DFA
Framework

Practice

—

) Tool Kit
Generic
MaxFP Algorithm

Termination | Theorem

Program Soundness Coine em
Property <:> =/3
Completeness
[ i

Safety Theorem

Proof
Obligations: Equivalence

Ok ©)

Optimality/Conservativity Effectivity
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Defining Very Busyness Informally
...intuitively:

» An expression is very busy at a node if, no matter what
path is taken from that node to the exit of the program,
the expression is computed before any of the variables
occurring in it is redefined (cf. Definition 2.3.2.1).

Note 5
» If exit of the program is replaced by exit of the procedure,
the informal “definition” of very busyness does not
foresee the possibility of the very busyness of an
expression at the procedure exit itself.

» Situations where this very busyness is ensured by the
calling context of the procedure, are thus not captured

and can not be dealt with.
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Useful Notation

Let G=(N, E,s,e) be a flow graph, and let Predicate be a
predicate defined for edges e € E.

We define for paths:

> Let p=(ey,...,e) € P[m,nl.
» pi, 1 < i< g, denotes the it" edge €; of p.
> Pk, denotes the subpath (ex, ..., e 1) of p.
» )\p denotes the length of p, i.e., the number g of edges
of p.

425

We define for paths and predicates:
> Predicate\; <= V1< i<\, Predicate,,

> Predicate?, <= d1 <7 <\, Predicate,,
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Defining Very Busyness Formally

Definition 4.2.5.1 (Very Busyness)

Let G=(N, E,s,e) be a flow graph, let t be an expression, let
vbe € IB be the very busyness information for t at e ensured
by the calling context of G.

VeryBusy'(n) <=4
vbe ifn=e
Vp € P[n,e]. (vbL A Transp')) V
3i < Ap. Comp}, A Transp ;i otherwise
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lllustrating the Essence of Definition 4.2.5.1

S

Transp Transp

Transp ramp Trdnsp
Com
ﬁ Transp ‘
O
Mod Comp |

Mod x

Com&
Q

4.1
4.2
4.2.1
422
423
4.2.4
425

4.4
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Context Edges

...introducing a context edge would allow a simpler uniform
definition of very busyness:

4.1
4.2

S
o =

PO OIS
o

S
o> w

—1(a>2%z)

[eenllO=¢
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Context Edges and Very Busyness

Transp

Transp Transp b
? 42
Transp l}Tmmp _l 2, ;
? [ 423
Comp [ .
Mod ngnsp o
0 / 43
Y [ o [ Trans i
Comp | ransp

...leading to:

Vn e N\{ec}. VeryBusy'(n) <4
VpePlnew] 3i < X, Comp, A Transptf,[L,-[
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Closing the Final Proof Gap

Theorem 4.2.5.2 (Soundness and Completeness)

Let G=(N, E,s,e) be a flow graph, t an expression, vb, € IB
the very busyness information for t at e ensured by the calling
context of G, and let MOP 4 e be the MOP solution of the

DFA specification S"b ‘ (IB [ 15, vbe, bw). 025
Then:

Vn € N. VeryBusy'(n) < MOP g.0.¢(n)
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Gap Closed: Soundness& Completeness Proven

b,t
...soundness and completeness of S;" for very busyness
proven:

4.1
4.2
Tntraprocedural C 421
""""""""""""""""""""""""""""""" [C] 422
s B 423
N d 424
425
Intraprocedural o Theory || Practice Tool Kit 43
DFA y 4.4
Framework

Generic
MaxFP Algorithm

Termination | Theorem

Program Soundness Coincidence
Property ) (et

Termination Theorem
= Computed Solutio
Completeness
i I
) ) o .
& 2 \
Proof ®y ©) (1) @,/
Obligations: Equivalence Optimality/Conservativity Effectivity
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Chapter 4.3
Summary, Looking Ahead
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Summary, Looking Ahead (1)

The terms

» Gen/Kill Analyses

» Bitvector Analyses

43

are used synonymously.

Gen /Kill Analyses are

» efficient

» scale well to more complex DFA scenarios
(interprocedural, parallel, etc.)

» are most important in practice.
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Summary, Looking Ahead (2)

In fact, despite their conceptual simplicity, information
obtained by Gen/Kill Analyses is fundamental for

» numerous powerful and widely used optimizations, e.g.,

>

43

Partial Redundancy Elimination (Busy Code Motion,
Lazy Code Motion, cf. Chapter 7 and Chapter 8)
Strength Reduction (Lazy Strength Reduction,

cf. Chapter 11)

Partial Dead-Code Elimination (cf. LVA 185.276 Analyse
und Verifikation)

Assignment Motion (cf. LVA 185.276 Analyse und
Verifikation)
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Chap. 5

Chapter 5

Constant Propagation

385/177



Chapter 5.1

Motivation
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Motivating Example

...constant propation (CP) aims at discovering and replacing
occurrences of terms whose computation will always yield the
same value at runtime by this value.

a) o b) o)
Jga =2 ga =2
a2
b:=a b:=2
a:=3 a,b—=2 a:=3
ar—=3, b—=2 LC:=a+b ic.:4
c:=a+l ab—=2, c+—=4 c:=4
a3, b—=2,c——=4 fd =a+l fd =3
d:=c-2 O ab—=2, c——=4, d—=3 d:=2 O
a3, bd——=2,c——=4
b—=2, c—=4
e:=a+d e:=5
b—=2, c—=4
if = at+b*c if = a+8

[E81
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lllustrating the Challenges of CP

...show that the terms xy-6, x+y, and z are constants of value
0 at the nodes 2, 3, and 4, respectively,

s=1
x:=2 x:=3 5.1
y:=3 y:=2
2 xy-6—= 0
X 1= Xy-6
y:=0
; thll 3 X+yr—= 0

Markus Miiller-Olm, Helmut Seidl (SAS 2002)

388/177



Undecidability of Constant Propagation

Theorem 5.1.1 (Undecidability, Reif&Lewis 1977)

In the arithmetic domain, the problem of discovering all text
expressions covered by constant signs is undecidable. 51

(John H. Reif, Harry R. Lewis. Symbolic Evaluation and
the Global Value Graph. In Conference Record of the
4th Annual SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL'77), 104-118, 1977)
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Proof Sketch of Theorem 5.1.1 (1)

The proof of Theorem 5.1.1 proceeds by reducing Hilbert's
10th problem to the problem of discovering all text expressions
covered by constant signs:

[E81

» Hilbert's 10th Problem

Let {x1,...,xx} be a set of variables, k > 5, and let
P(xi,...,xx) be a (multivariate) polynomial.

It is not decidable, if determining if P(xy,...,xx) has a
root in the natural numbers (Matijasevic 1970).
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Proof Sketch of Theorem 5.1.1 (2)

Consider the program G below:
xi=0

x1::x|+l
i)&xf—]
X=Xl

o

O
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Proof Sketch of Theorem 5.1.1 (3)

Proving the equivalence

51
P has no root in the natural numbers iff

z is constant (at node e of G)

completes the proof. O

302/177



The Bad News of Theorem 5.1.1

There is no hope of developing an algorithm that, when
applied to an arbitrary program G,

[E81

» determines for every term occurrence in G in a finite
number of steps, if the evaluation of this occurrence will
always yield the same value when its site is reached and
its value computed at the runtime of G.
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The Good News of Theorem 5.1.1 (1)

The impossibility of solving the constant propagation (CP)
problem once and for all

» gives room for both theoreticians and practitioners to
strive for constant propagation algorithms tailored and
optimized for different purposes and goals. o

304/177



The Good News of Theorem 5.1.1 (2)

The undecidability of the general CP problem inspires...

For the theoretician

» ...a quest for discovering settings with a decidable CP
problem
» Restricting the class of admissible programs 51
» Finite constants: arbitrary term operators, decidable for
arbitrary control flow, complete for acyclic control flow,
EXPTIME algorithm (Steffen&Knoop 1989)
» Restricting the set of admissible expression operators
» Presburger constants: 4, — as term operators, decidable
and complete for programs with arbitrary control flow,
polynomial time algorithm (Miiller-Olm&Riithing 2001)
» Polynomial constants: +, —, * as term operators,
decidable and complete for programs with arbitrary
control flow, time complexity of the proposed decision
algorithm not yet known, PSPACE-hardness as a lower
complexity bound (Miiller-Olm&Seidl 2002)
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The Good News of Theorem 5.1.1 (3)

For the practitioner

» ...a quest for discovering sweet spot settings with a useful
and efficiently, scalable decidable CP problem
» Simple constants, intraprocedural
> based on expression pools (Kildall 1973)
based on definition-use chains 51
based on abstract state transformers 53
based on the global value graph (Reif&Lewis 1977) ;
based on the SSA value graph (Knoop&Riithing 2000) 57
Q constants, intraprocedural (Kam&Ullman 1977) 59
Conditional constants, intraprocedural 511
(Wegman&Zadeck 1985)
» Linear constants, interprocedural (Sagiv, Reps, Horwitz
1996)
» Copy constants, interprocedural
Strong constants, parallel (Knoop 1998)

vV vy VvVyy

v

\4

v
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The Good News of Theorem 5.1.1 (4)

In essence

Theoreticians cope with the undecidability of CP by

» trading generality as little as possible for decidability
(neglecting efficiency and scalability).

[E81

Practitioners cope with the undecidability of CP by

» trading generality as much as necessary for efficient,
scalable and useful decidability.

Note

» This is quite a typical situation in program analysis and
optimization, and a virtually unexhaustable source of
challenging and important research questions.
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In the following

...we will focus on some of the approaches for constant
propagation inspired by practical demands and needs, i.e.,
approaches offering a good cost/benefit ratio:

» Simple constants

5.1
» Linear constants
» Copy constants

Q constants

v

v

Conditional constants

Additionally, we consider

» Finite constants

as an example of an optimal class of constants.

308/177



Chapter 5.2

Preliminaries, Problem Definition
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Workplan

Introducing and defining
» Syntax of terms (variables, operator and constant
symbols,...)

» Semantics of terms (data domain, interpretation of
operator and constant symbols, states,...)

» Semantics of instructions (state transformers,...)
» Semantics of programs (collecting semantics)

» Constant propagation problem

formally.
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Towards the Syntax of Terms

...variables, constants, operators.

Let
» V be a set of variables, -
» C be a set of constant symbols (constants),
» O be a set of k-ary operator symbols (or operators),
k> 1.
Let

» V, C, and O be disjoint.
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Syntax of Terms

Definition 5.2.1 (Terms)

1. Every variable v € V, every constant ¢ € C is a term.

5.2
2. If op € O is a k-ary operator and ty, ..., t, are terms,
then (op, t1,..., tc) is a term.

3. There are no terms other than those which can be
constructed by means of the above two rules.

The set of all terms is denoted by T.
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Towards the Semantics of Terms

We require
» a data domain ID, 52

» an interpretation of constant and operator symbols over
D,

» a set of states over ID. o
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Data Domain

Let
» ID be a data domain of interest.
(E.g., the set of natural numbers IN, the set of integers
Z, the set of Boolean truth values IB, etc.). 52
The

» elements of ID are called (data) values.

We assume

» ID includes a distinguished element L representing the
value undefined.
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Interpreting Constant and Operator Symbols

Definition 5.2.2 (Interpretation)
An interpretation | =4 (ID, y ) of C and O is a pair, where

» ID is a data domain, 52

» Iy is a function, which maps every
» constant symbol ¢ € C to a datum Ip(c) € ID,

» k-ary operator symbol op € O to a total strict function
lo(op) : IDK = 1D, i.e., Ip(op)(dy,...,dx )= L, if there is
ajed{l,....k} with dj=_1.
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States

Definition 5.2.3 (States over ID)
A state 0 : V — ID is a total mapping, which maps every o
variable to a data value d € ID.

We denote the set of all states by

Y=4{o|lo:V—=ID}
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Semantics of Terms

Definition 5.2.4 (Semantics of Terms)
The semantics of terms t € T is defined by the evaluation
function
gT—>(Z—>ID) 5.2

defined by
o(x) ift=xeV
Yt e T Vo €% E(t)(0) =g 4 Pol6) Ht=cel
| " hlop)(E(n) (o), E(t)(0))
if t = (op,t1,...,t)
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Semantics of Instructions

Definition 5.2.5 (Semantics of Instructions)

» Let 1 = x:=t be an assignment instruction. The
semantics of ¢ is defined by the state transformation
function (or state transformer) 6, : ¥ — ¥ defined by

E(t)(o) ify=x

VoeXVyeV.0,(0)(y)=a { a(y) otherwise

» Let 1 = skip be the empty instruction. The semantics of ¢
is defined by the identical state transformation function
(or state transformer) Ids , i.e., 0,=g4f Ids, where
Ids : ¥ — ¥ is defined by Vo € ¥. lds(0)=4f 0.

52
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Extending State Transformers to Paths

Let G=(N, E,s,e) be a flow graph, let ¢, denote the
instruction at edge e, e € E.

Definition 5.2.6 (Extending 6 from Edges to Paths) 2

The state transformers 0,,, e € E, are extended onto paths
p = (e1,e,...,€e) in G by defining:

g I ifg<1
p—df Oley.....cq) © ., Otherwise
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Semantics of Programs: Collecting Semantics

Definition 5.2.7 (Collecting Semantics)

» The collecting semantics of G is defined by:
CS¢: X N—-P(X)

Vne N.VoeX. CSc(n)=4r{0p(c)|p € Pls,n]}

» The collecting semantics of G with respect to a fixed
initial state os € X is defined by

CS% : N—P(X)

VneN.CSZ(n)=q4{0,(0s)|p € P[s,n]}

52
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Non-deterministic Constants
Let o5 € ¥ be an (initial) state, let t € T be a term, and let
d € ID\{L} be a data value.

Definition 5.2.8 ((Non-deterministic) Constant)

t is a constant at node n for oy, i.e., the value of t at node n,
n € N, is a constant, if

Vo,0' € CSZ(n). E(t)(0)=E(t)(0") # L

52

Definition 5.2.9 ((Non-det.) Constant of Value d)

t is a constant of value d for o5 at node n, n € N, if
{€(t)(0) o € CSZ(n)} ={d}
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Constant Terms and Variables

Let o € X be a state, and let n be a node of G.

Definition 5.2.10 (Constant Terms and Variables)

The set of terms and variables being constants of some value
at n are given by the sets:

> CTE(n) =ar

{(t,d) € T xID|t is a constant of value d for oy at n}
> CVEE(n) =ar

{(v,d) € V x ID|v is a constant of value d for o5 at n}

52
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The Non-Det. Constant Propagation Problem

Let G=(N, E,s,e) be a flow graph, let o5 € ¥ be a state.

The non-deterministic constant propagation problems for
terms and variables are defined by:

Definition 5.2.11 (CP Problem for Terms (CT)) 53

The (non-deterministic) term constant propagation problem,
CT, is to determine for every node n € N of G the set
CTZ(n).

Definition 5.2.12 (CP Problem for Variables (CV))

The (non-deterministic) variable constant propagation
problem, CV, is to determine for every node n € N of G the
set CVZ:(n).
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States Induced by CT® and CV*

The sets CTZ* and CVZ® induce for every node n two states
UI.Tgs(n) and J‘C’Vgs(n), respectively, which we use alterna-
tively to the sets CTZ*(n) and CVZ*(n) (cf. Lemma 5.2.13):

> UCTUS N — T — ID defined by o

d if (t,d) e CTZ(n)
1 otherwise

o () ()=t {
> acvas N —V — ID defined by

d if (v,d) e CVZ(n)
1 otherwise

0 tyas (M) (v)=dr {
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Equivalence of Set&State-like Characterization

We have:

Lemma 5.2.13 (Equivalence) i
Vne NVteTVveVVdelD\{Ll}. ;

» (t,d) € CTZ(n) iff JZTgs(n)(t):d
» (v,d) € CVZ(n) iff U‘C'Vgs(n)(v):d
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Equivalent Characterization of the CP Problem

The Equivalence Lemma 5.2.13 yields:

Lemma 5.2.14 (Problem Equivalence)

Solving the non-deterministic

52

» term constant propagation problem CT

» variable constant propagation problem CV
is equivalent to computing the functionals

> UCTGS N—->T—=ID

» oY cves :N—-V—=ID

respectively.
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CP Algorithms: Soundness and Completeness

Let A be a constant propagation algorithm for CT (CV); let
Actes(n) €T x ID (Acygz:(n) €V x ID) denote the sets of
terms (variables) discovered by A to be constant at node n.

Definition 5.2.15 (Soundness of CP Algorithms) 2
Ais sound for CT (CV) if

VneN.Vos € L. CTE(n) 2 Acras(n) (CVE(n) 2 Acvzs(n))
Definition 5.2.16 (Completeness of CP Algorithms)
A'is complete for CT (CV) if

VneN.Vos € X. CTE(n) C Acres(n) (CVE(n) C Acygs(n))
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CP Algorithms: Conservativity and Optimality

Definition 5.2.17 (Conservativity of CP Algorithms)

A CP algorithm A is conservative for CT (CV), if it is sound
for CT (CV), i.e.

VneN.Vos € X. CTZ(n) 2 Acres(n) (CVE(n) 2 Acves(n)) 2

Definition 5.2.18 (Optimality of CP Algorithms)

A CP algorithm A is optimal for CT (CV), if it is sound and
complete for CT (CV), i.e.

VneN.Vos € X. CTZ(n)=Acrz:(n) (CVE(n)=Acve(n))
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Relating CVZ* and CTZ2® (1)

The functional
JCVUS V—ID

induced by the variable CP problem CVZ* induces for every
node a solution of the term constant propagation problem in
terms of states and sets, respectively: 52

» State-based:
acvas N—T—ID

0 cves (n)(t)=ar E(t)(0¢ygs ()

» Set-based:

CTeves(n) =ar {(t.d) € TxID| £(t)(0¥yzs(n)) =d # L }
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Relating CVZ* and CTZ® (2)

We have:

Lemma 5.2.19 (Equivalence Lemma)
VneN. \V/Us €X. Cchgs(n):O'I-Vgs(n)

Lemma 5.2.20 (Approximation Lemma)
VneN.Vos € X. CTZ(n) 2 CTeyg:(n)

In general, this inclusion is a proper inclusion.
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Interpretation, Conclusions (1)

Intuitively

» The Approximation Lemma 5.2.20 states that a term can
be a constant at some node n without that all of its
variables are constants at n.

E.g., the equality of xy — yx and 0 can be concluded

without knowing the values of x and y; actually, they 52
need not be constant at all. For a more complex case

consider x> 4+ xy = 0 in the example of Miiller-Olm and

Seidl in Chapter 5.1.

Hence

» Any sound algorithm for the CV constant propagation
problem is in general conservative and suboptimal for the
CT constant propagation problem.

» This holds even for a (hypothetical) optimal algorithm
(cf. Th. 5.1.1) for the CV constant propagation problem.
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Interpretation, Conclusions (2)

As a matter of fact

» The Undecidability Theorem 5.1.1 rules out the possibility
and existence of CT and CV optimal constant
propagation algorithms.

52

Hence

» The best we can hope for are conservative CT and CV
constant propagation algorithms trading optimality for
decidability (and efficiency, scalability).
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Characterizing CP Algorithms (1)

In practice, CP algorithms fall into two groups, algorithms A,
which compute and store values for

» variables at a program node, hence computing a mapping

52

./l(j\/ N—V— 7:>(|[))

» terms at a program node, hence computing a mapping
Acr: N—T—P(ID)
as the result of the analysis, called variable and term valuation

function, respectively.
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Characterizing CP Algorithms (2)

We call algorithms falling into these two groups

» CV algorithms
» CT algorithms

for constant propagation, respectively.

Moreover, we call CV and CT algorithms

» singleton CV algorithms, if they store at most one value
per variable a program node, i.e., if they compute and
store a mapping Acy : N—V —ID

» singleton CT algorithms, if they store at most one value
per term at a program node, i.e., if they compute and
store a mapping Acr : N— T —1ID

respectively.

52
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Characterizing CP Algorithms (3)

The algorithms for

» Simple constants
» Linear constants
» Copy constants
Q constants

v

52

are singleton CV algorithms.

The algorithm for
» Finite constants

is a singleton CT algorithm.

Note: The algorithm for conditional constants is a singleton
algorithm, too, but addresses the deterministic CV constant

propagation problem.
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Induced Term Valuation Function

The variable valuation function

» Acy : N—=V = 1D

of a CV algorithm A induces a term valuation function

» AL, : N—=T—ID

52

defined by
Vne NVteT. AL, (n)(t) =ur
{ d if E(t)(Acv(n))=d # L

1 otherwise

426/177



CV/CT Solutions induced by Valuations (1)

Let A be a singleton CV constant propagation algorithm.

The variable and term valuation functions
>./4CV;I\I—>V—>|D 5.2
» AL, : N—=T—1ID

of A induce solutions for the CV and the CT constant
propagation problems:

> CVa(n) =g {(v,d) € V x ID| Acy(n)(v)=d # L}
> CTac, (n)=ar {(t.d) € T X ID[ AL, (n)(t)=d # L}
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CV/CT Solutions induced by Valuations (2)

Let A be a singleton CT constant propagation algorithm.

The term valuation function

» Act :N—-T—1D

52

of A induces solutions for the CV and the CT constant
propagation problems:

> CVACT(H) =df {(V, d) eV xID | ACT(I'I)(V) =d 7é J_}
b CTa (n) =ar {(t,d) € T x ID| Acr(n)(t) =d # 1}
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Chapter 5.3

Simple Constants
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Chapter 5.3.1
DFA States, DFA Lattice
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From Data Domains to DFA Lattices (1)

...domain extension.

Let

» ID be the data domain of interest (e.g. the set of natural
numbers IN, the set of integers Z, the set of Boolean
truth values IB, etc.) with a distinguished element L .
representing the value undefined.

We extend ID by adding

» a new element T notin ID, i.e., T & ID.

We denote the extended domain by
> |D/:df DU {T} .
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From Data Domains to DFA Lattices (2)

...lattice construction.

Given an extended data domain ID’, we construct the flat
lattice F Ly (cf. Appendix A.4)

AN

which constitutes the basic DFA lattice of the CP analysis.

Intuitively
» T represents complete but inconsistent information.
» d;, i > 1, represents precise information.
» | represents no information, the empty information.

53.1
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The Basic DFA Lattice over Z

...is given by FLz

/\\
\/

...leading to the class of simple constants over Z.

O =

3.1

e

5.10
5.11
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Adapting the Notion of States: DFA States

Definition 5.3.1.1 (DFA States)

A DFA state o : V — ID’ is a total mapping, which maps
every variable to a datum d € ID'.

The set of all DFA states is denoted by
Y =g4{o|o:V—ID}
o, and ot denote two distinguished states of X" defined by

VveV.o(v)=1, or(v)=T

respectively.
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lllustrating a DFA State o over Z

/// N
\\\\\\:::iigiggs\4;225111;”’///

/// \\\\

/// \\\\
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Initial DFA States

For an initial DFA state, we require that no variable is mapped
to the special value T, i.e, we require to either have precise
information of the value of a variable, when entering a
procedure, or no information at all. We define:

Definition 5.3.1.2 (Initial DFA States over ID') 31
The set of initial DFA states is defined by

Z//n/t:df{(fEZ'WVEV. o(v) £ T}

Note: The set of initial DFA states ¥, ,, coincides with the set
of (program) states & of Definition 5.2.3, i.e., ¥, = L.
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Extending the Interpretation to T € ID’

Definition 5.3.1.3 (Extending the Interpretation)
Let / =4 (ID, Iy ) be an interpretation of constant and
operator symbols over the data domain ID.

Then I"=4 (ID', I§ ) extends [ to an interpretation over ID" by
defining

» I§(c) =ar Io(c) for every constant symbol ¢ € C 52
» I5(op) : ID"" — ID’ for every operator symbol op € O by
V(dl, RN dk) eID". /6(Op)(d1, RN dk) =df

lh(op)(dy,...,dy) if di=_1 forsome 1 <i <k, or
d# T, 1<j<k

T ifdi=£1,1<i<k,and
di=T forsome 1 <j <k
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Adapting the Semantics of Terms to ID’

Definition 5.3.1.4 (Adapted Semantics of Terms)
The semantics of terms t € T is defined by the extended
evaluation function

E:T— (X —1ID)

defined by
o(x) ift=xeV
Ve T Vo e X £(t)(0) =g 5§(C,)3 fr=ccC
if t =(op, ty,...,1t)

(op)(E'(t)(0), -, &' (1) (o))

53.1
5.3

5.9
5.10
5.11
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Adapting the Semantics of Instructions to ¥’

Definition 5.3.1.5 (Adapted Semantics of Instruc’s)

» Let . = x:=t be an assignment instruction. The
semantics of ¢ is defined by the extended state
transformer ¢/ : ¥ — ¥’ defined by

E'(t)(o) ify=x

! / _
Vo X vy eV 0(0)(y) =ar { a(y) otherwise

» Let 1 = skip be the empty instruction. The semantics of ¢
is defined by the extended identical state transformer
/dz/, i.e., szdf /dz/, where /dz/ Y =Y is defined by
VoeX lds(o)=u 0.

53.1
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The DFA Lattice for Simple Constants

The set of DFA states together with the pointwise ordering of
states, Ty, constitutes a complete lattice (cf. Appendix A.4):

Vo,o' eY. o Cx o' iff YveV.o(v)Crep, o'(v)

53.1

Lemma 5.3.1.6 (Lattice of DFA States)
Y'=4 (X, Ny, Usr, Cyry00,07) is a complete lattice with
» least element o, greatest element o,

» pointwise meet My and join Ly as meet and join
operation, respectively.
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Simple Constants: Specification
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Simple Constants over Z: DFA Specification
DFA Specification
» DFA lattice

~

C=(C,mU,C, L, T)=g4
(217 I_IZ’a l—lz’a EZ’, g, JT) - f,
with Y’ set of DFA states over Z.

» DFA functional
[l.: E= (X=X )whereVec E. [e], =0,

/

» Initial information: o, € X,

» Direction of information flow: forward

Simple Constants Specification

» Specification: Sg = (f’, [ 1...0s fw)

5.3.2
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Chapter 5.3.3

Termination, Safety, and Coincidence
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Towards Safety and Termination

Lemma 5.3.3.1 (Descending Chain Condition)

Y/ satisfies the descending chain condition.

Note. The set of variables occurring in a program is finite. -

Lemma 5.3.3.2 (Monotonicity) =

[ 1.. is monotonic.

Lemma 5.3.3.3 (Non-Distributivity)

[ 1.. is not distributive.

5.10
5.11
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Termination and Safety/Conservativity

Theorem 5.3.3.4 (Termination)

Applied to S = (¥, l..: o5, fw), Algorithm 3.4.3 terminates
with the MaxFP solution of S¥.

Proof. Immediately with Lemma 5.3.3.1, Lemma 5.3.3.2, and
Termination Theorem 3.4.4.

Theorem 5.3.3.5 (Safety/Conservativity)

Applied to S = (£, ].., s, fw), Algorithm 3.4.3 is MOP
conservative for SE (i.e., it terminates with a lower
approximation of the MOP solution of S¥).

Proof. Immediately with Lemma 5.3.3.2, Safety Theorem
3.5.1, and Termination Theorem 5.3.3.4.

5.3.3
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Non-Coincidence

Theorem 5.3.3.6 (Non-Coincidence/Non-Opt.)

Applied to Sg = (f’,[[ l..: o5, fw), Algorithm 3.4.3 is in
general not MOP optimal for Sg (i.e., it terminates with a
properly lower approximation of the MOP solution of S&).

Proof. Immediately with Lemma 5.3.3.3, Coincidence
Theorem 3.5.2, and Termination Theorem 5.3.3.4. 533

Corollary 5.3.3.7 (Safety, Non-Coincidence)

The MaxFP solution for S&, is always a safe approximation of
the MOP solution of Sg. In general, the MOP solution and
the MaxFP solution of Sg do not coincide.
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Soundness and Completeness

53.4
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Soundness and Completeness of MOPss

Theorem 5.3.4.1 (Soundness and Completeness)
The MOP solution of S¥ is

1. sound and complete for the variable constant propagation
problem CV, i.e.

VneN. Vo,ex,,. C Vas( ) = MOP . (n)

2. sound but not complete for the term constant

propagation problem CT, i.e.
VneN Vo, €%, Clyes(n) Iz MOPZ (n)

53.4

In general, the inclusion is a proper inclusion.
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Soundness and Completeness of MaxFPss

Corollary 5.3.4.2 (Soundness and Completeness)
The MaxFP solution of S¢ is

1. sound but not complete for CV, i.e.

YneN.Vo,€X,,. C Vas( n) s MaxFPg(n)

2. sound but not complete for CT, i.e.

¥n€N. Vo, € X Clros(n) Dx MaxFPET (n)

In general, both inclusions are proper inclusions.

53.4
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Simple Constants over Z: lllustrating Example

a) o b)

c:=a+l L ab—=2, c—=4 c:=4
a3, b—=2,c—=4 id =a+l Ed =3
d:=c-2 ab—=2, c—=4, d—=3 d:=
a3, bd—=2,c—=4 g g

b—=2, c—=4

e:=a+d L e:=at+d
b—=2, c+—4
if = a+b*c f:=a+8

...all terms except of a + d and a + 8 are simple constants.

Note: The term a + d is a constant of value 5, though not a
simple constant; the term a+ 8 is not a (non-deterministic)
constant.
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DFA States, DFA Lattice, and More

The linear constants (LC) analysis shares the

extended data domain ID’

basic flat DFA lattice F Ly

set of DFA states ¥’

extended interpretation /'=4¢ (ID’, I{)

v

v

v

v

5.4.1

with the simple constants (SC) analysis.

LC-specific are
» the adaption of the semantics of terms to ID’

» the adaption of the semantics of instructions to ¥’
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L C-specific Term Semantics Adaption

Definition 5.4.1.1 (Adapted Semantics of Terms)

The LC-specific semantics of terms t € T is defined by the
extended evaluation function

((:/C: T (Z/ — ID/) 5.1

defined by st
Vte TVoeX' Ei(t)(o)=ar
((o(x) ift=xeV 55
Ii(c) ift=ceC
lé(@)(g/(*,C,X)( ) glc( )(U)) ZE
if t = (P, (x,¢,x),d) =cxxPd,
¢,dcC @ef{+ —}
1 otherwise
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L C-specific Instructions Semantics Adaption

Definition 5.4.1.2 (Adapted Semantics of Instruc’s)

» Let . = x:=t be an assignment instruction. The
semantics of ¢ is defined by the LC-specific state
transformer 0/ : ¥/ — ¥ defined by

Ee(t)(o) ify=x 541

’ Ic _
VoeX' VyeV. 0 (o)(y)=ar { a(y) otherwise

» Let ¢ = skip be the empty instruction. The semantics of ¢
is defined by the extended identical state transformer
/dz/, i.e., 91/6 =df /dz/, where /dz/ ;Y — Y is defined by
VoeX lds(o)=u 0.
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Linear Constants over ZZ: DFA Specification
DFA Specification
» DFA lattice

~

C=(C,mU,C, L, T)=g
(zlv I_IZ’a l—lz’a EZ’, 01, JT) - f,
with ¥/ set of DFA states over Z.

» DFA functional
[1.:E—=(Y—%)whereVec E. [e], =ar 0

5.4.2

!

» Initial information: o, € X, ,

» Direction of information flow: forward

Linear Constants Specification

> Specification: S =(¥/,[ 1, s, )
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Towards Coincidence and Termination

Lemma 5.4.3.1 (Descending Chain Condition)

Y/ satisfies the descending chain condition.

Note. The set of variables occurring in a program is finite. -
Lemma 5.4.3.2 (Distributivity) s42
[ 1, is distributive. 545

Corollary 5.4.3.3 (Monotonicity)

[ 1,. is monotonic.

5.10
5.11
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Termination and Coincidence/Optimality

Theorem 5.4.3.4 (Termination)

Applied to S = (', lic; o5, fw), Algorithm 3.4.3 terminates
with the MaxFP solution of S.

Proof. Immediately with Lemma 5.4.3.1, Lemma 5.4.3.3, and
Termination Theorem 3.4.4.

Theorem 5.4.3.5 (Coincidence/Optimality)

Applied to 8% = (', [ 1., os, fw), Algorithm 3.4.3 is MOP
optimal for S¥ (i.e., it terminates with the MOP solution of
Sk).

Proof. Immediately with Lemma 5.4.3.2, Coincidence
Theorem 3.5.2, and Termination Theorem 5.4.3.4.

543
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Soundness, Non-Completeness of MOPS/GQ

Theorem 5.4.4.1 (Soundness, Non-Completeness)
The MOP solution of S is

1. sound but not complete for the variable constant
propagation problem CV, i.e.

Vn - N VO'S - Z/nlt C VUS( ):'Z/ MOPsIc( )

2. sound but not complete for the term constant e
propagation problem CT, i.e.

Vne N. Vo, € Zlmt CCTas( ):lz/ MOP? S’C ( )

In general, both inclusions are proper inclusions.
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Soundness, Non-Completeness of MaXFPS/GC

Corollary 5.4.4.2 (Soundness, Non-Completeness)
The MaxFP solution of S¥ is

1. sound but not complete for CV, i.e.

VneN. VO‘S € Zlnlt CCVJS( ) jz’ MaxF SIC( )

2. sound but not complete for CT, i.e.

VneN.Voy € Iy Clron(n) I MaxFPE (n)

In general, both inclusions are proper inclusions.
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Linear Constants over Z: lllustrating Example

a) b)

a:=2 a:=2
a—=2

b:=a b:=2
a,b—2 a:=3

a—=3, b—=2 c:=a+b c:=a+b
c:=a+l abr—2, c—=| c:=4
ab—3, b—=2, c——=4 d:=a+l

d:=c-2
ar—=3, bd—=2,c——4

ab—2, c—=|,d—=3 d:=2

b—=2, ¢+ |

e:=a+d e:=a+d
b2, ¢ |
f:= a+b*c f:=a+b*c

..theterms a+ b, a+ d, bx ¢, and a+ b * ¢ are not linear

constants, though they are simple constants (except of a + 8
=a+bxc).

54.1

5.4.4
5.4.5
55

5.11
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DFA States, DFA Lattice, and More

The copy constants (CpC) analysis shares the

extended data domain ID’

basic flat DFA lattice F L

set of DFA states ¥’

extended interpretation /'=¢ (ID’, I{)

v

v

v

v

with the simple constants (SC) and the linear constants (LC)
analysis.

CpC-specific are
» the adaption of the semantics of terms to ID’

» the adaption of the semantics of instructions to ¥’
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CpC-specific Term Semantics Adaption

Definition 5.5.1.1 (Adapted Semantics of Terms)

The CpC-specific semantics of terms t € T is defined by the
extended evaluation function

Epe: T—= (X = ID)
defined by

Vte TVoeX. Eqpc(t)(o)=ur o

o(x) ift=xeV J
Ié(C) |f t=c € C v::u
1 otherwise
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CpC-specific Instructions Semantics Adaption

Definition 5.5.1.2 (Adapted Semantics of Instruc’s)

» Let . = x:=t be an assignment instruction. The
semantics of ¢ is defined by the CpC-specific state
transformer 6P¢ : X' — ¥ defined by

Ecpe(t)(o) fy=x non

! cpc _
Vo X Vy €V.0F(0)(y) =ar { o(y) otherwise

» Let ¢ = skip be the empty instruction. The semantics of ¢
is defined by the extended identical state transformer
/dz/, i.e., gfpc =df /dz/, where /dz/ Y — Y is defined by
VoeX lds(o)=u 0.
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Copy Constants: Specification

55.2
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Copy Constants over Z: DFA Specification
DFA Specification
» DFA lattice

~

C= (C7 nu,c, 1, T):df
(Z/, |—]z/, |_|):/, Ez/, g, UT) = f’
with Y/ set of DFA states over Z.

» DFA functional
I ]]Cpc E— (Y —>%Y'")where Ve € E. |[e]]cpczdf Gfepc

/

» Initial information: o5 € X,

» Direction of information flow: forward

Copy Constants Specification
» Specification: S&° = (f’, [ 1., 05 fw)

55.2
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Towards Coincidence and Termination

Lemma 5.5.3.1 (Descending Chain Condition)

S/ satisfies the descending chain condition.

Note. The set of variables occurring in a program is finite. 2

Lemma 5.5.3.2 (Distributivity)

[ 1. is distributive. 9

Corollary 5.5.3.3 (Monotonicity)

[ 1., is monotonic.

5.10
5.11
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Termination and Coincidence/Optimality

Theorem 5.5.3.4 (Termination)

Applied to S&P° = (2, [ lepe: 05, fw), Algorithm 3.4.3
terminates W|th the MaxFP solution of SZ°.

Proof. Immediately with Lemma 5.5.3.1, Lemma 5.5.3.3, and
Termination Theorem 3.4.4.

Theorem 5.5.3.5 (Coincidence/OptimaIity)

Applied to SF° = (1 ]]Cpc,as, fw), Algorithm 3.4.3 is MOP
optimal for SC”C (i.e., it terminates with the MOP solution of
S&9).

Proof. Immediately with Lemma 5.5.3.2, Coincidence
Theorem 3.5.2, and Termination Theorem 5.5.3.4.
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Soundness, Non-Completeness of MOPSgpc

Theorem 5.5.4.1 (Soundness, Non-Completeness)
The MOP solution of SZ° is

1. sound but not complete for the variable constant
propagation problem CV, i.e.

vn E N VO'S E er”t C VUs( ) gz/ MOPgscpc(n)
G

2. sound but not complete for the term constant
propagation problem CT, i.e.

554

VneN. Yo, ex,.. Clras(n) Ix MOPgsg,I(n)

In general, both inclusions are proper inclusions.
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Soundness, Non-Completeness of MaxFngpc

Corollary 5.4.4.2 (Soundness, Non-Completeness)
The MaxFP solution of SZ° is

1. sound but not complete for CV, i.e.

Vn € N VO-S € Zlnlt CCVOS( ) :lzl MaXFPScpc( )

2. sound but not complete for CT, i.e.

VneN. Vo5 € Ly Clyes(n) Ix MaXFsz,I( )

In general, both inclusions are proper inclusions.

554
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Copy Constants over Z: lllustrating Example

a)

a—=3, b—=2

ab—2, c—|,d—=3d:=c-2 i

c:=a+l i
ab—3, b—=2, c—=4 :
d:=c-2
a3, bd—=2,c—=4
b—=2, ¢+ |

e:=a+d e:=a+d
b2, ¢ |
f:=a+b*c f:=a+b*c

55.5

...only the right-hand side terms 2, 3, and a, are copy
constants, though many of the other terms are linear or simple
constants.
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Background and Motivation (1)

...the MOP solution as the specifying solution of a DFA
problem is not decidable.

Theorem 3.3.3 (Undecidability, Kam&Ullman 1977)

— recalled
There is no algorithm A satisfying:

5.6.1

» The input of A are
» a DFA specification S¢g = (C, [ ], ¢, fw)
» algorithms for the computation of the meet, the equality
test, and the application of monotonic functions on the

elements of a complete lattice
» The output of A is the MOP solution of Sg.
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Background and Motivation (2)

...for monotonic DFA problems, the MaxFP solution as their
computable solution is generally a proper approximation of
their MOP solution only.

Theorem 3.5.1 (Safety) — recalled

The MaxFP solution of Sg=(C,[ |, . fw) is a safe (i.e.,
lower) approximation of the MOP solution of Sg, i.e.,

5.6.1

Vn e N. MaxFPs_(n) C MOPs_(n)

if the DFA functional [ ] is monotonic.
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The Impact of Monotonicity on SCs (1)

...SCs, a (non-distributive) monotonic DFA problem.

While a x b is a simple constant in the example below...

a) b)
s=l? aber—s |
2Oa,b.c>—>J7
aber—= | 3 4O aber—— |
a=2 a=2
a—= 2 6 a—= 2
ber—| 3 ber—= |
b:=3 b:=3
ar—= 2 ar—= 2
b—= 37 8 b—= 3
c—| ]
a2
I b—3
ci=6 cr— |
fe=ath]
a—= 2
e=10 b—= 3
c—= 6

5.6
5.6.1
5.6.2

5.10
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The Impact of Monotonicity on SCs (2)

...Iit is not in the only slightly modified example below:

b)

Y Sﬂ? s=1? aber—=|
2 O 2 aber—= | j 1
a AN .

3 4 O aber—s | 3 4( aber— |
a=2 a:=3 a=2 a=3

6 ar—s= 2 6 a—s= 3
5 ber—s | 5 ber—s |
b:=3 b:=2 b:=3 bi=2
ar—= 2 ar—=3
7 8 b—= 37 8 b— 2
o= =1 33
5.7
9 9 abei—s | o
9
c:=a*b c=a*b 5.10
11
e=10 cr—= e=10 abei—= |
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The Proposal of Kam and Ullman

To improve on this situation

» Kam and Ullman propose using a slightly modified fixed
point approach to cope with (non-distributive) monotonic
DFA problems.

We call this approach the
» Kam/Ullman MaxFP approach (or Q-MaxFP approach).

5.6.1
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Preliminaries

Following Kam and Ullman, we start considering a
node-labelled Sl flow graph!

» G=(N,E,s,e)

Let
> SG - (57 II ]]a Cs, fW)

be a monotonic (non-distributive) DFA specification with

[1:N—=(C—C)

1We will adapt the Q approach to edge-labelled flow graphs later.
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The MaxFP Approach (N-labelled Graphs)

...adapted for node-labelled S| graphs.

Equation System 5.6.2.1 (MaxFP EQS)
) G if n=s
N-inf(n) = { [ {X-inf(m)| m € pred(n)} otherwise 561

5.6.2
5.6.3

X-inf(n) = [ n](N-inf(n))
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The Q-MaxFP Approach (N-labelled Graphs)

Equation System 5.6.2.2 (Q-MaxFP EQS)

. Cs if n=s
NQ-inf(n) = { [H{XQ-inf(m)| m € pred(n)} otherwise

| _ [ Inl(e) fn=s
XQ-inf(n) = { L n1(XQ-inf(m))| m € pred(n)} otherwise.:

...essential: delaying to joining (by 1) information.
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MaxFP Approach vs. Q-MaxFP Approach

MaxFP Approach — joining information early (eagerly):
Equation System 5.6.2.1" (MaxFP EQS)

. c if n=
N-inf(n) { [{X-inf(m)|m € pred(n)} otherv:ise

e Inl(e) n=s
X-inf(n) = { [ nJ([{X-inf(m)| m € pred(n)}) otherwise

5.6.2

Q-MaxFP Approach — joining information late (lazily):
Equation System 5.6.2.2 (Q-MaxFP EQS)

_ Cs if n=s
NQ-inf(n) = { [H{XQ-inf(m)| m € pred(n)} otherwise

| _ [ In](e) it n=s
XQ-inf(n) = {H{ﬂn]](XQ_inf(m))‘mepred(n)} otherwise
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Eager and Lazy Fixed Point Approach

The Equation Systems 5.6.2.1" and 5.6.2.2 give rise to

consider the
» MaxFP approach 51
» Q-MaxFP approach 5

the s
» eager (eagerly joining) 1
» lazy (lazily joining)

fixed point approach, respectively. 3
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MaxFP, Q-MaxFP Solutions (N-lab’ed Graphs)

Definition 5.6.2.3 (MaxFP, Q-MaxFP Solution)
For every node n € N, the MaxFP and Q-MaxFP Solutions of
S¢ are defined by
» N-MaxFPs_(n) =4r N-inf*(n)
X-MaxFPs_(n) =ar X-inf*(n)
» NQ-MaxFPs_(n) =4 NQ-inf*(n)
XQ-MaxFPs_(n) =4 XQ-inf*(n)

where
» N-inf*(n), X-inf*(n) : N—C
» NQ-inf*(n), XQ-inf*(n): N—C

denote the greatest solutions of Equation System 5.6.2.1" and
Equation System 5.6.2.2, respectively.
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Q Approach: Improvement (N-lab’ed Graphs)

We have:

Lemma 5.6.2.4 (Q Improvement Lemma)

For every node n € N, we have:

» NQ-MaxFPs_(n) 3 N-MaxFPs_(n)
» XQ-MaxFPs_(n) 3 X-MaxFPs_(n)

In general, all inclusions are proper inclusions.
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Computing MaxFP and Q-MaxFP Solution:
Pragmatics (N-labelled Graphs)

Note

» XQ-inf* and X-inf* can be computed without referring

to (approximations of) NQ-inf* and N-inf*, respectively.

Once

» XQ-inf* and X-inf* have been computed NQ-inf* and
N-inf* can be computed by visiting each node once. No
further fixed point computation or iteration is required.
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Computing MaxFP and Q-MaxFP Solution:
Algorithms (N-labelled Graphs)

The greatest solutions of
» Equation System 5.6.2.1
» Equation System 5.6.2.2

can be computed in the same fashion as the greatest solution
of Equation System 3.4.1.

We denote these algorithms, which are generic straightforward
adaptions of Algorithm 3.4.3, by

» MaxFP Algorithm 5.6.2.52

» Q-MaxFP Algorithm 5.6.2.62

respectively.
2We omit presenting the algorithms explicitly.
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Q Approach: Main Results (N-lab’ed Graphs)

Theorem 5.6.2.7 (Termination)

The generic MaxFP Algorithm 5.6.2.5 and the generic
Q-MaxFP Algorithm 5.6.2.6 terminate with the MaxFP
solution and the Q-MaxFP solution of Sg, respectively, if (1)
the DFA lattice C satisfies the descending chain condition, and
(2) the DFA functional [ ] is monotonic.

Theorem 5.6.2.8 (Safety)

The MaxFP solution and the Q-MaxFP solution of S¢ are safe
(i.e., lower) approximations of the MOP solution of S¢
satisfying for every node n € N:

» N-MOPs_ (n) 3 NQ-MaxFPs_(n) 3 N-MaxFPs_(n)
» X-MOPs_.(n) 3 XQ-MaxFPs_(n) 3 X-MaxFPs(n)
if the DFA functional [ ] is monotonic.

In general, all inclusions are proper inclusions.
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Q Approach: From N to E-labelled Graphs

...focusing on node exits of node-labelled Sl flow graphs

ﬂn]](cs) if n=s

XQ-inf(n) = { [ n1(XQ-inf(m)) | m € pred(n)} otherwise

yields the key for adapting the Q-MaxFP approach to
edge-labelled SI flow graphs.
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The Q-MaxFP Approach (E-labelled Graphs)

...adapted to edge-labelled SI graphs.

Equation System 5.6.2.9 (Q-MaxFP EQS)

. [ Iel(a) if start(e)=s
Q-inf(e) = { [M{[e](Q-inf(f))|f € pred(e)} otherwise

where pred(e)=4r {f | end(f) = start(e)}.
Recall and compare with:

. C(In](e) if n=s
XQ-inf(n) = { [ n 1(XQ-inf(m)) | m € pred(n)} otherwise
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Q-MaxFP Solution (E-labelled Graphs)

Definition 5.6.2.10 (Q-MaxFP Solution)
For every edge e € E, the Q-MaxFP Solution of S is defined
by
» Q-MaxFPs_(e) =4 Q-inf*(e)
where
» Q-inf*: E—=C

denotes the greatest solution of Equation System 5.6.2.9.
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lllustrating the Q-MaxFP Approach and the
Q-MaxFP Solution (E-lab’ed Graphs)

a)

a S

c
| ab—= |
c;:ﬁ‘ o—=6
e=10
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Q-MaxFP Solution (E-lab’ed Graphs): Induced

Node Annotation

The greatest solution of Equation System 5.6.2.9, Q-inf*(e),
e € E, induces an annotation of the nodes of G as follows:

Definition 5.6.2.11 (Induced Node Annotation)

For every node n € N, we define:

Q-MaxFP(n) =4 Q-inf*(n) =4f
Cs if n=s
[1{ Q-inf*(e)|end(e)=n} otherwise

Note: There is no fixed point computation involved in
computing Q-inf*(n), n € N.
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Q Approach: Improvement (E-lab’ed Graphs)

We have:

Lemma 5.6.2.12 (Q Improvement Lemma)

For every node n € N, for every e € E with end(e) =n, we
have:

» Q-MaxFPs_(e) 3 Q-MaxFPs_(n) 3 MaxFPs.(n)

In general, all inclusions are proper inclusions.
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Computing the Q-MaxFP Solution: Algorithm
(E-labelled Graphs)

The greatest solution of

» Equation System 5.6.2.9 51

can be computed in the same fashion as the greatest solution -
of Equation System 3.4.1. L

We denote this algorithm, which is a generic straightforward
adaption of Algorithm 3.4.3, by

» Q-MaxFP-Algorithm 5.6.2.133 o

3We omit presenting the algorithm explicitly.
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Q Approach: Main Results (E-lab’ed Graphs)

Theorem 5.6.2.14 (Termination)

The generic Q-MaxFP Algorithm 5.6.2.13 terminates with the
Q-MaxFP solution of Sg, if (1) the DFA lattice C satisfies the
descending chain condition, and (2) the DFA functional [ ] is
monotonic.

Theorem 5.6.2.15 (Safety)

The Q-MaxFP solution is a safe (i.e., lower) approximation of
the MOP solution of S¢ satisfying for every node n € N, for
every e € E with end(e)=n:
» MOPs.(n) 3 Q-MaxFPs_(e)
J Q-MaxFPs (n) 3 MaxFPs_(n)
if the DFA functional [ ] is monotonic.

In general, all inclusions are proper inclusions.
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Q Approach: Choosing N or E-labelled Graphs

...at first sight, both variants appear equally suited.

NN

Slmtl stmtl
5.1
5.2
O 53
5.4
5.5
) 5.6
O 5.6.1
stmt, 502
5.6.3
stmt , 5.6.4
5.6.5
5.6.€
Q 5.6.7
5.7
5.8
O 0
10
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Q Approach: Choosing N or E-labelled Graphs

However, a closer look reveals...

NN

stmtl stmtl
5.1
O 5.2
5.3
5.4
5.5
5.6
O 5.6.1
stmt , 2:2)
stmt , 5.6.4
5.6.5
O 5.6.€
5.6.7
5.7
5.8
5.9
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Q Approach: Choosing N or E-labelled Graphs

...edge-labelled graphs are more compact

NS N\

Stmtl S[mt]
O O 51
5.2
\ / .
5.4
5.5
5.6
O 5.6.1
stmt, 562
stmt 2 5.6.3
5.6.4
5.6.5
O O 5.6.6
5.6.7
5.7
O 5.8
9
10
11
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Q Approach: Choosing N or E-labelled Graphs

...making them more appropriate

%

N

0
s, e e
Ose O J
stmt 3 - stml4 O
e
§ /Q N\
= O o 1P
ol

5.6.2
5.6.3

5.10
5.11
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Q Approach: Choosing N or E-labelled Graphs

...for taking advantage of the Q heuristics.

N N

O
O™ 7
O]
O | %
DN
= O o 1P
|

5.6.2
5.6.3

5.10
5.11
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Q Approach: Choosing N or E-labelled Graphs

The Q approach
» applies to both node and edge-labelled flow graphs.

The heuristics of the Q approach, however,

» is more effective on edge-labelled flow graphs than on
node-labelled ones because of their greater compactness.
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Chapter 5.6.3
Q Constants: The Specification
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Q Constants over Z: DFA Specification

Let G=(N, E,s,e) be an edge-labelled Sl flow graph.

Q Constants Specification

> Specification: S¥=gr S = (', ].c. 0%, fw)

Note
» Q constants (QCs) and simple constants (SCs) share the
same specification.

» The only difference between the QC and SC problem is
that S and S are fed into and solved by the MaxFP
and Q-MaxFP approach, respectively.

515/177



Chapter 5.6.4

Termination, Safety, and Coincidence
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Towards Safety and Termination

A~

Because of S&" = (.1 I,
we get as corollaries of Lemma 5.3.3.1, 5.3.3.2, and 5.3.3.3:

Corollary 5.6.4.1 (Descending Chain Condition)

S/ satisfies the descending chain condition.

Corollary 5.6.4.2 (Monotonicity)

[ ]]qc(:ﬂ ]..) is monotonic.

Corollary 5.6.4.3 (Non-Distributivity)
[ 1..(=1 I..) is not distributive.

os,fw)=(2',[ .., 0s, W) =Sg
1 :

5.6.3

5.6.4

SEOEG
5.10
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Termination and Safety/Conservativity

Theorem 5.6.4.4 (Termination)
Applied to SE = (3, [ ],.. 0%, fw), Algorithm 5.6.2.13
terminates with the Q-MaxFP solution of S&.

Proof. Immediately with Corollary 5.6.4.1, Corollary 5.6.4.2,
and Termination Theorem 5.6.2.14.

Theorem 5.6.4.5 (Safety/Conservativity)

Applied to S& = (X', [ ],.. s, fw), Algorithm 5.6.2.13 is MOP
conservative for S& (i.e., it terminates with a lower
approximation of the MOP solution of S{).

Proof. Immediately with Corollary 5.6.4.2, Safety Theorem
5.6.2.15, and Termination Theorem 5.6.4.4.

5.6.4
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Non-Coincidence

Theorem 5.6.4.6 (Non-Coincidence/Non-Opt.)

Applied to SE = (3, [ ],.. 0%, fw), Algorithm 5.6.2.13 is in
general not MOP optimal for SZ-C (i.e., it terminates with a
properly lower approximation of the MOP solution of S{°).

Proof. Immediately with Corollary 5.6.4.3, Safety Theorem
5.6.2.15, and Termination Theorem 5.6.4.4.

5.6.4

Corollary 5.6.4.7 (Safety, Non-Coincidence)

The Q-MaxFP solution for S&°, is always a safe approximation
of the MOP solution of SZ°. In general, the MOP solution and
the Q-MaxFP solution of S do not coincide.
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Chapter 5.6.5

Soundness and Completeness
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Soundness and Completeness of MOPSgc

Because of S&° =S¥ we have MOPSgc = MOP s, and thus
can conclude as an immediate corollary of Theorem 5.3.4.1:

Corollary 5.6.5.1 (Soundness and Completeness)
The MOP solution of S is

1. sound and complete for the variable constant propagation
problem CV, i.e.

\V/n < N VUS < Zl’nit‘ Cgvgs(n) - MO gsgc(n)

2. sound but not complete for the term constant
propagation problem CT, i.e.

Vne N.Vos € lenit' Cg.rgs(n) Ty MOPUST(n)

qc
SG

In general, the inclusion is a proper inclusion.



Soundness and Completeness of Q—/\/IaxFPSgc

Corollary 5.6.5.2 (Soundness and Completeness)
The Q-MaxFP solution of S& is

1. sound but not complete for CV, i.e.

Vn € N VUS S Z/nlt CCVGs( ) :lz/ Q MaXFPSsc( )

2. sound but not complete for CT, i.e.

Vn E N \V/US E Zlnlt CCTO'S( ) :lz/ Q MaXF ch( )

In general, both inclusions are proper inclusions.

5.6.5
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Chapter 5.6.6

[llustrating Example

5.6.6
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Q Constants over Z: lllustrating Example

a) b)

a: 2

i
K!?b 6/§>
a a,b—=2 a:=3
a3, b—=2 c:=atb c:=4
c:=a+l ab—=2, c+—=4 c:=4
a—3, b—=2, c—=4 d:=a+l fd =3
d:=c-2 O ab—=2, c—=4, d—=3 d:=2
a3, bd——=2,c——=4
b»—>2 c—=4
e = a+d e:=5

ib>—>2 c—=4

O=—0
=+
)
[\)

o
Il
\®)

f:=a+b*c f:=a+y

...all terms are Q constants except of a + 8, which, however, is
not a (non-deterministic) constant at all.
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Chapter 5.6.7

Summary
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The Essence of the Q Approach

The Q approach is

» a heuristic approach to cope with the information loss
caused by “early (eagerly)" joining information in the
MaxFP approach for (non-distributive) monotonic DFA
problems.

Intuitively

» the Q approach accomplishes “a look-ahead of one edge”

by joining information “late (lazily)" avoiding thereby the
loss of information in part.
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Benefits and Limitations of the Q Approach

Benefits

Introduced and proposed with an application to constant
propagation (i.e., Q constants)

» the Q approach can beneficially be used for every mono-
tonic DFA problem at (in practice) almost no additional
costs compared to the standard MaxFP approach.

Limitations

» In practice, the impact of the Q approach on improving
the precision of analysis results will be limited because its
look-ahead heuristics is limited to one edge.

» Avoiding the loss of information by joining information
completely, the look-ahead would need to be arbitrarily
large in general; there is no finite upper limit on the
required look-ahead for avoiding information loss.

5.6.7
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Chapter 5.7

Finite Constants

5.7
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Chapter 5.7.1

Background and Movitation
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CP by Q Constants: Everything Alright?

Note

» All terms except of a + 8, which is not a
(non-deterministic) constant, are Q constants.

a)

a3, b—=2,c—=4
d:=c-2
al—3, b,d—=2,c——=4
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Unfortunately not

...a* d and g are constants of value 6 and 10, respectively,
however, they are no Q constants.

a) o b)
a:=2
a—2
b:=a
a:=3 ab—2
a3, b—=2 c:=atb
c:=a+l a,br—=2, c:=4
a3, b—=2,c—=4 d:=a+l

d:=c-2 ab—2, c—=4,d—=3 d:
a3, b,d—=2,c—4
b—=2, c¢+—=4
e:=a+d
b—=2, ¢—=4
f:=a+b*c

g =a*d+c
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Achievement of the Q Constants Heuristics

...Joining information “lazily” accomplishes a “look-ahead” of

1 edge after a join node:

a)

c:=a%*b

e=10 cr—= 7
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Limitations of the Q Constants Heuristics

...but not of 2 as required here (or even more in general):

a)

d:=c*c+a*b

e=11 d— ?
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The Look-Ahead Challenge

...a need for a look-ahead of unlimited length in general:

After Finite Constants Propagtion 57.10

5.10

...the approach for finite constants deals systematically with 211
this challenge.
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Chapter 5.7.2
Finite Constants: The Very Idea

535/177



Finite Constants: The Very |dea

Intuitively

» finite constants achieve a look-ahead of arbitrary but
finite depth

Technically, this is achieved
» by pre-computing for every program point a finite set of
interesting terms and

» focusing the analysis at every program point to this set of
terms instead of the program variables only.

B2

Hence

» unlike the other CP algorithms, the CP algorithm for
finite constants is a CT algorithm, not a CV algorithm.
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Finite Constants: Pre-Computing Term Sets

a)

s=1
x:=2
2
y:=3
3
a:=Xx X=Y
56O
b:=y b:i=x
5 7
8
7= a*b
e=9 Z—= 7

b)

2—= 7
s=1 30— 7
2%3, 32—
X =
X—= 7

y— :] 4 6 X —=
ary —= ? a*x —=

b=y b:i=x
ar—= 7 ar—

b—= 75 7 b—>

a¥h —= ? a*h —=

ar—= 7

8 b 2

ath —= 7

z:=a*b
e=9 Z—= 7

ER)
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Finite Constants: The Analysis (Conceptually)

a) b)

2—= ? 2—= 2
s=1 33— 7 s=1 3—= 3
2%#3,3%2 —= 17 2%3,3%2—= 6
X = X =
X—= 7 X—= 2
2 33— 2 3—= 3
X*3, 3¥Fx—= 7 x*3, 3¥x——= 6
y:=3 y= 5.1
> X—= 2 5%
3 y—=? 3@ y—= 3 53
X*y, yExX—s 7 x*y, y¥X—= 6 5.4
a=x \=Y a=x \=y 55
a—= 9 ar—= ? a—= 2 a—= 3 50
y—= 2 4 6 X—= 7 y—= 3 4 6 X—= 2 5.7
aty —= ? a*x —= ? aty —= 6 a¥x —= 6 5.7.1
b=y b:=x b=y b:=x 572
a—=? ar—= 7 ar—= 2 a—= 3 OIS
b—= 25 7 br—=? b= 395 7 br—= 2 DS
a¥h —= 9 ath —= ? ath —= 6 atb —= 6 57?
5.7.6
a—s= 7 ar—= 1 572
8 b—= ? 8 b—= 1 57.8
ath —= 2 @b —= 6 o
7= a*b z:=a*b o 0
5.8
5.9
e=9 z—== 7 e=9 Z—= 6 5.10

5.11
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Chapter 5.7.3

Finite Operational Constants

573

539/177



Backward Substitution for Instructions

Definition 5.7.3.1 (Backward Substitution §)

» Let © = x:=t be an assignment instruction. The
backward substitution of ¢ is the function 9, : T — T
defined by

Vi eT. o,(t)=a t'[t/x]

» Let « = skip be the empty instruction. The backward
substitution of ¢ is the identical mapping on the set of
terms T, i.e., 0,=4r Idt, where Idt : T — T is defined by
VteT. ldr(t)=urt.

573
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Backward Substitution for Paths

Definition 5.7.3.2 (Extending ¢ to Paths)

Let G=(N, E,s,e) be a flow graph. The backward substi-
tutions ¢, of instructions at edges e € E are extended onto
paths p = (ey, &, ..., &) in G by defining:

5. — ldt ifg<l
p—df Oer,req_1) © 5Leq otherwise 7
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Substitution Lemma: Relating § and 6

Lemma 5.7.3.3 (Substitution Lemma for Edges)
VteT.Vec E.VoeX. £(,.(t)(0)=E(t)(0.(0))

Lemma 5.7.3.4 (Substitution Lemma for Paths)
VteT.Vne N.Vo € X.Vpe P[m,n].

E(0p(1))(0) = E(£)(0,(0))

n w N -

Corollary 5.7.3.5 (Substitution L. for Paths from s) 7
VteT.Vne N.VoeX.VpeP[s,n]

E(5,(£))(05) = E(£)(0p(05))
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t-Associated Paths

Definition 5.7.3.6 (t-Associated Path)

Let p= (ey, e, ..., €,) be a path, and let t € T be a term.
The t-associated path p; for p is defined by

pt:::<(t17e1)7(t2762)7"‘7(tq7eq)>

with t; =0, (t) and t;=0,,(t;41) forall 1 < j<gq.

Corollary 5.7.3.7 (Subst. L. for t-assoc. Paths) 573
VteT.Vne N.VoeX.VpePls,nl.
E(ts)(as) = E(t)(0p(0s))

where p; = ((t1, e1), (t2, &), ..., (tg, &) is the t-associated
path for p and ts = t;.
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Relevant Paths

Definition 5.7.3.8 (Relevant Path of length k)

A t-associated path p; = ((t1, e1), (t2, &), ..., (tg, €5)) is
called a relevant path of length (at most) k for t and n, iff

> dst(eg)=n A tg=9, (1)

» g=k V (g<k A src(e)=s)

» Vi je {1,,(]} (t,-,e,-):(tj,ej) =>i=J
The set of all relevant paths of length (at most) k for t and n
is denoted by RP,(t, n).

Definition 5.7.3.9 (Relevant Paths from s to n)

The set of all relevant paths from the start node s to node n is
denoted by RPy(t, n).

573
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Finite Operational Constants

Definition 5.7.3.10 (Finite Operational Constants)
Let k € INU{IN}, d € ID\{L}, n€ N, o5 € Tjnz. Then:

1. tis a k-constant of value d at node n for oy,
t € C*(n,d), iff

Vpr = ((t1, 1), (t2, &), ..., (tg, &) € RPk(t, n).
E(t)(os)=d

2. the set of finite operational constants of value d at

node n for oy, Cgsp(n, d), by 573

Cop(n, d) =ar U{C*(n, d) | k € IN}

3. the set of operational constants of value d at node n
for o, Cg;;(na d)v by

Co(n, d) =g U{C*(n, d) | k € N U {IN}}
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Finite Operational Constants: Main Result

For n € N and o4 € X, let

Cs(n) =ar | J{CZ(n. d)|d € ID\{L}}

Theorem 5.7.3.11 (Main Result)

Let n€ N, o5 € L), and d € ID\{_L}. Then we have: o
1. Cg(n)=CTg(n) 575

2. 3k € IN. €2t (n,d)=C*(n, d)

5.10
5.11
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Chapter 5.7.4
Finite Denotational Constants

5.7.4
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Partitions

Definition 5.7.4.1 (Partitions)

Let T C T be a set of terms. Then we define:
» Part(T) denotes the set of all partitions of T.
» Part =4 |J{Part(T)| T C T}

» CSet(p) =q4r {t|t lies in a class of p}, p € Part, denotes
the carrier set of partition p.

Note

» Partitions can be viewed as equivalence relations on their
carrier sets.

» This allows us to define a meet and a join operation on
Part in terms of the set theoretical intersection and union
of the equivalence relations corresponding to the
partitions, respectively.

5.7.4
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Induced Partitions

The evaluation function £ induces for every set of terms
T C T and every initial state o5 € X ,; a unique partition
PartZ*(T) with carrier set T.

Definition 5.7.4.2 (Induced Partitions)
Let T C T, and 05 € ¥ ,;+. Then we define:

» Vi, th € T. (t1,t) € Part(T)
— g(tl)(o's)zg(tz)(o-s) 57.4

> PartZ=g4r {PartZ(T)| T C T} denotes the set of initial
partitions induced by os.
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Complete Lattice of the Set of Partitions

Lemma 5.7.4.3 (Complete Lattice)
The quintuple

Part =g (Part, 1,1, C, {{t} | t € T},{T})

is a complete lattice, where I, LJ, and C are given by the set
theoretical intersection, union, and subset relation of the 574
equivalence relations represented by the partitions, respectively.
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Local Abstract Semantics

Definition 5.7.4.4 (Local Abstract Semantics)

The semantic functional
[1:E— (Part— Part)
defines a local abstract semantics (for edges) by

Ve € E.Vpe Part. [e](p)=ar {(r,5)|(d..(r),d..(s5)) € p}

5.7.4

Lemma 5.7.4.5 (Distributivity)

The local semantic functions [ e], e € E, are distributive.
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Finite Denotational Constants

Definition 5.7.4.6 (Finite Denotational Constants)

Let 05 € Xjpe, let ps € Part?, let d € ID\{_L}, and let n € N.
Then we define:

» tis a ps-constant of value d at node n, t € C, (n, d), iff
(t,d) € inf3(n), where infy denotes the greatest solution
of the MaxFP Equation System 3.4.1.

» the set of finite denotational constants of value d at node
n for og, CZ5 (n, d), by

5.7.4

Cor (n,d)=a4r U{Cp(n,d) | p € PartZ N |CSet(p)| € IN}

» the set of denotational constants of value d at node n for
gs, C32.(n, d), by

den

Caen(n, d) =ar U{Cp(n, d) | p € Partg'}
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Computability of inf

Theorem 5.7.4.7 (inf;-Theorem)

Let 05 € Xjpit, and let ps € PartZ® be an initial partition with
finite carrier set CSet(ps), i.e., |CSet(ps)| € IN. Then we have:

The MaxFP Algorithm 3.4.3 terminates with the greatest
solution of Equation System 3.4.1, hence effectively computing

inf}(n), ne N

Ps

5.7.4

In particular, Algorithm 3.4.3 computes for every node n € N
and value d € ID\{_L} the set

CPs (n7 d)

of ps-constants of value d at node n.
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Finite Denotational Constants: Main Result

For ne N and o4 € ¥, let:

Caea(n) =ar (H{Caza(n,d) | d € ID\{L}}

Theorem 5.7.4.8 (Main Result)

Let n€ N, o5 € L)it, and d € ID\{_L}. Then we have:

L g (n)= CTZ(n)
2. (v TCT. |T| € |N) (3 Ptde € Part"s

|CSet(prac)| € IN A CZ5 (n,d)N'T C Cp,, (n,

5.7.8
d)) 5.7.9
5.7.10
5.6
5.10

5.11
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Chapter 5.7.5

Finite Constants
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Equivalence

of (finite) operational and (finite) denotational constants.

Theorem 5.7.5.1 (Equivalence)

Let n € N, o5 € Ljpir, and d € ID\{_L}. Then we have:
1. Cgs(n,d)={t|(t.d) € CTZ(n)}=CZ,(n,d)
2. o (n, d) = Cgi (. d)

fop

Corollary 5.7.5.2 (Equivalence) -
Let n € N, and let 05 € X},;;. Then we have:

L Cg(n)= CTE(n) = Cgsy(n)
2. € (n) = Cinln)
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Finite Constants

Definition 5.7.5.3 (Finite Constants)

Let n € N and o5 € ¥ ,;+. Then the set of finite constants is
defined by

Ce(n) =ar U{Cg,(n.d)|d € ID\{L} }
= U{Chen(n, d) | d € ID\{ L} }

Bl

B7.5
HRAG

3
5.10
5.11
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Optimality of Finite Constants

...for acyclic control flow.

Theorem 5.7.5.4 (Optimality for Acyclic Graphs)

Let G=(N, E,s,e) be an acyclic flow graph, let n € N and
0s € X nie- Then we have:

Cip(n) = €T (n) = Cn ()

5.10
5.11
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Chapter 5.7.6

Deciding Finite Constants: Algorithm
Sketch
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The Decision Algorithm for Finite Constants

The decision algorithm for finite constants is essentially a
two-stage procedure, sketched below:

Algorithm 5.7.6.1 (Decision Algorithm Sketch)
Let o5 € X },;+ be an initial state, let t € T, and let n € N.

1. Algorithm 5.7.6.2:
Compute a finite subset TSg(n, t) C T such that all
finite subsets Tfnite € T satisfy:
VteT.VdelD\{Ll}.
t € Cpar2s (Tye) (1, d) = t € Cpanzs(T56(n,0) (0, d)

5.7.6

2. MaxFP Algorithm 3.4.3:
Compute Cparzs(Ts4(n,t) y(n, d) for all values d € ID\{L}.
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Initial Partition: Carrier Set Computation (1)

Algorithm 5.7.6.2 (Computing the Carrier Set of the
Initial Start Partition for t at n, i.e., TSg(n, t))

1. Transform G by adding a new node n’ to N such that
» n’ represents the same assignment as n: ¢,y =,
» n’ has the same set of predecessors as n: pred(n’) =
pred(n)
» n’ has no successors: succ(n’)=10
Let N'=4r N U {n’} and E’ denote the set of resulting of
nodes and edges, respectively.

2. Construct a regular expression p over N’ representing the
set of paths P[s, '] (e.g., using the algorithm of Tarjan,
1981).

(Note: "+ stands for non-deterministic branching, *;"
for sequential composition, and “*" for indefinite
looping).

5.7.6
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Initial Partition: Carrier Set Computation (2)

3. Replace indefinite looping, *, by bounded looping, ¥,
where k is the number of variables which occur on the
left hand side of an assignment in the corresponding
subexpression of p, to arrive at the (x-free) regular
eXPression Ppounded-

4. Evaluate the functional A, : P(T)—P(T), which is
inductively defined by

{0,(s)|se T} ifpe E
_ Ay (Ap,(T)) if p=p1; p2
Ap( T)_df Am(T) U Apz(T) |f p=p1 + 02 57.6

UL (T) [ e {1, k}} if oy

for proundes and {t}€P(T), i.e., evaluate A, . ({t}).
(Note: Ad=gf ldp(ty and A =g A1 0 A, j > 1),
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Initial Partition: Carrier Set Computation (3)

5. Finally set:

TSg(n, 1) =ar {t' € By ({1 [ E(F)(05) # L} U
{deD|3t" € Ay, ({t}). E(F)(05) = d}

5.7.6
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Decidability of Finite Constants (1)

Theorem 5.7.6.3 (Decidability)

Let G=(N, E,s,e) be a flow graph, let n € N be a node, let
0s € 2 nir be an initial state, and let t € T be a term. Then
we have:

Algorithm 5.7.6.1 determines whether t is a finite constant at
node n, i.e., whether

t € J{Ch(n d)|d € D\{1}}

In the positive case, Algorithm 5.7.6.1 determines additionally
the value d of t at node n.

5.7.6
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Decidability of Finite Constants (2)

Corollary 5.7.6.4 (Decidability of Finite Constants)

Let G=(N, E,s,e) be a flow graph, let n € N be a node, let
0s € i+ be an initial state, and let Tg,i.e € T be a finite set
of terms. Then we have:

Cex(n) O Thinite

fin

is algorithmically decidable.

Note: The set of terms occuring in a program is finite. In
particular, the set of terms occurring in an instruction at an
edge are finite. Hence, the set of program terms, which are
finite constants, can algorithmically be decided.

5.7.6
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Chapter 5.7.7

Finite Constants: Specification
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Finite Constants over ZZ: DFA Specification
DFA Specification
» DFA lattice
C=(C,mU,C, L, T)=g4
(Part,N,U, C, {{t} |t € T}, {T})=Part

» DFA functional
[ 1. : E— (Part — Part) where

Vec E.Vpe Part. [ e],(p)=ar {(r,s)|(0..(r),b..(5)) € p}

> Initial information: pg € PartZ*(TZ*) for o € ¥, and
T7 finite C T computed using Algorithm 5.7.6.2.

5.7.7

» Direction of information flow: forward

Finite Constants Specification
» Specification: Sfc= (Igz;t, [ 1 prc, fw)
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Chapter 5.7.8

Termination, Safety, and Coincidence
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Towards Safety and Termination

Lemma 5.7.8.1 (Descending Chain Condition)

The “MaxFP relevant” part Part,, of Part satisfies the
descending chain condition.

Note. The carrier set of the initial partition py is finite.

Lemma 5.7.8.2 (Distributivity)
[ 1. is distributive. :

Corollary 5.7.8.3 (Monotonicity) 73

[ 1. is monotonic.
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Termination and Coincidence/Optimality

Theorem 5.7.8.4 (Termination)

Applied to SE = (Iga\rt,ll 1., prc, fw), Algorithm 3.4.3
terminates with the MaxFP solution of S&.

Proof. Immediately with Lemma 5.7.8.1, Lemma 5.7.8.3,
Theorem 5.7.4.7, and Termination Theorem 3.4.4.

Theorem 5.7.8.5 (Coincidence/Optimality)

Applied to 8% = (Part, [ 1., pre, fw), Algorithm 3.4.3 is MOP
optimal for S¥ (i.e., it terminates with the MOP solution of
SE).

Proof. Immediately with Lemma 5.7.8.2, Coincidence
Theorem 3.5.2, and Termination Theorem 5.7.8.4.

5.7.8
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Chapter 5.7.9

Soundness and Completeness

5.7.9
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Soundness and Completeness of MOPSé;

Theorem 5.7.9.1 (Soundness and Completeness)
The MOP solution of S is

1. sound and complete for the term constant propagation
problem CT, i.e.

Vn€N. Vo, € Ty Clras(n) = MO S ()

if G is a flow graph with acyclic control flow.

2. sound but not complete for the term and variable
constant propagation problems CT and CV, i.e.

VneN. Vo, €L,
CZrze(n) Dev Clros(n) Tz MOPT (1)

if G is a flow graph with arbitrary, possibly cyclic, control
flow.

5.7.9
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Soundness and Completeness /\/laxFPSg

Corollary 5.7.9.2 (Soundness and Completeness)
The MaxFP solution of S& is

1. sound and complete for the term constant propagation
problem CT, i.e.

Vne N. Vo, € Z/Init' Cngs(”) = MaxF gsfé(n)

if G is a flow graph with acyclic control flow.

2. sound but not complete for the term and variable
constant propagation problems CT and CV, i.e.

VneN. Yo, €L,
T \" Os
CCTgs(n) gz/ CCTgs(n) gzl MaXFPSgC(n)

if G is a flow graph with arbitrary, possibly cyclic, control
flow.

5.7.9
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Chapter 5.7.10

[llustrating Example
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Finite Constants: lllustrating Example

..all terms are finite constants.

a) b)

2—= 7 2—= 2
s=1 3— 7 s=1 3—= 3
2%3,3%2 —= 7 2%3,3%2——= 6
x:=2 X =
X—= 7 X—= 2
2 33— ? 2 3—= 3 5.1
X*3, 3¥x—= ? X*3, 3tx—= 6 .
y =3 y=3 -
X7 X—= 2 o
3 yr—=? 3 y—= 3 B
O x*y, yEx—s= ? X*y, y*x—= 6 35
a:=/ \a\;:y a:=x \=y fh
5.7
ar—= ? ar—= 7 ar—= 2 ar—= 3 5.7.1
y—= 2 4 6 X—= 7 y—= 3 4 6@ X—= 2 572
aty —= ? akx —= 7 aty —=> 6 a*x —= 6 57.3
b=y bi=x b:= b:=x 57.4
ar—= 7 ar—= 7 ar—= 2 7 ar—=3 5.7.5
b= 25 7 b—= ? b—= 395 b—s 2 5.7.6
2 9 a¥b —= ? a¥b —= 6 a*b—= 6 5.7.7
5.7.8
ar—s= ? ar—= L 5.7.9
8 b= ? 8 b—= 1 5.7.10
a¥bh —= ? a*h —= 6 58
z = a*b z:=a*b 5.9
5.10
5.11
e=9 Z—= 7 e=9 Z—= 6
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Chapter 5.8

Conditional Constants
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Motivating Example

Up to now: Branches were non-deterministically interpreted.

a) b)
ia::Z ia: 2

b:=a b::z
a:=3 a:=3
c:=atb c:=4
c:=a+l c:=4£
fd.=a+l d:=3
d:=c-2 i d:=2gL\\;£ 5.8
le:=a+d le:=5

...unfortunately, a+8 is not a constant, if branches are

non-deterministically interpreted.
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As a Matter of Fact

In the preceding example

» a+8 is not a (non-deterministic) constant.

Consequently

» a+8 is neither a simple constant nor a Q constant nor a
finite constant.

However

» a+8 could be a constant, if branching conditions were 58
taken into account.

Note: Interpreting branches non-deterministically in DFA

» is done to avoid intricacies due to the undecidability of
constant propagation,

» is counter-intuitive, however, for constant propagation
itself.
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Interpreting Branches Deterministically

a) o b) c)
})a =2 jza =2
a—=2
|bi=a |b=2
(amod 2) /= 0? a,bk—2 (amod 2) /=02
|(@mod 2) ==0? |(@amod 2) ==0?
a:=3 a:=3 51
ab,cdef—T |c=atb jci=4 5.2
ci=a+l ab—=2, c—4 é 53
ab,cdef—T | d:=a+l | d:=3 5.4
d:=c-2 o ab—2, c—=4, d—=3 d:=c- (@] 5.5
ab,cdef—T ! o0
b—=2, c—=4,d—=3 o8
l e:=a+d ] 5181
O b2, c—=4,d+——=3.e—5 o 5.8.2
| f:=a+b*c J) =1 583
b2, ct+—=4,d——=3,e—=5,f+—=10 5.8.4
5.8.6
5.9
. P . 5.1C
..the term a+8 is a (deterministic) constant of value 10. 11
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Conditional Constants

Conditional constants
» are an efficiently decidable subset of the set of
deterministic constants.
» build on and generalize the notion of simple constants.

» allow the optimizations shown in Figure b) and in Figure 58
c), when applied to the flow graph shown in Figure a) of
the previous slide.
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Chapter 5.8.1

Preliminaries, Problem Definition
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From Simple to Conditional Constants

What needs to be extended and adapted?
» the notion of terms: Relators, logical constants and
operators

» the notion of interpretation: Relators, logical constants
and operators -

» the semantics of terms: Boolean terms
» The semantics of instructions: Conditionals o
» The (basic) DFA lattice for constant propagation: Truth 581
values
We do not need to extend 55

» the notion of states

since we stay with arithmetical variables and do not introduce
Boolean variables.
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Introducing Relators and Logical Operators

We introduce
» LC =, {true, false}: the set of logical (or Boolean)
constant symbols,
» R=y{==,/=,<,>,<=,>=,...}: aset of binary
relator symbols (or relators),
» LO =4 {A,V,}: the set of logical operator symbols.

5.8.1

We assume that

» V, C, O (for arithmetical terms), LC, R, and LO (for
Boolean terms) are all pairwise disjoint.
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Introducing Boolean Terms

Definition 5.8.1.1 (Boolean Terms)

1. Every constant symbol b € LC is a Boolean term.

2. If rel € R is a binary relator and t; and t, are
(arithmetical) terms, then t; rel t; is a Boolean term.

3. if by and b, are Boolean terms, then by A by, by V bs,
and — b; are Boolean terms. so1

4. There are no Boolean terms other than those which can
be constructed by means of the above three rules.

We denote the set of all Boolean terms by Tg.
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Arithmetical and Boolean Terms

We denote by
» Tap=qr Ta U Tp the set of all terms
where

» Ta denotes the set of arithmetical terms

» Tg denotes the set of Boolean terms.

5.8.1

Note: Ta equals T as introduced and used in the previous
sections of Chapter 5.
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Towards the Semantics of Boolean Terms

We need to extend

» the data domain ID by adding the set of Boolean truth
values IB=, { True, False},

» the interpretation from the (arithmetical) constant and
operator symbols over ID to the Boolean constant

symbols, relators, and logical operator symbols over IB.

5.8.1
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Extending the Data Domain

Let

» IDg=4r ID U IB be the extended new data domain of
interest.

(with ID e.g., the set of natural numbers IN, the set of
integers Z, etc.).

As before, we call the

5.8.1

» elements of IDg (data) values.

Moreover, we assume that

» IDjg includes a distinguished element | representing the
value undefined and a distinguished element T
representing “universal” information.
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Interpreting Relators and Logical Operators

Definition 5.8.1.2 (Extended Interpretation)
An interpretation | =4 (IDg, lp) of C, O, LC, R, and LO is a

pair,
>

>

where Iy is a function, which maps every
every constant symbol ¢ € C to a datum fy(c) € ID,

every k-ary operator symbol op € O to a total strict
function lo(op) : ID¥ — D,

the logical constant symbols true and false to the
Boolean constants True and False, respectively,

the relator symbols rel € R=4 {==, /=,<,>,...} to
the strict relations equal, not equal, less, etc., on ID x ID,
the logical operator symbols A, V, and — to the strict
logical operations and, or, and not on IB x IB and IB.

and satisfies ly(0)(d1,...,dx)=T, 0€ OURULO, if
Vie{l,....ky.di#1) A (3ie{l,. .. k}.d=T).

5.8.1
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States, Initial States

We do not introduce Boolean variables. The notion of states
thus remains essentially unchanged.

Definition 5.8.1.3 (States, Initial States over ID)

» A state 0 : V — ID is a total mapping, which maps every
(arithmetical) variable to a data value d € ID.

We denote the set of all states by
E:ZZIdf {:(T |(T V= 1D } 5.8.1

» 0, and o7 denote two distinguished states of ¥ defined
by VveV.o (V=1 or(v)=T
respectively.

» Yie=ar{o €L |VveEV.o(v)# T} denotes the set of
initial states.
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Semantics of Terms

Definition 5.8.1.4 (Semantics of Terms)
The semantics of terms t € Tap is defined by the evaluation
function

E: TAB — (Z — |D|B)

defined by

( o(x) ift=xeV

I(c) ift=ceCULC
Vi€ Tag Vo € L. E(t)(0) =ar § Iy(0)(E(t1)(0), ..., E(t)(0))

if t=(o,t,..., 1),
oc OURULO

590/177



Semantics of Instructions

Definition 5.8.1.5 (Semantics of Instructions)

» Let . = x:=1t, t € Ta, be an assignment instruction.
The semantics of ¢ is defined by the state transformation
function (or state transformer) 6, : ¥ — ¥ defined by
QL(O'T) =df 0T and

_ [ ED) ify=x
Voe Z\{O’T} Vy e V. (9L(O')(y) =Jf { O'()/) otherwise

» Let 1 = skip be the empty instruction. The semantics of ¢ so1
is defined by the identical state transformation function
(or state transformer) Ids, i.e., 0,=4 Ids.

» Let . =t, t € Tg, be a conditional expression. The
semantics of ¢ is defined by 0,(01) =4 o1 and

if £(t € {False, T
Vo e X\{or}. 0.(0)(y)=ar { ZT l)thegrv)v(isae) {False, T}
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State Transformer Lemma for o

Lemma 5.8.1.6 (State Transformer Lemma for o)

Let + be an assignment instruction, the empty statement, or a
conditional expression. Then we have:

HL(O'T) =0T 7;5‘:‘8.1
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Remarks on the Impact of Lemma 5.8.1.6 (1)

» Lemma 5.8.1.6 ensures that the distinguished state o is
left invariant by every state transformer.

» This guarantees that the state transformers of condi-
tional expressions act as filters that prevent propagating
information alongside branches whose guarding
conditional expressions are known to be violated (i.e.,
E(t)(o) = False) or can not yet be evaluated (i.e.,
E(t)(o)=T).

» Conversely, the filters let information pass and propagate 551
it further if the values of the guarding conditional ex-
pressions are known to be satisfied (i.e., £(t)(o) = True)
or dubious (i.e., £(t)(0)=1).

» Overall, this causes the semantics to be deterministic and
the fixed point analysis based on it to behave deter-

ministically, too.
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Remarks on the Impact of Lemma 5.8.1.6 (2)

Note

» The case “can not yet be evaluated (i.e., 0,(c)(y)=T)"
can only occur in the actual fixed point program analysis
by picking an edge carrying a conditional expression “too
early” from the workset.

The case can not occur and is irrelevant for the pathwise
characterization of deterministic constants (the general
problem, Chapter 5.8.1) and conditional constants (the
computed class of constants, Chapter 5.8.3).

5.8.1
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Extending State Transformers to Paths

Nothing has to be changed. For convenience, we recall:

Definition 5.2.6 (Extending ¢ from Edges to Paths)

— recalled
The state transformers 6,,, e € E, are extended onto paths
p = (e1,e,...,€e) in G by defining:

0 — Ids if g<1 581
p—df O0es,....eq) © Ui, Otherwise

..where G = (N, E,s, e) denotes the flow graph of interest,
and ¢, the instruction at edge e, e € E.
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Semantics of Programs: Det. Collecting Sem.

Defining the deterministic collecting semantics requires (only)
to take care of and remove the special state o:

Definition 5.8.1.7 (Deterministic Collecting Sem.)
» The deterministic collecting semantics of G is defined by:
DCS¢ : Zppie > N—P(X)
Vne N.Vo & Xpir. DCSe(n)=ar {0,(c) | p € P[s, n] }\{UT}M1

» The deterministic collecting semantics of G with respect
to a fixed initial state o € ¥ ,;; is defined by

DCS% : N — P(T)
Vne N. DCS%(n)=ar { 0,(s) | p € Pls, ] }\ {07}
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Unreachable Nodes

Note

» If DCSZ(n) =0 for some node n € N, this means that
node n is not reachable, when branching conditions are
deterministically interpreted.

5.8.1
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Deterministic Constants

Let o5 € X },;x be an initial state, let t € Tag be a term, and
let d € IDjg be a data value with d ¢ {1, T}.

Definition 5.8.1.8 (Deterministic Constant)

t is a deterministic constant at node n for oy, i.e., the value of
t at node n, n € N, is a constant, if

Vo,0' € DCSZ(n). E(t)(o)=E(t)(0") # L

Definition 5.8.1.9 (Det. Constant of Value d)
t is a deterministic constant of value d for og at node n,
ne N, if

{€(t)(0) |0 € DCSE(n)} ={d}

5.8.1
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Deterministic Constant Terms & Variables (1)

Let o5 € ¥}, be an initial state, let d € IDg\{L, T} be a
data value, and let n be a node of G.

Definition 5.8.1.10 (Det. Const. Terms & Variables)

The set of terms and variables being (deterministic) con-
stants of some value at n are given by the sets:

» DCTZ(n)=ur
{(t,d) € Tag X ID| 561
t is a deterministic constant of value d for o5 at n}
» DCVZ(n)=uf
{(v,d) e VxID|
v is a deterministic constant of value d for og at n}
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Deterministic Constant Terms & Variables (2)

The sets DCTZ and DCV* induce (state-like) functions
DC2e.,. and DCY,

DCTZs DCvZs Z-peves:
alternatively to the sets DCTZ2* and DCV/*:

» DCT#e - N — Tag — IDg defined by

DCTZs
d if (t,d) € DCTZ(n)
Tas _ ) G
DCDCTgs(n)(t)_df { 1 otherwise
» DCVY : N —V — ID defined by

DCvgs
d if (v,d) € DCVZ(n
DCL\)/cvgs(”)(V):df { (v, d) ()

1 otherwise

which itself induces the (state-like) function on terms

DCp&%e. : N— Tag — D defined by

DCIA%.(m)(£) = E(£)(DCeyes ()

DCVZs

DCTae . respectively, which we use

5.8.1
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Deterministic Constant Terms & Variables (3)

We have:

Lemma 5.8.1.11 (Equivalence)
Vne NVteTapVveVVdelD.

> (t,d) € DCTZ(n) iff DCI*8. (n)(t)=d

DCTEs

» (v,d) € DCV(n) iff DCI‘JICVgS(n)(v):d

5.8.1
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Deterministic Constant Propagation Problem

Let G=(N, E,s,e) be a flow graph, and let o5 € ¥, be an
initial state.

The deterministic constant propagation problems for terms
(DCT) and variables (DCV) are defined by:

Definition 5.8.1.12 (Det. CP Problem for Terms)

The deterministic term constant propagation problem, DCT, is
to determine for every node n € N of G the set DCTZ(n).

5.8.1

Definition 5.8.1.13 (Det. CP Problem for Variables)

The deterministic variable constant propagation problem,
DCV, is to determine for every node n € N of G the set
DCVZ(n).
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Equival’'t Charact’ion of the Det. CP Problem

The Equivalence Lemma 5.8.1.11 yields:

Lemma 5.8.1.14 (Problem Equivalence)
Solving the deterministic

» term constant propagation problem DCT

» variable constant propagation problem DCV

is equivalent to computing the (state-like) functions
> DCJ2,, N — Tag — IDgg

DCTE®
» DCY :N—-V-—=ID

lave
respectively.

5.8.1
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Det. CP Algorithms: Soundness, Completeness

Let A be a deterministic constant propagation algorithm for
DCT (DCV), and let Apcre:(n) € Tag X IDg and
Apcvzs(n) € V x ID denote the sets of terms and variables
discovered by A to be constant at node n, respectively.

Definition 5.8.1.15 (Soundness of DCP Algorithms)
Ais sound for DCT (DCV) if

VneN.Vos € Xpe. DCTE(n) D ADCTgS(”)
(DCVE(n) 2 Apcvz:(n))
Definition 5.8.1.16 (Completeness of DCP Alg’s)
A'is complete for DCT (DCV) if
Vne N.Vos € L. DCTE(n) C ADCTgS(”)
(DCVE (n) € Apcvgs(n))

5.8.1
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DCP Algorithms: Conservativity, Optimality

Definition 5.8.1.17 (Conservativity of DCP Alg’s)

A deterministic constant propagation algorithm A is con-
servative for DCT (DCV), if it is sound for DCT (DCV), i.e.

VneN. VO'S € Zlnit- DCTgS(n) D) ADCTgs(n)
(DCVE(n) 2 Apcvz:(n))
Definition 5.8.1.18 (Optimality of DCP Algorithms)

A deterministic constant propagation algorithm A is optimal
for DCT (DCV), if it is sound and complete for DCT (DCV),

i.e.

5.8.1

Vn c N. VO'S c Zlnit- DCTgs(n) :ADCTgs(n)
( DCVgs(n) = ADC\/gs(n) )
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Relating DCVZ* and DCTZ (1)

Note:

The solution DCVZ* of the DCV constant propagation problem
induces for every node n of G a state ULn)cvgs € ¥ defined by

d if (v,d) € DCVZ(n)

Vne N.VveV. chvgs(v) —df { L otherwise

5.8.1

Then, the states o}} - induce a solution DCTDcvgs for the
G
DCT constant propagation problem:

DCTDCVGUS(H) =df {(t, d) eT x IDIB ’g(t)(o‘gcvgs) =d ?é J_}
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Relating DCVZ* and DCTZ (2)

We have:

Lemma 5.8.1.19 (Approximation Lemma)
VneNlN. VUS S Zlnit. DCTgs(n) 2 DCTDcvgs(n)

In general, this inclusion is a proper inclusion.
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Interpretation, Conclusions (1)

Intuitively

» The Approximation Lemma 5.8.1.19 states that a term
can be a deterministic constant at some node n without
that all of its variables are (deterministic) constants at n.

Hence

» Any sound algorithm for the DCV constant propagation
problem is in general conservative and suboptimal for the
DCT constant propagation problem.

» This holds even for a (hypothetical) optimal algorithm
(cf. Theorem 5.1.1) for the DCV constant propagation
problem.

5.8.1
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Interpretation, Conclusions (2)

As a matter of fact

» The Undecidability Theorem 5.1.1 rules out the possibility
and existence of DCT and DCV optimal constant
propagation algorithms.

Hence

5.8.1

» The best we can hope for are conservative DCT and DCV
constant propagation algorithms trading optimality for
decidability (and efficiency, scalability).
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Conditional Constants

The algorithm for conditional constants Acc is a

» singleton DCV algorithm computing a variable valuation
function
Accpey - N—V—1ID

5.8.1

as the result of the analysis.
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Induced Term Valuation Function of A

The variable valuation function

> ACCDCV :N—=V—=1ID

of the conditional constants algorithm Acc induces a term
valuation function

T
> ACéBDCV N — Tag— IDIB

defined by

5.8.1

Vne NVte Tag. ACCDCV(”)(t) =df

{ d if g(t)(ACCDcv(n)):d 7é 1

1 otherwise
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DCV/DCT Solutions induced by A¢c¢

The variable and term valuation functions
> ACCDCV :N—=V—=1ID
T
> ACé‘ZCV N — TAB — |D|B

of Acc induce solutions for the DCV and the DCT constant
propagation problems:

> DCVACCDCV(n) =df 5.8.1
{(v,d) € VxXID[Accpe, (n)(v)=d # L}
> DCTACCDcv(n) =df

{(t.d) € Tag x D | AL _ (n)(t)=d # L}
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Chapter 5.8.2
DFA States, DFA Lattice
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From Data Domains to DFA Lattices

Given

» the data domain IDg=4¢ ID U IB of interest with ID e.g.,
the set of natural numbers IN, the set of integers Z, etc.,
including a distinguished element L representing the
value undefined and a distinguished element T
representing “universal” information.

5.8.2

...it remains to arrange the elements of data domain IDjg to a
flat DFA lattice (as shown next).
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From Data Domains to DFA Lattices (2)
Given the data domain IDjg, the flat lattice F Lip, (cf. Appen-

dix A.4)
/// NN

d d, ds dy dy de dy -

...constitutes the basic DFA lattice for conditional constant 582
propagation.

Intuitively

» T represents complete but inconsistent information.
» d;, i > 1, represents precise information.

» | represents no information, the empty information.
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The Basic DFA Lattice over ZZ and IB

...is given by F Lz,

-

S

False ees 4 True

1

0

...leading to the class of conditional constants over Z and IB.

w N -
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DFA States, Semantics of Instructions, etc.

Unlike to Chapter 5.3.1, we do not need to extend the notions
of

v

interpretation of terms

states and initial states

v

semantics of terms

v

» semantics of instructions

to cope with the distinguished element T for the constant 582
propagation analysis. This has been done to full extent in the
corresponding definitions of Chapter 5.8.1, which can now

directly be used for defining the conditional constants

propagation analysis.
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The DFA Lattice for Conditional Constants

The set of (DFA) states ¥ together with the pointwise

ordering of states, Cy, constitutes a complete lattice
(cf. Appendix A.4):

Vo,0' €. 0Ly o' iff VveV.o(v)Crgy, 0'(v)

Lemma 5.8.2.1 (Lattice of DFA States)
i:df (X,Mg,Us,Cs,0,,07) is a complete lattice with
» least element o, greatest element o,

» pointwise meet MMy and join LIy as meet and join
operation, respectively.
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Chapter 5.8.3

Conditional Constants: Specification
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Conditional Constants over Zg: DFA Specific.
DFA Specification
» DFA lattice

~

C=(C,mU,C, L, T)=g
(27 |_|Z7 UZa EZ, g, O-T) — f
with X set of DFA states over Zg.

» DFA functional
[1.:E—=(X—=X)whereVec E. [e]. =arb.

» Initial information: o € ¥ i

» Direction of information flow: forward

Conditional Constants Specification

» Specification: S& = (f, [ 1. 05 fw)

5.8.3
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Chapter 5.8.4

Termination, Safety, and Coincidence
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Towards Safety and Termination

Lemma 5.8.4.1 (Descending Chain Condition)

Y satisfies the descending chain condition.

Note. The set of variables occurring in a program is finite. o

Lemma 5.8.4.2 (Monotonicity)
[ 1.. is monotonic.
Lemma 5.8.4.3 (Non-Distributivity)

5.10

[ 1. is not distributive. s
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Termination and Safety/Conservativity

Theorem 5.8.4.4 (Termination)

Applied to S& = (I, [ 1. 0s, fw), Algorithm 3.4.3 terminates
with the MaxFP solution of S¢°.

Proof. Immediately with Lemma 5.8.4.1, Lemma 5.8.4.2, and
Termination Theorem 3.4.4.

Theorem 5.8.4.5 (Safety/Conservativity)

Applied to S& = (I, [ ].., 05, fw), Algorithm 3.4.3 is MOP
conservative for S& (i.e., it terminates with a lower
approximation of the MOP solution of S§°).

Proof. Immediately with Lemma 5.8.4.2, Safety Theorem
3.5.1, and Termination Theorem 5.8.4.4.
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Non-Coincidence

Theorem 5.8.4.6 (Non-Coincidence/Non-Opt.)

Applied to S& = (f,[ l.c; 0s, fw), Algorithm 3.4.3 is in
general not MOP optimal for S& (i.e., it terminates with a
properly lower approximation of the MOP solution of S&).

Proof. Immediately with Lemma 5.8.4.3, Coincidence
Theorem 3.5.2, and Termination Theorem 5.8.4.4.

Corollary 5.8.4.7 (Safety, Non-Coincidence) 204

The MaxFP solution for S&, is always a safe approximation of
the MOP solution of S&. In general, the MOP solution and
the MaxFP solution of S& do not coincide.
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Chapter 5.8.5

Soundness and Completeness

5.8.5
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Soundness and Completeness of MOP sce

Theorem 5.8.5.1 (Soundness and Completeness)
The MOP solution of S& is

1. sound and complete for the variable constant propagation
problem DCV, i.e.

VneN. Vos €. chcvgs(n) = MOPgx(n)

2. sound but not complete for the term constant
propagation problem DCT, i.e.

Vne N. Vo5 € Eppie. DCleros(n) Iz MOPE (n)

In general, the inclusion is a proper inclusion.

5.8.5
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Soundness and Completeness of MaxFP e

Corollary 5.8.5.2 (Soundness and Completeness)
The MaxFP solution of S& is

1. sound but not complete for DCV, i.e.

Vn € N. Vo5 € Eppie. DCheyes(n) Ix MaxFPe(n)
2. sound but not complete for DCT, i.e.

Vn € N. Vo5 € Epnir. DCheros(n) D5 MaxFPE (n)

In general, both inclusions are proper inclusions.

5.8.5
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Chapter 5.8.6

[llustrating Example
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Conditional Constants over Zg: lllustrating

Example
a) o b)
ga =2 )
a—=2
l b:i=a —o
(amod 2) /=02 ab—=2 (amod 2) /=0?
O |(@amod 2) == 0?
a:=3 a:.=
ab,c,def—T Jc=atb =4
ci=atl ab—2, c—=4 ci= a+1<£
ab,cdef—T | d:=a+l =3
di=c-2 ¢} ab—2, c—=4, d—=3 d:=c-
ab,cdef—T !
b2, c—=4,d——=3
l e:=a+d } =5
O b—=2, c—=4,d—=3,e—5 0
| f:=a+b*c if::]u [f:=10
b—2, c—=4,d+——=3,e—=5f——=10

..all terms are conditional constants.
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Remark

The original algorithm of Wegman and Zadeck for conditional
constants is technically different and makes use of

» executable flags for nodes/edges

in order to filter information for propagation.

5.8.6
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Going Beyond Conditional Constants

...Is possible.

Conditional expressions like

» x==17 can be treated like an assignment on the “true”
branch, even if their truth value can not be decided at
analysis time.

» x>07 can also be propagated along the “true” branch
and beneficially be exploited for evaluating other program
terms; similarly, this holds for the negation of this
expression x<=07 along the “false” branch.

5.8.6

» (a mod 2)==07 can also be progagated along the “true”
branch and beneficially be exploited for evaluating other
program terms.
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Beyond Conditional Constants over Zg

Heuristic extensions of the conditional constants analysis as
sketched before would allow to detect that the (Boolean)
variable g is a constant of value True, even though the value
of variable u can not be figured out at compile time.

(¥}
)
I

¥}

b:=2

o
n
N

a) b) o c)
ia - 2a>—> 2 4)3 .
g .

' ab—=2 (amod 2) /=02
o= #{u mod 2) ==0? (amod 2) ==0?

a:=
ab.cdef—T 45

ab.cdefr—T¢
d:=c-2 ab—=2, c—=4, d—=3 d:= C‘Zi,
abcdefr—T0C_ | read(u) Qe
TO b—=2, c—=4,d—=3,u—_|_ =

e:=a+d e:=5

c:=a+l T) ab—=2, c—=4 c:= a+|$
} E
b—=2, ct—=4,d—=3.e—=5u—1
f := a+b*c f:=10 f:=10

~—0<_0

= 9%

i

»
~—0-—0~—0~-0~—0--0—0

[=9 (e}

i

[3%) =

@
I}
W

b2, c—=4,d—=3,e—=5u+—|
g :=((a*umod 2) == 0)
b—=2, c+—=4,d—=3,e—=5u—| , g—=True

o 1= true g = true
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Chapter 5.9
VG Constants
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Chapter 5.9.1

Motivation
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Simple Constants and Q Constants
Recalling the limitations of simple and Q constants:

a) b)

5.9.4

5.9.5
5.10
5.11

After simple constant propagation After Q constants propagation
(No effect at all!)
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The Look-Ahead Challenge

...there is a need for a look-ahead of unlimited length:

a) b) c)

After simple constant propagation After Q constants propagation After VGy, constants propagation 5.11
(Note: No effect at all!)
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Constant Propagation on the Value Graph (1)

In this chapter, we are going to present

» the VG, algorithm addressing this challenge.

As the algorithm for finite constants, the VG, algorithm

» extends the look-ahead of 1 heuristics of the Q approach
systematically.

5.9.1

Compared to the algorithm for finite constants, however,

» the VG, algorithm balances analysis power and compu-
tational complexity differently giving more weight to
performance .
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Constant Propagation on the Value Graph (2)

...comes in two variants:

» The VG, Approach: The basic algorithm 51

...computes simple constants.

» The VG, Approach: The full algorithm

...mimicks the look-ahead heuristics for a finite but long
range analysis.

5.9
5.9.1

638/177



Constant Propagation on the Value Graph (3)

Technically, both the basic VG, and the full VG, algorithm

» work on the value graph of Alpern, Wegman, and Zadeck
(POPL'88) of a program that is derived from the static
single assignment (SSA) representation of a program.

and proceed in 5 steps:
» Construct the static single assignment form (SSA) form
Gss, of a program G.
» Construct the value graph (VG) of Gg,. o
» Analyse the value graph to detect constant terms.
» Apply the analysis results to optimize the SSA form of
Gss, of G, obtaining G,

dopt *

» Construct the optimized flow graph Gg,: from G

dopt *
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Chapter 5.9.2
VG, Constants: The Basic Approach
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The Running Example

...constructing the SSA form and the VG of a program:

a)

Original Flow Graph SSA Form Value Graph
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Defining the Value Graph Formally (1)

Definition 5.9.2.1 (Value Graph)

Let Gy, be the SSA form of a flow graph G. The value graph
VGe,., = (V,L,A) is a triple, where V is a set of vertices, L a

labelling function of vertices, and A a set of directed edges (or
arcs).

» Vertices: For every assignment of G, with a nontrivial
right-hand side term ¢ (i.e., t contains at least one
operator), V contains an operator vertex; for every
occurrence of a constant in G, V contains a constant
vertex.*

4For the sake of simplicity we assume that all variables are initialized.
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Defining the Value Graph Formally (2)

» Labels: Every vertex of V is labelled with the operator or
the constant of its underlying right-hand side term or
constant occurrence, respectively, and the set of variables
whose value is generated by the corresponding assignment
or constant.

» Arcs: Every operator vertex of V' has for every of its
operands an outgoing arc pointing to the vertix of V
labelled with this operand.

5.9.2

Every arc is labelled with a natural number denoting the
position of the operand that it points to in the term it is
an operand of.>

5This labelling is omitted in the examples; we assume that edges are
ordered implicitly from left to right.
643/177



Value Graphs: A few Remarks

Let VG be a value graph. By construction, it is ensured that

» operator nodes of VG are always annotated with the
left-hand side variable of their underlying assignment
statement, also called the generating assignment.

» The left-hand side variable x of a trivial assignment

» x:=y, y €V, is attached to the vertex corresponding
to the generating assignment of y
» x:=c, ¢ € C, is attached to the constant vertex
corresponding to the occurrence of the constant c. 502

For convenience, constant and operator annotations are
written inside the circle visualizing a vertex, variable
annotations outside.®

For simplicity, we assume that ordinary term operators and ¢ opera-

tors are all binary (extensions to k-ary operators are straightforward).
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The VG Algorithm

Algorithm 5.9.2.2 (Computing VG Constants)
Let VG = (V, L, A) be a value graph. Then:

Initialization Step: For every vertex v € V initialize:
Ib(c) if vis a leaf node of VG labelled by ¢
dfi[v] = :
T otherwise
Iteration Step:

1. For every vertex v € V labelled by an ord. operator op:

dfi[v] = lh(op)(dfi[l(v)], dfi[r(v)]) (Evaluating terms)

5.9.2

2. For every vertex v € V labelled by a ¢ operator:

dfifv] =dfi[l(v)] N dfi[r(v)] (Merging DFA-info’s
at join nodes)
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Running Example: lllustrating the VG, Alg.

a) Initialization Step b) Iteration Steps

After the initialization step After the Ist iteration step After the 2nd iteration step  After the 3rd iteration step: Stable!

Analysis result: xg, X1, X2, and x3 are VG, constants! L

646/177



Running Example: The VG, Optimization

a) b)
1 1
x:=0 Xo:=0
2
o= x—1 x:=x+1 xp=x,—1 i} ~:i<)I:2-(:‘;,)Q) )
2. M
3 3

d) e) 5

c)
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Chapter 5.9.3
VG, Constants: The Full Approach
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The Running Example
...constructing the SSA form and the VG of a program:
)

¢

x;:=3

V=2

X :=®u(Xg, X, )

Y2 :=Pa(yp, y, )
9.1
=Xty |z i=6-1 ;;
\ O 5.9.4
n 7,"’\?\"‘
22 :=Pm (20, ;) 5.11

O
Original Flow Graph SSA Form Value Graph
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Extending the Data Domain: ¢ Constants

Intuitively, ¢ constants are expressions which are composed of
constants and ¢ operators.

Definition 5.9.3.1 (¢ Constants over ID')

The set ID? of ¢ constants over ID’ is inductively defined as
the smallest set satisfying:

1. ID' C ID?

2. If ¢, is a ¢ operator occurring in the SSA form and
dy,dr € ID? such that neither d; nor d» contains ®n, then 593
¢n(di, dy) € ID?.

Note that ID" (cf. Chapter 5.3) and hence ID? contain the
distinguished elements | and T.
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The Complete Partial Order of ¢ Constants

Lemma 5.9.3.2 (CPO of ¢ Constants)
The pair (ID?, C), where C is defined by

On(r, R) Cr <4
(NCrV nCnV(r=¢.(nnAnCrn A nCr)

is a complete partial order.

Note: (ID?,C) is not a lattice since greatest lower bounds do
not exist. E.g., #,(2,3) and ¢,(3,2) are incomparable lower
bounds of 2 and 3, respectively.
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The Evaluation Function £

Definition 5.9.3.3 (Evaluation Function £)

The evaluation function £ — ID? is defined by:

Lic,op)
1. Ef(d)=difd elID’
2.
1 if E7(r) or ET(n)
contains ¢, :
EX(dn(r,r))=q €7(n) if EF(n) EET ()
Et(n) if () C &M (n) f/v
on(ET(n),ET(r)) otherwise 50
3. €(op(n, 1)) =
IO(OP)(rh r2) if n,rn c |D, ::J

EX(pnlop(r, r1), 0p(r1, 1)) if 1 € 1D, ra = (121, r22)?

5+(</)n(0P(f117 n),op(rz,r))) if n=¢s(ni,n2),rn e D
( n(OP(fn; f21), OP(f12, f22))) if n= ¢n(f117 f12)7
fzzﬁbn(lea f22)

\ L otherwise 652/177




Discussing £7: Intuition

Intuitively

» the evaluation function £ maps vertices of the value
graph depending on the operator or constant symbol they

are annotated with (“inside the circle”) to a ¢ constant in
ID?.
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Discussing £7: Power and Performance

Controlling analysis power:

» Def. 5.9.3.3, second item, the “otherwise” case: Here, ¢
constants are constructed, which, as operands of ordinary
operators, are evaluated in a distributive fashion (cf. lines
two to four of the third item, ¢,(E7(...)) and £ (¢,...)) .

Controlling performance:

» Def. 5.9.3.3, third item, the “otherwise” case: The
evaluation of £ yields L, if r; and r, are ¢ constants /{)w;;{
with different top level ¢ operators, i.e., origin from 59?
different join nodes in the program. This is in order to o
avoid the combinatoric explosion which reflects the o
co-NP-hardness of constant propagation on (even) acyclic
programs.
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The VG, Algorithm

Algorithm 5.9.3.3 (Computing VG4 Constants)
Let VG = (V, L, A) be a value graph. Then:

Initialization Step: For every vertex v € V initialize:

+ . .
dfi[v] = ET(lablv]) if vis a leaf node of VG
T otherwise
lteration Step: For every vertex v € V labelled by an ordinary 593

or ¢ operator op:

dfi[v] = E£7 (op(dfi[l(v)], dfifr(v)])
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Running Example: lllustrating the VG, Alg.

a) Initialization Step

b) Iteration Steps

After the initialization step After the Ist iteration step After the 2nd iteration step: Stable!

Analysis result: xo, x1, Yo, Y1, 20, 1, and z are VG constants! %
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a) Q

Running Example: The VG, Optimization

51
52
53
5.4

5.6

L5y

5.8

5.9.1
5.9.2
5.9.3
5.9.4
595
5.10
511

X2 :=Pa(2,3)
=Py(3,2)
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The Key

...to obtaining this result:

» Introducing ¢ constants.
» Extending the eval. function on VGs to ¢ constants, £*.

» Defining £ to carefully balancing power and
computational complexity of evaluating it.
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Chapter 5.9.4

Main Results
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Main Result for VG and VG,

Theorem 5.9.4.1 (VG Theorem)

The VG, algorithm computes the class of simple constants.

Theorem 5.9.4.2 (VG, Theorem)

The VG algorithm computes
1. a superset of the set of simple constants for programs
with unrestricted control flow.

2. the class of injective constants, i.e., the class of constants s«
composed of operators, which are injective for the relevant
term operands, for programs with acyclic control flow.
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Overall

...the VG algorithm
» keeps a fine balance between power and performance
» achieves a finite but long range look-ahead.

The value graph and the SSA form of a program it is derived
from are fundamental for this achievement.

Note:
Beyond its usage for constant propagation on the value graph
in this chapter, the SSA form of a program is

» a most widely used intermediate program representation
in optimizing compilers. .
The SSA form of a program is attractive because
» lexical identical terms are ensured to be semantically

equivalent, i.e., to always yield the same value, which is

important to know for many analyses and optimizations.
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Chapter 5.9.5

[llustrating Example
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VGy Constants over Z: lllustrating Example

a)

y:=2
O Failed to iled to
be detecte letected!

d!

¥

After simple constants propagation After Q constants propagation After VGy, constants propagation 5.10
(No effect at all!) 5.11
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Constant Propagation on the Value Graph

...receives Triple E Rating: Expressive, Efficient, Easy!

a) Initialization Step b) Iteration Steps

Bl
5.2
53
5.4
5.5
5.6
57
5.8
After the initialization step After the Ist iteration step After the 2nd iteration step  After the 3rd iteration step: Stable! 5.9
5.9.1
5.9.2
59.3
a) Initialization Step b) Iteration Steps 5.0.4
5.9.5
5.10
5.11

After the initialization step After the Ist iteration step After the 2nd iteration step: Stable!
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Chapter 5.10
Summary, Looking Ahead
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Summary

The undecidability of the general constant propation problem
inspired a quest for decidable and for efficiently decidable
classes of the constant propagation problem having led to

>

>

Simple constants
Linear constants
Copy constants

Q constants
Conditional constants
Finite constants

VG, constants
Presburger constants

Polynomial constants

666/177



The Lattice of Constant Propagation Classes

Constants

\

Non-deterministic
Constants
decidable

able

Finite Polynomial
Constants Constants

Arbitrary
Control Flow
("In Practice")
Conditional Constants
Constants e ) )

\

Simple
Constants

Acyclic
Control Flow

Presburger
Constants

Linear
Constants

Copy
Constants
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Design Strategies and Achievements

» Trading generality and precision for efficiency, scalability
» Simple constants (standard algorithm for intra-

procedural CP)

Linear constants (relevant for interprocedural CP)

Copy constants (relevant for interprocedural CP)

Q constants (modest improvement over simple const.)

Conditional constants (improvement over simple con-

stants by branch evaluation, towards deterministic CP)

v

v

v

v

» Trading generality, efficiency, and scalability for precision
» Finite constants (arbitrary term operators, decidable for oIl
arbitrary control flow, complete for acyclic control flow,
intraprocedural)

» Presburger constants (+, —: decidable and complete for
arbitrary control flow, intraprocedural)
» Polynomial constants (+, —, x: decidable and complete

for arbitrary control flow, intraprocedural)
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The Challenges of Constant Propagation

...are nicely illustrated by an example of Markus Muller-Olm
and Helmut Seidl (SAS 2002): z at node 4 is a polynomial
constant of value 0 but it is not a simple/Q/finite/condi-
tional constant .

5.10
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On the Complexity of Constant Propagation

205

Table 2. Complexity classification of a taxonomy of CP: summarizing the results.

Must-Constants

acyclic control flow

Copy Constants.
Linear Constants
Pressburger Constants
+,-,* Constants

Full Constants

unrestricted control flow

Copy Constants
Linear Constants
Presburger Constants
+,-,* Constants

Full Constants

May-Constants

single value multiple value
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Constant Propagat'n: More than a Commodity

Constant propagation is

» among the most important and most widely used
optimizations of classical optimization

» indispensible for designing and engineering safety-critical
real-time systems, (e.g., for worst-case execution time
analysis (loop bounds computation, recursion depths 5.10
analysis, etc.) of such systems.
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Looking Ahead: Constant Propagation
...a field of challenging Master (and Bachelor) theses.

Constants

\

Here could be
your class!

Conditional
Constants

T

Non-deterministic
Constants

Finite @ Polynomial

Constants Constants

Arbitrary |
Control Flow |
("In Practice”) |

Q Constants

Acyclic
Control Flow

Presburger
Constants

Simple
Constants

Linear
Constants

Copy
Constants

51

5.7

5.11
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Looking Ahead: Topics for Theses (1)

comblnmg analyses and optimizations, |mp|ement evaluate

(ab) = (2, 3) (x,y) :=(4.5) (a,b) :=(2,3) (xy) :=(4.,5)
Constant Propagation
(No Effect)
(xy,2) := (a,b,a+b) (ab,0) 1= (X,y,y+7) (xy.2) = (ab.ath) (@bsc) = (X,y.y42) o

5.6
9

Semantic Code Motion Y 5.7

\.)«\"‘V 5.8

JAW 1
(a,b) :=(2,3) (xy) =(4.5) (a,b) :=(2,3) (x,y) = (4,5)
Constant Propagation
=a+b = X+y »
(x,y,z) := (a,b,h) (ab,c) :=(x,y,h) (x,y,z) := (a,b,h) (a,b,c) == (x,y,h)

673/177



Looking Ahead: Topics for Theses (2)

..combining analyses and optimizations, implement, evaluate:

(ab) :=(5,1) (xy):=(2.3) (ab) :=(5,1) (x,y) :=(2,3)
Constant Propagation
(x,y,2) := (a,b,(a+b)*m) (a,b,c) := (x,y,(x*y)*m) (x,y,2) = (a,b, 6*m) (ab,c) == (x,y, ()*m) 5

&
S .
Semantic Code Motion [l (No Effect) & Semantic Code Motion 537
= 5.8
g I .
&

5.11
(a,b) :=(2,3) (xy) :=(4.5) (ab) :=(5,1) (xy) :=(2,3)
h:=6*m h:=6%m
(x,y,z) = (a,b,(a+b)*m) (a,b,c) := (x,y,(x*y)*m) (x,y,z) := (a,b,h) (a,b,c) :=(x,y,h)
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(POPL’85), 291-299, 1985. :%
8 Mark N. Wegman, F. Kenneth Zadeck. Constant ;5
Propagation with Conditional Constraints. ACM o
Transactions on Programming Languages and Systems L
13(2):181-210, 1991. o

Linear Constants

8 Mooly Sagiv, Tom Reps, Susan Horwitz. Precise
Interprocedural Dataflow Analysis with Applications to
Constant Propagation. Theoretical Computer Science
167(1-2):131-170, 1996.
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Further Reading for Chapter 5 (7)

Polynomial Constants and Finite Constants

[§ Markus Miiller-Olm, Helmut Seidl. Polynomial Constants
are Decidable. In Proceedings of the 9th Static Analysis

Symposium (SAS 2002), Springer-V., LNCS 2477, 4-19,

2002. -2

[@ Bernhard Steffen, Jens Knoop. Finite Constants: Charac- -
. . . 5.6
terizations of a New Decidable Set of Constants. In 57
Proceedings of the 14th International Conference on )
Mathematical Foundations of Computer Science s

(MFCS’89), Springer-V., LNCS 379, 481-490, 1989.

[§ Bernhard Steffen, Jens Knoop. Finite Constants: Charac-
terizations of a New Decidable Set of Constants. Theore-
tical Computer Science 80(2):303-318, 1991.
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Further Reading for Chapter 5 (8)

Constant Propagation in Specific Settings

[1 Kathleen Knobe, Vivek Sarkar. Conditional Constant
Propagation of Scalar and Array References Using Array
SSA Form. In Proceedings of the bth Static Analysis

Symposium (SAS'98), Springer-V., LNCS 1503, 33-56, ;%
1998. 5
[§ Jens Knoop. Parallel Constant Propagation. In iz
Proceedings of the 4th European Conference on Parallel o
Processing (Euro-Par'98), Springer-V., LNCS 1470, bz

445-455, 1998.

[§ Jens Knoop, Oliver Riithing. Constant Propagation on
Predicated Code. Journal of Universal Computer Science
9(8):829-850, 2003.
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Further Reading for Chapter 5 (9)

[1 Samuel P. Midkiff, José E. Moreira, Marc Snir. A Constant
Propagation Algorithm for Explicitly Parallel Programs.
International Journal of Computer Science 26(5):563-589,
1998.

Constant Propagation on the Value Graph -

58

55

[§ Jens Knoop, Oliver Riithing. Constant Propagation on the -
Value Graph: Simple Constants and Beyond. In 58
Proceedings of the 9th International Conference on o
Compiler Construction (CC 2000), Springer-V., LNCS
1781, 94-109, 2000.

[§ Jens Knoop, Oliver Riithing. Constant Propagation on
Predicated Code. Journal of Universal Computer Science
9(8):829-850, 2003. (Special issue for SBLP'03).
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Further Reading for Chapter 5 (10)

[§ Jens Knoop, Oliver Riithing. Constant Propagation on
Predicated Code. In Proceedings of the 7th Brazilian
Symposium on Programming Languages (SBLP 2003),
135-148, 2003. -

58

Constructing SSA Form 54

55
5.6

[@ Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark 58
N. Wegman, F. Ken Zadeck. An Efficient Method of
Computing Static Single Assignment Form. In Conference
Record of the 16th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL’89), 25-35, 1989.

5
5.10
511
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Further Reading for Chapter 5 (11)

[§ Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark
N. Wegman, F. Ken Zadeck. Efficiently Computing Static
Single Assignment Form and the Control Dependence

Graph. ACM Transactions on Programming Languages -
and Systems 13(4):451-490, 1991. s
Constructing the Value Graph g

5.8

[§ Bowen Alpern, Mark N. Wegman, F. Ken Zadeck. Detec- 510
ting Equality of Variables in Programs. In Conference
Record of the 15th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages
(POPL'88), 1-11, 1988.
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Further Reading for Chapter 5 (12)

Miscellaneous

3 Yuri V. Matijasevic. Enumerable Sets are Diophantine (In
Russian). Dodl. Akad. Nauk SSSR 191, 279-282, 1970.

@ Yuri V. Matijasevic. What Should We Do Having Proved a -
Decision Problem to be Unsolvable? Algorithms in Modern ==

5.6

Mathematics and Computer Science 1979:441-448, 1979. G

5.8

B Yuri V. Matijasevic. Hilbert's Tenth Problem. MIT Press, ;_if
1993.

[§ Robert E. Tarjan. Fast Algorithms for Solving Path
Problems. Journal of the ACM 28(3):594-614, 1981.
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Chapter 6

Partial Redundancy Elimination
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Chapter 6.1

Motivation
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Motivation: Looking Back and Ahead

Looking back

» Classical Gen/Kill Data Flow Analyses
» Focus: Proving soundness and completeness of DFAs for
selected program properties (availability, liveness, very
busyness, etc.); no program optimization involved
(cf. Chapter 2, 3, and 4).
» Constant Propagation
» Focus: Proving soundness and (relative) completeness of 3
DFAs for non-deterministic and deterministic con- stant
propagation (SCs, LCs, CpCs, QCs, FCs, CCs); program
optimizations involved but trivial (cf. Chapter 3 and 5).

Looking ahead

» Partial Redundancy Elimination
» Focus: Proving optimality of several non-trivial program
optimizations (busy code motion, lazy code motion,

sparse code motion) (cf. Chapter 7, 8, and 9).
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Partial Redundancy Elimination (PRE)

What's it all about?

...avoiding multiple (re-) computations of the same value!

6.1
)

h:= a+b<‘/

f S l
X = a+b\ ‘./ i X :=h \ ./ h:=a+b

y :=a+b y :=h

) e
T/ ¥
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Chapter 6.2
PRE: Essence and Objectives
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PRE — Particularly Striking for Loops

693/177



A Computationally Optimal Program

...w/out any redundancy at all!

h:=a+b

6.1
6.2
6.3
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Often there is more than one!

695/177



Which one shall PRE deliver?

® h:=at+b
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The (Optimization) Goals make the Difference!

697/177



Transformation |

...no redundancies but maximum register pressure!




Transformation |l

...no redundancies but minimum register pressure!




Transformation |l

...no redundancies, moderate register pressure, no code replication!




The (Optimization) Goals make the Difference!

In our running example:

» Performance: Avoiding unnecessary (re-) computations

~» Computational quality, computational optimality
6.2

» Register pressure: Avoiding unnecessary code motion
~» Liftime quality, lifetime optimality

» Space: Avoiding unnecessary code replication
~» Code size quality, code size optimality
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Transformation |: Busy Code Motion

...placing computations as early as possible!

...yields computationally optimal programs.
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Note: As Early as Possible

...means earliest but not earlier.

Incorrect!
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Transformation Il: Lazy Code Motion

...placing computations as late as possible!

...yields computationally and lifetime optimal programs.
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Transformation lll: Sparse Code Motion

...placing computations as late as possible but as early as
necessary!

@ h:=a+b o2

...yields comp. and lifetime best code-size optimal programs.
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llustrating PRE: A More Complex Example (1)
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llustrating PRE: A More Complex Example (2)

'wo Code-size Optimal Programs
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llustrating PRE: A More Complex Example (3)

SQ > CQ>LQ SQ >LQ>CO
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llustrating PRE: A More Complex Example (4)

Note: The below transformation is not desired!
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Summing up

The previous examples demonstrate that in general we can not
achieve

» computational optimality

» lifetime optimality

» space optimality

6.2

at the same time.

However, given a
» prioritization of computational/lifetime/space optimality

we can deliver a program that is

» optimal with respect to the requested prioritization

of these goals.
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Chapter 6.3
The Groundbreaking PRE Algorithm of

Morel and Renvoise
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The Groundbreaking Algorithm for PRE

PRE (or Code Motion (CM)) is intrinsically tied to Etienne
Morel and Claude Renvoise.

Conceptually

» The PRE algorithm of Morel and Renvoise presented in
1979 can be considered the prime father of all code
motion (CM) algorithms 03

» continued to be the “state of the art” CM algorithm until
the early 1990s.

Technically, the PRE algorithm of Morel and Renvoise is
composed of:

» 3 uni-directional bitvector analyses (AV, ANT, PAV)
» 1 bi-directional bitvector analysis (PP)
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The PRE Algorithm of Morel & Renvoise (1)

The PRE Analyses

| Availability
false if n=s
AVIN(n) = [I AVOUT(m) otherwise
m € pred(n)
AVOUT(n) = TRANSP(n)* (COMP(n)+ AVIN(n)) =

[l Partial Availability

false ifn=s
PAVIN(n) = > PAVOUT(m) otherwise
m € pred(n)

PAVOUT(n) = TRANSP(n) % (COMP(n) -+ PAVIN(n))
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The PRE Algorithm of Morel & Renvoise (2)

lIl Very Busyness (Anticipability)

ANTIN(n) = COMP(n)+ TRANSP(n) x ANTOUT(n)

6.3

ANTOUT(n) = [T ANTIN(m) otherwise

m € succ(n)

{ false fn=e
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The PRE Algorithm of Morel & Renvoise (3)

IV Placement Possible

false ifn=s
CONST(n) =
PPIN(n) = (megd(n)(PPOUT(m) + AVOUT(m)) =
(COMP(n) + TRANSP(n) + PPOUT(n))
L otherwise
false ifn=e
PPOUT(n) = { [T PPIN(m) otherwise
m € succ(n)

where
CONST(H):df
ANTIN(n) x (PAVIN(n) + COMP(n) * TRANSP(n))

6.3
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The PRE Algorithm of Morel & Renvoise (4)

The PRE Transformation
Initializing temporaries

INSIN(n) =4 false

INSOUT(n) =4 PPOUT(n)xAVOUT(n) «
(PPIN(n) + TRANSP(n))

Replacing original computations by references to temporaries

REPLACE(n) =4 COMP(n)* PPIN(n)
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Achievements, Merits

...of Morel and Renvoise's PRE algorithm:

» First algorithm for global PRE

Before 1979: PRE restricted to L

» Basic blocks: Value numbering 63
» Program loops: Loop invariant code motion N

» Computationally optimal results

» State-of-the-art algorithm for global PRE for about 15
years
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Shortcomings, Limitations
...of Morel and Renvoise's PRE algorithm:

» Conceptually
» Computational optimality
~> Achieved if critical edges are split (not part of
the original algorithm formulation)
» Lifetime optimality
~» Register pressure is heuristically dealt with, no
optimality
» Code-size optimality
~> Not addressed, no objective

6.3

» Technically
» Bi-directional
~» conceptually and computationally more complex
than uni-directional analyses

...the transformation result lies (unpredictably) between those
of the BCM transformation and the LCM transformation.
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Critical Edges

An edge is called critical, if it connects a branching node with

a join node.
[llustration:
a) b)
\ /
1’){:: a+b‘ 2’ ‘ 1\ h:=a+b 2
x:=h
/
3| y:=h

...splitting the critical edge from node 2 to node 3 by inser-
ting the synthetic node S, ;5 allows PRE to eliminate the
partially redundant computation of a + b at node 3, which
would not safely be possible otherwise.

6.3
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Chapter 6.4

References, Further Reading
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Further Reading for Chapter 6 (1)
The Groundbreaking PRE Algorithm of Morel and Renvoise

[§ Etienne Morel, Claude Renvoise. Global Optimization by
Suppression of Partial Redundancies. Communications of
the ACM 22(2):96-103, 1979.

Variations and Improvements on Morel/Renvoise’s Algorithm

[ D. M. Dhamdhere. Practical Adaptation of the Global
Optimization Algorithm of Morel and Renvoise. ACM
Transactions on Programming Languages and Systems
13(2):291-294, 1991, Technical Correspondence.

[d Karl-Heinz Drechsler, Manfred P. Stadel. A Solution to a
Problem with Morel and Renvoise’s “Global Optimization
by Suppression of Partial Redundancies”. ACM
Transactions on Programming Languages and Systems
10(4):635-640, 1988, Technical Correspondence.

6.1

6.3
6.4
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Further Reading for Chapter 6 (2)

Textbook Presentations of PRE

[§ Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.
Ullman. Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 2nd edition, 2007. (Chapter 9.5, Partial-
Redundancy Elimination)

[§ Keith D. Cooper, Linda Torczon. Engineering a Compiler. o
Morgan Kaufman Publishers, 2004. (Chapter 8.6, Global o
Redundancy Elimination)

[§ Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997. (Chapter
13, Redundancy Elimination)

Miscellaneous

[§ Andrei P. Ershov. On Programming of Arithmetic Opera-
tions. Communications of the ACM 1(8):3-6, 1958. (Three
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Chapter 7
Busy Code Motion

Chap. 7
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Code Motion: Recalling the Very Idea

Code Motion (CM) — often synonymously denoted as Partial
Redundancy Elimination (PRE) — aims at:

...avoiding multiple (re-) computations of the same value!

, , Chap. 7
f h:=a+bé -
«_,////x /“//'/lw
X = a+b\ o # x :=h ’\ ® h:=a+b

y:=a+b y=n
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Chapter 7.1

Preliminaries, Problem Definition
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Work Plan

In the following we will introduce and formally define:

The set of CM transformations CM

v

v

The set of admissible CM transformations CM agm

v

The set of computationally optimal CM transformations
CMCmpOpt

The BCM transformation as one specific computationally
optimal CM transformation

7l

v

Before, however, we will recall useful notations and common
assumptions.
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Useful Notations

Let G=(N, E,s,e) be a flow graph. Then

» pred(n)=q4 {m|(m, n) € E} denote the set of all
predecessors

» succ(n)=q4r {m|(n,m) € E} denote the set of all
SuCccessors

7l

» source(e), dest(e) denote the start node and end node of
an edge

» a sequence of edges (ey, ..., ex) with dest(e;) =
source(e;41) for all 1 < i < k denotes a finite path.

Note: We also consider sequences of nodes as paths, if
appropriate.
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Useful Notations (Cont'd)

v

p = (er,...,e) denotes a path from m to n, if
source(e;) = m and dest(e,) = n

» P[m, n] denotes the set of all paths from m to n

» )\, denotes the length of p, i.e., the number of edges of p

» ¢ denotes the path of length 0

» N, C N denotes the set of join nodes, i.e., the set of
nodes w/ more than one predecessor

» Ng C N denotes the set of branch nodes, i.e. the set of
nodes w/ more than one successor
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Assumptions on Flow Graphs

Let G=(N, E,s,e) be a flow graph. As common and w/out
losing generality we assume:

Common assumptions in program analysis and optimization

» G is a node-labelled S| graph
» Every node of G lies on a path from s to e 5

Intuitively: Unreachable parts of G are removed.

CM specific assumption

» Critical edges of G are split by inserting new so-called
synthetic nodes

Note: Splitting critical edges is required to enable
computationally optimal transformation results.
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Recalling the Splitting of Critical Edges

...edges connecting a branch node with a join node are crucial
for code motion and are thus considered critical:

[llustration:

a)

[mard 2[ ]

7l

...the critical edge (2, 3) connecting branch node 2 and join
node 3 is split by introducing the synthetic node S, 3 and
allows us to remove the partially redundant computation of
a+bat3.
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Splitting Critical Edges vs. Join Edges

Splitting critical edges

» Computationally optimal CM results can be achieved, if
just critical edges in a flow graph are split.

» CM algorithms need to store results of computations for
later reuse at both node entries (N-initializations) and at
node exits (X-Initializations).

» Algorithmically, this is not a problem at all.

Splitting join edges

» Splitting all edges leading to a join node (and not just
critical ones) simplifies (the presentation of) code motion.

» Computationally optimal CM results can be achieved by
storing the results of computations for later resuse
uniformly at node entries (N-initializations).

7l
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Final Assumption: Join Edges are Split

In the following we thus assume

» Every edge in G leading to a join node is split by inserting
a synthetic node.
Note: Synthetic nodes, where no instruction will be
placed, can be removed after the transformation in a final
cleaning step.

7l

Example

» Join edges like the one connecting node 1 and node 3 in
the example illustrating the splitting of critical edges are
assumed to be split by inserting a synthethic node S 3.
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Chapter 7.1.1
Code Motion
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CM: The General Transformation Pattern

Let G=(N, E,s,e) be a (node-labelled SI) flow graph, and let
t € T be a term, the so-called candidate expression for code
motion.

Definition 7.1.1.1 (CM Transformation)

A CM transformation for t, CM,, consists of two steps: 711

» Inserting at (the entry of) some nodes of G the
instruction h := t, where h is a new variable.

» Replacing some of the original occurrences of t by h.

The set of CM transformations for t is denoted by CM,.
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Specifying CM Transformations

A CM transformation CM; is completely specified by means of
two predicates (defined on nodes)

» Insertcy, : N — 1B
» Repley, : N — 1B

specifying where to store the result of a computation and 711
where to replace an original computation of t by a reference to
a stored value in G, respectively.

In the following we will consider a fixed candidate expression t
allowing us to drop t as an index.
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Chapter 7.1.2
Admissible Code Motion
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Towards Admissible CM Transformations

Obviously, CM includes transformations, which do not
preserve the semantics of the original program, and are thus
not acceptable.

This leads us to the notion of admissible CM transformations:

» A CM transformation CM € CM is called admissible, if
CM is safe and correct.

Informally:

» Safe: There is no path, on which by inserting an initiali-
zation of h a new value is computed, i.e., a value that has
not been computed in the original program along this
path.

» Correct: Whenever the temporary h is referenced, it
stores the “right” value, i.e., it stores the same value a
recomputation of t at the use site would yield.
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Towards formalising Safety and Correctness

We need to have three (local) predicates (defined on nodes):
» Comp,(n): the candidate expression t is computed at n.

» Transp,(n): nis transparent for t, i.e., n does not modify
any operand of t.

» Compcy, (n)=ar Insertcp,(n)V Comp,(n)A—Replcy,(n): 712
The candidate expression t is computed at node n after
CM; has been applied.

Note: In the following we will resume dropping t as an index.
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Extending Predicates from Nodes to Paths

Let p be a path (in terms of sequence of nodes) and let p;
denote the /-th node of p.

Then we define:

» Predicate”(p) <= V1 <i<)\,. Predicate(p;)
» Predicate®(p) <= 31 < i< \,. Predicate(p;)
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Safety and Correctness

Definition 7.1.2.1 (Safety and Correctness)
Let n€ N. Then:
1. Safe(n) <—qr
V{(n,....,nx) € P[s,e] Vi. (nj=n) =

i) 3j < i. Comp(n;) A Transp®((n;, ..., n,-l); Y

i) 3j > i. Comp(n;) A Transp”({n;,...,n;_1)
2. Let CM € CM. Then:
Correctep(n) <=ar Y (M,...,nk) € P[s, n]

3i. Insertem(n;) A Transp” ((n;, ..., ne_1))
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Up-Safety and Down-Safety

Considering the conditions (i) resp. (ii) of the definition of
safety separately, leads us to the notions of

» up-safety (availability)

» down-safety (anticipability, very busyness)

Intuitively, a computation of t at node n is

» up-safe, if t is computed on all paths p from s to n and
the last computation of t on p is not followed by a
modification of (an operand of) t.

» down-safe, if t is computed on all paths p from n to e
and the first computation of t on p is not preceded by a
modification of (an operand of) t.
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Up-Safety and Down-Safety

Definition 7.1.2.2 (Up-Safety and Down-Safety)

1. Vne lN. U—Safe(n) < df
Vp € P[s,n] i < \,. Comp(p;) A Transp”( p[i, \p[)

2. Vne N. D-Safe(n) <=4
Vp € Pln el 3i < \,. Comp(p;) A Transp”(p[L, i[)
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Admissible CM Transformations

Now we are ready to define the set of admissible CM trans-
formations:

Definition 7.1.2.3 (Admissible CM-Transformation)

A CM transformation CM € CM is admissible iff for every
node n € N holds:

1. Insertcpm(n) = Safe(n)
2. Replcp(n) = Correctep(n)

The set of admissible CM transformations is denoted by
CMAdm-
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Important Results on Safety and Correctness

Lemma 7.1.2.4 (Safety)

V' n € N. Safe(n) <= D-Safe(n) Vv U-Safe(n)

Talloll
7.1.2

Lemma 7.1.2.5 (Correctness)

VYV CM € CM pgm ¥V n € N. Correctcpy(n) = Safe(n)
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Chapter 7.1.3
Computationally Optimal Code Motion

7.13
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Computationally Better: Higher Performance

Definition 7.1.3.1 (Computationally Better)

A CM transformation CM € CM a4 is computationally better
than a CM transformation CM’ € CM agm, iff

V pePls,e]l. | {i| Compep(pi)}| < | {i| Compepy(pi)}|

7.1.3

Note: The relation “computationally better” is a quasi-order,
i.e., a reflexive and transitive relation.
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Computat. Optimal: Highest Performance

Definition 7.1.3.2 (Comp. Optimal Code Motion)
An admissible CM transformation CM € CM ag4y, is

computationally optimal iff CM is computationally better
than every other admissible CM transformation.

7.1.3

The set of computationally optimal CM transformations is
denoted by CM ¢impopt-
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Reminder: Selected Properties of Relations

Let M be a set and R be a relation on M, i.e., RC M x M.

Then R is called

>

>

>

reflexive iff Vme M. mRm

transitive iff Vm,n.pe M. mRn AN nRp = mRp
anti-symmetric iff Vmne M. mRn AN nRm = m=n 713
quasi order iff R is reflexive and transitive

partial order iff R is reflexive, transitive and anti-symme-
tric
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Chapter 7.2
The BCM Transformation
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Conceptually

...code motion can be considered a two-stage process:

1. Hoisting expressions
...hoisting expressions to “earlier” safe computation points

7.2

2. Eliminating totally redundant expressions
...eliminating computations getting totally redundant by
hoisting expressions
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The Earliestness Principle

...induces an extreme placing (i.e., hoisting) strategy:

Placing computations as early as possible...

» Theorem (Computational Optimality)
...hoisting computations to their earliest safe compu-
tation points yields computationally optimal programs.

7.2

~+ ...known as the Busy Code Motion
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lllustrating the Earliestness Principle

Placing computations as early as possible...
yields computationally optimal programs.
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Note

...earliest means indeed as early as possible, but not earlier!

h:=a+b

Incorrect!

7.2
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Busy Code Motion

Intuitively:

Place computations as early as possible in a program while
preserving safety and correctness!

7.2
Note: Following this principle computations are moved as far
as possible in the opposite direction of the control flow

~> ...motivates the choice of the term busy.
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Earliest Program Points

Definition 7.2.1 (Earliestness)
V'n e N. Earliest(n)=g4¢

true if n=s
Safe(n) A

\/  —Transp(m)V —Safe(m) otherwise
méepred(n)
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The BCM Transformation

The BCM Transformation is defined by:

» V' n € N. Insertgcpm(n) =qr Earliest(n)
» Vne N. Replgcm(n) =4 Comp(n)

7.2
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The BCM Transf.: Computationally Optimal

Theorem 7.2.2 (BCM Theorem)

The BCM transformation is computationally optimal, i.e.,
BCM ¢ CM CmpOpt

Proof. By means of the Earliestness Lemma 7.2.3 and the
BCM Lemma 7.2.4.
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Properties of Earliest Program Points

Lemma 7.2.3 (Earliestness Lemma)
Let n € N. Then we have:

1. Safe(n) = Vp e P[s,n] 3i < A,.
Earliest(p;) A Transp” ( p[i, \p[)

7.2

2. Earliest(n) <=
D-Safe(n) A~ N\ (= Transp(m)\ —Safe(m))

méepred(n)

3. Earliest(n) <= Safe(n) A
YV CM € CM agm. Correctcp(n) = Insertcp(n)
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Properties of the BCM Transformation

Lemma 7.2.4 (BCM Lemma)
Let p € P[s, e]. Then we have:

1. Vi< )‘p' lnsertBCM(p,-) <
3j > i. pli,j] € FU-LtRg(BCM)

2. VCM ¢ CMAdm. VI,JS )\p.
pli.j] € LtRg(BCM) = Compey(pli,J])

3. VCM € CM cmpopt- Vi < Ap. Compeyy(pi) =
3j < i< 1. plj, 1] € FU-LtRg (BCM)

7.2
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The Result of the BCM Transformation

...computationally optimal but maximum register pressure.




Chapter 7.3

Up-Safety and Down-Safety: The DFA
Specifications
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Note

Up-safety and down-safety

» are just synonyms for availability and very busyness,
respectively.

Hence s

» the DFA specifications for availability and very busyness
of Chapter 4 can be reused and need only be adapted
from edge to node-labelled SI flow graphs.
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Up-Safety: The DFA Specification

...for a CM candidate expression t, t € T.

DFA Specification

> [A)FA lattice R
C=(C,mMuU,C, L, T=u (B, A, V,<, false, true) =1

» DFA functional
[1..: N—=(IB—IB), where

VneNVbelB. [n].(b)=a (bV Comph) A Transp,

» Initial information: bs € IB

7.3

» Direction of information flow: forward

Up-Safety Specification for t
> Specification: S“f = (B, [ ., bs, fw)
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Down-Safety: The DFA Specification

...for a CM candidate expression t, t € T.

DFA Specification

» DFA lattice R
C=(C,mMuU,C, L, T=u (B, A, V,<, false, true) =1
» DFA functional
[1:N—=(IB—IB), where
VneNVbeB. [n],(b)=a (bA Transp’) Vv Comp),

» Initial information: b, € IB

7.3

» Direction of information flow: backward

Down-Safety Specification for t
» Specification: S&* = (B, [ 1%, be, bw)
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A Hint to Appendix C

Appendix C presents
» the specialized versions of the MaxFP equation systems
induced by Sgs’t and Sgs’t, respectively, for

» single instruction flow graphs (cf. Appendix C.1.2)
» basic block flow graphs (cf. Appendix C.2.2). 3

» an illustrating example of the BCM transformation on
basic block flow graphs.
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Chapter 7.4

[llustrating Example
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The Original Program

10‘y:=a+b‘ 11‘

N

14‘x::a+b‘ 15‘ y:=a+b‘

16‘Z:=a+b‘ 17‘x:=a+b‘

7.4
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Up-Safe, Down-Safe & Earliest Program Points

. Up-Safe I:I Down-Safe . Earliest
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The Result of the BCM Transformation

7.4
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BCM Transf.: Achievements & Shortcomings

Computationally optimal but maximum register pressure.

7.4
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Note: Initializing Even Earlier is Not Correct!

6 7.1
4
8‘ ‘ 7.4
7.5
by
10[y=h | 1] | 12| |13]
\b\\_]
14‘ X :=h ‘ 15‘ y:=>v
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Chapter 7.5

References, Further Reading
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Further Reading for Chapter 7

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Lazy Code
Motion. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation

(PLDI'92), ACM SIGPLAN Notices 27(7):224-234, 1992.

[§ Jens Knoop, Oliver Rithing, Bernhard Steffen. Optimal
Code Motion: Theory and Practice. ACM Transactions on -
Programming Languages and Systems 16(4):1117-1155, o
1994. 7s

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen. Retro-
spective: Lazy Code Motion. In “20 Years of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (1979 - 1999): A Selection”, ACM
SIGPLAN Notices 39(4):460-461&462-472, 2004.
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Chapter 8
Lazy Code Motion Chap. 8
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The Latestness Principle

...induces an extreme placing strategy dual to the earliestness
principle:

Placing computations as late as possible...

» Theorem (Lifetime Optimality)
...hoisting computations as little as possible, but as far as
necessary (to achieve computational optimality), yields
computationally optimal programs w/ minimum register
pressure.

~> ...known as the Lazy Code Motion

Chap. 8
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lllustrating the Latestness Principle

...computationally optimal w/ minimum register pressure!

b b

Q’é

CCCCCC



Lazy Code Motion

Intuitively:

Place computations as late as possible in a program while

preserving safety, correctness and computational optimality!
Chap. 8

Note: Following this principle computations are moved as little
as possible in the opposite direction of the control flow

~> ...motivates the choice of the term lazy.
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Chapter 8.1

Preliminaries, Problem Definition
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Work Plan

In the following we will introduce and formally define:

» The notion of a lifetime range and a first-use lifetime
range.

» The set of almost lifetime optimal CM transformations
Cyb{ALtOpt- 81

» The set of lifetime optimal CM transformations CM +op:.

» The LCM transformation as the uniquely determined sole
computationally and lifetime optimal CM transformation.
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Chapter 8.1.1

Lifetime Ranges
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Central for Capturing Register Pressure

... formally is the notion of a (first-use) lifetime range.

Definition 8.1.1.1 (Lifetime Ranges)
Let CM € CM.
» Lifetime range
LtRg (CM)=ar
{p|Insertcm(p1) A Replem(pa,) A —insertZy,(pl1,A,])}
» First-use lifetime range
FU-LtRg (CM)=g
{p € LtRg(CM) |V q € LtRg(CM). (¢ C p) = (g=p)}

8.1.1
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First-Use Lifetime Ranges do not Overlap

Lemma 8.1.1.2 (First-Use Lifetime-Range Lemma)

Let CM € CM, p € P[s, €], and let i, o, j1, jo indexes such
that p[i1,j1] € FU-LtRg(CM) and pli, ] € FU-LtRg(CM).
Then we have:
» either p[i1,j1] and p[i, o] coincide, i.e., i =/, and 811
J=J2, or

» pli, 1] and p[i,jo| are disjoint, i.e., j1 < i or jo < fy.
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Lifetime Better: Less Register Pressure

Definition 8.1.1.3 (Lifetime Better)

A CM-transformation CM € CM is lifetime better than a
CM-transformation CM’' € CM iff

Vp e LtRg(CM). 3q € LtRg(CM'). pC q

8.1.1

Note: The relation “lifetime better” is a partial order, i.e., a
reflexive, transitive, and antisymmetric relation.

783/177



Chapter 8.1.2
Almost Lifetime Optimal Code Motion
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Almost Lifetime Optimality:
Almost Mininum Register Pressure

Definition 8.1.2.1 (Almost Lifetime Optimal CM)

A computationally optimal CM transformation
CM € CM cmpopt is almost lifetime optimal iff
Vpe LtRg(CM). A\, > 2 = o1
VCM' € CM cmpopr 3q € LtRg(CM'). pE g a1s
The set of all almost lifetime optimal CM transformations is
denoted by CM 4 :0pt-
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Chapter 8.1.3
Lifetime Optimal Code Motion
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Lifetime Optimal: Minimum Register Pressure

Definition 8.1.3.1 (Lifetime Optimal Code Motion)

A computationally optimal CM transformation
CM € CM cmpopr is lifetime optimal iff CM is lifetime better
than every other computationally optimal CM transformation.

The set of all lifetime optimal CM transformations is denoted i
by CMLtOpt-
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BCM Lifetime Ranges are Longest

Lemma 8.1.3.2 (BCM Lifetime Range Lemma)
¥ CM € CM cmpope. ¥ p € LtRg(CM). 3q € LtRg(BCM).

pEq

Intuitively

» There is no computationally optimal CM transformation
which places computations earlier than the BCM
transformation.

» The BCM transformation is the uniquely determined
computationally optimal CM transformation w/ maximum
register pressure.

8.1.3
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Uniqueness of Lifetime Optimal Code Motion

Obviously, we have:

CMLtOpt - CMCmpOpt C CMAdm C M

In fact, we have even: o

Theorem 8.1.3.3 (Uniqueness of Lifetime Opt. CM)
| CM rope | <1
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Chapter 8.2
The ALCM Transformation
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Delayability of Computations

Definition 8.2.1 (Delayability)

V'n € N. Delayed(n) <=ur
VpePls,n 3i <A, Earliest(p;) A ~Comp™( pli, Aol)

Lemma 8.2.2 (Delayability Lemma)

1. Vn € N. Delayed(n) = D-Safe(n)

2. Vp e Pls,e]. Vi < \,. Delayed(p;) =
3j<i<| plj,i] € FU-LtRg(BCM)

3. VCM € CM ¢mpopt- ¥V n € N. Compcy,(n) = Delayed (n)

8.2
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Latest Program Points

Definition 8.2.3 (Latestness)
Vne N. Latest(n)=q4f
Delayed (n) A (Comp(n)Vv \/  —Delayed (m))

mesucc(n)

Lemma 8.2.4 (Latestness Lemma)

8.2

1. Vp e LtRg(BCM) 3i < X,. Latest(p;)

2. Vpe LtRg(BCM) Vi < \,. Latest(p;) =
~Delayed( pli, \,])
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The ALCM Transformation

The ALCM Transformation is defined by:

» V'n € N. Inserta cpm(n) =4 Latest (n)

» VneN. ReplALCM(n) =df Comp(n)

8.2
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The ALCM Transf.: Almost Lifetime Optimal

Theorem 8.2.5 (ALCM Theorem)

The ALCM transformation is almost lifetime optimal, i.e.,

ALCM - CMALtOpt 8.1

8.1.1
8.1.2
8.1.3
8.2
8.3
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Chapter 8.3
The LCM Transformation
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Isolated Computation Points of a CM Transf.

Definition 8.3.1 (Isolationcpy)
VCM € CM Y n € N. Isolatedcp(n) <= ur
VpeP[ne V1 <i<\,. Replem(pi) = Insertd;,(pl1,i])

Lemma 8.3.2 (Isolation Lemma)

1. VCM € CM ¥ n € N. Isolatedcp(n) <=
VpeltRg(CM). (m Cp=A,=1 8

2. VCM € CM cmpopt ¥ 0 € N. Latest (n) =
(Isolatedcp(n) <= Isolatedgcn(n))
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The LCM Transformation

The LCM Transformation is defined by:

» V'n € N. Insert cp(n) =qr Latest (n) A —lsolatedgcn(n)

» VneN. Rep/LCM(n) =Jf
Comp(n) N\ —(Latest (n) A Isolatedgcn(n))

8.3
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The LCM Transf.: Comp. & Lifetime Optimal

Theorem 8.3.3 (LCM Theorem)

The LCM transformation is lifetime optimal, i.e.,
LCM < CMLtOpt

Corollary 8.3.4 (LCM Corollary)

The LCM transformation is computationally optimal, i.e.,

8.1
8.1.1

8.1.3
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Chapter 8.4

Delayability and Isolation: The DFA
Specifications
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Delayability: The DFA Specification

...for a CM candidate expression t, t € T.

DFA Specification

> DFA lattice R
C=(C,MU,C, L, M= (B, A, V,<, false, true) =1

» DFA functional
[1,:N—(B—IB), where

Vne NVbelB. [n](b)=a
(bV Earliest'(n)) A ~Comp",

» Initial information: Earliest’(s) € IB

» Direction of information flow: forward

Delayability Specification for t
> Specification: S&* = (IB [ 15, Earliest'(s), fw)

8.4
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A Hint to Appendix C

Appendix C presents

» the specialized versions of the MaxFP equation systems
induced by S2'* and SE*, respectively, for
» single instruction flow graphs (cf. Appendix C.1.3)
» basic block flow graphs (cf. Appendix C.2.3).

» an illustrating example of the ALCM transformation and
the LCM transformation on basic block flow graphs. 84
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Chapter 8.5

[llustrating Example
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The Original Program

10‘y:=a+b‘ 11‘

N

14‘x::a+b‘ 15‘ y:=a+b‘

16‘Z:=a+b‘ 17‘x:=a+b‘

8.5
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The Result of the BCM Transformation

8.5
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BCM Transf.: Achievements & Shortcomings

Computationally optimal but maximum register pressure.

8.5
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Delayed and Latest Computation Points

® ™ ® o ™
(SR

8.5
8.6

I:‘ Delayable . Latest
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The Result of the ALCM Transformation

8.5
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The ALCM Transformation: Achievements

Comp. optimal with almost minimum register pressure.

8.5
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Latest and Isolated Computation Points

(SR
w i

8.5

D Isolated . Latest
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The Result of the LCM Transformation

8.5
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The LCM Transformation: Achievements

Computationally optimal with minimum register pressure.

8.5
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Chapter 8.6

References, Further Reading
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[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Lazy Code
Motion. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI'92), ACM SIGPLAN Notices 27(7):224-234, 1992.

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen. Optimal o
Code Motion: Theory and Practice. ACM Transactions on o
Programming Languages and Systems 16(4):1117-1155, o

1994. o5

814/177



Further Reading for Chapter 8 (3)

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Retro-
spective: Lazy Code Motion. In “20 Years of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (1979 - 1999): A Selection”, ACM
SIGPLAN Notices 39(4):460-461&462-472, 2004.

[@ Stephen S. Muchnick. Advanced Compiler Design Imple-

mentation. Morgan Kaufman Publishers, 1997. (Chapter .
13.3, Partial-Redundancy Elimination — Lazy Code o
Motion) o2

[§ Jean-Baptiste Tristan, Xavier Leroy. Verified Validation of
Lazy Code Motion. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2009), 316-326, 20009.

815/177



Chapter 9
Sparse Code Motion

Chap. 9
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Chapter 9.1

Background and Motivation
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Recall

Code Motion aims at

» eliminating unnecessary recomputations of values (e.g.,
BCM, ALCM, LCM)

» while simultaneously avoiding introducing unnecessary
register pressure (e.g., ALCM, LCM)

9.1
9.1.1

Overall, code motion thus primarily aims at -

9.3

» improving the runtime performance of a program. -

9.6
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However, there is more than Speed!

...code size, for example.

— Computationally Optimal.
— No Code Replication.

— Moderate Register Pressure!



Prioritization of Optimization Goals
Recall that

» number of computations, register pressure, code size

can not be fully optimized at the same time (cf. Chapter 6).

In this chapter

» we present a CM algorithm taking user priorities into

account!
Code-Size Quality
...Small is Beautiful

Computational Quality

...Run-Time Performance
Lifetime Quality
...Register Pressure

This algorithm, called Sparse Code Motion (SpCM )

» evolves as a modular extension of the LCM transf.
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Sparse Code Motion

...can achieve the below result, if so desired:

— No Code Replication.

— Computationally Optimal.

— Moderate Register Pressure!



Chapter 9.1.1
The Embedded Systems Market
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The World Market for Microprocessors in 1999

Chip Category

Sold Processors

Embedded 4-bit
Embedded 8-bit
Embedded 16-bit
Embedded 32-bit
DSP

Desktop 32/64-bit

2000 Millions
4700 Millions
700 Millions
400 Millions
600 Millions
150 Milliones

GBI}

...David Tennenhouse (Intel Director of Research), key note lecture at the
20th IEEE Real-Time Systems Symposium (RTSS'99), Phoenix, Arizona,
December 1999.
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Chip Category

Sold Processors

Embedded 4-bit
Embedded 8-bit
Embedded 16-bit
Embedded 32-bit
DSP

Desktop 32/64-bit

2000 Millions
4700 Millions
700 Millions
400 Millions
600 Millions
150 Milliones

The World Market for Microprocessors in 1999

~ 2%

GBI}

...David Tennenhouse (Intel Director of Research), key note lecture at the
20th IEEE Real-Time Systems Symposium (RTSS'99), Phoenix, Arizona,
December 1999.
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Think about

...domain-specific processors used in embedded systems:

» Telecommunication
» Cellular phones, pagers,...
» Consumer electronics

» MP3-players, cameras, game consoles, TVs,...
» Automative field

GBI}

» GPS navigation, airbags,...
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Code for Embedded Systems (1)

...has high demands on

v

Performance (often real-time demands)
Code size (system-on-chip, on-chip RAM/ROM)
Power consumption (batteries)

v

v

GBI}

For embedded systems

» Code size is often more critical than speed!
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Code for Embedded Systems (2)

Typically, these demands are still addressed by

» Assembler programming

» Manual post-optimization

Shortcomings

» Error prone
» Delayed time-to-market

GBI}

...problems getting more severe with increasing complexity.

Generally, there is

» a trend towards using high-level languages programming,
particularly C, C++.
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In View of this Trend

...how do classical compiler and optimizer technologies support
the specific demands of code for embedded systems?

Code Size

GBI}

Run-Time Performance

...unfortunately, only little.
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As a Matter of Fact

Classical optimizations

» are tuned towards performance optimization
» are not code-size sensitive

» do not allow any control on their impact on the code size

GBI}
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This holds

...for code motion based optimizations, too, such as

v

Partial redundancy elimination

v

Partial dead-code elimination
(cf. Lecture Course 185.276 Analysis and Verification)

Partial redundant-assignment elimination
(cf. Lecture Course 185.276 Analysis and Verification) 011

Strength reduction

v

v
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Recalling the Essence of CM in General

CM can conceptually be considered a two-stage process:

1. Expression Hoisting
...hoisting computations to “earlier” safe computation
points

2. Totally Redundant Expression Elimination
...eliminating computations, which become totally
redundant by expression hoisting

GBI}
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Recalling the Essence of LCM

LCM can conceptually be considered the result of a two-stage
process, too:

1. Hoisting Expressions
...to their “earliest” safe computation points

2. Sinking Expressions
...from their “earliest” safe computation points to their
“latest” safe still computationally optimal computation
points

GBI}
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Chapter 9.2

Running Example
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Running Example: The Original Program
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Running Example: Two Optimization Variants

Two Code-size Optimal Programs
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Running Example: Optimization Priorities

SQ > CQ>LQ SQ >LQ>CaQ
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Running Example: Undesired Transformation

Recall: The below transformation is not desired!
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Chapter 9.3

Code-size Sensitive Code Motion
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Code-Size Sensitive Code Motion

~> The Problem
...how do we get code-size minimal placement of the
computations, i.e., a placement that is
» admissible (semantics & performance preserving)
» code-size minimal?

~> The Solution: A new View to Code Motion
...consider CM as a trade-off problem: Exchange original
computations for newly inserted ones!

~» The Clou: Use Graph Theory!
...reduce the trade-off problem to the computation of
tight sets in bipartite graphs based on maximum
matchings!

9.3
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We postpone but keep in mind

...that we have to answer:

» Where are computations to be inserted and where are
original computations to be replaced?

...and to prove:

» Why is this correct (i.e., semantics preserving)?
» What is the impact on the code size?

9.3

» Why is this “optimal” wrt a given prioritization of goals?

For each of these questions we will provide a specific theorem
that yields the corresponding answer!
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Chapter 9.3.1

Graph-theoretical Preliminaries

9.3.1
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Bipartite Graphs
T

S

Tight Set
...of a bipartite graph (SU T, E): Subset S;s C S w/

VS CS. [Si| —IT(Ss)| > |S|—|T(S)]

I'(s,)
T 9.3.1
S

S

ts

Two Variants: (1) Largest tight sets (2) Smallest tight sets
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Bipartite Graphs
T

S

Tight Set
...of a bipartite graph (SU T, E): Subset S;s C S w/

VS CS. [Si| —T(Ss)| > |S|—|F(S)]

r'(s,)
T 9.3.1
S

S

ts

Two Variants: (1) Largest tight sets (2) Smallest tight sets
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Obviously

...we can make use of off-the-shelve algorithms from graph
theory in order to compute

» Maximum matchings and
» Tight sets

This way the PRE problem boils down to

9.3.1

» constructing the bipartite graph that models the problem!
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Computing Largest/Smallest Tight Sets

...based on maximum matchings:
T y D T
VY = LY
S S
T T .
= LI = LY
S .. J s ;

9.5
7(8)

C
9.7
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Computing Largest Tight Sets

Algorithm 9.3.1.1 (Computing Largest Tight Sets)
Input: A bipartite graph (SUT, E), a maximum matching M.
Output: The largest tight set 7,.74S) C S.

Sv:=S; D:={t € T|tis unmatched};
WHILE D # () DO
choose some x € D; D:= D\ {x};
IFxeS
THEN Sy := Sm \ {x};
D:=D U {y|{xy} €M}
ELSED:=D U (I'(x) NSwu)

9.3.1

FI
OD;
TLa1s(S) == Swm

846/177



Computing Smallest Tight Sets

Algorithm 9.3.1.2 (Computing Smallest Tight Sets)
Input: A bipartite graph (SUT, E), a maximum matching M.
Output: The smallest tight set Ts,15(S) C S.

Sm:=0; A:={s €S| s is unmatched};

WHILE A # () DO
choose some x € A; A:= A\ {x};

IFxeS
THEN Sy :=Sm U {x};
A=A U (I'(x)\ Swm)
ELSEA:=A U {y | {x,y} € M}
FI
0D;

Tsst(S) = Sm
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Chapter 9.3.2
Modelling the Problem

848/177



Modelling the Trade-off Problem

The Set of Nodes
TisUSps © ®© © O O O O ® ® ®

——

Insert | Comp/UpSafe

cM
DownSafe/
(Comp UUpSafe)

The Set of Edges...

9.3.2
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The Set of Nodes

850/177



Modelling the Trade-off Problem

The Set of Nodes
TisUSps © ®© © O O O O ® @ ®

Insert , Comp/UpSafe

DownSafe/
(Comp UUpSafe)

The Bipartite Graph

The Set of Edges ..Vn € Sps Vm € Tps.
{n, m} € Eps <=4 m € Closure(pred(n))

9.3.2
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Down-Safety Closures

Definition 9.3.2.1 (Down-Safety Closure)

Let n € DownSafe/Upsafe. Then the Down-Safety Closure
Closure(n) is the smallest set of nodes such that

1. n € Closure(n)
2. V'm € Closure(n) \ Comp. succ(m) C Closure(n)

3. V'm € Closure(n). pred(m) N Closure(n) # 0 =
pred(m) \ UpSafe C Closure(n) o3z
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Down-Safety Closures: The Intuition (1)

933

v
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Down-Safety Closures: The Intuition (2)

v
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Down-Safety Closures: The Intuition (3)

9.3

9.3.2
933
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Down-Safety Closures: The Intuition (4)

933

v
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This intuition

...Is condensed in the notion of down-safety closures. Recall:

Definition 9.3.2.1 (Down-Safety Closure) — recalled

Let n € DownSafe/Upsafe. Then the Down-Safety Closure
Closure(n) is the smallest set of nodes such that

1. n € Closure(n)
2. ¥Y'm € Closure(n) \ Comp. succ(m) C Closure(n)

3. Vm € Closure(n). pred(m) N Closure(n) # 0 = 032
pred(m) \ UpSafe C Closure(n)
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Down-Safety Regions

...lead to a characterization of semantics-preserving PRE
transformations via their insertion points.

Definition 9.3.2.2 (Down-Safety Region)

A set RC N of nodes is a down-safety region iff
1. Comp\UpSafe C R C DownSafe\ UpSafe
2. Closure(R) = R

9.3.2
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Fundamental

Theorem 9.3.2.3 (Initialization Theorem)
Initializations of admissible PRE transformationen are always
at the earliestness frontiers of down-safety regions.

- UpSafev ~Transp
®) @)

e EarliestFrontierR

DownSafe/UpSafe

9.3.2

® Comp

...characterizes exactly the set of semantics preserving PRE
transformations.
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Chapter 9.3.3

Main Results: Correctness and Optimality
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The Key Questions

...regarding correctness and optimality:

1. Where to insert computations, why is it correct?
2. What is the impact on the code size?

3. Why is the result optimal, i.e., code-size minimal?

...three theorems will answer one of these questions each. 032
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Main Results / 1st Key Question

Question: Where to insert computations, why is it correct?

Answer: At the earliestness frontier of the DS-region induced
by the tight set.

Theorem 9.3.3.1 (Tight Sets: Insertion Points)
Let TS C Sps be a tight set. Then we have:

Rrs=ar [(TS) U (Comp\ UpSafe)
is a down-safety region w/ Bodyr,_ =TS

933

Correctness of the SpCM Transformation

» An immediate corollary of Theorem 9.3.3.1 and the
Initialization Theorem 9.3.2.3
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Main Results / 2nd Key Question

Question: What is the impact on the code size?

Answer: The difference between the number of inserted and
replaced computations.

Theorem 9.3.3.2 (Down-Safety Reg.: Space Gain)
Let R be a down-safety region with

Bodyr =4 R\ EarliestFrontierg

Then we have:
» Space Gain by Inserting at EarliestFrontier: 33
| Comp\ UpSafe| — | EarliestFrontierr| =

|Bodyg | — | (Bodyyg)| 4 = defic(Bodyy)
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Main Results / 3rd Key Question

Question: Why is the result optimal, i.e., code-size minimal?

Answer: Due to a property inherent to tight sets (non-negative
deficiency!).

Theorem 9.3.3.3 (Optimality: Transformation)
Let TS C Sps be a tight set.

» Insertion Points:
Inserts,cm=ar EarliestFrontierg,,=Ryrs\ TS

933

» Space Gain:
defic(TS)=q4¢ | TS| — [T (TS)| > 0 max.
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Largest vs. Smallest Tight Sets: The Impact

) EarliestFrontierR
LaTS

Largest tight sets favor
Computational Quality

= Earliestness Principle

® FEarliestF rontierR
SmTS

Smallest tight sets favor
Lifetime Quality
@ Latestness Principle

® Comp

9.1
93

032
933

9.4

9.5

9.6
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The Impact illustrated on the Running Exam.

Largest Tight Set
(SQ>CQ)

Earliestness Principle

Smallest Tight Set
(SQ>LQ)

Latestness Principle
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Chapter 9.4
The SpCM Transformation
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The SpCM Transformation at a Glance

Preprocess
o Optional:Perform LCM (3 GEN/KILL-DFAs)

o Compute Predicates of BCM
for G resp. LCM(G) (2 GEN/KILL-DFAs)

\

Reduction Phase

o Construct Bipartite Graph
o Compute Maximum Matching

¥

Optimization Phase
o Compute Largest/Smallest Tight Set
e Determine Insertion Points

Main Process

N

9.1

9.3
9.4
9.5

9.6
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Chapter 9.5
The Cookbook: Recipes for Code Motion
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The Cookbook: CM Recipes for Prioritization

-

~

Choi £ Auxiliary
olce o Apply To Using Yields Information
Priority Required
£Q Not meaningful: The identity, i.e., G itself is optimal !
SQ Subsumed by SQ > CQ and S§Q > LQ!
co BCM G UpSafe(G), DownSafe(G)
Q> L9 LCM G LCM(G) UpSafe(G), DovnSafe(G), Delay(G)
se>ce || spem d e | SPCMLrs(G) UpSate(G), Downsafe(G)
50> L0 SpCM el f.:::“:: UpSafe(G), DownSafe(C)
N . Largest UpSafe(G), DownSafe(G), Delay(G)
cQ>sQ SpCM LCM(G) tight set UpSafe(LCM(G)), DownSafe(LCM(G))
. o . . Smallest UpSafe(G), DownSafe(G), Delay(G)
€Q>38Q>LQ || SpCM LCM(G) tight set UpSate(LCM(G)), DownSafe(LCM(G))
UpSafe(G), DownSafe(G),
o Smallest Delay(SpCM_15(G)),
§Q>C€Q>£Q || SpCM | DL(SpCMyrs(G)) | fiopt set UpSate(DL(SpCM,75(G))),

DownSafe(DL(SpCM_75(G)))

36

9.5
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Chapter 9.6

[llustrating Example
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Sparse Code Motion: Flexible and Powerful

The original program:

9.5
9.6
.
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SpCM: Computationally Optimal, 2 DFAs
BCM: A computationally optimal program (CQ)

oy
h:=a+b @ Oh:=atb @h:=a+b a:=..
R N R

Large Program Fragment
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SpCM: Comp. and Lifetime Optimal, 4 DFAs

LCM: A computationally & lifetime opt. program (CQ > LQ)

oy
0]

9.5
9.6
.
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SpCM: Lifetime-Best Code-Size Optimal
SpCM: A code-size & lifetime opt. program (SQ > LQ)

9.5
9.6
.
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SpCM: Lifet.-Best Comp. Code-Size Optimal

SpCM: A computationally & lifetime best code-size optimal
program (SQ > CQ > LQ)

1€ @ a=..

/
Q\\\\
@
T

; 22 &
Large Program Fragment

9.5
9.6
.
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SpCM: Lifet.&Code-Size Best Comp. Optimal

SpCM: A lifetime& code-size best computationally optimal
program (CQ > SQ > LQ)

T
(94@_@\ a
e :;i< p
Larg gram Fr:

i ®
e ﬂ,«‘};

4

h

=a+b

9.5
9.6
.
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Chapter 9.7

References, Further Reading
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Further Reading for Chapter 9

[§ Oliver Riithing, Jens Knoop, Bernhard Steffen. Sparse
Code Motion. In Conference Record of the 27th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2000), 170-183, 2000.

[§ Bernhard Scholz, R. Nigel Horspool, Jens Knoop.
Optimizing for Space and Time Usage with Speculative
Partial Redundancy Elimination. Proceedings of the ACM
SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems (LCTES 2004), ACM SIGPLAN
Notices 39(7):221-230, 2004.

9.1
9.2

9
9.6
9.7
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Chapter 10
Code Motion: Summary, Looking Ahead

Chap. 10
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Chapter 10.1

Summary: Roots and Relevance of Code
Motion
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Chapter 10.1.1
On the Roots and History of Code Motion
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On the Origins & History of CM (= PRE) (1)

v

1958: A first glimpse of PRE
~» Ershov’'s work on “On Programming of Arithmetic
Operations.”
< 1979: Structurally Restricted PRE Techniques

~> Totally redundant expression elimination (TRE), loop
invariant code motion (LICM)

1979: The origin of modern PRE

~+ Morel and Renvoise's groundbreaking work on PRE

v

v

v

< ca. 1992: Heuristic improvements of the PRE algo- 1011
rithm of Morel and Renvoise
~> Dhamdhere [1988, 1991]; Drechsler, Stadel [1988];
Sorkin [1989]; Dhamdhere, Rosen, Zadeck [1992],
Briggs, Cooper [1994],...
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On the Origins & History of CM (= PRE) (2)

» 1992: BCM and LCM [Knoop Riithing, Steffen (PLDI'92)]

~+ BCM first to achieve computational optimality based on
the earliestness principle

~+» LCM first to achieve computational optimality with
minimum register pressure based on the latestness
principle

~» BCM, LCM first to be purely unidirectional

~ first to be rigorously proven correct and optimal

» 2000: SpCM: The origin of code-size sensitive PRE
[Knoop, Riithing, Steffen (POPL 2000)]
~> first to be code-size sensitive
~> first to allow users prioritization of optimization goals
~~ rigorously be proven correct and optimal
~» first to bridge the gap between compilation for general
purpose processors and embedded systems

10.1.1
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On the Origins & History of CM (= PRE) (3)

» Since ca. 1997: A new strand of research on PRE
~+ Speculative PRE: Gupta, Horspool, Soffa, Xue, Scholz,
Knoop,...
» 2005: A fresh look at PRE (as maximum flow problem)

~ Unifying PRE and Speculative PRE [Xue, Knoop (CC
2006)]

These days, lazy code motion is the

» de facto standard algorithm for PRE used in current 10.01
state-of-the-art compilers
» Gnu compiler family
» Sun Sparc compiler family
» LLVM

> ...
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Chapter 10.1.2

On the Relevance of Code Motion
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Code Motion is Relevant and Challenging (1)

Why is it worthwhile and rewarding to investigate CM?

Because code motion is

» general: A family of optimizations rather than a single
optimization.
» well understood: Algorithms, which are proven correct
and optimal.
» truly classical: Looks back to a long history originated by
» Etienne Morel, Claude Renvoise. Global Optimization by
Suppression of Partial Redundancies. Communications
of the ACM 22(2):96-103, 1979.
» Ken Kennedy. Safety of Code Motion. International
Journal of Computer Mathematics 3(2-3):117-130, 1972.
» Andrei P. Ershov. On Programming of Arithmetic Ope-
rations. Communications of the ACM 1(8):3-6, 1958.

10.1.2
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Code Motion is Relevant and Challenging (2)

In particular, code motion is

» relevant: Widely used in practice because of its power.

Last but not least, code motion is

» challenging: Conceptually simple but exhibits a variety of
thought provoking phenomenons and pitfalls.

Some of these challenges we are going to illustrate next.

10.1.2
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Code Motion Reconsidered

Traditionally:

» Code (C) means expressions.
» Motion (M) means hoisting.

» CM means partially redundant expression elimination.

But:
» CM is more than hoisting of expressions and PR(E)E! 1012
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Assignments

...are code, too, of course.

In this example, CM means

» partially redundant assignment elimination (PRAE).
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Assignments

...can be hoisted like expressions but conversely, also be sunk!

OUt(X)/ 10.1

In this example, CM means
» partially dead assignment (or code) elimination (PDCE).
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Design Space of CM Algorithms (1)

In general

» Code means expressions/assignments.

» Motion means hoisting/sinking.

’ Code / Motion H Hoisting \ Sinking ‘

Expressions

EH

n.a.

Assignments

AH

AS

....which spans a first set of dimensions for designing code

motion algorithms.

10.1.2
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Design Space of CM Algorithms (2)

...but there are more dimensions for the design of code motion

algorithms:
EH
AH, AS
Syntactic Equivalence
Paradigm Semantic Equivalence
— Intraprocedural
— Interprocedural

— Predicated code
— Parallelism

10.1
10.1.1
10.1.2
10.2
10.3
10.4
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Design Space of CM Algorithms (3)

...and even more:

Goals Eg AS Moving Code
— Speed ’ Placing Code
— Code size
— Power

. Syntactic Equivalence
Paradigm Semantic Equivalence
— Intraprocedural
— Interprocedural
— Predicated code
— Parallel

10.1
10.1.1
10.1.2
10.2
10.3
10.4
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Chapter 10.2
Looking Ahead: Value Numbering
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Chapter 10.2.1
(Local) Value Numbering
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(Local) Value Numbering

...eliminating semantically redundant computations in basic

blocks.

[llustrating Example:

i x:=a+b\\
c@a |
b
5.

The Original Program After Syntactic PRE/CM

Cb>

Semantically redundant:
Interpreting the assignment operator

After Semantic PRE/CM

10.1
10.2
10.2.1
10.2.2
10.3
10.4
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Local Value Numbering
Intuitively

» value numbering works by assigning terms a so-called
value number representing symbolically their values.

» same value number implies same value.

a) b)

3 3
x::a1+b2
d@d

3

b
Y=y

Semantically redundant:

Interpreting the assignment operator

The Original Program After Value Numbering

...has been described early by

After Semantic PRE/CM

» John Cocke and Jacob T. Schwartz in 1970.

10.1
10.2

10.2.1
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Local Value Numbering

...can straightforward be extended to

» extended basic blocks (i.e., trees of basic blocks).

[llustrating Example:

10.2.1

Extended Basic Block — A Tree of Basic Blocks

After Value Numbering After Semantic PRE/CM
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References for Chapter 10.2.1

[@ John Cocke, Jacob T. Schwartz. Programming Languages
and Their Compilers: Preliminary Notes. Courant Institute
of Mathematical Sciences, New York University, 2nd
Revised Version, 771 pages, 1970. (Chapter 6,
Optimization Methods for Algebraic Languages)

10.1

10.2.1
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Chapter 10.2.2

Global Value Numbering: Semantic Code
Motion
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Motivation

Syntactic PRE (or Syntactic Code Motion), e.g., BCM, LCM

+ Global: Works for whole programs.
— Equivalence: Limited to lexical identity.

(Local) Value Numbering
-+ Equivalence: Captures semantic equivalence of terms.

— Local: Limited to basic blocks.

Global Value Numbering (or Semantic Code Motion)

+ combines the best features of syntactic PRE and value
numbering

+ while avoiding their weaknesses.

10.1
10.2
10.2.1
10.2.2
10.3
10.4
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Global Value Numbering: Global Semantic
Code Motion (SCM)

...extending the idea of value numbering to whole programs.

(x,y.2) = (a,b,a+b) %@O (@.b,6) = (X,y.5+2)

h:=a+b h:=x+y 101

> (x.y,2) == (a,b,h )jIQO (ab.c) = (x,y,h) éf’f‘z

Bernhard Steffen (TAPSOFT'87)
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Semantic CM: lllustrating the Essence (1)

The running example:

| T |
’ (a,b,c):l:(x,y,x%—y) ‘ ’ (x,y,z)::(al,b,a—l—b) ‘

The optimized program:

h:=x+y h:=a+b

——
’ (a,b,c)l::(x,y,h) ‘ U,y,z):ia,b,h) ‘

904/177



Semantic CM: lllustrating the Essence (2)

Stage 1: The Analysis Phase

Step 1.1: Determining semantically equivalent terms (wrt the
Herbrand interpretation).

|

1
’ (a,b,c):=(x,y,x+y) ‘ (x,y,z):=(a,b,a+b) ‘
[a, x| b,y |c,a+ba+y,x+bx+y] [a,x[b,y[z,a+ b,a+y,x+ b x+y]

| ;)
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Semantic CM: lllustrating the Essence (3)

Step 1.2: Enlarging the set of term equivalences syntactically
represented.

[alblc|x|y|z|a+b|x+y] [a|blc|x|y|z]a+b|x+y]
’(a,b,c)::(x,y,x—l—y)‘ (x,y,z)::(a,b,a—i—b)‘
[a,x|b,ylc,a+b,a+y,x+b,x+y| [a,x|b,y|z,a+ b,a+y,x+b,x+Yy]

10.2.2
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Semantic CM: lllustrating the Essence (4)

Step 1.3: Constructing the value flow graph.

la| blelxy 2 |a+ [abc|x|yk%/#u+y]

’(a b,c):=(x, yx ’(x,y,z)::(a,t

PX"’W/}%WW 1 [avxlj”WW)ﬂ

I
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Semantic CM: lllustrating the Essence (5)

Step 1.3: The value flow graph, displaying a larger fragment.

| |

Dy :
(sl blelx|ylza+f (alblclx]y | 20| x+y]

S ]
[abcxy(wy] o181 <[xTy [ KZp 15+
[a]blclx|y 2 |a+ (o] ble|x J %//%mw]

’(abc) (xyx ’(xyz) (at

la.x] b WW///}VW/ IR W i

Y

~
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Semantic CM: lllustrating the Essence (6)

Stage 2: The Transformation Phase

Step 2.1: The Semantic Code Motion Optimization.

| i

h; =x+y h, =a+b
h3Z:h1 h4Z:h2

—

’ (a7 b7 c, h4) = (X7y7h37h3) ‘ ’ (X7y727 h3) = (3, b7 h47h;10. 1

|
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Semantic CM: lllustrating the Essence (7)

Step 2.1: Variable subsumption yields the final optimization.

h:=x+y h:=a+b

10.2.2

...for details see: Steffen, Knoop, Riithing (ESOP'90).
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Semantic CM: Computing Insertion Points (1)
...by analysing the value flow graph.

Algorithm 10.2.2.1 (Computing Insertion Points)

The Frame Conditions (Local Properties):

ANTLOC(v) <= vl1N Terms(N(v)) # 0
AVIN(v) = PPIN(v) = false if v € VFN,

PPOUT (v) =false if v € VFN,

where

» v]1: the projection of v to its first component. :
» N(v): the node of the flow graph v is associated with.
» VFN, VFN,: the set of start and end nodes of the VFG.

» Terms(n): the set of terms of the assignment at node n.
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Semantic CM: Computing Insertion Points (2)

The Fixed Point Equations (Global Properties):
AVIN(v) — [[ AvouT()

k' € pred(k)

AVOUT(v) <= AVIN(v)vVPPOUT(v)

PPIN(v) <= AVIN(v)A(ANTLOC(v)VPPOUT())

PPOUT(v) «— 11 > PPIN(x
m € succ(N(k)) HN(€ SU)CC( 1022

The Insertion Points:
INSERT (k)=4s PPOUT(x) A =PPIN(k)
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Semantic CM: Main Results

Theorem 10.2.2.2 (Optimality of Analysis)

Given an arbitrary flow graph, the analysis stage terminates
with a flow graph annotation which exactly characterizes all
equivalences of program terms wrt the Herbrand interpreta-
tion.

Theorem 10.2.2.3 (Optimality of Transformation)

Every flow graph transformed by the two stage algorithm (in 1022
the full variant) is Herbrand optimal.
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Semantic Code Motion, Constant Propagation

Recall:

(ab) = (2, 3) (x.y) =(4.5) (ab) :=(2,3) (x,y) = (4.5)
Constant Propagation
(No Effect)
(x,y,2) = (a,b,a+b) (a,b,c) = (X,y,y+z) (x,y,2) := (a,b,a+b) (a,b,c) == (x,y,y+2)

. 9
Semantic Code Motion QY
o«
&

10.1
10.2
(ab):=(2.3) (xy) = (4.5) (ab) = (2,3) (x,y) = (4,5) 10.2.1
1022
Constant Propagation 10.3
h:=a+b h:=x+y » h:=5 h:=9 10.4
(x.y,z) == (a,b,h) (ab,c) := (x,y,h) (x,y,z) == (a,b, h) (a,b,c) :=(x,y,h)
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Semantic Code Motion, Constant Propagation

Recall:

(a,b):=(5,1) (xy):=(2.3) (ab):=(5,1) (xy) =(2.3)
Constant Propagation
(x,y,2) := (a,b,(a+b)*m) (a,b,c) := (x,y,(x*y)*m) (x,y,2) = (a,b, 6*m) (a,b,c) := (x,y, 6*m)

&
S .
Semantic Code Motion (No Effect) \\eg\ Semantic Code Motion
K
I
§‘

10.1
10.2
(a,b) :=(2,3) (xy) :=(4.5) (ab) :=(5,1) (xy) :=(2,3) ig;;
103
h:=6*m h:=6*m 10.4
(x,y,z) = (a,b,(a+b)*m) (a,b,c) := (x,y,(x*y)*m) (x,y,z) := (a,b,h) (a,b,c) :=(x,y,h)
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References for Chapter 10.2.2

[@ Bernhard Steffen. Optimal Run Time Optimization —
Proved by a New Look at Abstract Interpretation. In Pro-
ceedings of the 2nd Joint Conference on Theory and
Practice of Software Development (TAPSOFT'87),
Springer-V., LNCS 249, 52-68, 1987.

[§ Bernhard Steffen, Jens Knoop, Oliver Riithing. The Value
Flow Graph: A Program Representation for Optimal Pro- o
gram Transformations. In Proceedings of the 3rd European S

Symposium on Programming (ESOP'90), Springer-V., 103
LNCS 432, 389-405, 1990. -
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Chapter 10.3
Looking Ahead: Challenges and Pitfalls
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The Impact of Setting Changes on Safety and
Optimality

Safety and optimality statements are quite sensitive towards
setting changes!
Three examples shall provide evidence for this:

» Code motion vs. code placement
» Interdependencies of elementary transformations 103

» Paradigm dependencies
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Chapter 10.3.1
The Impact of Moving or Placing Code
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Code Motion (CM) vs. Code Placement (CP)

...CM and CP are no synonyms!

ci=a o (X7y) = (a+b,C+b) ' Motion gets stuck!

T (h1,h2) := (a+b,c+b)

ci=a L(x.y) = (h1,h2)

7= a+bQ zZ:=c+b

P ‘@ Motion gets stuck! hl :=a+b
L) ’_’;} ’/,' B
’ hl := a+bﬁ h2 :=c+b g io h2 = c+b

Original Program 10.1

(x,y):=(hLh2) |,
I 10.3
1031
10.3.2
10,53,

10.4

z=hl'd  blz=h2 (©h2)=(hD)

L - “
: . Placing c+b
Placihg atb

After Sem. Code Motion
z:=hl O
/:—;,,' oy

After Sem. Code Placement
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Even worse

Optimality is lost!

/ 4
@) \i h:=a+b h:=c+b
c::a<\ y:=c+b ‘ c::ax}/oy;h

é/ 101
Z :=atb 7 :=c+b z:=a+bd oz :=h 102
’4// - ’_/",‘ ’:",‘ L/",‘ 10.3.1
¥ V3 V3 V3 1032
Incomparable! o
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Even worser

The performance can be impaired, when applied naively!

(f/\ h:=a+b0O ?

c:= ax | c:= ax
10.3.1
7z :=a+b Z:=c+b 7z :=a+b z:=c+b
i ,/’//1 . ,/’//v ’ ,//[V ’_ ,///\
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References for Chapter 10.3.1

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen. Code
Motion and Code Placement: Just Synonyms? In Procee-

dings of the 7th European Symposium on Programming
(ESOP’98), Springer-V., LNCS 1381, 154-169, 1998.

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen.
Expansion-based Removal of Semantic Partial
Redundancies. In Proceedings of the 8th International
Conference on Compiler Construction (CC'99),
Springer-V., LNCS 1575, 91-106, 1999.

10.1
10.2
10.3
10.3.1
10.3.2
103,38
10.4
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Chapter 10.3.2

The Impact of Interacting Transformations
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Assignment Hoisting (AH) plus Totally
Redundant Assignment Elimination (TRAE)

...leads to Partially Redundant Assignment Elimination
(PRAE):

_’I//‘
a:=b+cO

a:=b+cO o Ck

| AH | TRAE |
d:= a+dT = d:=a+do a:=b+tc => d:=a+d
out(a,d) Q\f out(a,d) <l>J i\/

out(a,d)

P

A

¥ a

...2nd Order Effects!
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Assignment Sinking (AS) plus Total
Dead-Code Elimination (TDCE)

...leads to Partial Dead-Code Elimination (PDCE):

out(x,a)

...2nd Order Effects! 1033
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Conceptually

...PREE, PRAE, and PDCE can be understood as follows:

» PREE = EH ; TREE
> PRAE = (AH + TRAE)*
» PDCE = (AS + TDCE)*

10.3.2
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Optimality Results for PREE

Theorem 10.3.2.1 (Optimality)

1. The BCM transformation yields computationally optimal
results.

2. The LCM transformation yields computationally and
lifetime optimal results.

3. The SpCM transformation yields optimal results wrt a
given prioritization of the goals of redundancy avoidance,
register pressure, and code size. 1032
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Optimality Results for (Pure) PRAE/PDCE

Deriving relation |-...

» PRAE... G l_AH,TRAE G’ (ET:{AH,TRAE})
» PDCE... G |_AS,TDCE G/ (ET:{AS,TDCE})

We can prove:

Theorem 10.3.2.2 (Optimality)

For PRAE and PDCE the deriving relation g7 is confluent
and terminiating.

Universe

10.3.2

G
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Now

...extend and amalgate PRAE and PDCE to Assignment
Placement (AP):

» AP = (AH + TRAE + AS + TDCE)*
...AP should be more powerful than PRAE and PDCE alone!

Indeed, it is but:

out(x). . out(x).

s ¥ Y Ty v s

The resulting two programs are incomparable.

o7 "/';"x = a+b - /x = a+b o £ l:';'yx = a+b
out(x) \ / out(x) X :=atb out(x)
PDCE PRAE
Xi=a+b < x=a O/O\ out(x)J

10.3.2
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Confluence

...and hence (global) optimality is lost!

Universe

CiocOpt

10.3.2

Fortunately, we retain local optimality!
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However

...there are settings, where we end up w/ universes like the
following:

Universe

10.3.2

Here, even local optimality is lost!
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References for Chapter 10.3.2

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Partial
Dead Code Elimination. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI'94), ACM SIGPLAN Notices
29(6):147-158, 1994.

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen. The Power
of Assignment Motion. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI'95), ACM SIGPLAN Notices 101
30(6):233-245, 1995. l;il
[§ Jens Knoop, Eduard Mehofer. Optimal Distribution Eﬁ;‘i
Assignment Placement. In Proceedings of the 3rd Euro-
pean Conference on Parallel Processing (Euro-Par'97),
Springer-V., LNCS 1300, 364 - 373, 1997.
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Chapter 10.3.3
The Impact of Paradigm Shifts
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Adding Parallelism

...analysis and optimization of parallel programs.

(h1,h2,h3) := (a+b,c+b,d+b)

[ -
X = a+bf/£Q; X:_hIO/({{eg%

l l

:=d+b :=h3
NETT N
ParEnd ParEnd

-y “y
Original Program After Earliestness Transformation

...naively transferring the strategy of “placing computations as
early as possible” leads here to an essentially sequential
program!

10.3.3
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Adding Procedures

...interprocedural analysis and optimization.
Similar phenomena are encountered when naively transferring
successful transformation strategies
» from the intraprocedural
» to the interprocedural
setting, e.g., the optimal PRE placement strategies of
» Busy Code Motion

10.3.3

» Lazy Code Motion
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References for Chapter 10.3.3

[§ Jens Knoop. Optimal Interprocedural Program Optimiza-
tion: A New Framework and Its Application. Springer-V.,
LNCS 1428, 1998. (Chapter 10, Interprocedural Code
Motion: The Transformations; Chapter 10.1, Essential
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Part |lI

Interprocedural Data Flow Analysis

10.4
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Outline

We consider:
» Foundations, the Interprocedural DFA Framework (cf.
Chap. 11)

» Mutually recursive procedures (no parameters, no local
variables)
» The Functional Approach (cf. Chap. 12)
» Adding value parameters, local variables: DFA stacks
» Adding reference parameters, procedural parameters

» The Context Information Approach (cf. Chap. 13)

» Call Strings
» Assumption Sets
» The Cloning-Based Approach

10.4
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Chapter 11

Foundations, the Interprocedural DFA
Framework

Chap. 11
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Chapter 11.1

Preliminaries, the Setting
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The Basic Setting of Interprocedural DFA

Program Setting

» Programs [N with mutually recursive procedures without
parameters and local variables.

Program Representations

» Flow graph systems

» Interprocedural flow graphs

...two program representations which are complimentary to 13
each other. i
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Flow Graph Systems

Intuitively, a flow graph system is a system of flow graphs,
where every flow graph is a flow graph in the intraprocedural
sense representing a procedure of a program [1.

Definition 11.1.1 (Flow Graph System)

Let M= (mo,m1,...,7k) be a program with main procedure
(or main program) my and procedures 71, ..., k. A flow graph
system Sp=(Go, G, ..., G) for I is a system of
edge-labelled or node-labelled (intraprocedural) flow graphs in
the sense of Chapter 3, where flow graph G; represents
procedure 7;, 0 <7 < k.

1.1
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An Edge-Labelled Flow Graph System

no;a.b,x.y,c,d T

10

119
11.10
11.11
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Flow Graph System after Cleaning Up
...unnecessary/unused nodes and edges can be removed:

Toia, b, fx,y,z

X = at+b

callm

a:=a+b
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Notations for Flow Graph Systems

Let Sp=(Gy, Gy, ..., Gk) be a flow graph system.

Then:

>

Gy represents the main procedure of 1. Instead of sy and
€y, we often simply write s and e.

The sets of nodes and edges N; and E;, 0 </ < k, of all
flow graphs of Sy are assumed to be pairwise disjoint.

N=4r U N; and E=4¢ U E; denote the set of all

nodes and edges of a flow graph system, respectively. 11
E..ii € E denotes the set of edges representing a

procedure call, the set of call edges.

If T is obvious from the context and of no further
relevance, we often write S instead of Sp.
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Interprocedural Flow Graphs

Intuitively, an interprocedural flow graph melts the flow graphs
of a flow graph system to a a single graph.

Definition 11.1.2 (Interprocedural Flow Graph)

An interprocedural flow graph G* = (N*, E*,s*, ") is induced
by a flow graph system S, where G* evolves from S by
replacing every call edge e of a flow graph G; of S by two new
edges, the call edge e. and the return edge e,.

The call edge e. connects the source node of e with the start
node of the flow graph representing the called procedure.

The return edge e, connects the end node of the flow graph
representing the called procedure with the final node of e.

In particular, s* and e* are given by sy and e, respectively.

1.1
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An Edge-Labelled Interprocedural Flow Graph

1O

11.9
11.10
11.11
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Interprocedural Flow Graph after Cleaning Up

...unnecessary/unused nodes and edges can be removed:
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Notations for Interprocedural Flow Graphs

Let G* = (N*, E*,s*, ") be an interprocedural flow graph.

Then:

» E} and E; denote the set of all call edges and return
edges of G*, respectively.

» EX,=ar EZ U E} denotes the union of the sets of call and
return edges of G*.

» Instead of s* and e*, we often simply write s and e.
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Chapter 11.2
IDFA Specifications, IDFA Problems
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Interprocedural DFA Specification

Let S be an edge-labelled flow graph system, and let
G*=(N*, E*,s*,e*) be the interprocedural flow graph induced
by S.

Definition 11.2.1 (IDFA Specification)

An (interprocedural) DFA specification for G* is a quadruple
Se-=(C,[ T, cs,d) with

» C= (C,E,M,U, L, T) a DFA lattice
[T :E*—(C—C)a DFA functional

¢ € C an initial information/assertion

v

11.2

v

v

d € {fw, bw} a direction of information flow

Note: As intraprocedurally, the validity of ¢, € C at s = s*

needs to be ensured by the calling context of G*. TR



Notations for IDFA Specifications
Let Sg- = (C,[ ], &, d) be a DFA specification for G*.

Then

» The elements of C represent the data flow information
of interest.

» The functions [ e]", e € E*, abstract the concrete
semantics of instructions to the level of the analysis.

» In the parameterless setting considered in this chapter,
the local abstract semantics of call edges and return
edges of E* are given the identity function on C.

11.2

As intraprocedurally

» Cis called a DFA lattice.
» [ ]" is called an (interprocedural) DFA functional.
» [e]", e € E*, is called a (local) DFA function.
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Interprocedural DFA Problem

Definition 11.2.2 (IDFA Problem)

An interprocedural DFA specification Sg- = (5, [T, c.d)
defines an interprocedural DFA problem for G*.
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Practically Relevant IDFA Problems

...similarly to the intraprocedural case, interprocedural DFA
problems are practically relevant, if they are

» monotonic
» distributive (additive)

and satisfy the

» descending (ascending) chain condition (for the function
lattice of the DFA lattice!).

11.2
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Properties of IDFA Problems

Definition 11.2.3 (Properties of IDFA Problems)
Let Sg-=ar (C,[ I, cs, d) be an IDFA specification for G*.

The IDFA problem induced by Sg-

» is monotonic/distributive/additive iff the DFA functional
[ 1" of S+ is monotonic/distributive/additive.

» satisfies the descending (ascending) chain condition iff
the function lattice [C — C] of the DFA lattice C of Sg-
satisfies the descending (ascending) chain condition.

Note: If [C — C] satisfies the descending (ascending) chain

condition, then also C satisfies the descending (ascending)
chain condition.
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Chapter 11.3
Naive Interprocedural DFA
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Naive Interprocedural DFA

Note:

Considering an interprocedural flow graph G* an intra-
procedural flow graph, the (intraprocedural) notions of

» a path

» the MOP approach

» the MaxFP approach

» the Theorems for Safety, Coincidence, and Termination

carry over from the intraprocedural setting and an intraproce-
dural flow graph G to the interprocedural setting and an
interprocedural flow graph G*.

13
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The MOP Approach and MOP Solution for G*

Let Sgr=yf (CA7 [ 1, c, w) be a DFA specification for G*.

Definition 11.3.1 (The MOP Solution for G*)
The MOP solution of Sg+ for G* is defined by:

MOPs_. - N* —C

Vne N MOPs.(n)=a [ |[{[P]'(<)|p € Pe-Is,n] }
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The MaxfFP Approach for G*

Let Sg-=ar (C,[ ], s, fw) be a DFA specification for G*.

Equation System 11.3.2 (The MaxFP EQS for G*)

_ e if n=s
inf(n) = { [1{[(m,n) ] (inf(m))| m € pred(n) } otherwise

Let "”f;(”)a ne N* 113

denote the greatest solution of Equation System 11.3.2.
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The MaxFP Solution for G*

Definition 11.3.3 (The MaxFP Solution for G*)
The MaxFP solution of Sg+ for G* is defined by:

MaxFPs,. : N* —C

Ve N*. MaxFPs,.(n) =g inf% (n)
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Safety and Coincidence

Corollary 11.3.4 (Safety)

The MaxFP solution of Sg« for G* is a safe (i.e., lower)
approximation of the MOP solution of S¢- for G*, i.e.,

Vne N*. MaxFPs,.(n) C MOPs,.(n)
if the DFA functional [ ]| is monotonic.

Corollary 11.3.5 (Coincidence)

The MaxFP solution of Sg+ for G* and the MOP solution of
S¢+ for G* coincide, i.e., e

Vne N*. MaxFPs,.(n)=MOPs,.(n)

if the DFA functional [ ]" is distributive.
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Termination

Corollary 11.3.6 (Termination)

Applied to G* and S+, the Generic Fixed Point Algorithm
3.4.3 terminates with the MaxFP solution of S¢~ for G*, if

1. [ ] is monotonic

2. C satisfies the descending chain condition.

...all three corollaries follow immediately from their intra-
procedural counterparts of Chapter 3.
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Everything done? Unfortunately, not!

...the MOP approach for G* considers much too many paths
as it does not respect the call/return behaviour of inter-
procedural program paths.

For illustration, consider the interprocedurally infeasible path
(highlighted in red):
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Observations on Naive Interprocedural DFA

» The notion of a (finite) path of intraprocedural flow
graphs extends naturally to interprocedural flow graphs.

» In contrast to intraprocedural flow graphs, however,
where every path connecting two nodes represents (up to
non-determinism) a feasible execution of the program,
this does not hold for interprocedural flow graphs.

» This causes the solutions of the naive extensions of the
intraprocedural MOP approach and MaxfFP approach to
an interprocedural flow graph to be overly conservative.

In truely interprocedural DFA considered next this is taken care
of and avoided by focusing on interprocedurally valid paths.
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Chapter 11.4

The Interprocedural Meet over All Paths
Approach

087/177



Interprocedurally Valid Paths

Intuitively, interprocedurally valid paths respect the call/re-
turn behaviour of procedure calls

Definition 11.4.1 (Interprocedurally Valid Path)

Identifying call and return edges of G* with opening and
closing brackets “(" and “)", respectively, the set of inter-
procedurally valid paths is given by the set of prefix-closed
expressions of the language of balanced bracket expressions.

Notation: In the following we denote the set of interproce-
durally valid paths (for short: interprocedural paths) from a
node m to a node n by IP[m, n].

11.4
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Remarks on Interprocedurally Valid Paths

» Considering the sequences of edge labelings (we suppose
that each edge is uniquely marked by some label) of a
path a word of a formal language, the set of intra-
procedurally valid paths is given by a regular language,
the one of interprocedurally valid paths by a context-free
language.

» The notion of interprocedurally valid paths can and has
been defined in various ways:

» The definition of interprocedurally valid paths as in
Definition 11.4.1 has been proposed by Reps, Horwitz,
and Sagiv (POPL'95).

» Sharir and Pnueli gave an algorithmic definition of
interprocedurally valid paths in 1981.

» Based on the preceding remark, interprocedurally valid
paths can also be defined in terms of a context-free
language/grammar.

11.4
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The IMOP Approach and the IMOP Solution

Let Sg-=qr (CA7 [ 1, c, fw) be a DFA specification for G*.

Definition 11.4.2 (The IMOP Solution)
The IMOP solution of Sg-« is defined by:
IMOPs,.. : N* —C
Vne N*. IMOPs,.(n)=ar [ |{[P]'(c)|p € IP[s,n] }

where IP[s, n] denotes the set of interprocedurally valid paths
from s to n.

990/177



Conservative and Optimal IDFA Algorithms

Definition 11.4.3 (Conservative IDFA Algorithm)

An IDFA algorithm A is IMOP conservative for Sg+, if A
terminates with a lower approximation of the IMOP solution of

Sc+.

Definition 11.4.5 (Optimal IDFA Algorithm)
An IDFA algorithm A is IMOP optimal for Sg-, if A terminates
with the IMOP solution of Sg-.

11.4
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Chapter 11.5

The Interprocedural Maximal Fixed Point
Approach
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The Key to Interprocedural DFA: Intuitively
Let S=(Gy, Gy, ..., Gx) be an intraprocedural flow graph.

The function
I]:N—(C—C)

VneN. Ve €C. [ n]l(c)=ar MaxFPs=(n)

with Sg=g4f (CA,|[ I, cs, fw) is the key to computable inter-
procedural DFA.

We have:
Lemma 11.5.1
»VneN.Ve eC. [n](c) C MOPss(n), if [ ]is e
monotonic.

> VneN.VeeC [nll(c)=MOPsa(n), if [ ]is
distributive.
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The Key to Interprocedural DFA: Intuitively

Obviously

The function [[ ]| can stepwise be computed by iteratively
applying the Generic Fixed Point Algorithm 3.4.3 to the
elements ¢, € C.

Next, we will present a less naive, systematic approach for
computing [ ]

115
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The Key to Interprocedural DFA: Formally

The Functional MaxFP Approach

» lifts the MaxFP approach from elements of C to func-
tions on C. Intuitively, it is the pointwise extension of the
MaxFP approach to all DFA lattice elements computing
the MaxFP solution for all of them simultaneously.

Equation System 11.5.2 (Functional MaxFP EQS)

CE it n=s
[1= { [{[(n,m)Jo[m] | m € pred(n)} otherwise

Let [T :N—(C—C)

denote the greatest solution of Equation System 11.5.2.

115
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Main Result: Equivalence

The MaxFP and the functional MaxFP approach are

» equivalent.

Theorem 11.5.3 (Equivalence)
VneN. Ve el [n]'(c)=MaxFPss(n)

This means: The function [[ ]]* is the function [[ ]| we
identified as the key to interprocedural DFA.

Theorem 11.5.4 (MOP Equivalence)
VneN. Ve el [n](c)=MOPss(n) i
if [ ] is distributive.
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Note

The functional variant of the MaxFP approach is the key not
only to computable

» interprocedural DFA (i.e., of programs w/ procedures)

but also to e.g., computable

» object-oriented (i.e., of programs w/ classes, objects, and
methods)

» parallel (i.e., of programs w/ parallelism)

data flow analysis.

115
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The IMaxFP Approach

...Is a two-stage approach:

» Stage 1: Preprocess — Computing the Semantics of
Procedures

» Stage 2: Main Process — Computing the IMaxFP solution

115
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Notations

The definition of the two stage IMaxFP approach requires the
following mappings on a flow graph system S:

» flowGraph : N U E — S maps the nodes and edges of S to
the flow graph containing them.

» callee : E.,y — S maps every call edge to the flow graph
of the called procedure.

» caller : S — P(E..i) maps every flow graph to the set of
call edges calling it.

» start : S — {sp,...,Sx} and end : S —{eo,...,ex} map
every flow graph of S to its start node and stop node,
respectively.
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The IMaxFP Approach (1)

Stage 1: Preprocess — Computing the Semantics of Proce-
dures

Equation System 11.5.5 (2nd Order IMaxFP EQS)

|]In]]]:{ Ide ifne{sy... sk}

[HI(m,n) ol ml| m € preduowcraph(n)(n) } otherwise

and

el if e € E\E.y
[el= { ﬁ[[ er]ld(ca//er(e)) I otherwise

115

Let [T neN, [e].ecE

denote the greatest solutions of Equation System 11.5.5.
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The IMaxFP Approach (2)

Stage 2: Main Process — The “Actual” Interprocedural DFA

Equation System 11.5.6 (1st Order IMaxFP EQS)
inf(n)=

¢ ifn=s(=sp)
{ [1{ inf(src(e))| e € caller(flowGraph(n))} if n € {s1,...,sx}
[1{ [ (m,n) 1" (inf(m)) | m € predgoncrapn(ny(n) } otherwise

Let infy (n),ne N ne

denote the greatest solution of Equation System 11.5.6.
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The IMaxFP Solution

Let Sg-=ar (C,[ ], s, fw) be a DFA specification for G*.

Definition 11.5.7 (The IMaxFP Solution)
The IMaxFP solution of Sg- is defined by:

IMaxFPs,. : N*—C

Vn e N*. IMaxFPs,. (n) =g inf* ()

Note that N = N* allows us to identify corresponding nodes of ;5
S and G*.
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Chapter 11.6
The Generic Fixed Point Algorithms
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Chapter 11.6.1
Basic Algorithms: Plain Vanilla
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Algorithm 11.6.1.1 — 2nd Order Preprocess

Input: A DFA specification Sg-=gf (C,[ ], s, d) for G* resp. S.
If d = bw, the reversed versions of all graphs are used.

Output: On termination (cf. Theorem 11.6.3.1), the variables gtr
(global transformation) and Itr (local transformation) store the
values of the functions [ n]]*:C—C, ne N, and [e]*: C—C,
e € E, being the greatest solutions of the 2nd order IMaxFP
Equation System 11.5.5.

Remark: The variable workset controls the iterative process. lIts
elements are nodes of the flow graph system S. Note that due to
the mutual interdependence of the definitions of [[ J] and [ ] the
iterative approximation of [[ ]| is superposed by an interprocedural
iteration step, which updates the current approximation of the
effect function [ ] of call edges. The temporary meet stores the
result of the most recent meet operation.

11.6.1
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Algorithm 11.6.1.1 — 2nd Order Preprocess

( Prologue: Initializing the annotation arrays gtr and /tr and the
variable workset )
FORALL ne N DO

IF ne{so,...,sk} THEN gtr [n]:= Id¢

ELSE gtr [n]:= T¢c— ¢ FI OD;

FORALL e € E DO

IF e € Ecay THEN Jtr [e]:= T{¢c — ¢) ELSE Itr [e]:=[e]" FI
OD;
workset = {sg,...,Sk};

11.6.1
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Algorithm 11.6.1.1 — 2nd Order Preprocess

( Main process: Iterative fixed point computation )
WHILE workset # () DO
CHOOSE m € workset ;
workset := workset\{m};
( Update the successor-environment of node m)
IF me {el,...,ek}
THEN
FORALL e € caller(flowGraph(m)) DO
Itr[e] := gtr[m];
meet := ltr[e] o gtr[src(e)] M gtr[dst(e)];
IF gtr[dst(e)] O meet
THEN
gtr[dst(e)] := meet;
workset := workset U {dst(e)}
Fl
oD

11.6.1
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Algorithm 11.6.1.1 — 2nd Order Preprocess

ELSE (i.e., m Q {el, ey ek})
FORALL n € succhowGraph(m)(m) DO
meet := ltr[(m, n)] o gtr[m] M gtr|[n];
IF gtr[n] O meet
THEN
gtr[n] :== meet;
workset := workset U {n}
Fl
oD
Fl
ESOOHC
OD.

11.6.1
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Algorithm 11.6.1.2 — 1st Order Main Process

Input: A DFA specification Sg+=g4r (5,[[ 1", cs, d) for G* resp. S.
If d = bw, the reversed versions of all graphs are used, and the
data flow functional [ |*: E — (C — C) computed by Algorithm
11.6.1.1 for S¢~.

Output: On termination (cf. Theorem 11.6.3.1), variable inf[n],
n € N, stores the IMaxFP-solution of Sg+ at node n.

Additionally, we have (cf. Interprocedural Safety Theorem 11.7.3
and Interprocedural Coincidence Theorem 11.7.4): If

» [ ] is distributive: inf stores
» [ ] is monotonic: inf stores a lower approximation of
the IMOP solution of Sg+ at node n.

Remark: The variable workset controls the iterative process. lts 11.6.1
elements are nodes of the flow-graph system S. The temporary

meet stores the result of the most recent meet operation.
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Algorithm 11.6.1.2 — 1st Order Main Process

( Prologue: Initialization of the annotation array inf and the
variable workset )

FORALL n € N\{so} DO inf[n]:= T OD;

inf[so] := ¢s;

workset := { sg };
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Algorithm 11.6.1.2 — 1st Order Main Process

( Main process: lterative fixed point computation )
WHILE workset # () DO
CHOOSE m € workset;
workset := workset\{ m },
(Update the successor-environment of node m)
FORALL n € SUCCﬂOWGraph y(m) DO
meet:= [ (m, n) |* (mf[m]) M inf[n];
IF inf[n] O meet
THEN
inf[n] := meet;
workset := workset U {n}
Fl:

11.6.1
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Algorithm 11.6.1.2 — 1st Order Main Process

IF (m, n) € E.y
THEN
meet := inf[m] M inf[start(callee((m, n)))];
IF inf[start(callee((m, n)))] O meet
THEN
inf [start(callee((m, n)))] := meet;
workset := workset U { start(callee((m, n))) }
Fl
FI
oD
ESOOHC
OD.

11.6.1
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Chapter 11.6.2

Enhanced Algorithms: Improving
Performance
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Variant 1: Exploiting [[ ]|* More Effectively

...improving performance of the 1st order IMaxFP-Algorithm:

» Algorithm 11.6.1.1 and Algorithm 11.6.2.1 constitute a
second pair of algorithms computing the /IMaxFP solution.

» Algorithm 11.6.2.1 uses the semantics functions compu-
ted by Algorithm 11.6.1.1 more effectively than Algorithm
11.6.1.2.

» Unlike Algorithm 11.6.1.2, Algorithm 11.6.2.1 does not
iterate over all nodes of S but only over procedure start
nodes. After stabilization of the solution for the start
nodes, a single run over all other nodes in the epilogue
suffices to compute the /IMaxFP solution at every node.

11.6.2
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Algorithm 11.6.2.1 — 1st Order Main Process

Input: A DFA specification Sg+=g4r (5,[[ 1", cs, d) for G* resp. S.
If d = bw, the reversed versions of all graphs are used, and the
data flow functional [[ J* : N — (C — C) computed by Algorithm
11.6.1.1 for S¢~.

Output: On termination (cf. Theorem 13.6.3.1), variable inf[n],
n € N, stores the IMaxFP-solution of Sg+ at node n.

Additionally, we have (cf. Interprocedural Safety Theorem 11.7.3
and Interprocedural Coincidence Theorem 11.7.4): If

» [ ] is distributive: inf stores
» [ ] is monotonic: inf stores a lower approximation of
the IMOP solution of Sg+ at node n.

Remark: The variable workset controls the iterative process. lIts
elements are nodes of the flow-graph system S. The temporary

11.6.2

meet stores the result of the most recent meet operation.
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Algorithm 11.6.2.1 — 1st Order Main Process

(Prologue: Initialization of the annotation array inf, and the
variable workset )

FORALL s € {s;|i € {1,...,k}} DO inf[s]:= T OD;
inf[so] := ¢s;

workset := {s;|i € {1,2,... k}};

11.6.2
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Algorithm 11.6.2.1 — 1st Order Main Process

( Main process: lterative fixed point computation )
WHILE workset # () DO
CHOOSE s € workset;
workset := workset\{s};
meet := inf([s] M
[H [ sre(e) I (inf [start(flowGraph(e))]) | e €
caller(flowGraph(s)) };
IF inf[s] O meet
THEN
inf[s] := meet;
workset := workset U {start(callee(e))| e € Ecay-
flowGraph(e) = flowGraph(s) }
FI
ESOOHC
OD;

11.6.2
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Algorithm 11.6.2.1 — 1st Order Main Process

( Epilogue)
FORALL n € N\{s;|i € {0,...,k}} DO
inf[n] := [[ nI*(inf[start(flowGraph(n))]) OD.

11.6.2
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Variant 2: Interleaving 2nd & 1st Order Alg.

...improving performance of the algorithm composition by
applying the 2nd order algorithm demand-drivenly controlled
by the 1st order algorithm:

» Unlike the two algorithm pairs introduced so far, this
algorithm variant interleaves the 1st order main process
and the 2nd order preprocess.

» In effect, the semantics of procedures [ " : N — (C —C)
is computed demand-drivenly partially only instead of
exhaustively totally, i.e., it is computed only for
arguments encountered in the course of the 1st order
main process instead of unguidedly for all arguments.

11.6.2
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Variant 2: Interleaving 2nd & 1st Order Alg.

Algorithm 11.6.2.2 — Sketch of the Interleaved Algorithms

» The computation starts with the 1st order main process
algorithm.

» If a procedure call is encountered during the iterative
process, the 2nd order preprocess algorithm is started for
this procedure and the current data flow fact.

» After completion of the computation of the effect of the
procedure for this data flow fact, the 1st order main
process algorithm is continued with the computed result.

Note:

» The semantics of procedures is computed demand-
drivenly exclusively for required arguments.
11.6.2

» Overall, this leads to some performance gain in practice,

which, however, is difficult to quantify.
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Chapter 11.6.3

Termination
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Termination

Theorem 11.6.3.1 (Termination)

» The sequential compositions of Algorithm 11.6.1.1 (2nd
order) and Algorithm 11.6.1.2 (1st order) resp. Algor-
ithm 11.6.2.1 (1st order)

» Algorithm 11.6.2.2 interleaving Algorithm 11.6.1.2 resp.
Algorithm 11.6.2.1 and Algorithm 11.6.1.1

terminate with the /MaxFP solution, if the data flow analysis
functional [ ]* is monotonic and the function lattice [C — C]
satisfies the descending chain condition.

Note: Validity of the descending chain condition on the
function lattice [C — C] implies validity of the descending
chain condition on the underlying lattice C.

11.6.3
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Chapter 11.7

Safety and Coincidence

1023/17



Complete Interprocedural Paths

Definition 11.7.1 (Complete Interprocedural Path)

An interprocedural path p from the start node s; of a proce-

dure G;, i € {0,..., k}, to a node n within G; is complete, if
every procedure call, i.e., call edge, along p is completed by a
corresponding procedure return, i.e., a return edge.

We denote the set of all complete interprocedural paths from
s; to n with CIP[s;, n].

Note:
» Intuitively, completeness of a path p, i.e., p € CIP[s;, n,
ensures that the occurrences of s; and n belong to the
same incarnation of the procedure.
» The subpaths of a complete interprocedural path that o
belong to a procedure call, are either disjoint or properly

nested.
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Main Results: 2nd Order Analysis

Safety and coincidence results of the 2nd order analysis:

Theorem 11.7.2 (2nd Order Analysis)

For all e € E.,;; we have:

1. Safety:
[el” STHIrPT | p € CIP[src(e), dst(e)]}, if the data
flow analysis functional [ ] is monotonic.

2. Coincidence: [e]"=[HIp]" | p € CIP[src(e), dst(e)]},
if the data flow analysis functional [ ]" is distributive.

where the mappings src and dst yield the start node and the
final node of an edge, respectively. 17
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Main Results: 1st Order Analysis
Safety and coincidence results of the 1st order analysis:

Theorem 11.7.3 (Interprocedural Safety)

The IMaxFP solution of Sg- is a safe (i.e., lower)
approximation of the IMOP solution of Sg-, i.e.,

Vne N. IMaxFPs_.(n) T IMOPs,. (n)
if the DFA functional [ " is monotonic.

Theorem 11.7.4 (Interprocedural Coincidence)

The IMaxFP solution of Sg+ coincides with the IMOP solution
of SG*: i.e.,

Vne N. IMaxFPs_, (n) = IMOPs,_.(n) n

if the DFA functional [ ]" is distributive.
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Conservativity, Optimality of IDFA Algorithms

Corollary 11.7.5 (IMOP Conservativity)

The IDFA algorithms of Chapter 11.6 are IMOP conservative
for Sg+ (i.e., terminate with a lower approximation of the
IMOP solution of S¢-), if [ J* is monotonic and [C — C]
satisfies the descending chain condition.

Corollary 11.7.6 (IMOP Optimality)

The IDFA algorithms of Chapter 11.6 are IMOP optimal for

Sc- (i.e., terminate with the IMOP solution of Sg-), if [ " is
distributive and [C — C] satisfies the descending chain

condition. 17
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Chapter 11.8

Soundness and Completeness

11.8
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Soundness and Completeness (1)

Analysis Scenario:
» Let ¢ be a program property of interest (e.g., availability
of an expression, liveness of a variable, etc.).
» Let Sg* be a DFA specification designed for ¢.

Definition 11.8.1 (Soundness)

82* is sound for ¢, if, whenever the IMOP solution of 82*
indicates that ¢ is valid, then ¢ is valid.

Definition 11.8.2 (Completeness)

82* is complete for ¢, if, whenever ¢ is valid, then the IMOP
solution of 82* indicates that ¢ is valid.

11.8
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Soundness and Completeness (2)

Intuitively
» Soundness means: IMOP .. implies ¢.
G*

» Completeness means: ¢ implies IMOP g .
G*

11.10
11.11
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Soundness and Completeness (3)

If 82* is sound and complete for ¢, this intuitively means:

We compute

» the property of interest,
» the whole property of interest,

» and only the property of interest.

In other words e

» We compute the program property of interest accurately! e
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Chapter 11.9

A Uniform Framework and Toolkit View
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Interprocedural DFA: A Holistic Uniform View

considering interprocedural DFA from a holistic angle:

» A Uniform Framework and Toolkit View

st ©

Interprocedural Theory || Practice|
DFA
Framework ya
(Basic Setting) Tool Kit
Interproc. Tern
Computed Solution
Interproc]| Term. Th.
Procedure Call Effect)
L[]
(Computation Tool 1
[Coppuon Tesl 1]
L - Interprpcedural
Termination | Theorem
P Interprocedural Interprocedural
rogran Soundness Coincidence Theorem Termination Theorem
Property <7ﬁ IMOP-Solution =/ IMaxFP-Solution = (Computed Solutior) 11.9
([) L Safety Theorem H
Proof . " " P
Py 3) Equivalence 2) mal nser
Obriations ) Eq ) Optimality/Conservativity

1b) Effectivity 1a) Effectivity
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Note: The Preceding Schematic View of IDFA

..provides evidence for the claim of Chapter 3.8 that
» The Uniform Framework and Toolkit View of DFA

..is achievable beyond the base case of intraprocedural DFA:

DFA
Specification

DFA y Theory
Framework g ;
® Intraprocedural
o Interprocedural
o Parallel
o Object-oriented
® Conditional
...

Toolkit

Practice

11.1
11.2

Termination QP Theorem 113
" ) Sorminati 11.4
Program Soundness Coincidence Theorem Termination Theorem
Property <:> MOP-Solution — /7 MaxFP-Solution = Computed Solutior 115
0 /

Compicencs Sty Theorem | 116
11.7
Y (2) P 11.8

3) (2) @
Proof C/ ~ ) 11.9
Obligations: Equivalence Optimality/Conservativity Effectivity 11.10
11.11
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Chapter 11.10
Applications
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Applications

For the parameterless base setting of interprocedural DFA

» the specifications of intraprocedural DFA problems can be
reused unmodified.

In order to be effective

» the descending chain condition must hold both for the
DFA lattice and its corresponding function lattice.

This requirement is satisfied in particular for all

» bitvector problems (availability of expressions, liveness of
variables, reaching definitions, etc.) but not for simple
constants. Therefore, weaker and simpler classes of
constants are considered interprocedurally, e.g., linear

11.10

constants.
1036/17



Chapter 11.11

References, Further Reading

1037/17



Further Reading for Chapter 11 (1)

[§ Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.
Ullman. Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 2nd edition, 2007. (Chapter 12, Inter-
procedural Analysis)

@ Randy Allen, Ken Kennedy. Optimizing Compilers for
Modern Architectures. Morgan Kaufman Publishers, 2002.
(Chapter 11, Interprocedural Analysis and Optimization)

119
11.10
11.11

1038/17



Further Reading for Chapter 11 (2)

[§ Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997. (Chapter
19, Interprocedural Analysis and Optimization)

[@ Micha Sharir, Amir Pnueli. Two Approaches to Interpro-
cedural Data Flow Analysis. In Stephen S. Muchnick, Neil
D. Jones (Eds.). Program Flow Analysis: Theory and
Applications. Prentice Hall, 1981, Chapter 7.3, The
Functional Approach to Interprocedural Analysis, 196-209. 112

11.10
11.11

1039/17



Chapter 12
The Functional Approach

Chap. 12
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Outline

In this chapter, we extend the parameterless basic setting of
interprocedural DFA considered in Chapter 11 by successively
adding

» value parameters and local variables (cf. Chapter 12.1)

v

procedural parameters (cf. Chapter 12.2)

v

reference parameters (cf. Chapter 12.3)

v

static procedure nesting (cf. Chapter 12.4)

Subsequently, we sketch Chap. 12

» applications (cf. Chapter 12.5)

» bitvector analyses: interprocedural availability
» constant propagation: interprocedural copy constants
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Chapter 12.1

Adding Value Parameters and Local
Variables
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Flow Graph Systems, Interprocedural Flow
Graphs

Introducing value parameters and local variables requires to
extend the notions of flow graph systems (FGS) and
interprocedural flow graphs (IFG) to

» flow graph systems with value parameters and local
variables

» interprocedural flow graphs with value parameters and
local variables

This extension is straightforward as illustrated next.
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FGS w/ Value Parameters and Local Variables
Ty ; VAR a,bx,z m, (f.2); VAR y
O

l X :=a+b

call T (x,a+b)

a:=a+b

12.1
call 7t (y,x+y) 12.1.4
! 12.1.5
12.1.6

12.1

12.3
1044/17



IFG w/ Value Parameters and Local Variables

\3“6,65) -

Tx =atb - ,g.t\’i“j,
S

Qo

1y = a+b|

z:=a+b B B
12.1
12.1.1
12.1.2
12.1.3
12.1.4
12.1.5
12.1.6
12.1.7
12.2
12.3
o
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New Phenomena

...by recursive procedures, value parameters, local variables:

» Existence of a potentially unlimited number of copies
(incarnations) of local variables and value parameters due
to (mutually) recursive procedure calls at run time.

» After termination of a recursive procedure call the local
variables and value parameters of the preceding not yet
finished procedure call become valid again.

The run-time system

» handles these phenomena by means of a run-time stack
which stores the activation records of the various
procedure incarnations. 121

In data flow analysis

» we have to take these phenomena into account and to
model them properly introducing DFA stacks.
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Data Flow Analysis Stacks

Intuitively
» DFA stacks are a compile-time equivalent of run-time
stacks.
» Entries in DFA stacks are elements (or data flow facts) of
an underlying DFA lattics C.

» DFA stacks contain at least one entry abstracting the
activation record of the main program; DFA stacks are
thus non-empty.

We denote
» the set of all (non-empty) DFA stacks by STACK.
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Generating and Manipulating DFA Stacks

DFA stacks can be generated and manipulated by:

1. newstack : C = STACK
newstack(c) generates a new DFA stack with entry c.

2. push: STACK x C— STACK
push stores a new entry on top of a DFA stack.

3. pop: STACK — STACK
pop removes the top-most entry of a DFA stack.

4. top: STACK —C
top yields the contents of the top-most entry of a DFA
stack w/out modifying the stack.
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Remarks on DFA Stacks (1)

» DFA stack entries are abstractions of the activation
records of procedure calls.
» The top-most entry of a DFA stack represents the
currently valid activation record.
» Therefore, DFA stacks are never empty and the
commonly considered stack function
emptystack : — STACK yielding an empty stack is
replaced by newstack : C — STACK yielding a stack with
one entry.
» DFA stack entries other than the top-most entry abstract 121
the activation records of started but not yet finished
procedure calls.
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Remarks on DFA Stacks (2)

» DFA stacks are only conceptually relevant, i.e., for the
specifying IMOP approach but not for the algorithmic
IMaxFP approach.

» In fact, the algorithmic IMaxFP approach requires only a
temporary storing the abstraction of a single activation
record instead of a DFA stack.

» This ensures that

>

>

the IMaxFP solution gets effectively computable (in
practically relevant scenarios).

push and pop allowing and limited to manipulating the
top-most entries of a DFA stack are sufficient for
interprocedural DFA though a run-time stack is
manipulated much more flexible by the run-time system
for performance reasons.
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Chapter 12.1.1
IDFAs;, Specifications, IDFAs; Problems
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DFA Functions and Return Functions

Let S be an edge-labelled flow graph system, and let
G*=(N*, E*,s*, e*) be the interprocedural flow graph induced

by S.

Moreover, let
» C=(C,C,M,L, L, T) be a DFA lattice
» [ 17 : E*—(C—C) be a DFA functional for G*
» R : E.y— (C x C—C) be a return functional for S

Then [ ]* and R induce a DFAs; functional on DFA stacks 1
» [ 15 : E* — (STACK — STACK) ;‘l
for G* defined next. ‘l‘l

12.2
123

i552/17



Induced DFAs;, Functional on DFA Stacks

Definition 12.1.1.1 (Induced DFAg; Functional)

The DFA functional [ %, : £*— (STACK — STACK) on
DFA stacks induced by [ |* and R is defined by

Ve e E* Vstk € STACK. [ e ]y (stk)=ar

push( pop(stk), [ e]"(top(stk))) if e € E*\E,

push( stk, [ e]"(top(stk))) if ec E;
push( pop(pop(stk)), Res(top(pop(ictk)), [[Ee]]*(top(stk))) )
feckE’

where es denotes the call edge of S inducing the return edge
e € E of G".

12.1.1
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Interprocedural DFAs;, Specification

Definition 12.1.1.2 (IDFAg Specification)

An (inteArproceduraI) DFAs specification for G* is a quintuple
Se-=(C, [ T, R, ¢, d) with

» C= (C,E,M,U, L, T) a DFA lattice

» [ 1": E*—(C—C) a DFA functional

» R : E.y— (C x C—C) a return functional

» ¢ € C an initial information/assertion

» d € {fw, bw} a direction of information flow

Note: Definition 12.1.1.2 and Definition 11.2.1 differ only by
the return functional ret. Moreover, DFA stacks need not be
dealt with on the level of an IDFAs;, specification.
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Interprocedural DFAg; Problem

Definition 12.1.1.3 (IDFAs: Problem)
An IDFAsy specification Sg- = (CA,|[ 1", R, cs, d) defines an
interprocedural DFAs; problem for G*.

12.1
12.1.1
12.1.2
122,711,353

12.1.4
12.1
12.1.6
12.1.7
12.2
123
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The Structure of DFAs; Functions

Every DFAs;, function occurring in interprocedural DFA is an
element of one of the subsets

> ord -Fpshv fpop

of the set of all functions F=4+ [ STACK — STACK | on DFA
stacks defined by:

Fora=ar { f € F |V stk € STACK. pop(f(stk))= pop(stk) }
Fosh=df { f € F |V stk € STACK. pop(f(stk))=stk }

12.1.1

Froop=ar { f € F |V stk € STACK >,. pop(f(stk))=pop(pop(stk))}
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Characterizing DFAg; Functions

Lemma 12.1.1.4

Vfop € Fpop Vo, fo € Forda Y fon € Fpsh.
1. f,o fo/ € Ford
2. fopofoofon € Forg

Lemma 12.1.1.5
1. Vee EX\EX,. [elsu € Fora
2. Ve e EC*. [e]];tk S Fpsh
3. Vee E [ elsu € Foop

12.1.1
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The Significant Function of DFAg;, Functions

At most the top or the two top-most entries of DFA stacks are
modified by DFAg; functions (cf. Lemma 12.1.1.5). This
gives rise to the following definition:

Definition 12.1.1.6 (Significant Function)

» Let f € ForgU Fpsh: Then f5g - C —C is defined by:
feig(c)=aqr top(f (newstack(c)))

» Let f € Fpop: Then fgp : C X C— C is defined by:
feig(c1, ©2)=ar top(f (push(newstack(c;), c2)))
(Recall that C x C is a lattice, if C is a lattice.)

12.1.1

The functions £, are the significant functions of the DFAg
functions f.
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Characterizing DFAg Functions (Cont'd)

...via significant functions:

Lemma 12.1.1.7
1. Vee ENE!. [elsug=lel
2.Ve€E/Vea,0€CxC [elsug=Re(cr,[e]' ()

where es denotes the call edge of S inducing the return
edge e € E; of G”.

12.1.1
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S-Monotonicity, S-Distributivity

Definition 12.1.1.8 (S-Monontonicity., S-Distrib.)
A DFAsy function f € ForgU FpsplU Fpop is

1. s-monotonic iff f; is monotonic

2. s-distributive iff £, is distributive

12.1
12.1.1
12.1.2
122,711,353

12.1.4
12.1
12.1.6
12.1.7
12.2
12.3
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Characterizing DFAg Functions (Cont'd)

Lemma 12.1.1.9
Let e € E*. The function [ e ], is s-monotonic
(s-distributive), if
» ec EX\E’: [ e]" is monotonic (distributive)
» ec E}: [e] and R, are monotonic (distributive)
where es denotes the call edge of S inducing the return
edge e € E} of G*.

12.1.1
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Conventions

In the following, we
» identify lattice elements with their representation as a
DFA stack with just a single entry.
» extend the meet and join operation M and LI on DFA
lattices in the following fashion to (the top most entries
of ) sets of DFA stacks STK C STACK:

|_| STK =4¢ newstack(|_|{top(stk) | stk € STK})

|_| STK =4¢ newstack(|_|{top(stk) | stk € STK})

This allows us

» to consider s-monotonicity and s-distributivity generali-
zations of the usual monotonicity and distributivity
properties.

12.1.1
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Chapter 12.1.2
The IMOPs Approach
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The IMOPs;, Approach & IMOPs; Solution

Let Sg- = (CA,|[ I", R, cs, d) be a DFAs, specification for G*.
Definition 12.1.2.1 (The IMOPs; Solution)
The IMOPs; solution of Sg+ is defined by:

IMOPSS; = N* — STACK;

Vne N*. IMOPZE (n)=gf

[1{ [ p]su(newstack(cs)) | p € IP[s, n] }

where STACK; denotes the set of DFA stacks with exactly
one entry.

12.1.2
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Conservative and Optimal IDFAg; Algorithms

Definition 12.1.2.2 (Conservative IDFA Algorithm)

An IDFA algorithm A is IMOPs; conservative for Sg+, if A
terminates with a lower approximation of the IMOP s, solution

Definition 12.1.2.3 (Optimal IDFA Algorithm)

An IDFA algorithm A is IMOP s optimal for Sg+, if A
terminates with the IMOPs, solution of Sg-.

12.1.2
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Chapter 12.1.3
The IMaxFPs; Approach
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The IMaxFPsy Approach

...Is a two-stage approach:

» Stage 1: Preprocess — Computing the Semantics of
Procedures

» Stage 2: Main Process — Computing the IMaxFPs;
solution

271,33
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Preliminaries

Let
» ldstack denote the identity on STACK, and

» [1 the pointwise meet-operation on F,4

Note:

>V f, f' e ford- fm f/:df " e ford with V stk €
STACK. topl(f"(stk))=top(f(stk)) M top(f'(stk)).

» “M" induces an inclusion relation “C " on F,4 by:

fCFffFnf=f.

271,33
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The IMaxFPsy Approach: 2nd Order

Stage 1: Preprocess — Computing the Semantics of Proce-
dures

Equation System 12.1.3.1 (2nd Order IMaxFPsy)

ldstack  if n€ {so,... sk}
[nls, = THI(m, )]sy o DI mUsy|m € prediowcrapnny(n)}
otherwise
and
[[e]] - ﬂe]];tk if e € E\Eca//
Stk [ e s © [ end(callee(e)) Tsu © [ ec 15 otherwise
Let ﬂ[n]]]gtk,l‘IGN, ﬂeﬂgtlweeE

denote the greatest solutions of Equation System 12.1.3.1.
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The IMaxFPsy Approach: 1st Order

Stage 2: Main Process — The “Actual” Interprocedural DFA

Equation System 12.1.3.2 (1st Order IMaxFPsy)

newstack(cs) if n=sq
[{ [ ec I (inf(src(e))) | e € caller(flowGraph(n)) }
inf(n) = if n € start(S)\{so}
[T (m, n) I54 (inf(m)) | m € predsonGraph(n) ()}
otherwise
Let 21

inf,(n),ne N

denote the greatest solution of Equation System 12.1.3.2.
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The IMaxFPs; Solution

Let Sg- = (CA,|[ I', R, cs, d) be a DFAs, specification for G*.

Definition 12.1.3.3 (The IMaxFPsy Solution)
The IMaxFPsy solution of Sg+ is defined by:

IMaxFP2E : N* — STACK,

Vn € N*. IMaxFPES (n)=gr inf? (n)

where STACK; denotes the set of DFA stacks with exactly
one entry.

Note that N = N* allows us to identify corresponding nodes of 2
S and G*.
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Chapter 12.1.4

Safety and Coincidence
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Towards the Main Results

...on safety and coincidence.

Lemma 12.1.4.1

For all n € N the semantic functions [ e]", e € E*, are

1. s-monotonic: [ n]5,, C imop,

2. s-distributive: [ n]5,, = imop,
where imop,, : N — (STACK — STACK) denotes a functional
that is defined by:

Vne N. imop,=qf
/dSTACK if ne start(S)
[HIPlsu | p € CIP[start(flowGraph(n)), n]} otherwise 1214

1073/17



Main Results: 2nd Order Analysis

Safety and coincidence results of the 2nd order analysis:

Theorem 12.1.4.2 (2nd Order Analysis)

For all e € E.,; we have:

I [eli CHIp Do | p € CIP[src(e), dst(e)]}, if the
data flow analysis functional [ [, is s-monotonic.

2. [elsu=TUHIplsy | p € CIP[src(e), dst(e)]} if the data
flow analysis functional [ [, is s-distributive.

where the mappings src and dst yield the start and the final
node of an edge, respectively.

12.1.4
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Main Results: 1st Order Analysis

Safety and coincidence results of the 1st order analysis:

Theorem 12.1.4.3 (Interprocedural Safety)

The IMaxFPs solution of S+ is a safe (i.e., lower)
approximation of the IMOPs; solution of S¢-, i.e.,

Ve N. IMaxFPSS (n) C IMOPSS; (n)

if the DFA functional [ ]5,, is s-monotonic.

Theorem 12.1.4.4 (Interprocedural Coincidence)

The IMaxFPs; solution of S¢+ coincides with the IMOPs,
solution of S¢-, i.e.,

12.1.4

Vne N. IMaxFPLE (n) = IMOPSS; (n)

if the DFA functional [ [, is s-distributive.
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Chapter 12.1.5
The Generic Fixed Point Algorithms
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Algorithms

The generic fixed point algorithms of Chapter 11.6
» can straightforwardly be extended to stack-based ones.
» This way, we receive
» the standard variant of preprocess and main process
» the more efficient variant of preprocess and functional
main process.
» a demand-driven “by-need” variant interleaving the 1st
and 2nd order analyses.

In the following, we present

» another variant, which is stackless.

» The clou of this variant is that stacks have at most 2
entries during analysis time.

» Therefore, a single temporary storing the temporarily
existing stack entry during procedure calls suffices for the
implementation.

12.1.5
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Algorithm 12.1.5.1 — Stackless 2nd Order

Preprocess

Input: (1) A flow-graph system S, and (2) an abstract semantics
consisting of a data-flow lattice C, and a data-flow functional
[1:E*—(C—C).

Output: Under the assumption of termination (cf. Theorem
12.1.5.4), an annotation of S with functions [[n]] : C —C (stored
in gtr, which stands for global transformation), and [e] : C—C
(stored in [tr, which stands for local transformation) representing
the greatest solution of Equation System 12.1.3.1.

Remark: The variable workset controls the iterative process. Its
elements are nodes of the flow-graph system S. Note that due to
the mutual interdependence of the definitions of [[ ]| and [ ] the
iterative approximation of [[ ]| is superposed by an interprocedural
iteration step, which updates the current approximation of the
effect [ ] of call edges. The temporary meet stores the result of
the most recent meet operation.

12.1.5
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Algorithm 12.1.5.1 — Stackless 2nd Order
Preprocess

( Prologue: Initialization of the annotation arrays gtr and /tr and
the variable workset )
FORALL ne N DO

IF ne {So, e Sk} THEN gtr[n] = lde

ELSE gtr[n]:= T{¢c — ¢ FI OD;

FORALL e € E DO

IF e € Ecay THEN Jtrle] == e [" o Tic—cjole]”

ELSE Itrle]:=[e]" FI OD; (%)

workset := {sg,...,Sk};

12.1.5
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Algorithm 12.1.5.1 — Stackless 2nd Order
Preprocess

( Main process: lterative fixed point computation )
WHILE workset # () DO
CHOOSE m € workset;
workset := workset\{ m };
(Update the successor-environment of node m)
IF me {el,...,ek}
THEN
FORALL e € caller(flowGraph(m)) DO
Itrle] := Reo (Ide,[ e ] o gtr[m] o[ ec ]7);
meet := ltr[e] o gtr[src(e)] M gtr[dst(e)];
IF gtr[dst(e)] O meet
THEN
gtr[dst(e)] := meet;
workset := workset U {dst(e)}
FI
oD

()

12.1.5
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Algorithm 12.1.5.1 — Stackless 2nd Order
Preprocess

ELSE (i.e., m g {el, e ,ek})
FORALL n e SuccflowGraph(m)(m) DO
meet := Itr[(m, n)] o gtr[m] M gtr[n];
IF gtr[n] O meet
THEN
gtr[n] := meet;
workset := workset U {n}
FI
oD
FI
ESOOHC
OD.

12.1.5
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Algorithm 12.1.5.2 — Stackless 1st Order Main
Process

Input: (1) A flow-graph system S, (2) an abstract semantics consisting of
a data-flow lattice C, and a data-flow functional [ ] computed by
Algorithm 16.6.1, and (3) a context information ¢ € C.

Output: Under the assumption of termination (cf. Theorem 12.1.5.4),
the IMaxFPs ss-solution. Depending on the properties of the data-flow
functional, this has the following interpretation:

(1) [ 1 is distributive: variable inf stores for every node the strongest
component information valid there with respect to the context
information c;.

(2) [ 1is monotonic: variable inf stores for every node a valid
component information with respect to the context information ¢, i.e., a
lower bound of the strongest component information valid there.

Remark: The variable workset controls the iterative process. Its elements o

are nodes of the flow-graph system S. The temporary meet stores the

result of the most recent meet operation.
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Algorithm 12.1.5.2 — Stackless 1st Order Main
Process

( Prologue: Initialization of the annotation array inf and the
variable workset )
FORALL n € N\{so} DO inf[n]:= T OD;
inf[so] := ¢s;
workset := { sg };
( Main process: lterative fixed point computation )
WHILE workset # () DO
CHOOSE m € workset;
workset := workset\{ m },
(Update the successor-environment of node m)
FORALL n € succfiowGraph(m)(m) DO
meet := [ (m, n) [(inf[m]) M inf[n];
IF inf[n] O meet
THEN
inf[n] := meet;
workset :== workset U {n} FI,

12.1.5
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Algorithm 12.1.5.2 — Stackless 1st Order Main
Process

IF (m, n) S Eca/l

THEN
meet := [ (m, n)c " (inf[m])M
inf [start(callee((m, n)))]; (x)
IF (m, n) € Eqy
THEN
meet := [ (m, n)c " (inf[m])M
inf [start(callee((m, n)))]; (%)
IF inf[start(callee((m, n)))] 3 meet
THEN

inf [start(callee((m, n)))] := meet;
workset := workset U { start(callee((m, n))) }
Fl
FI 12.1.5
oD

ESOOHC OD. 1084/17



Algorithm 12.1.5.3 — Stackless “Functional”
1st Order Main Process

Input: (1) A flow-graph system S, (2) an abstract semantics consisting of
a data-flow lattice C, and the data-flow functionals [[ J]=4r gtr and

[ 1=ar Itr with respect to C (computed by Algorithm 12.1.5.1), and (4) a
context information ¢ € C.

Output: Under the assumption of termination (cf. Theorem 12.1.5.4),
the IMaxFPsy ss-solution. Depending on the properties of the data-flow
functional, this has the following interpretation:
(1) [ 1 is distributive: variable inf stores for every node the strongest
component information valid there with respect to the context
information ;.
(2) [ 1 is monotonic: variable inf stores for every node a valid
component information with respect to the context information ¢, i.e., a
lower bound of the strongest component information valid there.
Remark: The variable workset controls the iterative process, and the 21
temporary meet stores the most recent approximation.
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Algorithm 12.1.5.3 — Stackless “Functional”
1st Order Main Process

( Prologue: Initialization of the annotation array inf, and the

variable workset )

FORALL s € {s;|i € {1,...,k}} DO inf[s]:= T OD;
inf[so] := ¢s;

workset := {s;|i € {1,2,...,k}};
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Algorithm 12.1.5.3 — Stackless “Functional”
1st Order Main Process

( Main process: lterative fixed point computation )
WHILE workset # () DO
CHOOSE s € workset;
workset := workset\{s};
meet := inf[s]M
[l ec 1" o [[ sre(e) J(inf[start(flowGraph(e))]) |
e € caller(flowGraph(s)) }; (%)
IF inf[s] O meet
THEN
inf[s] := meet;
workset := workset U
{start(callee(e)) | e € Ecay-
flowGraph(e) = flowGraph(s) }
Fl 1215
ESOOHC
OD:;
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Algorithm 12.1.5.3 — Stackless “Functional”
1st Order Main Process

( Epilogue )

FORALL n € N\{s;|i € {0,...,k}} DO
inf[n] := [[ n[|(inf[start(flowGraph(n))])

OD.

12.1
12.1.2
12.1.3
12.1.4
12.1.5
12.1.6
12.2 ‘
12.3
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Termination

Theorem 12.1.5.4 (Termination)

The sequential composition of Algorithm 12.1.5.1 (2nd order)
and Algorithmus 12.1.5.2 (1st order) resp. Algorithm 12.1.5.3
(1st order) terminates with the IMaxFPs solution, if the DFA
functional [ ]* and the return functional R are monotonic and
the function lattice [C — (] satisfies the descending chain
condition.

Note: Validity of the descending chain condition on the
function lattice [C — C] implies validity of the descending
chain condition on the underlying lattice C. s
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Conservativity, Optimality of IDFA Algorithms

Corollary 12.1.5.5 (IMOP s Conservativity)

The IDFA algorithms of Chapter 12.1.5 are IMOPs; conser-
vative for Sg+ (i.e., terminate with a lower approximation of
the IMOP sy solution of Sg-), if [ ]* and R are monotonic
and [C — C] satisfies the descending chain condition.

Corollary 12.1.5.6 (IMOP s Optimality)

The IDFA algorithms of Chapter 12.1.5 are IMOP s optimal
for Sg+ (i.e., terminate with the IMOP sy solution of Sg-), if
[ T and R are distributive and [C — (] satisfies the
descending chain condition.

12.1.5
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Chapter 12.1.6

Soundness and Completeness

12.1.6
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Soundness and Completeness (1)

Analysis Scenario:

» Let ¢ be a program property of interest (e.g., availability
of an expression, liveness of a variable, etc.).

» Let Sg* be a DFA specification designed for ¢.

Definition 12.1.6.1 (Soundness)

82* is sound for ¢, if, whenever the IMOP s, solution of 32*
indicates that ¢ is valid, then ¢ is valid.

Definition 12.1.6.2 (Completeness)

82* is complete for ¢, if, whenever ¢ is valid, then the
IMOP s solution of 82* indicates that ¢ is valid. 12.16
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Soundness and Completeness (2)

Intuitively
» Soundness means: //\/IOPStk implies ¢.

(J

» Completeness means: ¢ implies IMOPStk.
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Soundness and Completeness (3)

If 82* is sound and complete for ¢, this intuitively means:

We compute

» the property of interest,
» the whole property of interest,

» and only the property of interest.

In other words

12.1

» We compute the program property of interest accurately! o

122,711,353
12.1.4
12.1.5
12.1.6
12.1.7
12.2

12.3
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Chapter 12.1.7

A Uniform Framework and Toolkit View
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IDFA with Value Parameters, Local Variables

...considered from a holistic angle yields a

» Uniform Framework and Toolkit View

C

Interprocedural L J
DFA R

N A

Interprocedural Theory || Practice|
DFA K /
Framework ya
(Full Setting) Tool Kit

‘Computation Tool 2|
(Preprocess)

Interproc.| Term. Th.

Computed Solution

Interproc|| Term. Th.

Procedure Call Effects|
9]

Computation Tool 1
(Main Process|

Interprocedural
Termination | Theorem

Interprocedural

Termination Theorem
[lMuxF}LSoluuon = [Computed Solution) 1217

Progran Sounduess
Property <:: IMOP-Solution
¢ (

Proof . R, N
Obligations 3) Equivalence 2) Optimality/Conservativity 1b) Effectivity

1a) Effectivity
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Chapter 12.2

Adding Procedural Parameters
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Procedural Parameters

Let M= (m,..., k) be a program.

So far, we considered

» Procedure declarations: proc 7(py, ..., pr)
» Ordinary procedure calls: call m(as,...,a,),
we{m,. .., Tk}

Now, we introduce procedural parameters allowing

» Procedure declarations: proc 7(py, ..., pr, ¥1,- .
» Formal procedure calls: call ¥(ay,...,a,,71,.
7_T1,...,7_Tq S {71'1,...,7Tk}

)

Y
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Handling Procedural Parameters in IDFA (1)

Key idea

» The semantics of a formal procedure call v/ is considered
the meet of the semantics of the ordinary procedures it
might call at runtime:

[ e Tsu 0 [end(m) T © [ ec sy |4 might call )

Technically, this means

» replacing formal procedure calls by the set of ordinary
procedure calls that they might stand for.
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Handling Procedural Parameters in IDFA (2)

Algorithmically

» this set of procedures can be computed by a suitable
preprocess.

» depending on the expressive power of the programming
language considered, the specific program under
investigation, and the power of the analysis algorithm, the
computed set of procedures can be exact or a safe
approximation.

Overall

» exploiting precomputed calling information for formal 122
procedure call reduces the analysis of programs with :
formal procedure calls to the analysis of programs without
formal procedure calls.
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Replacing the Basic 2nd Order Analysis...

...of the IMaxFPs;, approach characterized by

Equation System 12.1.3.1 (2nd Order IMaxFPs)
ldstack if ne {So, R ,Sk}
[rlsw =q THI(m ) 1su o I m syl m € preduowcrapn(n)(n)}

otherwise

and

[[e]] . Ile]];k if e € E\Eca//
Stk [e Jsu © [ end(callee(e)) Isye © [ ec Is  otherwise 2
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...by the Enhanced 2nd Order Analysis
Equation System 12.2.1 (Enh’'d 2nd Order IMaxFP)

ldstack if ne {So,...,Sk}
Mn ]]]Stk = [{I (m, n) ]]Stk o[ m ]]]Stk m € PredflowGraph(n)(”)}
otherwise
and [e]s, =
[elsu if e € E\Eey

[ e Isei © [ end(callee(e)) Tisy © [ ec Ise
if e € E.,y, ordinary procedure call

[HI er s © [ end(m) Isyc o [ ec sy |4 might call 7}
if e € E.y, formal procedure call B2

where the set of procedures that may be called by a formal call

is computed in a separate and independent preprocess.
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Suitable Preprocesses

...are sketched in Chapter 15 for an object-oriented setting:

» Class Hierarchy Analysis (ch. Chapter 15.2.1)
» Rapid Type Analysis (ch. Chapter 15.2.2)
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Chapter 12.3

Adding Reference Parameters
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Reference Parameters

Handling the effect of reference parameters

» The effect of reference parameters can be encoded in the
DFA functionals of the application problems.

Algorithmically

» This requires may and must alias information of of
variables and parameters, which can be computed by
suitable preprocesses (cf. Chapter 14).

» The computed alias information is then fed into the
generic algorithms of the toolkit of Chapter 12.1.7 via the
definitions of the DFA functions of the application
problems (cf. Chapter 12.5).

123
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Chapter 12.4
Adding Static Procedure Nesting
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Static Procedure Nesting

Static nesting of procedures

» introduces statically nested definitions (or declarations) of
local variables: Variables are no longer either global
(declared in the main program) or local (declared in a
procedure) but “relatively global.”

Algorithmically

» The effects relatively global variables can be encoded in
the DFA functionals of the application problems.

Alternatively

» De-nesting of procedures by a suitable preprocess.

» This way, the analysis of programs with static procedure
nesting is reduced to analysing programs without static
procedure nesting.

12.4
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Chapter 12.5
Applications
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Chapter 12.5.1

Interprocedural Availability
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Preliminaries

In the following we assume:

» No static procedure nesting, no procedural parameters.

» MstAliases ¢(v) und MayAliases ;(v) denote the sets of
must-aliases and may-aliases different from v.

These notions can straightforward be extended to terms t:

» A term t’ is a must-alias (may-alias) of t, if t’ results
from t by replacing of variables by variables that are
must-aliases (may-aliases) of each other.

This allows us to feed alias information in a parameterized
fashion into the definitions of DFA functionals and return
functionals and to take their effects during the analysis into
account.

125.1
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Useful Notations

We define:

» GlobVar(S): the set of global variables of S, i.e., the set
of variables which are declared in the main program of S.
They are accessible in each procedure of S.

» Var(t): the set of variables occurring in t.

» LhsVar(e): the left hand side variable of the assignment
of edge e.

» Globld(t) and Locld(t): abbreviations of
GlobVar(S) N Var(t) and Var(t)\GlobVar(S).

125.1
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Useful Notations (Cont'd)

» NoGlobalChanges : E* — IB: indicates that a
modification of variable v € Var(t) by e will not be
visible after finishing the call as the relevant memory
location of v is local for the currently active call.

» PotAccessible : S — IB: indicates that the memory
locations of all variables v € Var(t), which are accessible
immediately before entering G remain accessible after
entering it, either by referring to v itself or by referring to
one of its must-aliases.

125.1
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Local Predicates

The definition of the preceding functions utilizes the predi-
cates Transp, .y and Transpg,,,, defined as follows:

TranspLocld(e):df
Locld(t) N MayAliases go,,6,aph(e)(LhsVar(e)) = 0
Transpgopiq(€)=ar Globld(t) N
(LhsVar(e) U MayAliases go,,6rapn(e)(LhsVar(e))) = 0

This allows us to define:

Ve € E*. NoGlobalChanges(e)
B true ifeec E}UE;
9\ Transp,yy(n) A Transpepg(n) otherwise

125.1
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Parameterized Local Predicates

...parameterized wrt alias information:

MstAl
e

Vee E*. A-Comp =4 Comp, vV Comp

true if ee EX

MavA/ call
Transp_'®”

Vee€ E". A-Transp ;=q¢ Transp, N\ { , otherwise

125.1
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Parameterized Local Predicates (Cont'd)

Intuitively

» A-Comp is true for t, if t itself (i.e., Comp,) or one of
its must-aliases is computed at edge e (i.e., CompMStA’)

» A-Transp,, e € E*\E},,, is true for t, if neither an
operand of t (i.e., Transp,) nor one of its may-aliases is
modified by the statement at edge e (i.e., Transp>*').

» For call and return edges e € E,,, A-Transp . is true for
t, if no operand of t is modified (i.e., Transp,). This
makes the difference between ordinary assignments and
reference parameters and parameter transfers to reference
parameters; the latter are updates of pointers that leave
the memory invariant except of that update. 1251
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Interprocedural Availability

Key Ingredients of the DFA Specification:

1. Data flow lattice:
(C,M, U, C, L, T)=g (B}, A, V, <,
(false, false), (true, true))

2. Data flow functional:
[ 1%, : E*— (1B>—IB*) defined by

Ve € E*V (b, b)) € B2 [ el (b1, b2)=ar (by, by)

where

b,=4r A-Transp . A (A-Comp, V by)

b by A NoGlobalChanges, if e € E*\E}
279\ true otherwise

125.1
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Interprocedural Availability (Cont'd)

3. Return functional:
Rav : Ecan — (1B x IB? — IB?) defined by

Ve € E.y V¥ ((b1, ), (bs, by)) € IB* x IB.
Rav(e)( (b1, b2), (b3, ba) )=ar (bs, bs) where

b bs if PotAccessible (callee(e))
> (byV A-Comp_) A b, otherwise

be=qr bo N\ by

125.1

1117/17



Findings on Interprocedural Availability

Lemma 12.5.1.1

1. The lattice IB? and the induced lattice of functions satisfy
the descending chain condition.

2. The functionals [ ], and R,, are distributive.

This means, the preconditions of the Interprocedural Coinci-
dence Theorem 12.1.4.4 and the Termination Theorem
12.1.5.4 are satisfied.

125.1
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Chapter 12.5.2

Interprocedural Constant Propagation

12.5.2
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Interprocedural Simple Constants — Naively

Key Ingredients of the DFA Specification:
1. Data flow lattice:
C,MUC L, M=¢ (X,MU,C,0,,07)
2. Data flow functional: [ ]7. : E— (X — X) defined by
VeeE. [[e]]:C:dee
3. Return functional: Ry : Ecoy — (X x ¥ — ¥ ) defined by

Vee€ E.y V(O’l,ag)) €Y XX, Rsc(e)(dl,(jg):df 03

where

oa2(x) if x € GlobVar(S)

Vx € Var. o3(x)=ur { o1(x) otherwise

12.5.2
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Problems, Consequences

Unfortunately

» The preceding DFA specification for interprocedural
simple constants does not induce a terminating analysis
since the lattice of functions on ¥ does not satisfy the
descending chain condition.

In practice, thus

» simpler variants of the constant propagation problem are
considered interprocedurally, e.g., interprocedural copy
constants and linear constants.

12.5.2
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Copy Constants, Linear Constants Recalled

Intuitively, a term is a

» copy constant at a program point, if it is a source-code
constant or an operator-less term that is itself a copy
constant (cf. Chapter 5.5)

» linear constant at a program point, if it is a source-code
constant or of the form a * x + b with a, b source-code
constants and x a linear constant (cf. Chapter 5.4).

12.5.2
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Interprocedural Copy Constants: Findings (1)

We have:

» The number of source-code constants and program
variables are finite.

» Hence, the lattice of functions induced by the relevant
sublattice of X for copy constants is finite satisfying thus
the descending chain condition.

» Hence, the generic 2nd order and 1st order DFA
algorithms for copy constants terminate with the the
IMaxFPs solution for copy constants.

» Last but not least, the computable /IMaxFPs,. solution for
copy constants coincides with the specifying IMOPs
solution, since the DFA functions [ - ]_ and the return
functions R.. for copy constants are distributive.



Interprocedural Copy Constants: Findings (2)

Lemma 12.5.2.1

1. The lattice X .. C ¥ and its induced lattice of functions
satisfy the descending chain condition.

2. The functionals [ 7. and R are distributive.

This means, the preconditions of the Interprocedural Coinci-
dence Theorem 12.1.4.4 and the Termination Theorem
12.1.5.4 are satisfied.

12.5.2
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Chapter 12.6
Summary, Looking Ahead
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Interprocedural DFA: A Holistic Uniform View

...considered from a holistic angle yields a

» Uniform Framework and Toolkit View

C
Interprocedural L1~

Calling
Information

DFA

N

Alias
Information

Interprocedural
DFA
Framework
(Full Setting)

Progran Soundnpss
Property) (e
o (

Theory | [Practice|

Tool Kit

N

[Computation Tool 2]
(Preprocess)
Interproc.| Term. Th.
(Computed Solution

IE)

Interprpcedural
Termination | Theorem

Proof ivalenc
Obligations 3) Equivalence

2) Optimality/Conservativity

1b) Effectivity 1a) Effectivity

126
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Overall, this provides

..further evidence for the claim of Chapter 3.8 that
» The Uniform Framework and Toolkit View of DFA

..is achievable beyond the base case of intraprocedural DFA:

DFA
Specification

Theory

DFA

Toolkit
Framework

Practice
® Intraprocedural

o Interprocedural

o Parallel

« Object-oriented

® Conditional

...

Termination QP Theorem 12.1
12.2

Program Soundness Coincidence Theorem Termination Theorem 123
Property <:> MOP-Solution =/ MaxFP-Solution = Computed Solutior <
¢ Completeness ’
L

Safety Theorem ‘ 12.4
125
D (2) P 126
3 2)
Proof ® N ) 12.7
Obligations: Equivalence Optimality/Conservativity Effectivity
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Chapter 13

The Context Information Approach
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Motivation

In this chapter, we complement the functional approach for
IDFA by sketching a selection of so-called

» context information approaches.

Context information approaches

» allow the user to control the trade-off between power and
performance

» promise to be more efficient in practice

» are heuristic in nature. S
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Outline

The presentation follows the one of Nielson, Nielson, and

Hankin (2005) using their (extended) setting and notation of
Chapter 2.

We start by extending the programming language WHILE by
introducing programs with

» top-level declarations of global mutually recursive
procedures and

» a call-by-value and a call-by-result parameter.

Note: Extensions to multiple call-by-value, call-by-result, S
and call-by-value-result parameters are straightforward.
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Chapter 13.1

Preliminaries, the Setting
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Syntax: Introducing Procedures

Extended WHILE-Language WHILE,:

P, = begin D, S, end
D = D;D | proc p(val x; res y) is" S end"™
S u= .. | [call p(a, 2)]<

Labeling scheme

» Procedure declarations
£,: for entering the body
Ly for exiting the body
» Procedure calls 131

{.: for the call
£, for the return

1138/17



Assumptions

We assume that

v

WHILE, is statically scoped.
The parameter mechanism is

v

» call-by-value for the first parameter
» call-by-result for the second parameter.

v

Procedures may be mutually recursive.

v

Programs are uniquely labelled.

v

There are no procedures of the same name.

v

Only procedures may be called by a program that have
been declared in it.

13.1
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lllustrating Example

The procedure proc fib computing the Fibonacci numbers:

begin
proc fib(val z,u; res v) is
if z<3 then
(vi=u+l; r:=r+1)
else (
call fib (z-1,u,v);
call fib (z-2,v,Vv)
)
end;
r:=0;
call fib(x,0,y)

131
end
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The Flow Graph of Procedure proc fib

main proc fib(val z, u; res v)

‘ [call fib(x, 0, y)]1} ‘ [v:= ut1]? ‘ ‘ [call fib(z-1, u, v)]2 ‘::
! 1 !

‘ [r:=r+1]* ‘ ‘ [call fib(z-2, v, v)]§ ‘:

ﬁ 13.1
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Notions and Notations for Flow Graphs (1)

...for procedure calls and procedure declarations:

[call p(a, z)]i proc p(val x; res y) is S end™
init £ I/
final {6} {4}
blocks | {[call p(a, z)]if} {is"} U blocks(S) U {end"}
labels {lc, 0} {ln, £} Ulabels(S)
flow {(lc; ), (x; 1)} | {(£n,init(S))} Uflow(S) U{¥, L) | £ € final(S))}

Note: (¢c;¢,) and (€x;¢,) denote a new kind of flow, interproce-
dural flow:

> (lc;¢,) is the flow corresponding to calling a procedure at /.
and entering the procedure body at ¢, and

> (Ux; ,) is the flow corresponding to exiting a procedure body 131
at Z, and returning to the call at /,.

Remark: Intraprocedural flow uses ‘," while interprocedural flow
[}

uses ‘.
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Notions and Notations for Flow Graphs (2)

...for (whole) programs:

P*
init, init(Sx)
final, final(S,)
blocks, | | {blocks (p)|proc p(val x; res y) is"" S end® is in D,} U blocks(S.)
labels, | |U{labels (p)|proc p(val x; res y) i |s n S end® is in D} U labels(S,)
flow, U {flow (p) | proc p(val x; res y) is*" S end® is in D.} U flow(S,)
Lab, labels,
inter-flow, = {(c,n,¥x, L) | P, contains [call p(a,z)]ﬁ: as well as "

proc p(val x; res y) is S end}
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lllustrating Example

[call fib(x,o,y)]g‘ ’[v:z u+1]3‘ ’[call fib(z—l,u,v)]g‘:_

! ! !

’ [r = r+1]* ‘ ’ [call fib(z-2,v,v)]Z ‘ —

flow, =

(1,2)
) ES),
1

(2,3),(3,4),(4,9),
5;1),(9;6),(6,7),(7;1),(9;8),(8,9), 131
,(9;12),(10,11)}
,12),(5,1,9,6),(7,1,9,8)}

= ~ <
Re)

inter-flow, =
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Metavariables for Forward /Backward Analyses

Forward Analyses:

» F = flow,

» E = init,

» [F = inter-flow,
Backward Analyses:

» F = flowR

» E = final,

» IF = inter-flowR s

123,11
1

1
el
13.3
13
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Towards Interprocedural DFA

New transfer functions dealing with interprocedural flow are
required:

» For each procedure call [call p(a, z)],© we require two
transfer functions

» f.and f,
corresponding to calling the procedure and returning from
the call.

» For each procedure definition
proc p(val x; res y) is" S end® we require two transfer
funcions
» f;, and f|

corresponding to entering and exiting the procedure body.

13.1
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Chapter 13.1.1
Naive Interprocedural DFA
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Interprocedural DFA: Naive Formulation (1)

» Treat the three kinds of flow, (¢, 02), (¢c;€n), ({x; £,) in
the same way.

» Assume that the 4 transfer functions associated with
procedure calls and procedure definitions are given by the
identity functions, i.e., the parameter-passing is effectively
ignored.

Then:

Naive Interprocedural MaxFP-Equation System:
A0) = THAJ() | (0, 0) e FV (£ 0) e FYmuk
All) = fA(A(0)

where

113,111,

. [ Wfl€E
LETIN L ifIgE
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Interprocedural DFA: Naive Formulation (2)

Given the previous assumptions we have:

» Both procedure calls (¢.; ¢,) and procedure returns

(Ly; £,) are treated like "goto’s”.

» There is no mechanism for ensuring that information
flowing along (¢.; ¢,) flows back along ({4; ¢,) to the
same call

» Intuitively, the equation system considers a much too
large set of “paths” through the program and hence will
be grossly imprecise (although formally on the safe side)

113,111,
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Chapter 13.1.2
Interprocedurally Valid and Complete Paths
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Interprocedurally Valid Program Paths

We want to overcome the shortcoming of the naive formu-
lation by restricting attention to paths that have the proper
nesting of procedure calls and exits. Important are the notions
of matching procedure entries and exits and of complete and
valid paths.

main proc fib(val z, u; res v)

‘ [call fib(x, 0, y)]1} ‘ ‘ [v = ut 1] ‘ ‘ [call fib(z-1, u, v)]2 ‘::
! ! !
‘ [r:=r4+1]* ‘ [call fib(z-2, v, v)]§ ‘: 13.1.2

[end]®
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Matching Procedure Entries and Exits

proc p(val x; res y)

[call p(a, z)],¢

13.1.2
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Complete Paths

A complete path from /¢; to ¢, in P, has proper nesting of
procedure entries and exits; and a procedure returns to the
point where it was called:

CPy o, — 14 whenever ¢; = ¢,
CPy, 4oy — 1, CPy, 4, whenever ({1, () € flow,
CPy.y —> Le, CPy, 4., CPy, o whenever (Cc, £y, Uy, £,) € inter-flow,

Recall:
(le,ln, Ly, ly) € inter-flow,, if P, contains [call p(a,z)]ﬁ: as
well as proc p(val x; res y) is* S end®.

13.1.2
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lllustrating Example: Complete Paths

[[eall fib(x, 0.1 | [ Iv:i= w1 | | feall fib(z-1,u.v)lg | <
; : :
‘ [ri= r+1]* ‘ ’ [call fib(z-2, v, v)]] \:
[end]®
CP39 — 3,CPap
CP10,12 — 10, CP11,12
cp 11 CPr o cpo, P29 = 4 CPoo
— ) )
1112 1.9 12’1%P5,9 —  5,CP19,CPs6P12,12
CP1 g —  1,CPyq
7 , CP¢g — 6,CP7g9 CPg9
CP> g —  2,CP39 7 7 7
cPs, 2, CPs, CPro = T7,CP1o, CPoo
— )
2.9 5,9 CPgog — 8,CPqgq

—
—

12
9

13.1.2
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Chapter 13.2
MVP Approach and MVP Solution
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Valid Paths

A valid path starts at the entry node init, of P,, all the pro-
cedure exits match the procedure entries but some proce-
dures might be entered but not yet exited:

VP, — VPiit, ¢ whenever ¢ € Lab,

VP o, — 1 whenever (; = /5

\/Pghg3 — lq, VP@2753 whenever (€1,€2) € flow,

VPy.o — e, CPy, 0, VPy, o whenever (Cc, L, Uy, L)) € inter-flow,
VPo.o — le, VP, o whenever (¢, 0,, x, (,) € inter-flow,

Note: The valid paths are generated by the non-terminal VP,.

132
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lllustrating Example: Valid Paths

[ call fib(x, 0, )11 |

‘ [v = ut1]? ‘ ’ [call fib(z-1, u, v)]2 ‘::

{

CP10,12
CP11,12
CPi1y
CPQ’Q
CP2yg

U

N

Some valid paths

A non-valid path: [10,11,1,2,5,

1 1
\ [r = r1)* \ ’ [call fib(z-2, v, V)] ‘:
[end]®
10. CP CP3’9 — 37 CP4’9
e Pso — 4,CPgg
11, CPy 9, CP12,1% ’ ’
1 cp Psg — 5,CP19,CPc6P12,12
T2 CPes — 6,CPrg9  CPgy
2, CP3 g9 ’ ’ ’
5 CP ’ CP779 — 77 CP179, Cngg
’ 9 CPg,g — 8, CPg,g
: ,11,1,2,3,4,9, an ,11,1,2,5, 6,7,
10,11,1,2,3,4,9,12 d [10,11,1,2 6
12]

— 12
— 9
13.2
,8,9,12]
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Meet over Valid Paths: The MVP Solution

MVP,(£) = [ |{£()I € vpath,(£)}

MVP,(£) = [ |{£(0)I€ € vpath,(0)}

where

vpath,(¢) =
{[a,-- s loa] | n>1AL,=CA[le, ..., L,] is valid path}

vpath,(¢) =
{[lr,.. ;] | n >IN, =CN[ly,... L] is valid path} 1o
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Discussing the MVP Solution (1)

The MVP solution may be undecidable (even) for lattices
satisfying the descending chain condition, just as was the case
for the MOP solution.

Therefore, we need to reconsider the maximal fixed point
approach and adapt it to

» avoid considering too many paths

» taking call context information into account.

132
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Discussing the MVP Solution (2)

In more detail:

We have to

» reconsider the MFP solution and avoid taking too many
invalid paths into account.

An obvious approach is to

» encode information about the paths taken into the data
flow properties themselves.

This can be achieved by

» introducing context information § € A. 55
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Chapter 13.3
Call Strings, Assumption Sets

133
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Towards the MFP Counterpart of MVP

» Context insensitive analysis: No context information is
used.

» Context sensitive analysis: Context information § € A is
used.

» Call strings:
» An abstraction of the sequences of procedure calls that
have been performed so far.
» Example: The program point where the call was initia-
ted.
» Assumption sets:
» An abstraction of the states in which previous calls have
been performed.

» Example: An abstraction of the actual parameters of the 133
call.
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Chapter 13.3.1
Call Strings
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Call Strings 0 as Context Information A

» Encode the path taken.

» Only record flows of the form (¢.;¢,) corresponding to a
procedure call.

» we take as context /\ = Lab] where the most recent label
{. of a procedure call is at the right end.

» Elements of /\ are called call strings.

» The sequence of labels /1, ¢2 ... (™ is the call string

crver

leading to the current call which happened at ¢7; the
previous calls where at ¢2... (L. If m =0 then no calls
have been performed so far.

For the example program the following call strings are of
interest:

A, [11],]11,5],[11,7],[11,5, 5], [11,5,7],[11,7,5], [11,7,7], ...

13.3.1
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The Adapted MFP Equation System

The Adapted MFP-Equation System:

A(l) = THALO) | (£.0) € FV(C30) € FyN ik
All) = fA(A(0)

where

»l=A—> L maps a context to a data flow property (i.e.,
a data flow lattice element)

» each transfer function f is given by £()(5) = £(/(5))
(i.e., f; adapts resp. specializes f; to the call context §)

9 e ifa=A
Le=—df .
E 1 otherwise

13.3.1
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Making it Practical: Bounding Call Strings

Problem: Call strings can be arbitrarily long (recursive calls)

Solution: Truncate the call strings to have length of at
most k for some fixed number k

In practice:

» A= Lab=¥, i.e. call strings of bounded length k.
» k = 0: Context insensitive analysis
» A (the call string is the empty string)
» k = 1. Remember the last procedure call
» A, [11], 5], [7]
» k = 2: Remember the last two procedure calls
» A, [11],[11,5],[11,7],[5,5],[5,7],[7,5], [7, 7]

13.3.1
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Chapter 13.3.2

Assumption Sets
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Assumption Sets 0 as Context Information A

Instead of describing a path directly in terms of the calls being
performed (as a call string does), information about the state

in which a call was made can be stored (as an assumption set

does).

For a more detailed account of the assumption set approach
refer to

» Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition, Springer-V.,
2005. (Chapter 2.5.5, Assumption Sets as Context)

1332
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Chapter 13.3.3
Advanced Topics
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Advanced Topics

. of interprocedural program analysis and a glimpse on how
they can be addressed by static program analysis.

» Function pointers
» Virtual function calls

» Overloaded functions

1333
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Function Pointers

Values of function pointer variables

The value of a function pointer variable is the address of a
function. At run-time different values can be assigned to
pointer variables.

Interprocedural Control Flow

Any function with the same signature (=parameter types) can
be potentially called by using a function pointer.

Program analysis can reduce the number of functions that
may be called at run-time by computing the set of possible
pointer values assigned to function pointer variables in a given
program.

1333
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Virtual Function Calls & Overloaded Functions

...in object-oriented programming.

Virtual function calls

By taking the class hierarchy into account, we can limit the
methods that can be called to the set of overriding methods of
subclasses. Program analysis can further reduce the number of
methods that may be called at run-time.

Overloaded functions
Calls to overloaded functions are resolved at compile time.

1333
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Chapter 13.4
The Cloning-based Approach
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Cloning-based Approaches

Especially popular

...for object-oriented and points-to analyses.

Key idea

...distinguishing contexts via cloning.

13.4
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Applications

» k-object sensitive analysis for object-oriented programs
(e.g., [MRR'02,SBL'11]).

» Pointer analyses (e.g., [BLQ'03,WL'04,Z2C'04,Wha’07,
BS'09])

» Cloning-based pointer analyses are often expressed in
Datalog solved using specialized Datalog solvers
exploiting redundancy arising from large numbers of
similar contexts for high k values ([Wha'07,BS’09]).

» Contexts are typically represented by binary decision
diagrams (BDDs) ([BLQHU'03,WL'04,ZC’'04]) or explicit
representations from the database literature ([BS'09]).

» Recursion is typically approximated in an ad hoc manner.
Exceptions are the approaches of [KK'08,KMR'12].

13.4
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Pointer/Alias/Shape Analysis (1)

Problem

» Ambiguous memory references interfere with an
optimizer's ability to improve code.

» One major source of ambiguity is the use of pointer-based
values.

Goal of Pointer/Alias/Shape Analysis

» determine for each pointer the set of memory locations to

which it may refer.
Chap. 14
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Pointer/Alias/Shape Analysis (2)

Without such analysis the compiler must assume that each
pointer can refer to any addressable value, including

» any space allocated in the run-time heap.

» any variable whose address is explicitly taken.

» any variable passed as a call-by-reference parameter.

Forms of Pointer Analysis

» points-to sets
» alias pairs

» shape analysis Chap. 14
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Aliasing Everywhere: Answers

...to the question “What is an alias?” in different areas:

» A short, easy to remember name created for use in place
of a longer, more complicated name; commonly used in
e-mail applications. Also referred to as a "nickname”.

» A hostname that replaces another hostname, such as an

alias which is another name for the same Internet address.

For example, www.company.com could be an alias for
server03.company.com.

» A feature of UNIX shells that enables users to define
program names (and parameters) and commands with
abbreviations. (e.g. alias Is ‘Is -I')

» In MGI (Mouse Genome Informatics), an alternative
symbol or name for part of the sequence of a known gene
that resembles names for other anonymous DNA
segments. For example, D6Mit236 is an alias for Cftr.
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Aliasing in Programs

In programs aliasing occurs when there exists more than one

access path to a storage location.

An access path is the I-value of an expression that is
constructed from variables, pointer dereference operators, and

structure field operation operators.

Java (References) C++ (References)
A a,b; A& a =
a = new AQ); A% b =
b = a; b.val =
b.val = 0;

C++ (Pointers) C (Pointers)
Ax a; Ax b; A *a,
a = new AQ); a =
b = a; b = a;
b->val = 0; b->val

(A¥)malloc(sizeof (A));
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Examples of Different Forms of Aliasing (1)

Fortran 77

EQUIVALENCE statement can be used to specify that two or
more scalar variables, array variables, and/or contiguous
portions of array variables begin at the same storage location.

Pascal, Modula 2/3, Java

» Variable of a reference type is restricted to have either the
value nil /null or to refer to objects of a particular
specified type.

» An object may be accessible through several references at
once, but it cannot both have its own variable name and
be accessible through a pointer.
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Examples of Different Forms of Aliasing (2)

C/CH+

» The union type specifier allows to create static aliases. A
union type may have several fields declared, all of which
overlap in (= share) storage.

» It is legal to compute the address of an object with the &
operator (statically, automatically, or dynamically
allocated).

» Allows arithmetic on pointers and considers it equivalent
to array indexing
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Chapter 14.2
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Relevance of Alias Analysis to Optimization

Alias analysis refers to the determination of storage locations
that may be accessed in two or more ways.

» Ambiguous memory references interfere with an
optimizer’s ability to improve code.

» One major source of ambiguity is the use of pointer-based
values.

Goal: determine for each pointer the set of memory
locations to which it may refer.

Without alias analysis the compiler must assume that each
pointer can refer to any addressable value, including

» any space allocated in the run-time heap.
14.2

» any variable whose address is explicitly taken.

» any variable passed as a call-by-reference parameter.
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Characterization of Aliasing

Flow-insensitive information
Binary relation on the variables in a procedure, alias € Var x Var
such that x alias y if and only if x and y

» may possibly at different times refer to the same memory
location.

» must throughout the execution of the procedure refer to the
same memory location.

Flow-sensitive information
A function from program points and variables to sets of abstract
storage locations. alias(p, v) = Loc means that at program point
p variable v

» may refer to any of the locations in Loc.

» must refer to the location / € Loc with |Loc| < 1.

14.2
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Representation of Alias Information

Representation of aliasing with pairs:

g=&p; p=&a; r=&a;

complete alias pairs <*q,p>, <*p,a>, <xr,a>,<x*q,*p>,
<kx*q,a>,<¥p,*r>,<**xq,*r>

compact alias pairs  <*q,p>, <xp,a>, <*r,a>

points-to relations (q,p), (p,a),(r,a)

Representation of aliases and shapes of data
structures:

- gk D~

» regular expressions °

14.1
» 3-valued logic ‘ e

14.3
14.4
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Questions about Heap Contents (1)

Execution State

Let execution state mean the set of cells in the heap, the
connections between them (via pointer components of heap
cells) and the values of pointer variables in the store.

» NULL pointers (Question 1): Does a pointer variable or a
pointer component of a heap cell contain NULL at the
entry to a statement that dereferences the pointer or
component?

» Yes (for every state): Issue an error message.
> : Eliminate a check for NULL.
> : Warn about the potential NULL dereference.

» Memory leak (Question 2): Does a procedure or a
program leave behind unreachable heap cells when it
returns?

> . Issue a warning.

143
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Questions about Heap Contents (2)

» Aliasing (Question 3): Do two pointer expressions
reference the same heap cell?
. .

> trigger a prefetch to improve cache performance
» predict a cache hit to improve cache behavior prediction
> increase the sets of uses and definitions for an improved
liveness analysis
: Disambiguate memory references
and improve program dependence information.

» Sharing (Question 4): Is a heap cell shared? (within the
heap)

> : Warn about explicit deallocation,

because the memory manager may run into an incon-
sistent state.

> . Explicitly deallocate the heap cell 143
when the last pointer to ceases to exist.
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Questions about Heap Contents (3)

» Reachability (Question 5): Is a heap cell reachable from a
specific variable or from any pointer variable?
> . Use this information for program
verification.
> . Insert code at compile time that
collects unreachable cells at run-time.

» Disjointness (Question 6): Do two data structures
pointed to by two distinct pointer variables ever have
common elements?

> . Distribute disjoint data structures
and their computations to different processors.

» Cyclicity (Question 7): Is a heap cell part of a cycle?
> . Perform garbage collection of data
structures by reference counting. Process all elements in
an acyclic linked list in a doall-parallel fashion.

143
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Shape Analysis
Aim of Shape Analysis (SA)

The aim of shape analysis is to determine a finite represen-
tation of heap allocated data structures which can grow
arbitrarily large.

SA can determine the possible shapes data structures may
take such as:

» lists, trees

» directed acyclic graphs, arbitrary graphs

» properties such as whether a data structure is or may be
cyclic.

As example we shall discuss a precise shape analysis (from
Nielson/Nielson/Hankin, PoPA, Chap. 2.6) that performs

strong update and uses shape graphs to represent heap s
allocated data structures. It emphasises the analysis of list like

data structures. teaD Ty



Strong Update

Here “strong” means that an update or nullification of a
pointer expression allows one to remove (kill) the existing
binding before adding a new one (gen).

We shall study a powerful analysis that achieves

» Strong nullification
» Strong update
for destructive updates that destroy (overwrite) existing values

in pointer variables and in heap allocated data structures in
general.

Examples:
| 2 [X = nl/]é 143

> [x.sely := y.seb]’
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Extending the WHILE Language

We extend the WHILE-language syntax with constructs that
allow to create cells in the heap.

>

the cells are structured and may contain values as well as
pointers to other cells.

the data stored in cells is accessed via selectors; we
assume that a finite and non-empty set Sel of selector
names is given:

sel € Sel selector names

we add a new syntactic category

p € PExp pointer expressions

op, is extended to allow for testing of equality of pointers.
unary operations op, on pointers (e.g., is-null) are added.

143
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Abstract Syntax of Pointer Language

The syntax of the WHILE-language is extended to have:

p == x| x.sel | null

a = x|n|a;op;a

b = true| false | not b | by opp by | a1 op, a>
S = [p:=al’ | [skip]*

| if [b]¢ then S; else S,
| while[b]* do S od

| [new (p)]‘

\ 51; 5

In the case where p contains a selector we have a destructive

update of the heap. Statement new creates a new cell pointed
to by p.

143
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Shape Graphs

We shall introduce a method for combining the locations of
the semantics into a finite number of abstract locations.

The analysis operates on shape graphs (S, H, is) consisting of:
» an abstract state, S (mapping variables to abstract
locations).

» an abstract heap, H (specifying links between abstract
locations).

» sharing information, is, for the abstract locations.

The last component allows us to recover some of the
imprecision introduced by combining many locations into one
abstract location. 143
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Example

digraph9

next

next

go = (S, H,is) where
S={(xnx)}

H = {(ngx,next, ny), (ny, next, ny) }

is=10

143
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Abstract Locations

The abstract locations have the form nx where X is a subset
of the variables of Var,:

Aloc = {nx | X C Var,}

A shape graph contains a subset of the locations of AlLoc.

The abstract location ny is called the abstract summary
location and represents all the locations that cannot be
reached directly from the state without consulting the heap.

Clearly, nx and ny represent disjoint sets of locations when

X % 0.

Invariant 1: If two abstract locations nx and ny occur in the
same shape graph then either X = Y or
XNY =0. (ie., two distinct abstract locations
nx and ny always represent disjoint sets of
locations)

143
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Abstract State

The abstract state, S, maps variables to abstract locations.

To maintain the naming convention for abstract locations we
shall ensure that:

Invariant 2: If x is mapped to nx by the abstract state then
x € X.

From Invariant 1 it follows that there will be at most one
abstract location in the (same) shape graph containing a given
variable.

We shall only be interested in the shape of heap so we shall
not distinguish between integer values, nil-pointers, and
uninitialized fields; hence we can view the abstract state as an
element of

143

S € AState = PVar, x AlLoc
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Example: Creating Linked Data Structures

[new (x)]? [new(y)]?
p 0 digraph3
:'grap - D
X
° iy}
[x.next := y]* [new(z)]°
digraph4 ° 5
o next
° “ next " ° (%)
&

14.1
14.2
143
14.4
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Abstract Heap

The abstract heap, H, specifies the links between the abstract
locations.

The links will be specified by triples (ny, sel, ny/) and formally
we take the abstract heap as an element of

H € AHeap = PALoc x Sel x AlLoc

where we again not distinguish between integers, nil-pointers
and uninitialized fields.

Invariant 3: Whenever (ny, sel, ny/) and (ny, sel, ;) are in
the abstract heap then either V =0 or W = W'.

Thus the target of a selector field will be uniquely determined
by the source unless the source is the abstract summary
location ng.

143
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Sharing Information

The idea is to specify a subset, is, of the abstract locations
that represents locations that are shared due to pointers in the
heap:

» an abstract location nx will be included in is if it

represents a location that is the target of more than one
pointer in the heap.

In the case of the abstract summary location, ny, the explicit
sharing information clearly gives extra information:

» if ng € is then there might be a location represented by
ng that is the target of two or more heap pointers.

» if ng ¢ is then all the locations of represented by ny will
be the target of at most one heap pointer.

143
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Maintaining Sharing Information (1)

[y.next := z]°

digraph6

14.1
14.2
143
14.4
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Maintaining Sharing Information (2)

[y := null]’

digraph7

[z := null]®

digraph8

14.1

14.2
143
14.4
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Sharing Information Invariants (1)

We shall impose two invariants to ensure that information in
the sharing component is also reflected in the abstract heap,
and vice versa.

The first invariant, Invariant 4, ensures that information in the
sharing component is also reflected in the abstract heap:

Invariant 4: If nx € is then either
a) (np,sel, nx) is in the abstract heap for some
sel, or
b) there exist two distinct triples (ny, seh, nx)
and (nw, seh, nx) in the abstract heap (that
is either sel; # sel, or V # W).
» Case 4a) means that there might be several locations
represented by ng that point to nx
» Case 4b) means that two distinct pointers (with different
source or different selectors) point to n.

143
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Sharing Information Invariants (2)

The second invariant, Invariant 5, ensures that sharing
information present in the abstract heap is also reflected in the
sharing component:

Invariant 5: Whenever there are two distinct triples
(ny,seh, nx) and (ny, seh, nx) in the abstract
heap and nx # ny then nx € is.

This invariant takes care of the situation where nx represents a
single location being the target of two or more heap pointers.

Note that Invariant 5 is the “inverse” of Invariant 4(b).

We have no “inverse" of Invariant 4(a) - the presence of a
pointer from nyg to nx gives no information about sharing
properties of nx that are represented in is.

143
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Sharing Component: Example 1

[y.next := z]°

[x.next := z]”

digraph25

[y := null]®

digraph26

[z := null]®

digraph27

O~ 1=

14.1
14.2
143
14
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Sharing Component: Example 2

[y.next := z]° [z.next := y]”"

digraph6 digraph28

O =
o o1

7
[z := null]®
digraph30
ext
O~
14.2

143
14.4
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Compatible Shape Graphs

A shape graph is a triple (S, H, is):

S € AState = PVar, x AlLoc
H € AHeap = PALoc x Sel x AlLoc
is € IsShared = PALoc

where ALoc = {nx | X C Var,}.

A shape graph is a compatible shape graph if it fulfills the five
invariants, 1-5, presented above.

The set of compatible shape graphs is denoted by
SG = {(S,H,is) | (S,H,is) is compatible}

143
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Complete Lattice of Shape Graphs

The analysis, to be called Shape, will operate over sets of
compatible shape graphs, i.e. elements of PSG.

Since PSG is a power set, it is trivially a complete lattice with

» ordering relation C being C

» combination operator 1 being U (may analysis)

PSG is finite because SG C AState x AHeap x IsShared and
all of AState, AHeap, IsShared are finite.

The analysis will be specified as an instance of a Monotone
Framework with the complete lattice of properties being PSG,
and as a forward analysis.

143
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Analysis

Shape,(¥) L

[.]°

Shape, (/)
Shape,(¢) = f;*(Shape,(())

[x := a]’ Shape.(\(ﬁ\ U

[

(U{Shape,(¢')|(¢, ¢) € flow(S,)}

Shape.(?>)

Shape, (¢)

if £ = init(S,)

otherwise

where ¢ € PSG is the extremal value holding at entry to S,.

143
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Transfer Functions

The transfer function £>* : PSG — PSG has the form

£74(SG) = | J{¢2"((S.H.is)) | (S.H,is) € SG}
where 2" specifies how a single shape graph (in Shape,(¢))
may be transformed into a set of shape graphs (in Shape,(¢).

The functions ¢7”* for the statements (illustrated by example)

X:=a ‘x::y ‘x::y.sel
x.sel := a ‘ x.sel ==y ‘ x.sel := y.sel

transform a shape graph into a set of different shape graphs.

The transfer functions for other statements and expressions
are specified by the identity function.

143
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Example: Materialization

digraph23

v}

next

[z := y.next]”

digraph24

14.1
14.2
143
14
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Example: Reverse List

[y := null]*;
while [not isnull(x)]? do
[t := y]*;
[y :=x]*
[x := x.next]®;
[y.next := t]°;
od
[t := null]’

The program reverses the list pointed to by x and leaves the
result in y.

143
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Reverse List: Extremal Value

The extremal value ¢ is a set of graphs. The above graph is an
element of this set for our example analysis of the list reversal

program.

digraph8

143
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Shape Graphs in Shape,(¢) (1)

[x := x.next]®

digraph13

[y.next := t]°

digraph14

143
14.4
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Shape Graphs in Shape, () (2)

[t := null]’

digraph23

14.1

14.2
143
14.4
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Reverse List: Established Properties

For the list reversal program shape analysis can detect that at
the beginning of each iteration of the loop the following
properties hold:

Invariant 1: Variable x points to an unshared, acyclic, singly
linked list.

Invariant 2: Variable y points to an unshared, acyclic, singly
linked list, and variable t may point to the second
element of the y-list (if such an element exists).

Invariant 3: The lists pointed to by x and y are disjoint.

digraph14

143
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Drawbacks and Improvements

An improved version, on which the discussed analysis is based
on, can be found in [SRW'98]:

» Operates on a single shape graph instead of sets of shape
graphs.

» Merges sets of compatible shape graphs in one summary
shape graph.

» Uses various mechanisms for extracting parts of individual
compatible shape graphs.

» Avoids the exponential factor in the cost of the discussed
analysis.

The sharing component of the shape graphs is designed to
detect list-like properties:
» |t can be replaced by other components detecting other

shape properties [SRW'02; Compiler Design Handbook,
Chap. 5.

143
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Optimizations for Object-Oriented
Languages
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Optimizations f. Object-Oriented Languages (1)

...related to method invocation.

Invoking a method in an object-oriented language requires
looking up the address of the block of code which implements
that method and passing control to it.

Opportunities for optimization

>

>

Look-up may be performed at compile time.

There is only one implementation of the method in the
class and in its subclasses.

Language provides a declaration which forces the call to
be non-virtual.

Compiler performs static analysis which can determine it
that a unique implementation is always called at a

particular call-site.
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Optimizations f. Object-Oriented Languages (2)

Related optimizations for exploiting these opportunities:

v

Dispatch Table Compression

Devirtualization

v

v

Inlining

v

Escape Analysis for allocating objects on the run-time
stack (instead of the heap)

Chap. 15
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Overview

» Object Layout and Method Invocation (cf. Chapter 15.1)

» Single inheritance
» Multiple inheritance

» Devirtualization of Method Calls (cf. Chapter 15.2)
» Class hierarchy analysis
» Rapid type analysis
> Inlining

» Escape Analysis (cf. Chapter 15.3)

» Connection graphs
» Intra-procedural

» Inter-procedural Chap. 15
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Object Layout and Method Invocation

The memory layout of an object and how the layout supports
dynamic dispatch are crucial factors for performance.
» Single Inheritance

» with and without virtual dispatch table (i.e., direct
calling guarded by a type test)

» Multiple Inheritance
...various techniques with different compromises

» embedding superclasses
» trampolines
» table compression

15.1
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Single Inheritance Layout

class Point { class ColorPnt extends Point {
int x, y; int color;
} }
color
y y
Point * ColorPnt *

» Memory layout of an object of a superclass is a prefix of the
memory layout of an object of the subclass.

» |Instance variables access requires just one load or store
instruction.

15.1.1
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Single Inheritance Layout with vtbl

class Point { class ColorPnt extends Point {
int x, y; int color;
void move(int x, int y) {...} void draw() {...}
void draw() {...} void setcolor(int c) {...}
} }
y
draw
X drawptr
. vtblptr moveptr J |
Point P p |1 move
color
setcolor
y setcolorptr
X drawptr m J draw |
vtblptr moveptr
ColorPnt P P 15.1.1
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Invocation of Virtual Methods with vtbl

» Dynamic dispatching using a virtual method table (vtbl) has
the advantage of being fast and executing in constant time.

> It is possible to add new methods and to override methods.

» Each method is assigned a fixed offset in the virtual method
table (vtbl).

» Method invocation is just three machine code instructions:

LDQ vtblptr, (obj) ; load vtbl pointer
LDQ mptr,method(vtblptr) ; load method pointer
JSR (mptr) ; call method

> One extra word of memory is needed in each object for the
pointer to the virtual method table (vtbl).

15.1.1
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Dispatch Without Virtual Method Tables

Despite the use of branch target caches, indirect branches are
expensive on modern architectures.

The pointer to the class information and virtual method table is
replaced by a type identifier:

v

A type identifier is an integer representing the type the object.

> It is used in a dispatch function which searches for the type of
the receiver.

» Example: SmallEiffel (binary search).

» Dispatch functions are shared between calls with the same
statically determined set of concrete types.

> In the dispatch function a direct branch to the dispatched
method is used (or it is inlined).

15.1.1
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Example

Let type identifiers Ta, Tg, Tc, if id, < Tg then

and Tp be sorted by increasing if id, < Tx then fa(x)

number. The dispatch code for else fg(x)

calling x.f is: else if id, < T¢ then f¢(x)
else fp(x)

Comparison with dispatching using a virtual method table:

» Empirical study showed that for a method invocation with
three concrete types, dispatching with binary search is
between 10% and 48% faster.

» For a megamorphic call with 50 concrete types, the
performance is about the same.

15.1.1
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Multiple Inheritance

...extending the superclasses as in single inheritance does not work
anymore.
Instead

» Fields of superclass are embedded as contiguous block.

» Embedding allows fast access to instance variables exactly as
in single inheritance.

» Garbage collection becomes more complex because pointers
also point into the middle of objects.

15.1.2
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Object Memory Layout (without vtbl)

class Point { class Colored {
int x, y; int color;

} }

class ColorPnt extends Point, Colored {

}

Colored color

Point
Point X Colored ColorPnt X

15.1.2
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Dynamic Dispatching for Embedding

» Allows fast access to instance variables exactly as with single
inheritance.

» For every superclass
» virtual method tables (vbtl) have to be created.
» multiple vtbl pointers are included in the object.

> The object pointer is adjusted to the embedded object
whenever explicit or implicit pointer casting occurs
(assignments, type casts, parameter and result passing).

15.1.2
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Multiple Inheritance with vtbl (1)

class Point {
int x, y;
void move(int x, int y) {...}
void draw() {...}
}

class Colored {
int color;
void setcolor(int c) {...}

}

class ColorPnt extends Point, Colored {
void draw() {...}
+

15.1.2
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Multiple Inheritance with vtbl (2)

y
X 0| drawptr J___a;;;__w
Point vtblptr |- |0| moveptr J move |
color J___;__E___1
setcolor
Colored vtblptr *jAJOFetcolorptq
color
Jo%etcolorpt
Colored vtblptr
y 3Bgetcolorpty J__________1
Point X 0| drawptr draw
oin
ColorPnt || VEPIPtr [— |0| moveptr

15.1.2
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Pointer Adjustment and Adjustment Offset

Pointer adjustment has to be suppressed for casts of null pointers:

Colored col; ColorPnt cp; ...;
col = cp; // if (cp!=null)col=(Colored) ((int*)cp+3)

Problem w/ implicit casts from actual receiver to formal receiver:

» Caller has no type info of formal receiver in the callee.
» Callee has no type info of actual receiver of the caller.

» Therefore this type info has to be stored as an adjustment
offset in the vtbl.

15.1.2
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Method Invocation with vtbl

Method invocation now takes 4 to 5 machine instructions
(depending on the architecture).

LD wvtblptr, (obj) ; load vtbl pointer

LD mptr,method_ptr(vtblptr) ; load method pointer
LD off,method_off(vtblptr) ; load adjustment offset
ADD obj,off,obj ; adjust receiver

JSR (mptr) ; call method

This overhead in table space and program code is even necessary
when multiple inheritance is not used (in the code).

Furthermore, adjustments to the remaining parameters and the
result are not possible.

15.1.2
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Trampoline

To eliminate much of the overhead a small piece of code, called
trampolin is inserted that performs the pointer adjustments and
the jumps to the original code.

The advantages are

» smaller table size (no storing of an offset)
» fast method invocation when multiple inheritance is not used
» the same dispatch code as in single inheritance

The method pointer setcolorptr in the virtual method table of
Colorpoint would (instead) point to code which adds 3 to the
receiver before jumping to the code of method setcolor:

ADD obj,3,0bj ; adjust receiver
BR setcolor ; call method

15.1.2
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Lookup at Compile-Time

Invoking a method requires looking up the address of the method
and passing control to it.

In some cases, the lookup may be performed at compile-time:

» There is only one implementation of the method in the class
and its subclasses.

» The language provides a declaration that forces the call to be
non-virtual.

» The compiler has performed static analysis that can
determine that a unique implementation is always called at a
particular call site.

In other cases, a runtime lookup is required.

15.1.2
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Dispatch Table

In principle the lookup can be implemented as indexing a
two-dimensional table. A number is given to

» each method in the program
> each class in the program

The method call
result = obj.m(al,a2);

can be implemented by the following three actions:

1. Fetch a pointer to the appropriate row of the dispatch table
from the object obj.

2. Index the dispatch table row with the method number.
3. Transfer control to the address obtained.

15.1.2
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Dispatch Table Compression (1)

> Virtual Tables
» Effective method for statically typed languages.
» Methods can be numbered compactly for each class
hierarchy to leave no unused entries in each vtbl.

» Row Displacement Compression

» |dea: combine all rows into a single very large vector.

» It is possible to have rows overlapping as long as an
entry in one row corresponds to empty entries in the
other rows.

» Greedy algorithm: place first row; for all subsequent
rows: place on top and shift right if conflicts exist.

» Unchanged: implementation of method invocation.

» Penalty: verify class of current object at the beginning of
any method that can be accessed via more than one row.

15.1.2
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Dispatch Table Compression (2)

» Selector Coloring Compression

>

Graph coloring: two rows can be merged if no column
contains different method addresses for the two classes.
Graph: one node per class; an edge connects two nodes
if the corresponding classes provide different
implementations for the same method name.

Coloring: each color corresponds to the index for a row
in the compressed table.

Each object contains a reference to a possibly shared
row.

Unchanged: implementation of method invocation code.
Penalty: if classes C1 and C2 share the same row and C1
implements method m whereas C2 does not, then the
code for m should begin with a check that control was
reached via dispatching on an object of type C1.

15.1.2
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Devirtualization

Devirtualization is a technique to reduce the overhead of virtual
method invocation.

The aim of this technique is to statically determine which methods
can be invoked by virtual method calls.

> |f exactly one method is resolved for a method call, the
method can be inlined or the virtual method call can be
replaced by a static method call.

The analyses necessary for devirtualization also improve the
accuracy of the call graph and the accuracy of subsequent
interprocedural analyses.
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Class Hierarchy Analysis

The simplest devirtualization technique is class hierarchy analysis
(CHA), which determines the class hierarchy used in a program.

The information about all referenced classes is used to create a
conservative approximation of the class hierarchy.

» The transitive closure of all classes referenced by the class
containing the main method is computed.

» The declared types of the receiver of a virtual method call are
used for determining all possible receivers.

15.2.1
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Example: Class Hierarchy Analysis

class A extends Object {
void m1() {...}
void m2() {...}
}
class B extends A {
void m1() {...}
}
class C extends A {
void m1() {...}
public static void main(...) {
A a = new AQ;
B b = new B(Q;

a.mO; b.mlO): b.m2O;
}

15.2.1
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Example: Class Hierarchy and Call Graph

C.main

a.ml()

b.m1()

b.m2()

|A.m1| |B.m1| |C.m1| |A.m2|

15.2.1
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The CHA Algorithm

main // the main method in a program

x() // call of static method x

type(x) // the declared type of the expression x
x.y() // call of virtual method y in expression x

subtype(x)  // x and all classes which are a subtype of class x
method(x,y) // the method y which is defined for class x

callgraph := main
hierarchy = {}
for each m € callgraph do
for each mg,:() occuring in m do
if mgae & callgraph then
add mga: to callgraph
for each e.m,;() occuring in m do
for each c € subtype(type(e)) do
Mger := method(c, my;)
if myer & callgraph then
add mger to callgraph
add c to hierarchy

15.2.1
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Rapid Type Analysis (1)

Rapid type analysis (RTA) uses the fact that a method m of a
class ¢ can be invoked only if an object of type c is created during
the execution of the program.

» RTA refines the class hierarchy (compared to CHA) by only
including classes for which objects can be created at runtime.

Based on this idea
> pessimistic
> optimistic

algorithms are possible.

15.2.2
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Rapid Type Analysis (2)

1. The pessimistic algorithm

...includes all classes in the class hierarchy for which instantiations
occur in methods of the call graph from CHA.

2. The optimistic algorithm

> Initially assumes that no methods besides main are called and
that no objects are instantiated.

> |t traverses the call graph initially ignoring virtual calls
(marking them in a mapping as potential calls only) following
static calls only.

» When an instantiation of an object is found during analysis,
all virtual methods of the corresponding objects that were left
out previously are then traversed as well.

» The live part of the call graph and the set of instantiated
classes grow interleaved as the algorithm proceeds.

15.2.2
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Using Devirtualization Information

Inlining is an important usage of devirtualization information.

If a virtual method call can be devirtualized

> it might completely be replaced by inlining the call (supposed
it is not recursive).

15.2.3
1274717



Chapter 15.3
Escape Analysis

15.3

1275/17



Escape Analysis

The goal of escape analysis is to determine which objects have
lifetimes which do not stretch outside the lifetime of their
immediately enclosing scopes.

» The storage for such objects can be safely allocated as part of
the current stack frame — that is, their storage can be
allocated on the run-time stack.

» At method return, deallocation of the memory space used by
non-escaping objects is automatic. No garbage collection is
required.

» The transformation also improves the data locality of the
program and, depending on the computer’s cache, can
significantly reduce execution time. Objects not escaping a
thread can be allocated in the processor where that thread is
scheduled.

15.3
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Using Escape Information

Objects whose lifetimes are confined to within a single scope
cannot be shared between two threads.

» Synchronization actions for these objects can be eliminated.

15.3
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Escape Analysis by Abstract Interpretation

A prototype implementation of escape analysis was included in the
IBM High Performance Compiler for Java.

The approach of Choi et al. (OOPSLA'99) attempts to determine
whether the object

» escapes from a method (i.e., from the scope where it is
allocated).

> escapes from the thread that created it
» the object can escape a method but does not escape
from the thread.

Note: The converse is not possible (if it does not escape
the method then it cannot escape the thread).

15.3
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Essence of Choi et al.’'s Approach

» Introducing of a simple program abstraction called connection
graph:
Intuitively, a connection graph captures the connectivity
relationship between heap allocated objects and object
references.

» Demonstrating that escape analysis boils down to a
reachability problem within connections graphs:

If an object is reachable from an object that might escape, it
might escape as well.

15.3
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Experimental Results Reported by Choi et al.

...based on 10 benchmark programs:
» Percentage of objects that may be allocated on the stack:
Up to 70 + %, with a median of 19%.

» Percentage of all lock operations eliminated:
From 11% to 92%, with a median of 51%.

» Overall execution time reduction:
From 2% to 23%, with a median of 7%.

These results make escape analysis and the optimizations based
theron whorthwhile.

15.3
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Escape States

The analysis uses a simple lattice to represent different escape
states:

NoEscape (T)

ArgEscape

GlobalEscape (1)

State | Escapes the method | Escapes the thread
NoEscape no no

ArgEscape may (via args) no

GlobalEscape | may may

15.3
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Using Escape Information

All objects which are marked

» NoEscape: are stack-allocatable in the method where they are
created.

> NoEscape or ArgEscape: are local to the thread in which they
are created; hence synchronization statements in accessing
these objects can be eliminated.

15.3
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Connection Graphs

We are interested only in

» following the object O from its point of allocation.
» knowing which variables reference O.
» and which other objects are referenced by O fields.

We “abstract out” the referencing information, using a graph
structure where

» a circle node represents a variable.

> a square node represents objects in the heap.

> an edge from circle to square represents a reference.

> an edge from square to circle represents ownership of fields.

15.3.1
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Example: Connection Graphs

A a =new A(); // line L1
a.bl
a.b2

new B(); // line L2
a.bl; // line L3

Simple Version Using Deferred Edges

An edge drawn as a dotted arrow is called a deferred edge and

shows the effect of an assignment from one variable to another

(example: created by the assignment in line 3) ~» improves

efficiency of the approach. 1531
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Intraprocedural Abstract Interpretation

Actions for assignments involve an update of the connection graph.

» An assignment to a variable p kills any value the variable
previously had. The kill function is called byPass(p):

Before After



Analyzing Statements (1)

p = new C(); // line L The operation byPass(p) is applied. An

object node labeled L is added to the graph - and
nodes for the fields of C that have nonintrinsic types
are also created and connected by edges pointing
from the object node.

; The operation byPass(p) is applied. A new deferred

edge from p to q is created.

; The operation byPass is not applied for f (no strong

update!). If p does not point to any node in the
graph a new (phantom) node is created. Then, for
each object node connected to p by an edge, an
assignment to the field f of that object is performed.



Analyzing Statements (2)

p = q.f; If g does not point at any object node then a phan-
tom node is created and an edge from g to the new
node is added. Then byPass(p) is applied and de-
ferred edges are added from p to all the f nodes that
g is connected to by field edges.

For each statement one graph represents the state of the program
at the statement.

At a point where two or more control paths converge, the con-
nection graphs from each predecessor statements are merged.



Example: Connection Graphs (1)

Suppose that the code inside some method is as follows. The
declarations of classes A, B1 and B2 are omitted.

A a = new AQ); // line L1
if (1 > 0)

a.fl = new B1(); // line L3
else

a.f1 = new B2(); // line L5
a.f2 = a.f1; // line L6



Example: Connection Graphs (2)
1) . l 2) . l
@[D ® Q) @

Gi: out: A a =new A(); // line L1
Gy: out: a.fl = new B1(); // line L3
Gs: out: a.fl = new B2(); // line L5
Gy: out: Go U G3

Gs: out: a.f2 = a.fl; // line L6
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Interprocedural Abstract Interpretation (1)

Analyzing methods:

>

It is necessary to analyze each method in the reverse order
implied by the call graph.

If method A may call methods B and C, then B and C should
be analyzed before A.

Recursive edges in the call graph are ignored when
determining the order.

Java has virtual method calls — at a method call site where it
is not known which method implementation is being invoked,
the analysis must assume that all of the possible
implementations are called, combining the effects from all the
possibilities.

The interprocedural analysis iterates over all the methods in
the call graph until the results converge (fixed point).
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Interprocedural Abstract Interpretation (2)

> A call to a method M is equivalent to copying the actual
parameters (i.e. the arguments being passed in the method
call) to the formal parameters, then executing the body of M,
and finally copying any value returned by M as its result back
to the caller.

» |f M has already been analyzed intraprocedurally following the
approach described above, the effect of M can be summarized
with a connection graph. That summary information
eliminates the need to re-analyze M for each call site in the
program.
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Analysis Results (1)

After the operation byPass has been used to eliminate all deferred
edges, the connection graph can be partitioned into three
subgraphs:

Global escape nodes: All nodes reachable from a node whose
associated state is GlobalEscape are themselves
considered to be global escape nodes (Subgraph 1)
» the nodes initially marked as GlobalEscape are
the static fields of any classes and instances of
any class that implements the Runnable
interface.

Argument escape nodes: All nodes reachable from a node whose
associated state is ArgEscape, but are not reachable
from a Global Escape node. (Subgraph 2)

» the nodes initially marked as ArgEscape are the
argument nodes ai, ..., ap.
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Analysis Results (2)

No escape nodes: All other nodes have NoEscape status.
(Subgraph 3).

The third subgraph represents the summary information for the
method because it shows which objects can be reached via the
arguments passed to the method.

All objects created within a method M and that have the
NoEscape status after the three subgraphs have been determined
can be safely allocated on the stack.
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Chapter 16.1

Reconsidering Optimization
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Program Analysis and Optimization (1)
...takes place in the area of conflict between
» Correctness, safety

» Precision, optimality
» Efficiency, scalability
Efficiency/Scalability

Precision/Optimality

/
/
16.1
16.2
16.3
1303/17
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Program Analysis and Optimization (2)

In principle

» Correctness/safety, precision/optimality, and
efficiency/scalability can be traded for each other.

For example

> lterative Compilation: Analytically, experimentally
...trades efficiency/scalability for precision/optimality.

» Adaptive Compilation: Experimentally
...trades efficiency/scalability for precision/optimality.

» Aggressive Optimization

...trades safety/correctness and/or efficiency/scalability for
impact (rather than precision/optimality)

16.1
16.2

16.3
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Program Analysis and Optimization (3)
Different fields also impose different performance demands:
» Compilation — trading precision/optimality for
efficiency/scalability
» Interactive, user: high

» Batch, embedded systems compilation: moderate
» Dynamic: extremely high
» Verification — trading efficiency/scalability for
precision /optimality
» moderate to low notwithstanding as fast as possible
» On-line monitoring/verification — trading precision /optimality
for efficiency/scalability
» real-time empowered (autonomous systems,...)

The characteristics and demands of an application scenario has a
tremendous impact on the kind of analyses and trans-
formations/optimizations which are considered reasonable.

16.1
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Optimization worth the Effort?

...which options do we have if our program is too slow?

A radical view:

» Option 1: Buying new hardware!

Moore's Law. Hardware performance gains double the
computing power every 18 months.

» Option 2: Buying a new compiler!

Proebsting’s Law. Compiler optimizations gains double the
computing power every 18 years.

Note: Proebsting’s Law above is a corollary of his finding/
observation:

» “Compiler optimizations have yielded annual performance
gains an order of magnitude worse than hardware
performance gains.” e
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Optimization of Little to No Relevance?

No, by contrast.

> Program analysis and optimization are more important than
ever these days, and will so continue in the years to come.

Which evidence do we have?

Most importantly
» Moore’s Law is vanishing: “The end” of Moore's Law due to
physical limitations is foreseeable.

» Waiting for the next processor generation with higher
clock rate is no longer an option:

There is no free lunch any longer!

» The improvement by compiler optimizations is always on top

of any improvement by hardware advancements.
16.1
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Optimization of the Highest Relevance

In fact, in response to the foreseeable “end” of Moore's Law

» All major chip vendors switched their focus from processors
with higher and higher clock rates to many and multi-core
processors.

Again

» There is no free lunch any longer!

In the words of a speaker at the CGO 2007 conference:

We asked for more computing power.
We received more processor cores.

Speaker at CGO 2007
Hence

» New parallelization and optimization techniques are required!

16.1
16.2

16.3
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Drivers of the Relevance of Optimization (1)
New advances in hardware and software demand strong compiler
and optimizer support:

> Parallelism

» Hardware/processors: Many/multi-core processors,
CPUs, GPUs, GPGPUs, FPGAs, and other accelarators,
heterogeneous hardware,...

» Software: Parallel languages, parallelization of sequential
programs (legacy software),...

» New computing paradigms: Cloud computing,
software-as-a-service, ...

» Embedded and cyber-physical systems

» Mobile systems: Laptops, tablets, smartphones,...

» Autonomous mobile systems, (safety-critical) real-time
systems: Robots in outer space, in co-working spaces
with humans, fully autonomous cars, trains, subways,
airplanes, ships,...) impose rigorous demands for safety
and security, performance, power consumption, etc.

16.1
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Drivers of the Relevance of Optimization (2)

Grand Challenges of Informatics pose new and strong demands on
compilers and optimization, e.g.:

» The Verifying Compiler, Sir Tony Hoare.
» Related Endeavours
» Compiler verification: ProCoS, Verifix, CompCert,...
» Translation/optimization validation: C3PRO, TVOC,
CVT, VOC CovaC,...

>

» Verlasslichkeit von Software, Gesellschaft fur Informatik e.V.
(GI), Fachbereich Softwaretechnik.

...contributions and advances in compiler construction, program

analysis and optimization are crucial for successfully mastering

these and other (grand) challenges.
16.1
16.2

16.3
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Drivers of the Relevance of Optimization (3)
...research on optimization impacts other research fields and vice
versa:

> Programm analysis and optimization

» Software engineering

» Program understanding, program debugging, program
re-engineering, program re-factoring, program (re-)
specification, ...

» Model-driven code generation, model-driven code
transformation,...

Safety and security/privacy analysis

» E.g., individual code generation for each compiler run to
enhance security (Michael Franz, Stefan Brunthaler et
al.)

Language and compiler design
Hardware/processor design

v

vy

...mutually benefit of and challenge each other.

16.1
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Summing up, Looking ahead (1)

All this shows:

New topics in research on optimization pop up:

» Portable performance

» Write once, run everywhere with the highest performance
(CPUs, GPUs, GPGPUs, FPGAs, Multi-/Many-core
architectures, Heterogeneous architectures,...)

» Power consumption

» Mobile devices: laptops, tablets, smartphones (Pokémon
Go), robots,...

» Outer-space objects: spacecrafts, satellites, robots
(MER-A Spirit, MER-B Opportunity, ESA Rosetta, ESA
Philae,...),...

» Green IT

» Power consumption (in the large)

16.2
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Summing up, Looking ahead (2)

Established topics in research on optimization gain new momentum
and experience a renaissance:

» Parallelization

» Parallelism for the masses (parallelism is no longer a
niche for the expert).

» Performance
» Moore's law is nearing its end due to physical limits.

» Resource Analysis
» Embedded and cyber-physical systems are ubiquituous.
» Size, Power, Performance (WCET, ACET)
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Summing up, Looking ahead (3)

For all these reasons, it is fair to say:

Compiler construction, program analysis, and optimization is

» a vibrant, theoretically and practically relevant field of
research in informatics and will so remain in the years to
come.

» among the most influential fields for the further progress and
advancement of informatics.

16.1
16.2
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Summing up, Looking ahead (4)

Key Issues

» Keeping pace with advances in software and hardware design.
» Impacting language and hardware design.
» Complementing the well-established and powerful theory of

program analysis with an equally powerful theory of program
transformations.

16.1
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Summing up, Looking ahead (5)

Overall

» The future of the field of compiler construction, program
analysis, and optimization is bright!

In particular

» Compiler construction, program analysis, and optimization are
an unexhaustable source of challenging theoretically and
practically relevant topics for PhD, master, and bachelor
theses.

16.1
16.2
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1317/17



Chapter 16.3

References, Further Reading

16.3
1318/17



Further Reading for Chapter 16 (1)

On Moore's and Proebsting's Laws

[§ IEEE Spectrum. Special Report on 50 Years of Moore's Law.
IEEE Spectrum, April 2015.
http://spectrum.ieee.org/static/
special-report-50-years-of-moores-law

[@ Robert Colwell. The Chip Design Game at the End of Moore's
Law. In Proceedings of teh IEEE/ACM Symposium on
High-Performance Chips (Hot Chips 2013), 2013.
http://www.hotchips.org/wp-content/uploads/
hc_archives/hc25/HC25. 15-keynotel-Chipdesign-epub/
HC25.26.190-Keynotel-ChipDesignGame-Colwell-DARPA.pdf

16.1

16.3
1319/17



Further Reading for Chapter 16 (2)

B

Peter J. Denning, Ted G. Lewis. Exponential Laws of
Computing Growth. Communications of the ACM 60(1):54-65,
2017.

Gordon E. Moore. Cramming More Components onto
Integrated Circuits. Electronics 38(8), 114-117, 1965.
http://web.eng.fiu.edu/npala/eee6397ex/
gordon_moore_1965_article.pdf

Gordon E. Moore. Progress in Digital Integrated Electronics.
International Electron Devices Meeting, IEEE, IEDM

Tech. Digest, 1113, 1975.
http://www.eng.auburn.edu/~agrawvd/COURSE/
E7770_Spr07/READ/Gordon_Moore_1975_Speech.pdf

John M. Shalf, Robert Leland. Computing beyond Moore’s
Law. IEEE Computer 48(12):14-23, 2015.

16.1

16.3
1320/17



Further Reading for Chapter 16 (3)

[ Tom Simonite. Moore’s Law Is Dead. Now What? MIT

Technology Review, 2016
https://www.technologyreview.com/s/601441/
moores-law-is-dead-now-what/

[§ Arnold Thackray, David Brock, Rachel Jones. Moore’s Law:
The Life of Gordon Moore. Silicon Valley's Quiet
Revolutionary. Basic Books, New York, 2015.

[@ M. Mitchell Waldrop. More than Moore.
Nature 530(7589):144-147, 2016.
http://www.nature.com/polopoly fs/1.19338!/menu/
main/topColumns/topLeftColumn/pdf/530144a.pdf

[ Todd A. Proebsting. Proebsting’s Law: Compiler Advances
Double Computing Power Every 18 Years.
http://proebsting.cs.arizona.edu/law.html

16.1

16.3
1321/17



Further Reading for Chapter 16 (4)

Iterative Compilation

[ Grigori Fursin, Michael F.P. O'Boyle, Peter M.W. Knijnenburg.
Evaluating Iterative Compilation. In Proceedings of the 15th
International Conference on Languages and Compilers for
Parallel Computing (LCPC 2002), Revised Papers, Springer-V.,
LNCS 2481, 362-376, 2005.

@ Toru Kisuki, Peter M.W. Knijnenburg, Michael F.P. O'Boyle,
Francois Bodin, Harry A.G. Wijshoff. A Feasa- bility Study in
Iterative Compilation. In Proceedings of the 2nd International
Symposium on High Performance Computing (ISHPC'99),
Springer-V., LNCS 1615, 121-132, 1999.

16.1

16.3
1322/17



Further Reading for Chapter 16 (5)

[§ Peter M.W. Knijnenburg, Toru Kisuki, Michael F.P. O'Boyle.
Iterative Compilation. In Proceedings of the 1st Workshop on
Embedded Processor Design Challenges: Systems,
Architectures, Modeling, and Simulation (SAMOS 2001),
Springer-V., LNCS 2268, 171-187, 2002.

Adaptive Compilation

[@ L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy
J. Harvey, Steven W. Reeves, Devika Subramanian, Linda
Torczon, Todd Waterman. Finding Effective Compilation
Sequences. In Proceedings of the 2004 ACM SIGPLAN-
SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES 2004), 231-239, 2004.

16.1

16.3
1323/17



Further Reading for Chapter 16 (6)

@ Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven
Reeves, Devika Subramanian, Linda Torczon, Todd Waterman.
ACME: Adaptive Compilation Made Efficient. In Proceedings
of the 2005 ACM SIGPLAN-SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems
(LCTES 2005), 69-77, 2005.

@ Keith D. Cooper, Devika Subramanian, Linda Torczon.
Adaptive Optimizing Compilers for the 21st Century. The
Journal of Supercomputing 23(1):7-22, 2002.

16.1

16.3
1324/17



Further Reading for Chapter 16 (7)

Aggressive Optimization

[@ Li-Ling Chen, Youfeng Wu. Aggressive Compiler Optimization
and Parallelization with Thread-Level Speculation. In
Proceedings of the 2003 IEEE International Conference on
Parallel Processing (ICPP 2003), 607-614, 2003.

[@ Vijay S. Menon, Neal Glew, Brian R. Murphy, Andrew
McCreight, Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Leaf
Petersen. A Verifiable SSA Program Representation for
Aggressive Compiler Optimization. In Conference Record of
the 33rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2006), 397-408,
2006.

16.1

16.3
1325/17



Further Reading for Chapter 16 (8)

[

Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997. (Chapter 1.5,
Placement of Optimizations in Aggressive Optimizing
Compilers)

Grand Challenges

[

[

Charles A.R. Hoare. The Verifying Compiler: A Grand
Challenge for Computing Research. Journal of the ACM
50(1):63-69, 2003.

Gesellschaft fiir Informatik e.V. (Gl), Fachbereich
Softwaretechnik. Verlasslichkeit von Software, 2014.
https://www.gi.de/themen/grand-challenges/
verlaesslichkeit-von-software.html

16.1

16.3
1326/17



Further Reading for Chapter 16 (9)

Compiler Verification

ﬁ Ricardo Bedin Franca, Denis Favre-Felix, Xavier Leroy, Marc
Pantel, Jean Souyris. Towards Formally Verified Optimizing
Compilation in Flight Control Software. In Proceedings of the
Workshop on Bringing Theory to Practice: Predictability and
Performance in Embedded Systems (PPES 2011), 59-68, 2011.

ﬁ Bettina Buth, Karl-Heinz Buth, Martin Franzle, Burghard von
Karger, Yassine Lakhnech, Hans Langmaack, Markus
Miuller-Olm. Provably Correct Compiler Development and
Implementation. In Proceedings of the 4th International
Conference on Compiler Construction (CC'92), Springer-V.,
LNCS 641, 141-155, 1992.

16.1

16.3
1327/17



Further Reading for Chapter 16 (10)

[@ Sabine Glesner, Gerhard Goos, Wolf Zimmermann. Verifix:

Konstruktion und Architektur verifizierender Ubersetzer
(Verifix: Construction and Architecture of Verifying
Compilers). it - Information Technology 46(5):265-276, 2004.

@ Gerhard Goos, Wolf Zimmermann. Verification of Compilers.
Correct System Design: Recent Insight and Advances.
Springer-V., LNCS 1710, 201-230, 1999.

[@ Andreas Krall. Correct Compilers for Correct Processors.
Invited Talk, 9th International Conference on
High-Performance and Embedded Architectures and Compilers
(HIPEAC 2014), 2014. Slides:
http://old.hipeac.net/system/files/hipeac14.pdf

16.1

16.3
1328/17



Further Reading for Chapter 16 (11)

[§ Hans Langmaack. Softwareengineering zur Zertifizierung von
Systemen: Spezifikations-, Implementierungs-,

Ubersetzerkorrektheit. it+ti - Informationstechnik und
Technische Informatik 39(3):41-47, 1997.

[ Hans Langmaack: The ProCoS Approach to Correct Systems.
Real-Time Systems 13(3):253-275, 1997.

[@ Xavier Leroy. Formal Verification of a Realistic Compiler.
Communications of the ACM 52(7):107-115, 20009.

16.1

.3
1329/17



Further Reading for Chapter 16 (12)

[§ Xavier Leroy. Formally Verifying a Compiler: Why? How?
How far? Invited Talk, In Proceedings of the 9th Annual
IEEE/ACM International Symposium on Code Generation and
Optimization (CGO 2011), xxxi, 2011.

[§ Xavier Leroy. Compiler Verification for Fun and Profit. Invited
Talk, In Proceedings of the 2014 IEEE Conference on Formal
Methods in Computer-Aided Design (FMCAD 2014), 9, 2014.

[@ John McCarthy, James Painter. Correctness of a Compiler for
Arithmetical Expressions. Mathematical Aspects of Computer
Science, ser. Proceedings of Symposia in Applied Mathematics,
Vol. 19, American Mathematical Society, 33-41, 1967.

16.1

16.3
1330/17



Further Reading for Chapter 16 (13)

[@ Robin Milner, R. Weyrauch. Proving Compiler Correctness in a
Mechanized Logic. In Proceedings of the 7th Annual Machine
Intelligence Workshop, ser. Machine Intelligence, B. Meltzer
and D. Michie, Eds., Vol. 7., Edinburgh University Press,
51-72, 1972.

ﬁ Wolf Zimmermann. On the Correctness of Transformations in
Compiler Back-Ends. In Proceedings of the 1st First
International Symposium on Leveraging Applications of Formal
Methods (ISoLA 2004), Springer-V, LNCS 4313, 74-95, 2004.

16.1

16.3
1331/17



Further Reading for Chapter 16 (14)

Translation Validation

[§ Clark W. Barret, Yi Fang, Benjamin Goldberg, Ying Hu, Amir
Pnueli, Lenore Zuck. TVOC: A Translation Validator for
Optimizing Compilers. In Proceedings of the 17th International
Conference on Computer Aided Verification (CAV 2005),
Springer-V., LNCS 3576, 291-295, 2005.

[@ Aditya Kanade, Amitabha Sanyal, Uday Khedker. A PVS
based Framework for Validating Compiler Optimizations. In
Proceedings of the 4th IEEE International Conference on
Software Engineering and Formal Methods (SEFM 2006),
108-117, 2006.

16.1

16.3
1332/17



Further Reading for Chapter 16 (15)

[§ George C. Necula. Translation Validation for an Optimizing
Compiler. In Proceedings of the 20th ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI 2000), ACM SIGPLAN Notices
35:83-95, 2000.

@ Amir Pnueli, Michael Siegel, Eli Singerman. Translation
Validation. In Proceedings of the 4th International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS'98), Springer-V., LNCS 1384, 151-166, 1998.

16.1

16.3
1333/17



Further Reading for Chapter 16 (16)

ﬁ Amir Pnueli, Ofer Strichman, Michael Siegel. Translation
Validation for Synchronous Languages. In Proceedings of the
25th International Colloquium on Automata, Languages and
Programming (ICALP'98), Springer-V., LNCS 1443, 235-246,
1998.

@ Amir Pnueli, Ofer Strichman, Michael Siegel. The Code
Validation Tool (CVT) Automatic Verification of a
Compilation Process. International Journal on Software Tools
for Technology Transfer 2(2):192-201, 1998.

[§ Jean-Baptiste Tristan, Xavier Leroy. Formal Verification of
Translation Validators: A Case Study on Instruction
Scheduling Optimizations. In Conference Record of the 35th
Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL 2008), 17-27, 2008.

16.1

16.3
1334/17



Further Reading for Chapter 16 (17)

[§ Jean-Baptiste Tristan, Xavier Leroy. Verified Validation of
Lazy Code Motion. In Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI 2009), ACM SIGPLAN Notices
44:316-326, 20009.

[d Anna Zaks, Amir Pnueli. CovaC: Compiler Validation by
Program Analysis of the Cross-product. In Proceedings of the
15th International Symposium on Formal Methods (FM 2008),
Springer-V., LNCS 5014, 35-51, 2008.

[@ Lenore Zuck, Amir Pnueli, Yi Fang, Benjamin Goldberg. VOC:
A Methodology for Translation Validation of Optimizing
Compilers. Journal of Universal Computer Science
9(3):223-247, 2003.

16.1

16.3
1335/17



Further Reading for Chapter 16 (18)

New Programming Models and Architectures

[d David Kaeli. The Road to new Programming Models and
Architectures for Future Heterogeneous Systems. Invited Talk,
9th International Conference on High-Performance and
Embedded Architectures and Compilers (HIPEAC 2014), 2014.
Slides: http://old.hipeac.net/system/files/
David’%20Kaeli reduced.pdf

@ Margaret Martonosi. Power-Aware Computing: Then, Now,
and into the Future. Invited Talk, 9th International Conference
on High-Performance and Embedded Architectures and
Compilers (HIPEAC 2014), 2014. Slides:
http://o0ld.hipeac.net/system/files/
MartonosiHIPEACfinal.pdf

16.1

16.3
1336/17



Further Reading for Chapter 16 (19)

[§ Andras Vajda. Programming Many-Core Chips. Springer-V.,
2011. (Chapter 1.1, The End of Endless Scalability; Chapter 2,
Multi-core and Many-core Processor Architecture; Chapter 3,
State of the Art Multi-core Operating Systems; Chapter 10,
Looking Ahead)

16.3
1337/17



References

Reference

1338/17



Recommended Reading

...for deepened and independent studies.

| Textbooks

[ On-line Tutorials

[l On-line Resources of Compilers and Compiler Writing Tools
IV Monographs and Volumes

V Articles

vV Vv v Y

Reference

1339/17



| Textbooks (1)

[

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman.

Compilers: Principles, Techniques, & Tools. Addison-Wesley,
2nd edition, 2007.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman.

Compiler: Prinzipien, Techniken und Werkzeuge. Pearson
Studium, 2. aktualisierte Auflage, 2008.

Randy Allen, Ken Kennedy. Optimizing Compilers for Modern
Architectures. Morgan Kaufman Publishers, 2002.

Andrew W. Appel. Modern Compiler Implementation in ML.
Cambridge University Press, 1997.

Andrew W. Appel with Maia Ginsburg. Modern Compiler
Implementation in C. Cambridge University Press, 1998.

]
1340/17



| Textbooks (2)

[d Andrew W. Appel with Jens Palsberg. Modern Compiler
Implementation in Java. Cambridge University Press, 2nd
edition, 2002.

André Arnold, Irene Guessarian. Mathematics for Computer
Science. Prentice Hall, 1996.

Rudolf Berghammer. Ordnungen, Verbande und Relationen
mit Anwendungen. Springer-V., 2012.

Rudolf Berghammer. Ordnungen und Verbande: Grundlagen,
Vorgehensweisen und Anwendungen. Springer-V., 2013.

) & =)

Rudolf Berghammer. Mathematik fiir Informatiker:
Grundlegende Begriffe und Strukturen. Springer-V., 2014.

]
1341/17



| Textbooks (3)

[
[

=) &

Garret Birkhoff. Lattice Theory. American Mathematical
Society, 3rd edition, 1967.

Keith D. Cooper, Linda Torczon. Engineering a Compiler.
Morgan Kaufman Publishers, 2004.

Brian A. Davey, Hilary A. Priestley. Introduction to Lattices
and Order. Cambridge Mathematical Textbooks, Cambridge
University Press, 2nd edition, 2002.

Marcel Erné. Einfiihrung in die Ordnungstheorie.
Bibliographisches Institut, 2. Auflage, 1982.

Shimon Even. Graph Algorithms. Pitman, 1979.

C. Fischer, R. LeBlanc. Crafting a Compiler.
Benjamin/Cummings Publishing Co., Inc. Menlo Park, CA,
1988.

]
1342/17



| Textbooks (4)

) & & =

Helmuth Gericke. Theorie der Verbande. Bibliographisches
Institut, 2. Auflage, 1967.

George Gratzer. General Lattice Theory. Birkhauser, 2nd
edition, 2003.

Dick Grune, Ceriel J.H. Jacobs. Parsing Techniques: A
Practical Guide. Springer-V., 2nd edition, 2008.

Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel
J.H. Jacobs, Koen G. Langendoen. Modern Compiler Design.
Springer-V., 2nd edition, 2012.

Paul R. Halmos. Naive Set Theory. Springer-V., Reprint, 2001.

]
1343/17



| Textbooks (5)

) & & & =Y

Matthew S. Hecht. Flow Analysis of Computer Programs.
Elsevier, North-Holland, 1977.

Hans Hermes. Einfiihrung in die Verbandstheorie. Springer-V.,
2. Auflage, 1967.

Richard Johnsonbaugh. Discrete Mathematics. Pearson, 7th
edition, 2009.

Janusz Laski, William Stanley. Software Verification and
Analysis. Springer-V., 20009.

Uday P. Khedker, Amitabha Sanyal, Bageshri Karkare. Data
Flow Analysis: Theory and Practice. CRC Press, 2009.

]
1344/17



| Textbooks (6)

Seymour Lipschutz. Set Theory and Related Topics. McGraw
Hill Schaum’s Outline Series, 2nd edition, 1998.

David Makinson. Sets, Logic and Maths for Computing.
Springer-V., 2008.

Robert Morgan. Building an Optimizing Compiler. Digital
Press, 1998.

Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997.

Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. Springer-V., 2nd edition, 2005.

) & & & & &

Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: A Formal Introduction. Wiley, 1992.

]
1345/17



| Textbooks (7)

) & = @

Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: An Appetizer. Springer-V., 2007.

Peter Pepper, Petra Hofstedt. Funktionale Programmie- rung:
Sprachdesign und Programmiertechnik. Springer-V., 2006.

Helmut Seidl, Reinhard Wilhelm, Sebastian Hack. Compiler
Design: Analysis and Transformation. Springer-V., 2012.

Patrick D. Terry. Compilers and Compiler Generators: An
Introduction with C++. International Thomson Computer
Press, 1997.

]
1346/17



| Textbooks (8)

) & = & @

Patrick D. Terry. Compiling with C# and Java.
Addison-Wesley, 2005.

Andras Vajda. Programming Many-Core Chips. Springer-V.,
2011.

William M. Waite, Lynn R. Carter. An Introduction to
Compiler Construction. HarperCollins College Publishers, 1993.

William M. Waite, Gerhard Goos. Compiler Construction.
Springer-V., 1984.

Reinhard Wilhelm, Dieter Maurer. Compiler Design.
Addison-Wesley, 1995.

]
1347/17



| Textbooks (9)

@ Reinhard Wilhelm, Dieter Maurer. Ubersetzerbau: Theorie,
Konstruktion, Generierung. Springer-V., 2. Auflage, 1997.

[4 Reinhard Wilhelm, Helmut Seidl. Compiler Design: Virtual
Machines. Springer-V., 2010.

[ Reinhard Wilhelm, Helmut Seidl, Sebastian Hack. Compiler
Design: Syntactic and Semantic Analysis. Springer-V., 2013.

]
1348/17



Il On-line Tutorials (1)

[4 Jack Crenshaw. Let’s build a Compiler. A set of tutorial
articles, on-line published, 1988-1995.
http://www.iecc.com/compilers/crenshaw

|
1349/17



[l On-line Resources of Compilers and
Compiler Writing Tools (1)

[ German National Research Center for Information Technology,
Fraunhofer Institute for Computer Architecture and Software
Technology. The Catalog of Compiler Construction Tools,
1996-2006. http://catalog.compilertools.net/

[ Compilers.net Team. Search Machine on Compilers and
Programming Languages, Directory of Compiler and Language
Resources, 1997-2007. http://www.compilers.net

|
1350/17



[l On-line Resources of Compilers and
Compiler Writing Tools (2)

[4 Nullstone Corporation. The Compiler Connection: A Resource
for Compiler Developers and Those who use Their Products
and Services (Books, Tools, Techniques, Conferences, Jobs and
more, 2011-2012. http://www.compilerconnection.com

[4 Olaf Langmack. Catalog of Compiler Construction Products
01-98. 13th Issue, 1998.
http://compilers.iecc.com/tools.html

[ William M. Waite, Uwe Kastens et al. Eli: Translator
Construction made Easy, 1989-today.
http://eli-project.sourceforge.net/

|
1351/17



[l On-line Resources of Compilers and
Compiler Writing Tools (3)

[4 Free Software Foundation (FSF). GCC, the GNU Compiler
Collection. https://gcc.gnu.org/

[4 LLVM Foundation. The LLVM Compiler Infrastructure.
http://11lvm.org/

[3 The SUIF Group (Monica S. Lam et al.), Stanford University.
The SUIF (Stanford University Intermediate Format) Compiler
System. http://suif.stanford.edu/

|
1352/17



[l On-line Resources of Compilers and
Compiler Writing Tools (4)

[§ Sable Research Group (Laurie Hendren et al.), McGill
University, Secure Software Engineering Group (Eric Bodden et
al.), TU Darmstadt/U. Paderborn. Soot: A Framework for
Analyzing and Transforming Java and Android Applications.
https://sable.github.io/soot/

|
1353/17



IV Monographs and Volumes (1)

B

) &)

Jens Knoop. Optimal Interprocedural Program Optimiza- tion:

A New Framework and Its Application. Springer-V., LNCS
1428, 1998.

Yuri V. Matijasevic. Hilbert's Tenth Problem. MIT Press, 1993.

Markus Miiller-Olm. Variations on Constants - Flow Analysis
of Sequential and Parallel Programs. Springer-V., LNCS 3800,
2006.

Stephen S. Muchnick, Neil D. Jones. Program Flow Analysis:
Theory and Applications. Prentice Hall, 1981.

Oliver Ruthing. Interacting Code Motion Transformations:
Their Impact and Their Complexity. Springer-V., LNCS 1539,
1998.

1354/17



IV Monographs and Volumes (2)

[ Y. N. Srikant, Priti Shankar. The Compiler Design Hand-
book: Optimizations and Machine Code Generation. CRC
Press, 2002.

[4 Y. N. Srikant, Priti Shankar. The Compiler Design Hand-
book: Optimizations and Machine Code Generation. CRC
Press, 2nd edition, 2008.

@ Arnold Thackray, David Brock, Rachel Jones. Moore's Law:
The Life of Gordon Moore. Silicon Valley's Quiet
Revolutionary. Basic Books, New York, 2015.

[4 John Whaley. Context-sensitive Pointer Analysis using Binary
Decision Diagrams. PhD Thesis, Stanford University, CA,
USA, 2007.

1355/17



V Articles (1)

B

[

Frances E. Allen, John A. Cocke. A Program Data Flow
Analysis Procedure. Communications of the ACM
19(3):137-147, 1976.

Frances E. Allen, John Cocke, Ken Kennedy. Reduction of
Operator Strength. In Stephen S. Muchnick, Neil D. Jones
(Eds.). Program Flow Analysis: Theory and Applications.
Prentice Hall, 1981, Chapter 3, 79-101.

L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy

J. Harvey, Steven W. Reeves, Devika Subramanian, Linda
Torczon, Todd Waterman. Finding Effective Compilation
Sequences. In Proceedings of the 2004 ACM SIGPLAN-
SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES 2004), 231-239, 2004.

|
1356/17



V Articles (2)

@ Bowen Alpern, Mark N. Wegman, F. Kenneth Zadeck.
Detecting Equality of Variables in Programs. In Conference
Record of the 15th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL'88), 1-11, 1988.

[ Clement A. Baker-Finch, Kevin Glynn, Simon L. Peyton Jones.
Constructed Product Result Analysis for Haskell. Journal of
Functional Programing 14(2):211-245, 2004.

[4 Thomas Ball, Sriram K. Rajamani. Bebop: A Path-Sensitive
Interprocedural Dataflow Engine. In Proceedings of the 3rd
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE 2001), 97-103, 2001.

|
1357/17



V Articles (3)

[ Clark W. Barret, Yi Fang, Benjamin Goldberg, Ying Hu, Amir
Pnueli, Lenore Zuck. TVOC: A Translation Validator for
Optimizing Compilers. In Proceedings of the 17th International
Conference on Computer Aided Verification (CAV 2005),
Springer-V., LNCS 3576, 291-295, 2005.

@ Ricardo Bedin Franca, Denis Favre-Felix, Xavier Leroy, Marc
Pantel, Jean Souyris. Towards Formally Verified Optimizing
Compilation in Flight Control Software. In Proceedings of the
Workshop on Bringing Theory to Practice: Predictability and
Performance in Embedded Systems (PPES 2011), 59-68, 2011.

|
1358/17



V Articles (4)

ﬁ Marc Berndl, Ond¥ej Lhotak, Feng Qian. Laurie Hendren,
Navindra Umanee. Points-to Analysis using BDDs. In
Proceedings of the 24th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI
2003), ACM SIGPLAN Notices 38:103-114, 2003.

ﬁ Stephen M. Blackburn, Amer Diwan, Matthias Haus- wirth,
Peter F. Sweeny, José Nelson Amaral, Tim Brecht, Lubomir
Bulej, Cliff Click, Lieven Eeckhout, Sebastian Fischmeister,
Daniel Frampton, Laurie J. Hendren, Mich- ael Hind, Antony
L. Hosking, Richard E. Jones, Tomas Kalibera, Nathan
Keynes, Nathaniel Nystrom, Andreas Zeller. The Truth, The
Whole Truth, and Nothing But the Truth: A Pragmatic Guide
to Assessing Empirical Evaluations. ACM Transactions on
Programming Languages and Systems 38(4), Article 15:1-20,
2016.

|
1359/17



V Articles (5)

[ Ras Bodik, Rajiv Gupta. Partial Dead Code Elimination using
Slicing Transformations. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI'97), ACM SIGPLAN Notices
32:159-170, 1997.

[4 Ras Bodik, Rajiv Gupta. Register Pressure Sensitive
Redundancy Elimination. In Proceedings of the 8th
International Conference on Compiler Construction (CC'99),
Springer-V., LNCS 1575, 107-121, 1999.

|
1360/17



V Articles (6)

[d Ras Bodik, Rajiv Gupta, Mary Lou Soffa. Complete Removal
of Redundant Expressions. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI'98), ACM SIGPLAN Notices
33(5):1-14, 1998.

[4 Martin Bravenboer, Yannis Smaragdakis. Strictly Declarative
Specification of Sophisticated Points-to Analyses. In
Proceedings of the 24th ACM SIGPLAN Conference on
Object-Oriented Programming Systems Languages and
Applications (OOPSLA 2009), 243-262, 20009.

|
1361/17



V Articles (7)

[4 Preston Briggs, Keith D. Cooper. Effective Partial Redundancy
Elimination. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI'94), ACM SIGPLAN Notices 29(6):159-170, 1994.

[§ Preston Briggs, Keith D. Cooper, L. Taylor Simpson. Value
Numbering. Software: Practice and Experience 27(6):701-724,
1997.

ﬁ Bettina Buth, Karl-Heinz Buth, Martin Franzle, Burghard von
Karger, Yassine Lakhnech, Hans Langmaack, Markus
Miuller-Olm. Provably Correct Compiler Development and
Implementation. In Proceedings of the 4th International
Conference on Compiler Construction (CC'92), Springer-V.,
LNCS 641, 141-155, 1992.

|
1362/17



V Articles (8)

[ Qiong Cai, Jingling Xue. Optimal and Efficient
Speculation-based Partial Redundancy Elimination. In
Proceedings of the 2nd Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO
2003), 91-104, 2003.

[ David Callahan, Steve Carr, Ken Kennedy. Improving Register
Allocation for Subscripted Variables. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI'90), ACM SIGPLAN Notices
25:53-65, 1990.

[§ Steve Carr, Ken Kennedy. Scalar Replacement in the Presence
of Conditional Control Flow. Software: Practice and
Experience 24(1):51-77, 1994.

|
1363/17



V Articles (9)

@ David R. Chase, Mark N. Wegmann, F. Kenneth Zadeck.
Analysis of Pointers and Structures. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI'90), ACM SIGPLAN Notices
25:296-310, 1990.

[d Li-Ling Chen, Youfeng Wu. Aggressive Compiler Optimization
and Parallelization with Thread-Level Speculation. In
Proceedings of the 2003 IEEE International Conference on
Parallel Processing (ICPP 2003), 607-614, 2003.

|
1364/17



V Articles (10)

ﬁ John-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam
C. Sreedhar, and Sam Midkiff. Escape Analysis for Java. In
Proceedings of the 14th ACM SIGPLAN Conference on
Object-Oriented Programming Systems Languages and
Applications (OOPSLA'99), 1-19, 1999.

[§ Fred C. Chow, Sun Chan, Robert Kennedy, Shing-Ming Liu,
Raymond Lo, Peng Tu. A New Algorithm for Partial
Redundancy Elimination based upon SSA Form. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI'97), ACM SIGPLAN Notices 32(5):273-286, 1997.

[3 Cliff Click. Global Code Motion, Global Value Numbering. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI'94), ACM SIGPLAN Notices 29(6):246-257, 1995.

|
1365/17



V Articles (11)

B

B

Cliff Click, Keith D. Cooper. Combing Analyses, Combi- ning
Optimizations. ACM Transactions on Programming Languages
and Systems 17(2):181-196, 1995.

John Cocke, Jacob T. Schwartz. Programming Languages and
Their Compilers: Preliminary Notes. Courant Institute of
Mathematical Sciences, New York University, 2nd Revised
Version, 771 pages, 1970.

Robert Colwell. The Chip Design Game at the End of Moore's
Law. In Proceedings of teh IEEE/ACM Symposium on
High-Performance Chips (Hot Chips 2013), 2013.
http://www.hotchips.org/wp-content/uploads/
hc_archives/hc25/HC25.15-keynotel-Chipdesign-epub/
HC25.26.190-Keynotel-ChipDesignGame-Colwell-DARPA.pdf

|
1366/17



V Articles (12)

B
[

Melvin E. Conway. Proposal for an UNCOL. Communica- tions
of the ACM 1(3):5, 1958.

Keith D. Cooper, Jason Eckhardt, Ken Kennedy. Redundancy
Elimination Revisited. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation
Techniques (PACT 2008), 12-21, 2008.

Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven
Reeves, Devika Subramanian, Linda Torczon, Todd Waterman.
ACME: Adaptive Compilation Made Efficient. In Proceedings
of the 2005 ACM SIGPLAN- SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems
(LCTES 2005), 69-77, 2005.

|
1367/17



V Articles (13)

B

[

Keith D. Cooper, L. Taylor Simpson, Christopher A. Vick.
Operator Strength Reduction. ACM Transactions on
Programming Languages and Systems 23(5):603-625, 2001.

Keith D. Cooper, Devika Subramanian, Linda Torczon.
Adaptive Optimizing Compilers for the 21st Century. The
Journal of Supercomputing 23(1):7-22, 2002.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark

N. Wegman, F. Kenneth Zadeck. Efficiently Computing Static
Single Assignment Form and the Control Dependence Graph.
ACM Transactions on Programming Languages and Systems
13(4):451-490, 1991.

|
1368/17



V Articles (14)

B

Peter J. Denning, Ted G. Lewis. Exponential Laws of
Computing Growth. Communications of the ACM 60(1):54-65,
2017.

Dhananjay M. Dhamdhere. A New Algorithm for Composite
Hoisting and Strength Reduction Optimisation (+
Corrigendum). International Journal of Computer Mathematics
27:1-14,31-32, 1989.

Dhananjay M. Dhamdhere. Practical Adaptation of the Global
Optimization Algorithm of Morel and Renvoise. ACM
Transactions on Programming Languages and Systems
13(2):291-294, 1991, Technical Correspondence.

Dhananjay M. Dhamdhere. E-path_pre: Partial Redundancy
Elimination Made Easy. ACM SIGPLAN Notices 37(8):53-65,
2002.

|
1369/17



V Articles (15)

[4 Dhananjay M. Dhamdhere, J. R. Isaac. A Composite
Algorithm for Strength Reduction and Code Movement
Optimization. International Journal of Computer and
Information Sciences 9(3):243-273, 1980.

[3 Karl-Heinz Drechsler, Manfred P. Stadel. A Solution to a
Problem with Morel and Renvoise's “Global Optimization by
Suppression of Partial Redundancies”. ACM Transactions on
Programming Languages and Systems 10(4):635-640, 1988,
Technical Correspondence.

@ Karl-Heinz Drechsler, Manfred P. Stadel. A variation of
Knoop, Riithing and Steffen’s LAZY CODE MOTION. ACM
SIGPLAN Notices 28(5):29-38, 1993.

|
1370/17



V Articles (16)

E Maryam Emami, Rakesh Ghiya, Laurie J. Hendren.
Context-Sensitive Interprocedural Points-to Analysis in the
Presence of Function Pointers. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI'94), ACM SIGPLAN Notices
29(6):242-256, 1994.

[4 Andrei P. Ershov. On Programming of Arithmetic Opera-
tions. Communications of the ACM 1(8):3-6, 1958. (Three
figures from this article are in CACM 1(9):16).

[4 Christian Fecht, Helmut Seidl. An Even Faster Solver for
General Systems of Equations. In Proceedings of the 3rd
Static Analysis Symposium (SAS'96), Springer-V., LNCS
1145, 189-204, 1996.

|
1371/17



V Articles (17)

[4 Christian Fecht, Helmut Seidl. Propagating Differences: An
Efficient New Fixpoint Algorithm for Distributive Constraint
Systems. In Proceedings of the 7th European Symposium on
Programming (ESOP’98), Springer-V., LNCS 1381, 90-104,
1998.

[W Christian Fecht, Helmut Seidl. A Faster Solver for General
Systems of Equations. Science of Computer Programming
35(2):137-161, 1999.

[§ Grigori Fursin, Michael F.P. O'Boyle, Peter M.W. Knijnen-
burg. Evaluating Iterative Compilation. In Proceedings of the
15th International Conference on Languages and Compilers for
Parallel Computing (LCPC 2002), Revised Papers, Springer-V.,
LNCS 2481, 362-376, 2005.

|
1372/17



V Articles (18)

[§ Gesellschaft fiir Informatik e.V. (Gl), Fachbereich
Softwaretechnik. Verlasslichkeit von Software, 2014.
https://www.gi.de/themen/grand-challenges/
verlaesslichkeit-von-software.html

[ Alfons Geser, Jens Knoop, Gerald Liittgen, Oliver Rii- thing,
Bernhard Steffen. Non-Monotone Fixpoint Iter- ations to
Resolve Second Order Effects. In Proceedings of the 6th
International Conference on Compiler Construc- tion (CC'96),
Springer-V., LNCS 1060, 106-120, 1996.

[ Rakesh Ghiya, Laurie J. Hendren. Is it a Tree, a DAG, or a
Cyclic Graph? A Shape Analysis for Heap-directed Pointers in
C. In Conference Record of the 23rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL'96), 1-15, 1996.

|
1373/17



V Articles (19)

[ Sabine Glesner, Gerhard Goos, Wolf Zimmermann. Verifix:

Konstruktion und Architektur verifizierender Ubersetzer
(Verifix: Construction and Architecture of Verifying
Compilers). it - Information Technology 46(5):265-276, 2004.

[4 Gerhard Goos, Wolf Zimmermann. Verification of Compilers.
Correct System Design: Recent Insight and Advances.
Springer-V., LNCS 1710, 201-230, 1999.

@ Robert W. Gray, Vincent P. Heuring, Steven P. Levi, Anthony
M. Sloane, William M. Waite. Eli: A Complete, Flexible
Compiler Construction System. Communications of the ACM
35(2):121-131, 1992.

|
1374/17



V Articles (20)

E Rajiv Gupta, David A. Berson, Jesse Z. Fang. Path Profile
Guided Partial Redundancy Elimination Using Speculation. In
Proceedings of the 6th IEEE International Conference on
Computer Languages (ICCL'98), 230-239, 1998.

E Rajiv Gupta, David A. Berson, Jesse Z. Fang. Path Profile
Guided Partial Dead Code Elimination using Predication. In
Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT'97),
102-115, 1997.

[4 Ben Hardekopf, Calvin Lin. Semi-sparse Flow-sensitive Pointer
Analysis. In Conference Record of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2009), 226-238, 20009.

|
1375/17



V Articles (21)

[

B

Charles A.R. Hoare. The Verifying Compiler: A Grand
Challenge for Computing Research. Journal of the ACM
50(1):63-69, 2003.

R. Nigel Horspool, H. C. Ho. Partial Redundancy Elimi- nation
Driven by a Cost-benefit Analysis. In Proceedings of the 8th
Israeli Conference on Computer Systems and Software
Engineering (CSSE'97), 111-118, 1997.

R. Nigel Horspool, David J. Pereira, Bernhard Scholz. Fast
Profile-based Partial Redundancy Elimination. In Proceedings
of the 7th Joint Modular Languages Conference (JMLC 2006),
362-376, 2006.

|
1376/17



V Articles (22)

[3 Susan Horwitz, Alan J. Demers, Tim Teitelbaum. An Efficient
General Iterative Algorithm for Dataflow Analysis. Acta
Informatica 24(6):679-694, 1987.

[4 |IEEE Spectrum. Special Report on 50 Years of Moore’s Law.
IEEE Spectrum, April 2015.
http://spectrum.ieee.org/static/
special-report-50-years-of-moores-law

[§ Bertrand Jeannet, Alexey Logivon, Thomas W. Reps, Mooly
Sagiv. A Relational Approach to Interprocedural Shape
Analysis. In Proceedings of the 11th Static Analysis
Symposium (SAS 2004), Springer-V., LNCS 3248, 246-264,
2004.

|
1377/17



V Articles (23)

[§ S. M. Joshi, Dhananjay M. Dhamdhere. A Composite
Hoisting- strength Reduction Transformation for Global
Program Optimization — Part | and Part Il. International
Journal of Computer Mathematics 11:21-41,111-126, 1982.

[4 David Kaeli. The Road to new Programming Models and
Architectures for Future Heterogeneous Systems. Invited Talk,
9th International Conference on High-Performance and
Embedded Architectures and Compilers (HIPEAC 2014), 2014.
Slides: http://old.hipeac.net/system/files/
David’%20Kaeli reduced.pdf

[ John B. Kam, Jeffrey D. Ullman. Global Data Flow Analysis
and lIterative Algorithms. Journal of the ACM 23:158-171,
1976.

|
1378/17



V Articles (24)

[4 John B. Kam, Jeffrey D. Ullman. Monotone Data Flow
Analysis Frameworks. Acta Informatica 7:305-317, 1977.

[§ Aditya Kanade, Amitabha Sanyal, Uday Khedker. A PVS
based Framework for Validating Compiler Optimizations. In
Proceedings of the 4th IEEE International Conference on
Software Engineering and Formal Methods (SEFM 2006),
108-117, 2006.

[4 Vini Kanvar, Uday P. Khedker. Heap Abstractions for Static
Analysis. ACM Computing Surveys 49(2):29, 47 pages, 2017.

[4 Ken Kennedy. Safety of Code Motion. International Journal of
Computer Mathematics 3(2-3):117-130, 1972.

|
1379/17



V Articles (25)

[ Robert Kennedy, Sun Chan, Shing-Ming Liu, Raymond Lo,
Peng Tu, Fred C. Chow. Partial Redundancy Elimination in
SSA Form. ACM Transactions of Pro- gramming Languages
and Systems 32(3):627-676, 1999.

@ Robert Kennedy, Fred C. Chow, Peter Dahl, Shing-Ming Liu,
Raymond Lo, Mark Streich. Strength Reduction via SSAPRE.
In Proceedings of the 7th International Conference on
Compiler Construction (CC'98), Springer-V., LNCS 1383,
144-158, 1998.

[ Uday P. Khedker, Bageshri Karkare. Efficiency, Precision,
Simplicity, and Generality in Interprocedural Dataflow Analysis:
Resurrecting the Classical Call Strings Method. In Proceedings
of the 17th International Conference on Compiler Construction

(CC 2008), Springer-V., LNCS 4959, 213-228, 2008.

|
1380/17



V Articles (26)

[§ Uday P. Khedker, Alan Mycroft, Prashant Singh Rawat.
Liveness-based Pointer Analysis. In Proceedings of the 19th
Static Analysis Symposium (SAS 2012), Springer-V., LNCS
7460, 265-282, 2012.

[4 Gary A. Kildall. A Unified Approach to Global Program
Optimization. In Conference Record of the 1st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL'73), 194-206, 1973.

[§ Toru Kisuki, Peter M.W. Knijnenburg, Michael F.P. O'Boyle,
Francois Bodin, Harry A.G. Wijshoff. A Feasability Study in
Iterative Compilation. In Proceedings of the 2nd International
Symposium on High Performance Computing (ISHPC'99),
Springer-V., LNCS 1615, 121-132, 1999.

|
1381/17



V Articles (27)

ﬁ Marion Klein, Jens Knoop, Dirk Koschiitzki, Bernhard Steffen.
DFA&OPT-METAFrame: A Toolkit for Program Analysis and
Optimization. In Proceedings of the 2nd International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS'96), Springer-V., LNCS 1055,
422-426, 1996.

[§ Peter M.W. Knijnenburg, Toru Kisuki, Michael F.P. O'Boyle.
Iterative Compilation. In Proceedings of the 1st Workshop on
Embedded Processor Design Challenges: Systems,
Architectures, Modeling, and Simulation (SAMOS 2001),
Springer-V., LNCS 2268, 171-187, 2002.

|
1382/17



V Articles (28)

[3 Kathleen Knobe, Vivek Sarkar. Conditional Constant
Propagation of Scalar and Array References Using Array SSA
Form. In Proceedings of the 5th Static Analysis Symposium
(SAS'98), Springer-V., LNCS 1503, 33-56, 1998.

@ Kathleen Knobe, Vivek Sarkar. Array SSA Form and its Use in
Parallelization. In Proceedings of the 25th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL'98), 107-120, 1998.

[4 Jens Knoop. Parallel Constant Propagation. In Proceedings of
the 4th European Conference on Parallel Processing
(Euro-Par'98), Springer-V., LNCS 1470, 445-455, 1998.

|
1383/17



V Articles (29)

[4 Jens Knoop. Formal Callability and its Relevance and
Application to Interprocedural Data Flow Analysis. In
Proceedings of the 6th IEEE International Conference on
Computer Languages (ICCL'98), 252-261, 1998.

[ Jens Knoop. From DFA-Frameworks to DFA-Generators: A
Unifying Multiparadigm Approach. In Proceedings of the 5th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS'99),
Springer-V., LNCS 1579, 360-374, 1999.

W Jens Knoop, Dirk Koschiitzki, Bernhard Steffen. Basic- block
Graphs: Living Dinosaurs? In Proceedings of the 7th
International Conference on Compiler Construction (CC'98),
Springer-V., LNCS 1383, 65-79, 1998.

|
1384/17



V Articles (30)

[4 Jens Knoop, Eduard Mehofer. Optimal Distribution
Assignment Placement. In Proceedings of the 3rd European
Conference on Parallel Processing (Euro-Par'97), Springer-V.,
LNCS 1300, 364-373, 1997.

[4 Jens Knoop, Eduard Mehofer. Interprocedural Distribution
Assignment Placement: More than just Enhancing
Intraprocedural Placing Techniques. In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques (PACT'97), 26-37, 1997.

[§ Jens Knoop, Oliver Riithing. Constant Propagation on the
Value Graph: Simple Constants and Beyond. In Proceed- ings
of the 9th International Conference on Compiler Con-
struction (CC 2000), Springer-V., LNCS 1781, 94-109, 2000.

|
1385/17



V Articles (31)

[d Jens Knoop, Oliver Riithing. Constant Propagation on
Predicated Code. In Proceedings of the 7th Brazilian
Symposium on Programming Languages (SBLP 2003),
135-148, 2003.

[4 Jens Knoop, Oliver Riithing. Constant Propagation on
Predicated Code. Journal of Universal Computer Science
9(8):829-850, 2003. (Special issue for SBLP'03)

ﬁ Jens Knoop, Oliver Riithing, Bernhard Steffen. Lazy Code
Motion. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI'92), ACM SIGPLAN Notices 27(7):224-234, 1992.

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen. Lazy Strength
Reduction. Journal of Programming Languages 1(1):71-91,
1993.

|
1386/17



V Articles (32)

[

B

Jens Knoop, Oliver Riithing, Bernhard Steffen. Optimal Code
Motion: Theory and Practice. ACM Transactions on

Programming Languages and Systems 16(4):1117-1155, 1994.

Jens Knoop, Oliver Riithing, Bernhard Steffen. Code Motion
and Code Placement: Just Synonyms? In Proceedings of the
7th European Symposium on Programming (ESOP'98),
Springer-V., LNCS 1381, 154-169, 1998.

Jens Knoop, Oliver Riithing, Bernhard Steffen.
Expansion-based Removal of Semantic Partial Redundancies.
In Proceedings of the 8th International Conference on
Compiler Construction (CC'99), Springer-V., LNCS 1575,
91-106, 1999.

|
1387/17



V Articles (33)

@ Jens Knoop, Oliver Riithing, Bernhard Steffen. Partial Dead
Code Elimination. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI'94), ACM SIGPLAN Notices
29(6):147-158, 1994.

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen. The Power of
Assignment Motion. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI'95), ACM SIGPLAN Notices
30(6):233-245, 1995.

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Retro-
spective: Lazy Code Motion. In “20 Years of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation (1979 - 1999): A Selection”, ACM SIGPLAN
Notices 39(4):460-461&462-472, 2004.

|
1388/17



V Articles (34)

[4 Jens Knoop, Bernhard Steffen. The Interprocedural
Coincidence Theorem. In Proceedings of the 4th Inter-
national Conference on Compiler Construction (CC'92),
Springer-V., LNCS 641, 125-140, 1992.

[4 Jens Knoop, Bernhard Steffen. Code Motion for Explicitly
Parallel Programs. In Proceedings of the 7th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP'99), ACM SIGPLAN Notices
34(8):13-24, 1999.

[4 Donald E. Knuth. An Empirical Study of Fortran Pro- grams.
Software: Practice and Experience 1:105-133, 1971.

|
1389/17



V Articles (35)

[ Andreas Krall. Correct Compilers for Correct Processors.
Invited Talk, 9th International Conference on
High-Performance and Embedded Architectures and Compilers
(HiPEAC 2014), 2014. Slides:
http://old.hipeac.net/system/files/hipeacl4.pdf

[4 Hans Langmaack. Softwareengineering zur Zertifizierung von
Systemen: Spezifikations-, Implementierungs-,
Ubersetzerkorrektheit. it+ti - Informationstechnik und
Technische Informatik 39(3):41-47, 1997.

[ Hans Langmaack: The ProCoS Approach to Correct Systems.
Real-Time Systems 13(3):253-275, 1997.

|
1390/17



V Articles (36)

@ C. Lattner, V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. In Proceedings
of the 3rd Annual IEEE/ACM International Symposium on
Code Generation and Optimization (CGO 2004), 75-86, 2004.

[§ Xavier Leroy. Formal Verification of a Realistic Compiler.
Communications of the ACM 52(7):107-115, 20009.

[4 Xavier Leroy. Formally Verifying a Compiler: Why? How?
How far? Invited Talk, In Proceedings of the 9th Annual
IEEE/ACM International Symposium on Code Generation and
Optimization (CGO 2011), xxxi, 2011.

|
1391/17



V Articles (37)

[

[

Xavier Leroy. Compiler Verification for Fun and Profit. Invited
Talk, In Proceedings of the 2014 IEEE Conference on Formal
Methods in Computer-Aided Design (FMCAD 2014), 9, 2014.

Roman Manevich, Boris Dogadov, Noam Rinetzky. From
Shape Analysis to Termination Analysis in Linear Time. In
Proceedings of the 28th International Conference on Computer
Aided Verification (CAV 2016), Springer-V., LNCS 9779,
426-446, 2016.

Roman Manevich, Mooly Sagiv, Ganesan Ramalingam, John
Field. Partially Disjunctive Heap Abstraction. In Proceedings
of the 11th Static Analysis Symposium (SAS 2004),
Springer-V., LNCS 3248, 265-279, 2004.

|
1392/17



V Articles (38)

[§ Ravi Mangal, Mayur Naik, Hongseok Yang. A Corres-
pondence between Two Approaches to Interprocedural
Analysis in the Presence of Join. In Proceedings of the 23rd
European Symposium on Programming (ESOP 2014),
Springer-V., LNCS 8410, 513-533, 2014.

[4 Thomas J. Marlowe, Barbara G. Ryder. Properties of Data
Flow Frameworks. Acta Informatica 28(2):121-163, 1990.

[4 Florian Martin. PAG - An Efficient Program Analyzer
Generator. Journal of Software Tools for Technology Transfer
2(1):46-67, 1998.

[4 Margaret Martonosi. Power-Aware Computing: Then, Now,
and into the Future. Invited Talk, 9th International Conference
on High-Performance and Embedded Architectures and
Compilers (HIPEAC 2014), 2014. Slides:
http://old.hipeac.net/system/files/
MartonosiHIPEACfinal.pdf

|
1393/17



V Articles (39)

@ Stephen P. Masticola, Thomas J. Marlowe, Barbara G. Ry-
der. Lattice Frameworks for Multisource and Bidirectional
Data Flow Problems. ACM Transactions on Programming
Languages and Systems (TOPLAS) 17(5):777-803, 1995.

[4 Yuri V. Matijasevic. Enumerable Sets are Diophantine (In
Russian). Dodl. Akad. Nauk SSSR 191, 279-282, 1970.

[ Yuri V. Matijasevic. What Should We Do Having Proved a
Decision Problem to be Unsolvable? Algorithms in Modern
Mathematics and Computer Science 1979:441-448, 1979.

[4 John McCarthy, James Painter. Correctness of a Compiler for
Arithmetical Expressions. Mathematical Aspects of Computer
Science, ser. Proceedings of Symposia in Applied Mathematics,
Vol. 19, American Mathematical Society, 33-41, 1967.

|
1394/17



V Articles (40)

[d Vijay S. Menon, Neal Glew, Brian R. Murphy, Andrew
McCreight, Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Leaf
Petersen. A Verifiable SSA Program Representation for
Aggressive Compiler Optimization. In Conference Record of
the 33rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2006), 397-408,
2006.

[ Samuel P. Midkiff, José E. Moreira, Marc Snir. A Constant
Propagation Algorithm for Explicitly Parallel Programs.
International Journal of Computer Science 26(5):563-589,
1998.

|
1395/17



V Articles (41)

[ Matthew Might, Yannis Smaragdakis, David Van Horn.
Resolving and Exploiting the k-CFA Paradox: Illuminating
Functional vs. OO Program Analysis. In Proceedings of the
31st ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2010), ACM SIGPLAN
Notices 45(6):305-315, 2010.

[@ Ana Milanova, Atanas Rountev, Barbara G. Ryder.
Parameterized Object Sensitivity for Points-to and Side-effect
Analyses for JAVA. In Proceedings of the 6th ACM SIGSOFT
International Symposium on Software Testing and Analysis
(ISSTA 2002), 1-11, 2002.

@ Ana Milanova, Atanas Rountev, Barbara G. Ryder.
Parameterized Object Sensitivity for Points-to Analysis for
JAVA. ACM Transactions on Software Engineering and
Methodology 14(4):431-477, 2005.

|
1396/17



V Articles (42)

[4 Robin Milner, R. Weyrauch. Proving Compiler Correctness in a
Mechanized Logic. In Proceedings of the 7th Annual Machine
Intelligence Workshop, ser. Machine Intelligence, B. Meltzer
and D. Michie, Eds., Vol. 7., Edinburgh University Press,
51-72, 1972.

[ Gordon E. Moore. Cramming More Components onto
Integrated Circuits. Electronics 38(8), 114-117, 1965.
http://web.eng.fiu.edu/npala/eee6397ex/
gordon_moore_1965_article.pdf

|
1397/17



V Articles (43)

[4 Gordon E. Moore. Progress in Digital Integrated Elec- tronics.
International Electron Devices Meeting, IEEE, [EDM
Tech. Digest, 1113, 1975.
http://www.eng.auburn.edu/~agrawvd/COURSE/
E7770_Spr07/READ/Gordon_Moore_1975_Speech.pdf

[4 Etienne Morel, Claude Renvoise. Global Optimization by
Suppression of Partial Redundancies. Communications of the
ACM 22(2):96-103, 1979.

[ Markus Miiller-Olm. The Complexity of Copy Constant
Detection in Parallel Programs. In Proceedings of the 18th
Annual Symposium on Theoretical Aspects of Computer
Science (STACS 2001), Springer-V., LNCS 2010, 490-501,
2001.

|
1398/17



V Articles (44)

[ Markus Miiller-Olm, Oliver Riithing. The Complexity of
Constant Propagation. In Proceedings of the European
Symposium on Programming (ESOP 2001), Springer-V.,
LNCS 2028, 190-205, 2001.

[ Markus Miiller-Olm, Helmut Seidl. Polynomial Constants are
Decidable. In Proceedings of the 9th Static Analysis
Symposium (SAS 2002), Springer-V., LNCS 2477, 4-19, 2002.

[4 George C. Necula. Translation Validation for an Optimizing
Compiler. In Proceedings of the 20th ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI 2000), ACM SIGPLAN Notices
35:83-95, 2000.

|
1399/17



V Articles (45)

[4 Flemming Nielson. Semantics-directed Program Analysis: A
Tool-maker’s Perspective. In Proceedings of the 3rd Static
Analysis Symposium (SAS'96), Springer-V., LNCS 1145, 2-21,
1996.

[4 Flemming Nielson, Hanne Riis Nielson. Finiteness Con- ditions
for Fixed Point lteration. In Proceedings of the 7th ACM
Conference on LISP and Functional Programming (LFP'92),
96-108, 1992.

@ Hemant D. Pande, Barbara Ryder. Data-flow-based Vir- tual
Function Resolution. In Proceedings of the 3rd Static Analysis
Symposium (SAS'96), Springer-V., LNCS 1145, 238-254,
1996.

|
1400/17



V Articles (46)

@ Viktor Pavlu, Markus Schordan, Andreas Krall. Compu- tation
of Alias Sets from Shape Graphs for Comparison of Shape
Analysis Precision. In Proceedings of the 11th International
IEEE Working Conference on Source Code Analysis and
Manipulation (SCAM 2011), 25-34, 2011. [Best Paper Award
SCAM 2011]

ﬁ Amir Pnueli, Michael Siegel, Eli Singerman. Translation
Validation. In Proceedings of the 4th International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS'98), Springer-V., LNCS 1384, 151-166, 1998.

|
1401/17



V Articles (47)

[ Amir Pnueli, Ofer Strichman, Michael Siegel. Translation
Validation for Synchronous Languages. In Proceedings of the
25th International Colloquium on Automata, Languages and
Programming (ICALP’'98), Springer-V., LNCS 1443, 235-246,
1998.

[ Amir Pnueli, Ofer Strichman, Michael Siegel. The Code
Validation Tool (CVT) — Automatic Verification of a
Compilation Process. International Journal on Software Tools
for Technology Transfer 2(2):192-201, 1998.

[§ Todd A. Proebsting. Proebsting’s Law: Compiler Advances
Double Computing Power Every 18 Years.
http://proebsting.cs.arizona.edu/law.html

|
1402/17



V Articles (48)

[ John H. Reif, Harry R. Lewis. Symbolic Evaluation and the
Global Value Graph. In Conference Record of the 4th Annual
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL'77), 104-118, 1977.

[4 John H. Reif, Harry R. Lewis. Efficient Symbolic Analysis of
Programs. Aiken Computation Laboratory, Harvard University,
TR-37-82, 1982.

[ Tom Reps, Susan Horwitz, Mooly Sagiv. Precise Inter-
procedural Dataflow Analysis via Graph Reachability. In
Conference Record of the 22nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL'95), 49-61, 1995.

|
1403/17



V Articles (49)

B
[

Barry K. Rosen. High-level Data Flow Analysis.
Communications of the ACM 20(10):141-156, 1977.

Barry K. Rosen, Mark N. Wegman, F. Kenneth Zadeck. Global
Value Numbers and Redundant Computations. In Conference
Record of the 15th Annual ACM SIGPLAN- SIGACT

Symposium on Principles of Programming Languages
(POPL'88), 12-27, 1988.

Oliver Riithing, Jens Knoop, Bernhard Steffen. Detecting
Equalities of Variables: Combining Efficiency with Preci- sion.
In Proceedings of the 6th Static Analysis Symposium
(SAS'99), Springer-V., LNCS 1694, 232-247, 1999.

|
1404/17



V Articles (50)

& Oliver Rithing, Jens Knoop, Bernhard Steffen. Sparse Code
Motion. In Conference Record of the 27th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2000), 170-183, 2000.

[4 Mooly Sagiv, Tom Reps, Susan Horwitz. Precise Interpro-
cedural Dataflow Analysis with Applications to Constant
Propagation. In Proceedings of the 6th International Joint
Conference on Theory and Practice of Software Develop- ment
(TAPSOFT'95), Springer-V., LNCS 915, 651-665, 1995.

[ Mooly Sagiv, Tom Reps, Reinhard Wilhelm. Solving
Shape-analysis Problems in Languages with Destructive
Updating. In Conference Record of the 23rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL'96), 16-31, 1996.

|
1405 /17



V Articles (51)

[ Mooly Sagiv, Tom Reps, Reinhard Wilhelm. Solving
Shape-Analysis Problems in Languages with Destructive

Updating. ACM Transactions on Programming Languages and
Systems 20(1):1-50, 1998.

[4 Mooly Sagiv, Tom Reps, Reinhard Wilhelm. Parametric Shape
Analysis via 3-Valued Logic. In Conference Record of the 26th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL'99), 105-118, 1999.

[ Mooly Sagiv, Tom Reps, Reinhard Wilhelm. Parametric Shape
Analysis via 3-valued Logic. ACM Transactions on
Programming Languages and Systems 24(3):217-298, 2002.

|
1406 /17



V Articles (52)

[@ Bernhard Scholz, R. Nigel Horspool, Jens Knoop. Optimizing
for Space and Time Usage with Speculative Partial
Redundancy Elimination. Proceedings of the ACM SIGPLAN
Workshop on Languages, Compilers, and Tools for Embedded
Systems (LCTES 2004), ACM SIGPLAN Notices
39(7):221-230, 2004.

[4 Helmut Seidl, Christian Fecht. Interprocedural Analyses:
A Comparison. The Journal of Logic Programming
43:123-156, 2000.

[4 John M. Shalf, Robert Leland. Computing beyond Moore’s
Law. IEEE Computer 48(12):14-23, 2015.

|
1407/17



V Articles (53)

[4 Micha Sharir, Amir Pnueli. Two Approaches to Interpro-
cedural Data Flow Analysis. In Stephen S. Muchnick, Neil
D. Jones (Eds.). Program Flow Analysis: Theory and
Applications. Prentice Hall, 1981, Chapter 7.3, The Functional
Approach to Interprocedural Analysis, 196-209.

[4 Micha Sharir, Amir Pnueli. Two Approaches to Interpro-
cedural Data Flow Analysis. In Stephen S. Muchnick, Neil
D. Jones (Eds.). Program Flow Analysis: Theory and
Applications. Prentice Hall, 1981, Chapter 7.4, The Call-String
Approach to Interprocedural Analysis, 210-217; Chapter 7.6,
An Approximative Call-String Approach, 225-230.

|
1408/17



V Articles (54)

[4 Olin Shivers. Control-Flow Analysis in Scheme. In Proceedings
of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI'88), ACM SIGPLAN
Notices 23:164-174, 1988.

ﬁ Tom Simonite. Moore's Law Is Dead. Now What? MIT
Technology Review, 2016.
https://www.technologyreview.com/s/601441/
moores-law-is-dead-now-what/

ﬁ Yannis Smaragdakis, Martin Bravenboer, Ond¥ej Lhotdk. Pick
Your Contexts Well: Understanding Object-sensitivity. In
Conference Record of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2011), 17-30, 2011.

|
1409/17



V Articles (55)

[4 Bernhard Steffen. Optimal Run Time Optimization — Proved
by a New Look at Abstract Interpretation. In Pro- ceedings of
the 2nd Joint Conference on Theory and Practice of Software
Development (TAPSOFT'87), Springer-V., LNCS 249, 52-68,
1987.

[4 Bernhard Steffen. Property-Oriented Expansion. In Pro-
ceedings of the 3rd Static Analysis Symposium (SAS'96),
Springer-V., LNCS 1145, 22-41, 1996.

@ Bernhard Steffen, Andreas ClaBen, Marion Klein, Jens Knoop,
Tiziana Margaria. The Fixpoint Analysis Machine. In
Proceedings of the 6th International Conference on
Concurrency Theory (CONCUR'95), Springer-V., LNCS 962,
72-87, 1995.

|
1410/17



V Articles (56)

[ Bernhard Steffen, Jens Knoop. Finite Constants: Charac-
terizations of a New Decidable Set of Constants. In
Proceedings of the 14th International Conference on
Mathematical Foundations of Computer Science (MFCS'89),
Springer-V., LNCS 379, 481-490, 1989.

[§ Bernhard Steffen, Jens Knoop. Finite Constants: Charac-
terizations of a New Decidable Set of Constants. Theore- tical
Computer Science 80(2):303-318, 1991.

@ Bernhard Steffen, Jens Knoop, Oliver Riithing. The Value
Flow Graph: A Program Representation for Optimal Pro- gram
Transformations. In Proceedings of the 3rd European
Symposium on Programming (ESOP'90), Springer-V., LNCS
432, 389-405, 1990.

|
1411/17



V Articles (57)

[§ Bernhard Steffen, Jens Knoop, Oliver Riithing. Efficient Code
Motion and an Adaption to Strength Reduction. In
Proceedings of the 4th International Joint Conference on

Theory and Practice of Software Development
(TAPSOFT'91), Springer-V., LNCS 494, 394-415, 1991.

[W Rishi Surendran, Rajkishore Barik, Jisheng Zhao, Vivek Sarkar.
Inter-iteration Scalar Replacement using Array SSA Form. In
Proceedings of the 23rd International Confe- rence on
Compiler Construction (CC 2014), Springer-V., LNCS 84009,
40-60, 2014.

|
1412/17



V Articles (58)

[ Munehiro Takimoto, Kenichi Harada. Effective Partial
Redundancy Elimination based on Extended Value Graph.
Information Processing Society of Japan 38(11):2237-2250,
1990.

[/ Munehiro Takimoto, Kenichi Harada. Partial Dead Code
Elimination Using Extended Value Graph. In Proceedings of
the 6th Static Analysis Symposium (SAS'99), Sprin- ger-V.,
LNCS 1694, 179-193, 1999.

[4 Robert E. Tarjan. Fast Algorithms for Solving Path Problems.
Journal of the ACM 28(3):594-614, 1981.

|
1413/17



V Articles (59)

[4 Jean-Baptiste Tristan, Xavier Leroy. Formal Verification of
Translation Validators: A Case Study on Instruction
Scheduling Optimizations. In Conference Record of the
35thAnnual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL 2008), 17-27, 2008.

[4 Jean-Baptiste Tristan, Xavier Leroy. Verified Validation of
Lazy Code Motion. In Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI 2009), ACM SIGPLAN Notices
44:316-326, 20009.

[4 M. Mitchell Waldrop. More than Moore.
Nature 530(7589):144-147, 2016.
http://www.nature.com/polopoly fs/1.19338!/menu/
main/topColumns/topLeftColumn/pdf/530144a.pdf

|
1414/17



V Articles (60)

[4 Mark N. Wegman, F. Kenneth Zadeck. Constant Propa-
gation with Conditional Constraints. In Conference Record of
the 12th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL'85), 291-299,
1985.

[4 Mark N. Wegman, F. Kenneth Zadeck. Constant Propa-
gation with Conditional Constraints. ACM Transactions on
Programming Languages and Systems 13(2):181-210, 1991.

[4 John Whaley, Monica S. Lam. Cloning-based Context- sensitive
Pointer Alias Analysis using Binary Decision Diagrams. In
Proceedings of the 25th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI
2004), ACM SIGPLAN Notices 39:131-144, 2004.

|
1415/17



V Articles (61)

E

B

Jingling Xue, Qiong Cai. A Lifetime Optimal Algorithm for
Speculative PRE. ACM Transactions on Architecture and
Code Optimization 3(2):115-155, 2006.

Jingling Xue, Jens Knoop. A Fresh Look at PRE as a
Maximum Flow Problem. In Proceedings of the 15th

International Conference on Compiler Construction (CC 2006),

Springer-V., LNCS 3923, 139-154, 2006.

Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano
Calcagno, Byron Cook, Dino Distefano, Peter W. O'Hearn.
Scalable Shape Analysis for Systems Code. In Proceedings of
the 20th International Conference on Computer Aided
Verification (CAV 2008), Springer-V., LNCS 5123, 385-398,
2008.

|
1416/17



V Articles (62)

[4 Anna Zaks, Amir Pnueli. CovaC: Compiler Validation by
Program Analysis of the Cross-product. In Proceedings of the
15th International Symposium on Formal Methods (FM 2008),
Springer-V., LNCS 5014, 35-51, 2008.

[§ Hucheng Zhou, Wenguang Chen, Fred C. Chow. An
SS5A-based Algorithm for Optimal Speculative Code Motion
under an Execution Profile. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2011), ACM SIGPLAN Notices
46(6):98-108, 2011.

[4 Jianwen Zhu, Silvian Calman. Symbolic Pointer Analysis
Revisited. In Proceedings of the 25th ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI 2004), ACM SIGPLAN Notices
39:145-157, 2004.

|
1417/17



V Articles (63)

[] Wolf Zimmermann. On the Correctness of Transformations in
Compiler Back-Ends. In Proceedings of the 1st First
International Symposium on Leveraging Applications of Formal
Methods (ISoLA 2004), Springer-V., LNCS 4313, 74-95, 2004.

[ Lenore Zuck, Amir Pnueli, Yi Fang, Benjamin Goldberg. VOC:
A Methodology for Translation Validation of Optimizing
Compilers. Journal of Universal Computer Science
9(3):223-247, 2003.

|
1418/17



Appendices

Appadie



Appendix A

Mathematical Foundations

1420/17



Al

Relations

Chap. 16

Reference

1421/17



Relations

Let M;, 1 < i <k, be sets.

Definition A.1.1 (k-ary Relation)

A (k-ary) relation is a set R of ordered tuples of elements of My,
coey My, ie., RC My x ... X My is a subset of the cartesian
product of the sets M;, 1 < i < k.

Examples

» () is the smallest relation on My x ... x M,.
> My x ... x My is the biggest relation on My x ... x M.
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Binary Relations
Let M, N be sets.

Definition A.1.2 (Binary Relation)

A (binary) relation is a set R of ordered pairs of elements of M
and N, i.e., R is a subset of the cartesian product of M and N,
R C M x N, called a relation from M to N.

Examples

» () is the smallest relation from M to N.
» M x N is the biggest relation from M to N.

Note

» If R is a relation from M to N, it is common to write m R n,
R(m, n), or R mn instead of (m, n) € R.
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Between, On

Definition A.1.3 (Between, On)

A relation R from M to N is called a relation between M and N
or, synonymously, a relation on M x N.

If M equals N, then R is called a relation on M, in symbols:
(M, R).
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Domain and Range of a Binary Relation

Definition A.1.4 (Domain and Range)
Let R be a relation from M to N.

The sets
» dom(R)=q4r {m|3ne N.(m,n) € R}
» ran(R) =g {n|3Ime M. (m,n) € R}

are called the domain and the range of R, respectively.
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Properties of Relations on a Set M

Definition A.1.5 (Properties of Relations on M)

A relation R on a set M is called

v

reflexive iff Yme M. mRm

irreflexive iff Vme M. -mRm

transitive iff Ym,n,pe M. mRn A nRp = mRp
intransitive iff Vmn,pe M. mRn AN nRp = -mRp
symmetric iff Vmne M. mRn < nRm
antisymmetric iff Vmne M. mRn A nRm = m=n
asymmetric iff Vm,ne M. mRn= —-nRm

linear iff Ymne M. mRn VnRm V m=n

total iff Vm,ne M. mRn V nRm
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(Anti-) Example

Let G=(N,E,s=1,e =7) be the below (flow) graph, and let R
be the relation ‘- is linked to - via a (directed) edge’ on N of G
(e.g., node 4 is linked to node 6 but not vice versa).

The relation R is not reflexive, not irreflexive, not transitive, not
intransive, not symmetric, not antisymmetric, not asymmetric, not
linear, and not total.
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Equivalence Relation

Let R be a relation on M.

Definition A.1.6 (Equivalence Relation)

R is an equivalence relation (or equivalence) iff R is reflexive,
transitive, and symmetric.
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Ordered Sets
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A2.1
Pre-Orders, Partial Orders, and More
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Ordered Sets

Let R be a relation on M.

Definition A.2.1.1 (Pre-Order)

R is a pre-order (or quasi-order) iff R is reflexive and transitive.

Definition A.2.1.2 (Partial Order)

R is a partial order (or poset or order) iff R is reflexive, transitive,
and antisymmetric.

Definition A.2.1.3 (Strict Partial Order)

R is a strict partial order iff R is asymmetric and transitive.
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Examples of Ordered Sets

Pre-order (reflexive, transitive)

» The relation = on logical formulas.

Partial order (reflexive, transitive, antisymmetric)

» The relations =, < and > on IN.
» The relation m|n (m is a divisor of n) on IN.

Strict partial order (asymmetric, transitive)

» The relations < and > on IN.
» The relations C and D on sets.

Equivalence relation (reflexive, transitive, symmetric)

» The relation <= on logical formulas.
> The relation ‘have the same prime number divisors’ on IN.
» The relation ‘are citizens of the same country’ on people.
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Note

> An antisymmetric pre-order is a partial order; a symmetric
pre-order is an equivalence relation.

» For convenience, also the pair (M, R) is called a pre-order,
partial order, and strict partial order, respectively.

» More accurately, we could speak of the pair (M, R) as of a
set M which is pre-ordered, partially ordered, and strictly
partially ordered by R, respectively.

» Synonymously, we also speak of M as a pre-ordered, partially
ordered, and a strictly partially ordered set, respectively, or of
M as a set which is equipped with a pre-order, partial order
and strict partial order, respectively.

» On any set, the equality relation = is a partial order, called
the discrete (partial) order.
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The Strict Part of an Ordering

Let C be a pre-order (reflexive, transitive) on P.

Definition A.2.1.4 (Strict Part of C)

The relation C on P defined by
Vp,geP.pCqg<=4 PEqg N p#q

is called the strict part of C.

Corollary A.2.1.5 (Strict Partial Order)

Let (P,C) be a partial order, let C be the strict part of L.
Then: (P,C) is a strict partial order.

1434/17



Useful Results

Let C be a strict partial order (asymmetric, transitive) on P.

Lemma A.2.1.6

The relation C is irreflexive.

Lemma A.2.1.7
The pair (P,C), where C is defined by

Vp,ge P.pEqg<+=4pCqgV p=q

is a partial order.
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Induced (or Inherited) Partial Order

Definition A.2.1.8 (Induced Partial Order)

Let (P,Cp) be a partially ordered set, let Q@ C P be a subset of P,
and let Cg be the relation on Q defined by

Vg,re Q. qEqr <=4 qLCpr

Then: Cq is called the induced partial order on @ (or the inherited
order from P on Q).
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Exercise

Which of the below diagrams are Hasse diagrams (cf. Chapter
A.2.8) of partial orders?

a) b) ©) d) e)
TENCEENORNCRNOliRo i

2R ’

2
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A.2.2

Bounds and Extremal Elements
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Bounds in Pre-Orders

Definition A.2.2.1 (Bounds in Pre-Orders)

Let (Q,C) be a pre-order, let g € Q and Q' C Q.

q is called a
» lower bound of @', insigns: gC Q',ifVqg € Q. qC ¢
» upper bound of @', insigns: Q' C q,ifVg e Q. qd Cq

» greatest lower bound (glb) (or infimum) of Q' in signs: [ Q’,
if g is a lower bound of Q' and for every other lower bound §
of @ holds: § C g.

» least upper bound (lub) (or supremum) of @', in signs: | | Q’,
if g is an upper bound of Q" and for every other upper bound
g of Q holds: g C §.
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Extremal Elements in Pre-Orders

Definition A.2.2.2 (Extremal Elements in Pre-Ord’s)

Let (Q,C) be a pre-order, let C be the strict part of C, and let
Q CQRandge Q.

q is called a

v

minimal element of Q’, if there is no ¢’ € Q" with ¢’ C gq.

v

maximal element of @', if there isno ¢’ € Q" with g C ¢'.

v

least (or minimum) element of Q’, if ¢ C Q'.

v

greatest (or maximum) element of Q’, if Q' C g.

Note: The least element and the greatest element of Q itself are
usually denoted by L and T, respectively, if they exist. A least
(greatest) element is also a minimal (maximal) element.

1440/17



Existence and Uniqueness

...of bounds and extremal elements in partially ordered sets.

Let (P,C) be a partial order, and let @ C P be a subset of P.

Lemma A.2.2.3 (lub/glb: Unique if Existent)

Least upper bounds, greatest lower bounds, least elements, and
greatest elements in @ are unique, if they exist.

Lemma A.2.2.4 (Minimal/Maximal El.: Not Unique)
Minimal and maximal elements in @ are usually not unique.

Note: Lemma A.2.2.3 suggests considering | | and [ | partial maps
L],[]:P(P)— P from the powerset P(P) of P to P. Lemma
A.2.2.3 does not hold for pre-orders.
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Characterization of Least, Greatest Elements

...in terms of infima and suprema of sets.

Let (P,C) be a partial order.

Lemma A.2.2.5 (Characterization of L and T)

The least element L and the greatest element T of P are given by
the supremum and the infimum of the empty set, and the infimum
and the supremum of P, respectively, i.e.,

1= |_|(Z): |_|P and T = |_|(Z):|_|P

if they exist.
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Lower and Upper Bound Sets

Considering | | and [ ] partial functions | |,[]: P(P)— P on the
powerset of a partial order (P, C) suggests introducing two further
maps LB, UB : P(P)— P(P) on P(P):

Definition A.2.2.6 (Lower and Upper Bound Sets)

Let (P,C) be a partial order. Then:

LB, UB : P(P)— P(P) denote two maps, which map a subset
Q® C P to the set of its lower bounds and upper bounds,
respectively:

1.VRQCP.LB(Q)=a4{lbe P| IbC Q}

2. VQ C P. UB(Q)=ar {ub€ P|Q L ub}
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Properties of Lower and Upper Bound Sets

Lemma A.2.2.7
Let (P,C) be a partial order, and let @ C P. Then:

| |@=[]UB(Q) and []Q=]|LB(Q)

if the supremum and the infimum of @ exist.

Lemma A.2.2.8
Let (P,C) be a partial order, and let Q, Q1, Q> C P. Then:

1. 1 C @ = LB(Q1) 2 LB(Q) N UB(Q1) 2 UB(Q2)
2. UB(LB(UB(Q))) = UB(Q)
3. LB(UB(LB(Q)))=LB(Q)

Note: Lemma A.2.2.8(1) shows that LB and UB are antitonic
maps (cf. Chapter A.2.5).
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Exercise

Which of the elements of the below diagrams are minimal,
maximal, least or greatest?

a) b)

c) d) e
() O ®© @ @@

-
N ”

2
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A.2.3

Noetherian Orders, Artinian Orders, and
Well-founded Orders
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Noetherian Orders and Artinian Orders

Let (P,C) be a partial order.

Definition A.2.3.1 (Noetherian Order)

(P,C) is called a Noetherian order, if every non-empty subset
() # Q C P contains a minimal element.

Definition A.2.3.2 (Artinian Order)

(P,C) is called an Artinian order, if the dual order (P, ) of
(P,C) is a Noetherian order.

Lemma A.2.3.3
(P,C) is an Artinian order iff every non-empty subset () # Q C P
contains a maximal element.
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Well-founded Orders

Let (P,C) be a partial order.

Definition A.2.3.4 (Well-founded Order)

(P,C) is called a well-founded order, if (P,C) is a Noetherian
order and totally ordered.

Lemma A.2.3.5

(P,C) is a well-founded order iff every non-empty subset
() # @ C P contains a least element.
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Noetherian Induction

Theorem A.2.3.6 (Noetherian Induction)

Let (N,C) be a Noetherian order, let N,,;; C N be the set of

minimal elements of N, and let ¢ : N — IB be a predicate on .
Then:

If

1. Vn € Npyin. ¢(n) (Induction base)
2. Vne N\Npin. (Ym L n. ¢(m)) = ¢(n) (Induction step)

then: Vne N. ¢(n)
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Chains, Antichains

Let (P,C) be a partial order.

Definition A.2.4.1 (Chain)

A set C C P is called a chain, if the elements of C are totally
ordered, i.e., Ve, € C.aaCooVa L.

Definition A.2.4.2 (Antichain)

A set C C P is called an antichain, if
Vei,o € C.alo=cq=o.

Definition A.2.4.3 (Finite, Infinite (Anti-) Chain)

Let C C P be a chain or an antichain. C is called finite, if the
number of its elements is finite; C is called infinite otherwise.

Note: Any set P may be converted into an antichain by giving it
the discrete order: (P, =).
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Ascending Chains, Descending Chains

Definition A.2.4.4 (Ascending, Descending Chain)
Let C C P be a chain. C given in the form of

> C:{Cogcl ECQE}

> C:{Cogclgqg...}
is called an ascending chain and descending chain, respectively.
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Eventually Stationary Sequences

Definition A.2.4.5 (Stationary Sequence)
1. An ascending sequence of the form
ppEpiEpL...
is called to get stationary, if 3n € IN. Vj € IN. p,ij = p,.
2. A descending sequence of the form
podprdpd...
is called to get stationary, if 3n € IN. Vj € IN. p,y; = p,.
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Chains and Sequences

Lemma A.2.4.6

An ascending or descending sequence of the form
pPEPpPEpE... or ppdprdpd...
1. is a finite chain iff it gets stationary.
2. is an infinite chain iff it does not get stationary.

Note the subtle difference between the notion of chains in terms of

sets
{PEPpCEPpE...} or {pdprIp2Id...}

and in terms of sequences
pLCprEppl... or podpidprd...

Sequences may contain duplicates, which would correspond to a
definition of chains in terms of multisets.
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Examples of Chains

» The set S=g4r {n € IN|n even} is a chain in IN.
» The set S=4r{z € Z|z odd} is a chain in Z.

» The set S=4r {{k € IN| k< n}|n € IN} is a chain in the
powerset P(IN) of IN.

Note: A chain can always be given in the form of an ascending or
descending chain.

{0<2<4<6<...}:IN as ascending chain.
{...>26>42>22>0}: IN as descending chain.
{...<-3<-1<1<3<...}: Z as ascending chain.
{...23>1>-1>-3>...}: Z as descending chain.

vV Vv v Y
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Chains and Noetherian Orders

Let (P,C) be a partial order.

Lemma A.2.4.7 (Noetherian Order)

The following statements are equivalent:
1. (P,C) is a Noetherian order
2. Every chain of the form
podprdp2d...
gets stationary, i.e.: dn € IN. Vj € IN. p,y; = p,.
3. Every chain of the form

podprdp2d...

is finite.
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Chains and Artinian Orders

Let (P,C) be a partial order.

Lemma A.2.4.8 (Artinian Order)
The following statements are equivalent:
1. (P,C) is an Artinian order
2. Every chain of the form
pPpEPpEpE...

gets stationary, i.e.: dn € IN. Vj € IN. p,y; = p,.
3. Every chain of the form

pCppEpC...

is finite.
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Chains and Noetherian, Artinian Orders

Let (P,C) be a partial order.
Lemma A.2.4.9 (Noetherian and Artinian Order)

(P,C) is a Noetherian order and an Artinian order iff every chain
C C P is finite.
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A.25
Directed Sets
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Directed Sets

Let (P,C) be a partial order, and let ) # D C P.

Definition A.2.5.1 (Directed Set)
D # () is called a directed set (in German: gerichtete Menge), if

Vd,ee D.3f e D. f € UB({d,e}), ie.,

for any two elements d and e there is a common upper bound of d
and e in D, i.e.,, UB({d,e})N D # 0.
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Properties of Directed Sets

Let (P,C) be a partial order, and let D C P.
Lemma A.2.5.2

D is a directed set iff any finite subset D’ C D has an upper bound
inD,ie.,3ddeD.de UB(D),ie, UB(D')ND # 0.

Lemma A.2.5.3

If D has a greatest element, then D is a directed set.
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Properties of Finite Directed Sets

Let (P,C) be a partial order, and let D C P.

Corollary A.2.5.4

Let D be a directed set. If D is finite, then | | D exists € D and is
the greatest element of D.

Proof. Since D a directed set, we have:
dd e D. d e UB(D), ie., UB(D)ND #.

This means D C d. The antisymmetry of C yields that d is unique
enjoying this property. Thus, d is the (unique) greatest element of
D given by | |D, i.e., d=||D.

Note: If D is infinite, the statement of Corollary A.2.5.4 does
usually not hold.
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Strongly Directed Sets

Let (P,C) be a partial order with least element L, and let D C P.

Definition A.2.5.5 (Strongly Directed Set)

D # () is called a strongly directed set (in German: stark ge-
richtete Menge), if

1. LeD

2. Vd,ee D.3f e D. f=||{d, e}, ie,
for any two elements d and e the supremum | |{d, e} of d
and e exists in D.
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Properties of Strongly Directed Sets

Let (P,C) be a partial order with least element L, and let D C P.

Lemma A.2.5.6

D is a strongly directed set iff every finite subset D’ C D has a
supremum in D, i.e., 3d e D. d=||D’.

Lemma A.2.5.7
Let D be a strongly directed set. If D is finite, then
| | D exists € D and is the greatest element of D.

Note: The statement of Lemma A.2.5.7 does usually not hold, if D
is infinite.
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Directed Sets, Strongly Directed Sets, Chains

Let (P,C) be a partial order with least element L.

Lemma A.2.5.8
Let ) # D C P be a non-empty subset of P. Then:

1. D is a directed set, if D is a strongly directed set.
2. D is a strongly directed set, if 1. € D and D is a chain.

Corollary A.2.5.9
Let ) # D C P be a non-empty subset of P. Then:

1 € D A D chain = D strongly directed set = D directed set
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Exercise (1)

Which of the below partial orders are (strongly) directed sets?
Which of their subsets are (strongly) directed sets?

11N B A
A 5
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Exercise (2)

Which of the below partial orders are (strongly) directed sets?
Which of their subsets are (strongly) directed sets?

a) b) ) d)

| SN
Q 0 e‘o
0 i o
e) f) 2 h)
@ ® @ o
% % 5 5
g v & 0 o o0 @ o
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A.2.6
Maps on Partial Orders
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Monotonic and Antitonic Maps on POs

Let (C,C¢) and (D,Cp) be partial orders, and let f € [C — D]
be a map from C to D.

Definition A.2.6.1 (Monotonic Maps on POs)

f is called monotonic (or order preserving) iff
Ve,deC.cCecd = f(c)Cp ()
(Preservation of the ordering of elements)

Definition A.2.6.2 (Antitonic Maps on POs)

f is called antitonic (or order inversing) iff
Ve, e C.cCecd = f(c)Ep f(c)
(Inversion of the ordering of elements)

1469/17



Expanding and Contracting Maps on POs

Let (C,Cc¢) be a partial orders (PO), let f € [C — C] be a map
on C, and let ¢ € C be an element of C.

Definition A.2.6.3 (Expanding Maps on POs)

f is called

» expanding (or inflationary) for ¢ iff & C £(¢)
» expanding (or inflationary) iff Vc € C. ¢ C f(c)

Definition A.2.6.4 (Contracting Maps on POs)

f is called

» contracting (or deflationary) for ¢ iff f(&) C &
» contracting (or deflationary) iff Vc € C. f(c) C ¢
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A.2.7

Order Homomorphisms and Order
Isormorphisms between Partial Orders
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PO Homomorphisms, PO Isomorphisms

Let (P,Cp) and (R,Cg) be partial orders, and let f € [P — R] be
a map from P to R.

Definition A.2.7.1 (PO Hom. & Isomorphism)

f is called an

1. order homomorphism between P and R, if f is monotonic (or
order preserving), i.e.,

Vp,ge P. pCp q= f(p) Er f(q)

2. order isomorphism between P and R, if f is a bijective order
homomorphism between P and R and the inverse f ! of f is
an order homomorphism between R and P.

Definition A.2.7.2 (Order Isomorphic)

(P,Cp) and (R,CRg) are called order isomorphic, if there is an
order isomorphism between P and R.
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PO Embeddings

Let (P,Cp) and (R, Cg) be partial orders, and let f € [P — R] be
a map from P to R.

Definition A.2.7.3 (PO Embedding)
f is called an order embedding of P in R iff
Vp,qe P.pCpq < f(p)Cr f(q)

Lemma A.2.7.4 (PO Embeddings and Isomorphisms)

f is an order isomorphism between P and R iff f is an order
embedding of P in R and f is surjective.

Intuitively: Partial orders, which are order isomorphic, are
“essentially the same.”

1473/17



A.2.8

Hasse Diagrams
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Hasse Diagrams

...are an economic graphical representation of partial orders.

£
o’e

The links of a Hasse diagram

» are read from below to above (lower means smaller).

> represent the relation R of ‘- is an immediate predecessor of -’
defined by
pRg<=4 pCgANAreP.pCriCgq
of a partial order (P,C), where [ is the strict part of C.
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Reading Hasse Diagrams

The Hasse diagram representation of a partial order

» omits links which express reflexive and transitive relations
explicitly

» focuses on the ‘immediate predecessor’ relation.

This focused representation of a Hasse diagram
» is economical (in the number of links)

» while preserving all relevant information of the represented
partial order:
» pC gA p=gq (reflexivity): trivially represented (just
without an explicit link)
» pLC gAp#q (transitivity): represented by ascending
paths (with at least one link) from p to g.
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A.3
Complete Partially Ordered Sets
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A.3.1
CCPOs and DCPOs
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Complete Partially Ordered Sets

...or Complete Partial Orders:

> a slightly weaker ordering notion than that of a lattice
(cf. Appendix A.4), which is often more adequate for the
modelling of problems in computer science, where full lattice
properties are often not required.
» come in two different flavours as so-called
» Chain Complete Partial Orders (CCPOs)

» Directed Complete Partial Orders (DCPOs)

based on the notions of chains and directed sets, respectively,

which turn out to be equvialent (cf. Theorem 3.1.7)
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Complete Partial Orders: CCPOs

Let (P,C) be a partial order.

Definition A.3.1.1 (Chain Complete Partial Order)
(P,C)isa
1. chain complete partial order (pre-CCPO), if every non-empty

(ascending) chain () £ C C P has a least upper bound | | C in
P, i.e., | | C exists €P.

2. pointed chain complete partial order (CCPO), if every
(ascending) chain C C P has a least upper bound | | C in P,
i.e., || C exists €P.
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Complete Partial Orders: DCPOs

Definition A.3.1.2 (Directedly Complete Partial Ord.)
A partial order (P,C) is a

1. directedly complete partial order (pre-DCPO), if every
directed subset D C P has a least upper bound | | D in P, i.e.,
|| D exists € P.

2. pointed directedly complete partial order (DCPO), if it is a
pre-DCPO and has a least element .
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Remarks about CCPOs and DCPOs

About CCPOs
» A CCPO is often called a domain.

» ‘Ascending chain’ and ‘chain’ can equivalently be used in
Definition A.3.1.1, since a chain can always be given in
ascending order. ‘Ascending chain’ is just more intuitive.

About DCPOs

> A directed set S, in which by definition every finite subset has
an upper bound in S, does not need to have a supremum in
S, if S is infinite. Therefore, the DCPO property does not
trivially follow from the directed set property (cf. Corollary
A.2.5.5).
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Existence of Least Elements in CCPOs

Lemma A.3.1.3 (Least Elem. Existence in CCPOs)

Let (C,C) be a CCPO. Then there is a unique least element in C,
denoted by L, which is given by the supremum of the empty chain,
e L=1]0.

Corollary A.3.1.4 (Non-Emptyness of CCPOs)
Let (C,C) be a CCPO. Then: C # (.

Note: Lemma A.3.1.3 does not hold for pre-DCPOs, i.e., if (D, C)
is a pre-DCPO, there does not need to be a least element in D.
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Relating Finite POs, DCPOs and CCPOs

Let P be a finite set, and let T be a relation on P.

Lemma A.3.1.5 (Finite POs, DCPOs and CCPOs)

The following statements are equivalent:
» (P,C) is a partial order.
» (P,C) is a pre-CCPO.
» (P,C) is a pre-DCPO.

Lemma A.3.1.6 (Finite POs, DCPOs and CCPOs)

Let p € P with p C P. Then the following statements are
equivalent.

» (P,C) is a partial order.
» (P,C) is a CCPO.
» (P,C) is a DCPO.
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Equivalence of CCPOs and DCPOs

Theorem A.3.1.7 (Equivalence)

Let (P,C) be a partial order. Then the following statements are
equivalent:

» (P,C) is a CCPO.
» (P,C) is a DCPO.
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SDCPOs: A DCPO Variant

About DCPOs based on Strongly Directed Sets

» Replacing directed sets by strongly directed sets in Definition
A.3.1.2 leads to SDCPOs.

» Recalling that strongly directed sets are not empty
(cf. Lemma A.2.5.9), there is no analogue of pre-DCPOs for
strongly directed sets.

» A strongly directed set S, in which by definition every finite
subset has a supremum in S, does not need to have a
supremum itself in S, if S is infinite. Therefore, the SDCPO
property does not trivially follow from the strongly directed
set property (cf. Corollary A.2.5.3).
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Examples of CCPOs and DCPOs (1)

» (P(IN),<C) is a CCPO and a DCPO.

» Least element: ()
» Least upper bound | | C of C chain CP(IN): |J C’
Cc'eC
» The set of finite and infinite strings S partially ordered by the
prefix relation C s defined by
Vs,s" €S5. s Cpne " <ar
s=s"V (s finite NIs' € S.s++s' =5")

is a CCPO and a DCPO.

» ({—n|n€IN},<)is a pre-CCPO and a pre-DCPO but not a
CCPO and not a DCPO.
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Examples of CCPOs and DCPOs (2)

» (0,0) is a pre-CCPO and a pre-DCPO but not a CCPO and
not a DCPO.
(Both the pre-CCPO (absence of non-empty chains in () and
the pre-DCPO () is the only subset of () and is not directed

by definition) property holds trivially. Note also that P=10
implies T =0 C P x P).

> The partial order P given by the below Hasse diagram is a
CCPO and a DCPO.
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Examples of CCPOs and DCPOs (3)

> The set of finite and infinite strings S partially ordered by the
lexicographical order Ce defined by

Vs, t €S5.5Cj t <yr
s=tV(3p finite,s',t' € S. s=p++s’' A t=p++t' A
(s'=¢e Vv s;<th))
where € denotes the empty string, wy denotes the first

character of a string w, and < the lexicographical ordering
on characters, is a CCPO and a DCPO.
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(Anti-) Examples of CCPOs and DCPOs

» (IN, <) is not a CCPO and not a DCPO.
» The set of finite strings Sy, partially ordered by the
» prefix relation C g defined by
Vs,s' € Shin. s Cppc ' <=qgr 35" € Sfin. s ++5" =+’
is not a CCPO and not a DCPO.
» lexicographical order C ., defined by
Vs, t € Sfin. s Cjex t <ar
dp,s',t' € Ship. s=p++s’ A t=p++t' A
(s'=e Vv sl <t'|1)

where ¢ denotes the empty string, w1 denotes the first
character of a string w, and < the lexicographical

ordering on characters, is not a CCPO and not a DCPO.

» (Psin(IN), C) is not a CCPO and not a DCPO.
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Exercise

Which of the partial orders given by the below Hasse diagrams are
(pre-) CCPOs? Which ones are (pre-) DCPOs?

a) b) ©) d) e)

|

0 ™ o ©
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Continuous Maps on CCPOs

Let (C,Cc¢) and (D,Cp) be CCPOs, and let f € [C — D] be a
map from C to D.

Definition A.3.1.8 (Continuous Maps on CCPOs)
f is called continuous iff f is monotonic and

VC' #0 chainC C. f(UcC") =p Lp f(C')
(Preservation of least upper bounds)

Note: VS C C. f(S)=ar {f(s)|s € S}

1492/17



Continuous Maps on DCPOs

Let (D,Cp) and (E,Cg) be DCPOs, and let f € [D — E] be a
map from D to E.

Definition A.3.1.9 (Continuous Maps on DCPOs)

f is called continuous iff
VD' # 0 directed set C D. f(D’) directed set C E A
f(Up D) = g f(D')

(Preservation of least upper bounds)

Note: VS C D. f(S)=ur {f(s)|s € S}
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Characterizing Monotonicity

Let (C,Cc¢),(D,Ep) be CCPOs, let (E,Cg),(F,CF) be DCPOs.

Lemma A.3.1.10 (Characterizing Monotonicity)

1. f: C— D is monotonic
iff VC' # () chain C C.
f(C") chain C DA F( - C') Ip Lp F(C)
2. g: E— F is monotonic
if VE' # () directed set C E.
g(E") directed set C F A g( g E') 3F LU g(E")
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Strict Functions on CCPOs and DCPOs

Let (C,Cc¢),(D,Cp) be CCPOs with least elements L¢ and Lp,
respectively, let (E,Cg), (F,CFr) be DCPOs with least elements

1g and LF, respectively, and let f € [C = =f D] and g € [E < F]
be continuous functions.

Definition A.3.1.11 (Strict Functions on CPOs)

f and g are called strict, if the equalities

> f(Uc C)=pUp f(C) e(Ue E")=rLUr&(E")
also hold for C’=( and E' =10, i.e., if the equalities
» f(Uc9)=c f(Lc)=p Lo =p [0
> (e 0) = g(Le)=F Lr = [0
are valid.
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A.3.2
Constructing Complete Partial Orders
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Common CCPO and DCPO Constructions

The following construction principles hold for

» CCPOs
» DCPOs

Therefore, we simply write CPO.
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Common CPO Constructions: Flat CPOs

Lemma A.3.2.1 (Flat CPO Construction)
Let C be a set. Then:

(C U {L},Csa) with Cg,, defined by
Ve,de CU{Ll}. cCprdec=1 V c=d
C

is a CPO, a so-called flat CPO.

Cy
1
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Common CPO Constructions: Flat pre-CPOs

Lemma A.3.2.2 (Flat Pre-CPO Construction)
Let D be a set. Then:

(D U {T},Cpar) with Cgr defined by
Vd,ec DU{T}. dCpre<e=T V d=e
is a pre-CPO, a so-called flat pre-CPO.

///l\\\

1 2 3 4 (1 d6 d7 o
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Common CPO Constructions: Products (1)

Lemma A.3.2.3 (Non-strict Product Construction)
Let (P1,C1),(P2,C2),...,(Py C,) be CPOs. Then:
The non-strict product ( X P;,C), where
» X P;=4 Py x P, x ... x P, is the cartesian product of all P;,
1<i<n
» C, is defined pointwise by

v(plw"?pn)a (CIL---,CIn)G ><PI

(le'-’Pn) Cx (qlv"'aqn) <~ df
VI.E{].,...7I7}. Pi Eiqi

isa CPO.
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Common CPO Constructions: Products (2)

Lemma A.3.2.4 (Strict Product Construction)
Let (P1,C1),(P2,C2),...,(Ps,C,) be CPOs. Then:

The strict (or smash) product () Pi, Cg), where
» & P;=4r X P; is the the cartesian product of all P;
» Co=gf Cx defined pointwise with the additional setting
(p1,-..,pn)=L e 3Fie{l,....n}. pi=1;

isa CPO.
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Common CPO Constructions: Sums (1)

Lemma A.3.2.5 (Separated Sum Construction)
Let (Py,C1),(P2,C2),...,(Ps,C,) be CPOs. Then:

The separated (or direct) sum (5, Pi,Cg, ), where

» @, Pi=d4r PLUP, U ... U P, U {L} is the disjoint union of
all P;, 1 < i< n, and a fresh bottom element |
> g, is defined by
Vp,qe @ Pi. plg, g <=ur
p:J_ v (3/6{1,,[’1} p,q € Pi N pL; q)

is a CPO.
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Common CPO Constructions: Sums (2)

Lemma A.3.2.6 (Coalesced Sum Construction)
Let (P17 El), (Pz, Ez), .. .,(P,,7 En) be CPOs. Then:

The coalesced sum (D, Pi,Cg, ), where

> @VP" =df Pl\{Ll}UPQ\{Lz} U...U P,,\{Ln} U {L} is the
disjoint union of all P;, 1 < i < n, and a fresh bottom
element L, which is identified with and replaces the least
elements L; of the sets P;, i.e., L=g4r L;, i € {1,...,n}
> Cg, is defined by
Vp,gc @ P pCa, g =>ur
p=1L Vv (3ie{l,...,n}. p,g€ P; N pC;q)

is a CPO.
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Common CPO Constructions: Function Space

Lemma A.3.2.7 (Continuous Function Space Con.)
Let (C,Cc¢) and (D,Cp) be pre-CPOs. Then:

The continuous function space ([C ¥ D], Ccg), where

» [C < D] is the set of continuous maps from C to D

> T is defined pointwise by
con

Vi,ge[C= D] fC g <a VceC.f(c)Cpg(c)
is a pre-CPO. It is a CPO, if (D,Cp) is a CPO.

Note: The definition of C does not require C to be a pre- CPO.
This requirement is only to ensure continuous maps.
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A4l

Lattices, Complete Lattices, and Complete
Semi-Lattices
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Lattices and Complete Lattices

Let P # () be a non-empty set, and let (P, C) be a partial order on
P.

Definition A.4.1.1 (Lattice)

(P,C) is a lattice, if every non-empty finite subset P’ of P has a
least upper bound and a greatest lower bound in P.

Definition A.4.1.2 (Complete Lattice)
(P,C) is a complete lattice, if every subset P’ of P has a least
upper bound and a greatest lower bound in P.

Note: Lattices and complete lattices are special partial orders.
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Properties of Complete Lattices

Lemma A.4.1.3 (Existence of Extremal Elements)
Let (P,C) be a complete lattice. Then there is
1. a least element in P, denoted by |, satisfying:

L=]0=T]P.
2. a greatest element in P, denoted by T, satisfying:
T=[10=]P.

Lemma A.4.1.4 (Characterization Lemma)

Let (P,C) be a partial order. Then the following statements are
equivalent:

1. (P,C) is a complete lattice.
2. Every subset of P has a least upper bound.
3. Every subset of P has a greatest lower bound.
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Properties of Finite Lattices

Lemma A.4.1.5 (Finite Lattices, Complete Lattices)
If (P,C) is a finite lattice, then (P,C) is a complete lattice.

Corollary A.4.1.6 (Finite Lattices, 1, and T)

If (P,C) is a finite lattice, then (P,C) has a least element and a
greatest element.
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Complete Semi-Lattices

Let (P,C) be a partial order, P # ().

Definition A.4.1.7 (Complete Semi-Lattices)
(P,C) is a complete
1. join semi-lattice iff V() #S C P. | | S exists € P.
2. meet semi-lattice iff V() £ S C P. []S exists € P.

Proposition A.4.1.8 (Spec. Bounds in Com. Semi-L.)
If (P,C) is a complete

1. join semi-lattice, then | | P exists € P, while | |() does usually
not exist in P.

2. meet semi-lattice, then [ | P exists € P, while [ |0 does
usually not exist in P.
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Properties of Complete Semi-Lattices (1)

Lemma A.4.1.9 (Greatest Elem. in a C. JoinSemi-L.)

Let (P,C) be a complete join semi-lattice. Then there is a
greatest element in P, denoted by T, which is given by the
supremum of P, ie., T=[]P.

Lemma A.4.1.10 (Least Elem. in a C. Meet Semi-L.)

Let (P,C) be a complete meet semi-lattice. Then there is a least
element in P, denoted by _L, which is given by the infimum of P,
ie, L=[]P.
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Properties of Complete Semi-Lattices (2)

Lemma A.4.1.11 (Extremal Elements in C. Semi-L.)
If (P,C) is a complete
1.

join semi-lattice where | |() exists € P, then | |() is the least
element in P, denoted by L, i.e., L=]0.

meet semi-lattice where [|() exists € P, then [0 is the
greatest element in P, denoted by T, i.e., T=[1]0.

2.
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Characterizing Upper and Lower Bounds

...in complete semi-lattices.

Lemma A.4.1.12 (Ex. &Char. of Bounds in C. S.-L.)

1. Let (P,C) be a complete join semi-lattice, and let S C P be
a subset of P.
If there is a lower bound for S in P, i.e, if
{peP|pC S} #0, then []S exists € P and
[1S=H{pecPlpC S}

2. Let (P,C) be a complete meet semi-lattice, and let S C P be
a subset of P.
If there is an upper bound for S in P, i.e, if
{p€ P|SC p}#0, then | |S exists € P and
LUS=TKpeP[SCp}
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Relating Semi-Lattices and Complete Lattices

Lemma A.4.1.13 (Semi-Lattices, Complete Lattices)
If (P,C) is a complete

1. join semi-lattice with | | exists € P

2. meet semi-lattice with [ |0 exists € P
then (P,C) is a complete lattice.
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Lattices and Complete Partial Orders

Lemma A.4.1.14 (Lattices and CCPOs, DCPOs)

If (P,C) is a complete lattice, then (P,C) is a CCPO and a
DCPO.

Corollary A.4.1.15 (Finite Lattices, CCPOs, DCPOs)
If (P,C) is a finite lattice, then (P,C) is a CCPO and a DCPO.

Note: Lemma A.4.1.14 does not hold for lattices.
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Examples of Complete Lattices

a) {a,b,c} b)

/ \\ True

{ab}  f{ac}  {bc) ‘
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(Anti-) Examples

» The partial order (P,C) given by the below Hasse dia- gram
is not a lattice (while it is a CCPO and a DCPO).

» (Psn(IN), C) is not a complete lattice (and not a CCPO and
not a DCPO).
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Exercise

Which of the partial orders given by the below Hasse diagrams are
lattices? Which ones are complete lattices?

a) b) ) d) e)

|

©)
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Descending, Ascending Chain Condition

Let (P,C) be a lattice.

Definition A.4.1.14 (Chain Condition)
P satisfies the
1. descending chain condition, if every descending chain gets

stationary, i.e., for every chain py Jd p, 3... d p, O ... there
is an index m > 1 with p, = pm4; for all j € IN.

2. ascending chain condition, if every ascending chain gets
stationary, i.e., for every chain py C pp C ... C p, C ... there
is an index m > 1 with py, = pm4; for all j € IN.
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Distributive and Additive Functions on Lattices

Let (P,C) be a complete lattice, and let f € [P — P] be a
function on P.

Definition A.4.1.15 (Distributive, Additive Function)

f is called

» distributive (or M-continuous) iff f is monotonic and
VP CP.f([P) =T]1f(P)
(Preservation of greatest lower bounds)
» additive (or L-continuous) iff f is monotonic and
VP C P (P = LIA(P)
(Preservation of least upper bounds)

Note: VS C P. f(S)=ar {f(s)|s € S}
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Characterizing Monotonicity

...in terms of the preservation of greatest lower and least upper
bounds:

Lemma A.4.1.16 (Characterizing Monotonicity)

Let (P,C) be a complete lattice, and let f € [P — P] be a
function on P. Then:

f is monotonic <— VP’

N

P.f([]P) C[]f(P)
= VP CP f(|P) 2| ]f(P)

Note: VS C P. f(S)=a4r {f(s)|s € S}
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Useful Results on Mon., Distr., and Additivity

Let (P,C) be a complete lattice, and let f € [P — P] be a
function on P.

Lemma A.4.1.17

f is distributive iff f is additive.

Lemma A.4.1.18

f is monotonic, if f is distributive (or additive).
(i.e., distributivity (or additivity) implies monotonicity.)
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A.4.2

Lattice Homomorphisms, Lattice
Isomorphisms
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Lattice Homomorphisms, Lattice Isomorphisms

Let (P,Cp) and (R,CR) be two lattices, and let f € [P — R] be a
function from P to R.

Definition A.4.2.1 (Lattice Homorphism)

f is called a lattice homomorphism, if

Vp,ge P. f(pUpq)=F(p)Uq f(q) N f(pTpq)=1f(p)Nq f(q)

Definition A.4.2.2 (Lattice Isomorphism)

1. f is called a lattice isomorphism, if f is a lattice
homomorphism and bijective.

2. (P,Cp) and (R, CRg) are called isomorphic, if there is lattice
isomorphism between P and R.
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Useful Results (1)

Let (P,Cp) and (R,CRg) be two lattices, and let f € [P— R] be a
function from P to R.

Lemma A.4.2.3

fFelP"™ Rl = fe[P™ R

The reverse implication of Lemma A.4.2.3 does not hold, however,
the following weaker relation holds:

Lemma A.4.2.4
felP™ R] =
Vp,ge P. f(pUpq) dgo f(p)Ug f(g) A
f(pMp q) Eq f(p) Mq f(q)
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Useful Results (2)

Let (P,Cp) and (R,CR) be two lattices, and let f € [P — R] be a
function from P to R.

Lemma A.4.2.5

fFEPBR = Fle[RB P

Lemma A.4.2.6

iso

c[PBR] « fe[P”" Rl wrt Cp and Co
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A4.3

Modular, Distributive, and Boolean Lattices
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Modular Lattices

Let (P,C) be a lattice with meet operation I and join operation
L.

Lemma A.4.3.1

Vp,qreP.pCr=pU(qnr)C (pUqg)nr

Definition A.4.3.2 (Modular Lattice)
(P,C) is called modular, if

Vp,qreP.pCr=pU(qhr) = (pUq)nr
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Characterizing Modular Lattices

Let (P,C) be a lattice.

Theorem A.4.3.3 (Characterizing Modular Lat. I)

(P,C) is not modular iff (P,C) contains a sublattice, which is
isomorphic to the below lattice:

N
"\/

Theorem A.4.3.4 (Characterizing Modular Lat. Il)
(P,C) is modular iff

Vp,gre P.pCq, pfir=qnr, pur=qlr= p=gq
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Distributive Lattices

Let (P,C) be a lattice with meet operation M and join operation
L.

Lemma A.4.45

1. Vp,greP.pl(qgnr)E(pUq)N(pUr)
2. ¥p,q,re P.pN(qur)d (prq)U(pnr)

Definition A.4.3.6 (Distributive Lattice)
(P,C) is called distributive, if
1. Vp,gq,reP.pU(gnr) = (puUqg)M(pUr)
2. Vp,q,reP.pf(qur) = (pNqg)U(prir)
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Towards Characterizing Distributive Lattices

Lemma A.4.3.7

The following two statements are equivalent:
1. Vp,qreP.pu(qnr)=(puq)n(plr)
2. Vp,q,reP.pfi(qur)=(pfq)U(prr)

Hence, it is sufficient to require the validity of property (1) or of
property (2) in Definition A.4.3.6.
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Characterizing Distributive Lattices

Let (P,C) be a lattice.

Theorem A.4.3.8 (Characterizing Distributive Lat.)
(P,C) is not distributive iff (P, C) contains a sublattice, which is

isomorphic to one of the below two lattices:
b)

) e
N -
: e
V4 o

a

Corollary A.4.3.9

If (P,LC) is distributive, then (P,C) is modular.
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Boolean Lattices

Let (P,C) be a lattice with meet operation 1, join operation L/,
least element L, and greatest element T.

Definition A.4.3.10 (Complement)
Let p,g € P. Then:

1. g is called a complement of p, if plUig=T and pfg=_L.

2. P is called complementary, if every element in P has a
complement.

Definition A.4.3.11 (Boolean Lattice)

(P,C) is called Boolean, if it is complementary, distributive, and
LA£T.

Note: If (P,C) is Boolean, then every element p € P has an
unambiguous unique complement in P, which is denoted by p.
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Useful Result

Lemma A.4.3.12
Let (P,C) be a Boolean lattice, and let p,q,r € P. Then:
P

1. p=p (Involution)
2. pUg=png, plig=pLg (De Morgan)
3. pCg < pUg=T < plrig=L

4 pLqUr < plNgLr < gL pUr
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Boolean L. Homomorphisms, L. Isomorphisms

Let (P,Cp) and (Q,Cg) be two Boolean lattices, and let
f € [P— Q] be a function from P to Q.

Definition A.4.3.13 (Boolean Lattice Homorphism)

f is called a Boolean lattice homomorphism, if f is a lattice
homomorphism and

Vpe P f(p)=F(p)

Definition A.4.3.14 (Boolean Lattice Isomorphism)

f is called a Boolean lattice isomorphism, if f is a Boolean lattice
homomorphism and bijective.

1535/17



Useful Results

Let (P,Cp) and (Q,Cg) be two Boolean lattices, and let

felP bham Q] be a Boolean lattice homomorphism from P to Q.

Lemma A.4.3.14

FL)=LAF(T)=T

Lemma A.4.3.15

f is a Boolean lattice isomorphism iff f(L)=_1 A f(T)=T
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A4.4

Constructing Lattices
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Lattice Constructions: Flat Lattices

Lemma A.4.4.1 (Flat Construction)
Let C be a set. Then:

(CU{L, T}, Epar) with e defined by

is avc%nqp?etg Hti%é,—ra}’soqc%ﬂ%tdq‘laf\:t) I(é-lt?ice (or %?nﬁ/ nd Ftth—JI;)

I

C, G € € C C C .

\\\///
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Lattice Constructions: Products, Sums,...

Like the principle underlying the construction of flat CPOs and flat
lattices, also CPO construction principles for

>
>
>
>
>

non-strict products

strict products

separate sums

coalesced sums

continuous (here: additive, distributive) function spaces

carry over to lattices and complete lattices (cf. Appendix A.3.2).
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A.4.5

Algebraic and Order-theoretic View of
Lattices
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Motivation

In Definition A.4.1.1, we introduced lattices in terms of

» ordered sets (P, C), which induces an order-theoretic view of
lattices.

Alternatively, lattices can be introduced in terms of

» algebraic structures (P, 1, 1), which induces an algebraic view
of lattices.

Next, we will show that both views are equivalent in the sense that
a lattice defined order-theoretically can be considered algebraically
and vice versa.
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Lattices as Algebraic Structures

Definition A.4.5.1 (Algebraic Lattice)
An algebraic lattice is an algebraic structure (P, M, ), where
» P () is a non-empty set
» M,L: P x P— P are two maps such that for all p,q,r € P
the following laws hold (infix notation):
» Commutative Laws: pfg=qnp
pUg=qUp
» Associative Laws:  (pMq)Mr=pM(qgnr)
(pUq)Ur=pU(qUr)
» Absorption Laws:  (pMgq)Up=p
(pUqg)Np=p
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Properties of Algebraic Lattices

Let (P,M, ) be an algebraic lattice.

Lemma A.4.5.2 (Idempotency Laws)

For all p € P, the maps M,U : P x P — P satisfy the following law:

» ldempotency Laws: pMp=p
pUp=p

Lemma A.4.5.3
For all p,q € P, the maps M,I: P x P — P satisfy:

1. pfig=p<—= plg=q
2. pflg=pUg<=p=gq
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Induced (Partial) Order

Let (P,11,U) be an algebraic lattice.
Lemma A.4.5.4
The relation © C P x P on P defined by
Vp,ge P.pE g4 plig=p

is a partial order relation on P, i.e., C is reflexive, transitive, and
antisymmetric.

Definition A.4.5.5 (Induced Partial Order)

The relation C defined in Lemma A.4.5.4 is called the induced
partial order of (P,M, ).
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Properties of the Induced Partial Order

Let (P,1,J) be an algebraic lattice, and let C be the induced
partial order of (P,M, ).

Lemma A.4.5.6

For all p, g € P, the infimum (= greatest lower bound) and the
supremum (= least upper bound) of the set {p, g} exists and is
given by the image of M and L applied to p and g, respectively,

ie.,
Vp,geP. [ [{p.at=pnag A | J{p.a}=pUg

Lemma A.4.5.6 can inductively be extended yielding:

Lemma A.4.5.7
Let ) # Q C P be a finite non-empty subset of P. Then:

Jglb, lube P. glb=[]Q A glb=] |Q
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Algebraic Lattices Order-theoretically

Corollary A.4.5.8 (From (P,1,U) to (P,E))
Let (P,M, ) be an algebraic lattice. Then:

(P,C), where C is the induced partial order of (P,1,L), is an
order-theoretic lattice in the sense of Definition A.4.1.1.
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Induced Algebraic Maps

Let (P,C) be an order-theoretic lattice.

Definition A.4.5.9 (Induced Algebraic Maps)

The partial order C of (P,C) induces two maps I and LI from
P x P to P defined by

1. Vp,ge P.pfig=4 [ {p,q}
2. ¥p,qge P.pUqg=ar LI{p,q}
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Properties of the Induced Algebraic Maps (1)

Let (P,C) be an order-theoretic lattice, and let M and LI be the
induced maps of (P,LC).

Lemma A.4.5.10
Let p,g € P. Then the following statements are equivalent:

1.pCgq
2. pfig=p
3. plg=gq
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Properties of the Induced Algebraic Maps (2)

Let (P,C) be an order-theoretic lattice, and let I and LI be the
induced maps of (P,LC).

Lemma A.4.5.11
The induced maps N and U satisfy, for all p,q,r € P,
» Commutative Laws: pfg=qnp
pUg=qUp
» Associative Laws:  (pMq)Mr=pr(qgnr)
(pUq)Ur=plU(qUr)
» Absorption Laws:  (pMgq)Up=p
(pUg)Tp=p
» |dempotency Laws: pMp=p
pUp=p
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Order-theoretic Lattices Algebraically

Corollary A.4.5.12 (From (P,C) to (P,1,L))

Let (P,C) be an order-theoretic lattice. Then:

(P,m1,), where 11 and LI are the induced maps of (P,M, L)), is an
algebraic lattice in the sense of Definition A.4.5.1.
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Equivalence of Order-theoretic and Algebraic
View of a Lattice (1)

From order-theoretic to algebraic lattices:

» An order-theoretic lattice (P, C) can be considered
algebraically by switching from (P,C) to (P,,1), where 1
and L are the induced maps of (P,C).

From algebraic to order-theoretic lattices:

» An algebraic lattice (P,M, ) can be considered
order-theoretically by switching from (P,M,U) to (P, C),
where C is the induced partial order of (P,1,L).
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Equivalence of Order-theoretic and Algebraic
View of a Lattice (2)

Together, this allows us to simply speak of a lattice P, and to
speak only more precisely of P as an

» order-theoretic lattice (P, )
» algebraic lattice (P,1,L!)

if we want to emphasize that we think of P as a special ordered set
or as a special algebraic structure.
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Bottom and Top vs. Zero and One (1)

Let P be a lattice with a least and a greatest element.

Considering P

» order-theoretically as (P, C), it is appropriate to think of its
least and greatest element in terms of bottom 1 and top T

with
> J_:l_l@
> T:H@

» algebraically as (P,1,L), it is appropriate to think of its least
and greatest element in terms of zero 0 and one 1, where
(P,M,1) is said to have a

» zero element, if 30 e P.Vpe P. puU0=p
» one element, if 31 € P.Vpe P. pfl=p
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Bottom and Top vs. Zero and One (2)

Lemma A.4.5.13

Let P be a lattice. Then:

» (P,C) has a top element T iff (P,1,11) has a one element 1,
and in that case [ [0 =T =1.

» (P,C) has a bottom element L iff (P,
element 0, and in that case | [0 = L =

M, ) has a zero
0.
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On the Adequacy of the Order-theoretic and
the Algebraic View of a Lattice

In mathematics, usually the

> algebraic view of a lattice is more appropriate as it is in line
with other algebraic structures (“a set together with some
maps satisfying a number of laws”), e.g., groups, rings, fields,
vector spaces, categories, etc., which are investigated and
dealt with in mathematics.

In computer science, usually the

» order-theoretic view of a lattice is more appropriate, since the
order relation can often be interpreted and under- stood as "

carries more/less information than -," " is more/less defined
than -,” " is stronger/weaker than -," etc., which often fits
naturally to problems investigated and dealt with in computer
science.
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A.5

Fixed Point Theorems
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Fixed Points of Functions

Definition A.5.1 (Fixed Point)

Let M be a set, let f € [M — M] be a function on M, and let
m € M be an element of M. Then:

m is called a fixed point of f iff f(m) = m.
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| east, Greatest Fixed Points in Partial Orders

Definition A.5.2 (Least, Greatest Fixed Point)

Let (P,C) be a partial order, let f € [P — P]| be a function on P,
and let p be a fixed point of f, i.e., f(p)=p. Then:

p is called the

> least fixed point of f, denoted by uf,
iffVge P. f(q)=gq=pCq

> greatest fixed point of f, denoted by vf,
iff Yge P.f(g9J=qgq=qgLCp
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Towers in Chain Complete Partial Orders

Definition A.5.3 (f-Tower in C)

Let (C,C) be a CCPO, let f € [C — (] be a function on C, and
let T C C be a subset of C. Then:

T is called an f-tower in C iff

1. LeT.
2. If t € T, then also f(t) e T.
3. If T"C Tisachainin C, then | [T € T.
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Least Towers in Chain Complete Partial Orders

Lemma A.5.4 (The Least f-Tower in C)

The intersection
I=qr m{T| T f-tower in C}

of all f-towers in C is the least f-tower in C, i.e.,

1. | is an f-tower in C.
2. VT f-towerin C. | C T.

Lemma A.5.5 (Least f-Towers and Chains)

The least f-tower in C is a chain in C, if f is expanding.
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Ab5.1

Fixed Point Theorems for Complete
Partial Orders
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Fixed Points of Exp./Monotonic Functions

Fixed Point Theorem A.5.1.1 (Expanding Function)

Let (C,C) be a CCPO, and let f € [C Z¥ (] be an expanding
function on C. Then:

The supremum of the least f-tower in C is a fixed point of f.

Fixed Point Theorem A.5.1.2 (Monotonic Function)

mon

Let (C,C) be a CCPO, and let f € [C = C] be a monotonic
function on C. Then:

f has a unique least fixed point uf, which is given by the
supremum of the least f-tower in C.
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Note

» Theorem A.5.1.1 and Theorem A.5.1.2 ensure the existence
of a fixed point for expanding functions and of a unique least
fixed point for monotonic functions, respectively, but do not
provide constructive procedures for computing or
approximating them.

» This is in contrast to Theorem A.5.1.3, which does so for
continuous functions. In practice, continuous functions are
thus more important and considered where possible.
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Least Fixed Points of Continuous Functions

Fixed Point Theorem A.5.1.3 (Knaster Tarski,Kleene)

Let (C,C) be a CCPO, and let f € [C ¥ C] be a continuous
function on C. Then:

f has a unique least fixed point uf € C, which is given by the
supremum of the (so-called) Kleene chain {1, f(L),f?(L),...},

i.e.
pf= | | Fi(L)=] L L), (L), }

i€INg

Note: fOde Idc; fi:df fo fi_l, i > 0.
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Proof of Fixed Point Theorem A.5.1.3 (1)

We have to prove:
pf= L f(L)=LH{f(L)|i=0}
i€lN,
1. exists,

2. is a fixed point of f,
3. is the least fixed point of f.

1565/17



Proof of Fixed Point Theorem A.5.1.3 (2)

1. Existence

» By definition of L as the least element of C and of 0 as the
identity on C we have: | =f0(L)C f}(L)=F(L).

» Since f is continuous and hence monotonic, we obtain by
means of (natural) induction: ‘
Vi,j €INp. i<j= fi(L)C (L) C F(L).

» Hence, the set {f'(_L) | i > 0} is a (possibly infinite) chain in

» Since (C,C) isa CCPO and {f/(L) | i > 0} a chainin C,
this implies by definition of a CPO that the least upper bound
of the chain {f'(L) | i > 0}

| KF (L) 1i=0}= | | Fi(L) exists.

i€INg
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Proof of Fixed Point Theorem A.5.1.3 (3)

2. Fixed point property

L] (L)
i€INg
(f continuous) = |_| f(F1(L))
i€IN
= || fW
i€IN,
(C'=ge {f'L | i >1}is a chain =
LI C exists =LU|C) = Lu| | fi(L)
i€IN,

(F(L)=ar L) = |] ()

i€INg
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Proof of Fixed Point Theorem A.5.1.3 (4)

3. Least fixed point property

>

>

Let ¢ be an arbitrary fixed point of f. Then: L C c.

Since f is continuous and hence monotonic, we obtain by

means of (natural) induction:
Vi€ lNg. f'(L) C f'(c) (=c¢).

Since c is a fixed point of f, this implies:

VieINg. (L) Ec (=f(c)).

Thus, c is an upper bound of the set {f/(L) | i € INo}.
Since {f/(L) | i € INo} is a chain, and | |, f'(L) is by
definition the least upper bound of this chain, we obtain the

desired inclusion .
|| (e
i€INo
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Least Conditional Fixed Points

Let (C,C) be a CCPO, let f € [C — (] be a function on C, and
let d, cqy € C be elements of C.

Definition A.5.1.4 (Least Conditional Fixed Point)

cq is called the

» least conditional fixed point of f wrt d (in German: kleinster
bedingter Fixpunkt) iff ¢, is the least fixed point of C with
dC ¢y, ie.,

Vxe C.f(x)=x N dC x = cqg C x.
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Least Cond. Fixed Points of Cont. Functions

Theorem A.5.1.5 (Conditional Fixed Point Theorem)

Let (C,C) be a CCPO, let d € C, and let f € [C ¥ C] be a
continuous function on C which is expanding for d, i.e., d C f(d).
Then:

f has a least conditional fixed point ufy € C, which is given by the
supremum of the (generalized) Kleene chain {d, f(d), f?(d),...},

- ufs= | | Fi(d)=| J{d. F(d). F(d),...}

i€INg

1570/17



Finite Fixed Points

Let (C,C) be a CCPO, let d € C, and let f € [C ™" C] be a
monotonic function on C.

Theorem A.5.1.6 (Finite Fixed Point Theorem)

If two succeeding elements in the Kleene chain of f are equal, i.e.,
if there is some i € IN with /(1) = f"+1( L), then we have:

uf =fi(L).

Theorem A.5.1.7 (Finite Conditional FP Theorem)

If f is expanding for d, i.e., d C f(d), and two succeeding elements
in the (generalized) Kleene chain of f wrt d are equal, i.e., if there
is some i € IN with f/(d)=f"*1(d), then we have: ufy=f'(d).

Note: Theorems A.5.1.6 and A.5.1.7 do not require continuity of
f. Monotonicity (and expandingness) of f suffice(s).
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Towards the Existence of Finite Fixed Points

Let (P,C) be a partial order, and let p,r € P.

Definition A.5.1.8 (Chain-finite Partial Order)
(P,C) is called

» chain-finite (in German: kettenendlich) iff P does not contain
an infinite chain.

Definition A.5.1.9 (Finite Element)

p is called
» finite iff the set Q=4r {g € P|q C p} does not contain an
infinite chain.

» finite relative to r iff the set Q=4 {g € P|r C q C p} does
not contain an infinite chain.
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Existence of Finite Fixed Points

There are numerous conditions, which often hold in practice and
are sufficient to ensure the existence of a least finite fixed point of
a function f (cf. Nielson/Nielson 1992), e.g.

» the domain or the range of f are finite or chain-finite,
» the least fixed point of f is finite,

» f is of the form f(c)=cU g(c) with g a monotonic function
on a chain-finite (data) domain.
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Fixed Point Theorems, DCPOs, and Lattices

Note: Complete lattices (cf. Lemma A.4.1.13) and DCPOs with a
least element (cf. Lemma A.3.1.5) are CCPOs, too.

Thus, we can conclude:

Corollary A.5.1.10 (Fixed Points, Lattices, DCPOs)

The fixed point theorems of Chapter A.5.1 hold for functions on
complete lattices and on DCPOs with a least element, too.
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A.5.2

Fixed Point Theorems for Lattices
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Fixed Points of Monotonic Functions

Fixed Point Theorem A.5.2.1 (Knaster, Tarski)

mon

Let (P,C) be a complete lattice, and let f € [P = P] be a
monotonic function on P. Then:

1. f has a unique least fixed point uf € P, which is given by
uf=[UHp e P[f(p) E p}.

2. f has a unique greatest fixed point vf € P, which is given by
vi=|KpeP|pEf(p)}

Characterization Theorem A.5.2.2 (Davis)
Let (P,C) be a lattice. Then:

mon

(P,C) is complete iff every f € [P "= P] has a fixed point.
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The Fixed Point Lattice of Mon. Functions

Theorem A.5.2.2 (Lattice of Fixed Points)

mon

Let (P,C) be a complete lattice, let f € [P = P] be a monotonic
function on P, and let Fix(f)=4r {p € P|f(p)= p} be the set of
all fixed points of f. Then:

Every subset F C Fix(f) has a supremum and an infimum in
Fix(f), i.e., (Fix(f),CFix(r)) is a complete lattice.

Theorem A.5.2.3 (Ordering of Fixed Points)

mon

Let (P,C) be a complete lattice, and let f € [P — P] be a
monotonic function on P. Then:

| | Ffi(L) ©ouf CourC []F(T)
i€INg i€INo
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Fixed Points of Add./Distributive Functions

For additive and distributive functions, the leftmost and the
rightmost inequality of Theorem A.5.2.3 become equalities:

Fixed Point Theorem A.5.2.4 (Knaster Tarski,Kleene)
Let (P,C) be a complete lattice, and let f € [P — P] be a
function on P. Then:

1. f has a unique least fixed point uf € P given by
uf = Uien, F1(L), if £ is additive, i.e., £ € [P 2% P].

2. f has a unique greatest fixed point vf € P given by
vf = Niew, £(T), if £ is distributive, i.e., f € [P %5 P].

Recall: fO=g4 ldc; fi=g4e fofi=1, i>0.
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A.6

Fixed Point Induction
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Admissible Predicates

Fixed point induction allows proving properties of fixed points.
Essential is the notion of an admissible predicate:

Definition A.6.1 (Admissible Predicate)

Let (P,C) be a complete lattice, and let ¢ : P — IB be a predicate
on P. Then:

¢ is called admissible (or LI-admissible) iff for every chain C C P
holds: (Ve e C. ¢(c) :>¢>|_|C

Lemma A.6.2
Let (P,C) be a complete lattice, and let ¢ : P — IB be an
admissible predicate on P. Then: ¢(L)= true.

Proof. The admissibility of ¢ implies ¢(| |0) = true. Moreover, we
have | = | |}, which completes the proof.
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Sufficient Conditions for Admissibility

Theorem A.6.3 (Admissibility Condition 1)

Let (P,C) be a complete lattice, and let ¢ : P — IB be a predicate
on P. Then:

¢ is admissible, if there is a complete lattice (Q,C¢) and two
additive functions f, g € [P add Q], such that

VpeP.¢(p) < f(p)Eq &(p)

Theorem A.6.4 (Admissibility Condition 2)

Let (P,C) be a complete lattice, and let ¢, : P— IB be two
admissible predicates on P. Then:

The conjunction of ¢ and 1, the predicate ¢ A 1) defined by
VpeP. (¢ A P)(p)=ar d(p) N(p)

is admissible.
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Fixed Point Induction on Complete Lattices

Theorem A.6.5 (Fixed Point Induction on C. Lat.)

Let (P,C) be a complete lattice, let f € [P 2 P] be an additive

function on P, and let ¢ : P — IB be an admissible predicate on P.
Then:

The validity of
» Vpe P.o(p) = o(f(p)) (Induction step)
implies the validity of ¢(uf).

Note: The induction base, i.e., the validity of ¢(_L), is implied by
the admissibility of ¢ (cf. Lemma A.6.2) and proved when verifying
the admissibility of ¢.
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Fixed Point Induction on CCPOs

The notion of admissibility of a predicate carries over from
complete lattices to CCPOs.

Theorem A.6.6 (Fixed Point Induction on CCPOs)

Let (C,C) be a CCPO, let f € [C ™3 C] be a monotonic function
on C, and let ¢ : C — IB be an admissible predicate on C. Then:

The validity of
» Vce C. ¢(c) = ¢(f(c)) (Induction step)
implies the validity of ¢(uf).

Note: Theorem A.6.6 holds (of course still), if we replace the
CCPO (C,C) by a complete lattice (P, C).
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A7
Completion and Embedding
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AT7.1

Downsets: From POs to Complete Lattices,

CCPOs, and DCPOs
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Downsets

Definition A.7.1.1 (Downset)

Let (P,C) be a partial order, let D C P be a subset of P, and let
p,q € P with p C g. Then:

1. D is called a downset (or lower set or order ideal) (in German:
Abwartsmenge) of P, if: g€ D = p € D.

2. D(P) denotes the set of all downsets of P.
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Example

Let (P,C) be the partial order given by the below Hasse diagram.

Then, e.g.:
1. 0,PeD(P),VqgeP.{pcP|pCq}eD(P)
2. {1,3},{1,2,3},{1,2,3,4} € D(P)
3. {2,3},{2,4,5},{1,2,4,5} ¢ D(P)
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Properties of Downsets

Lemma A.7.1.2
Let (P,C) be a partial order, let g € P, and Q C P. Then:

. 0 € D(P), P € D(P), are (trivial) downsets of P.
- +g=ar{p € P|pC q} € D(P).

1 Q=4 {peP|Iqge Q. pC q} € D(P).

. QeD(P) < QR=1Q

[y

B~ W N

Lemma A.7.1.3
Let (P,C) be a partial order, and let p,q € P. Then the following
statements are equivalent:

1.pCgq

2.1p Clq

3. VDeD(P).qe D= peD.
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Characterization of Downsets

Lemma A.7.1.4 (Downsets of a PO)
Let (P,C) be a partial order. Then:

D(P)={IQIQRC P}

Corollary A.7.1.5

Let (P,C) be a partial order, let D € D(P), and let p, g € P with
pCq. Then: ge D = peD.
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The Lattice of Downsets: Complete & Distr.

Let (P,C) be a partial order, let D(P) be the set of downsets of
P, and let C denote set inclusion.

Theorem A.7.1.6 (Complete & Distr. L. of Downsets)

(D(P), <) is a complete and distributive lattice, the so-called
downset lattice of P, with set intersection N as meet operation, set
union U as join operation, least element (), and greatest element P.

Recall: Complete lattices are CCPOs and DCPOs, too (cf. Lemma
A.4.1.13). Thus, we have:

Corollary A.7.1.7 (The CCPO/DCPO of Downsets)
(D(P),C) is a CCPO and a DCPO with least element ().
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From POs to Lattices, CCPOs, and DCPOs

Construction Principle:
Theorem A.7.1.6 and Corollary A.7.1.7 yield a construction
principle that shows how to construct

» a complete lattice and thus also a CCPO and a DCPO

from a given partial order (P, C) (cf. Appendix A.3.2 and
Appendix A.4.4).
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Principal Downsets

The downsets of the form {p € P | p C g} of a partial order
(P,C) considered in Lemma A.7.1.2(2) are peculiar, and will
reoccur as so-called principal ideals (cf. Chapter A.7.2) and
principal cuts (cf. Chapter A.7.3) of lattices. Therefore, we
introduce these distinguished downsets explicitly.

Definition A.7.1.8 (Principal Downsets of a PO)
Let (P,C) be a partial order, and let g € P be an element of P.
Then:
1. lg=4r{p € P | pC q} denotes the principal downset (in
German: Hauptabwartsmenge) generated by q.

2. PD(P)={lq|q € P} denotes the set of all principal
downsets of P.
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Downsets, Directed Sets (1)

...principal downsets of partial orders are directed but usually not
strongly directed.

Example 1: Consider the below partial order (P,C):

» VpeP. p=g{r| rC p} directed € D(P).
» Vpe P\{6}. |p strongly directed € D(P).

> |6=g4r{r| rC6}={1,2,3,4,5,6} =P € D(P) is a downset
of P, however, it is not strongly directed, since its subsets
{2,3},{1,2,3} C|6 do not have a least upper bound in
16 =P (though upper bounds: 4,5,6).
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Downsets, Directed Sets (2)

Example 2: Consider the below lattice (Z, <):

2
1
0
-1

2

» D(Z)=0UPD(Z)UZ=
DU{lz=gr{reZ|r<z}|zeZ}UZ

» VSe D(Z). S directed but not strongly directed (since it
lacks a least element).
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Downsets, Directed Sets (3)

...arbitrary downsets even of complete lattices are usually not
strongly directed, though directed.

Example 3: Consider the below complete lattice (P, C):

O) 6

» E.g., the downsets
» L {4,5}=ur{r| rC4vrC5}}={1,2,3,4,5} € D(P)
» {34 =ur{r | rC3VvrC4}}={1,2,3,4} € D(P)
of P are directed but not strongly directed: The subsets
{2,3} €| {4,5} and {1,2,3} C | {3,4} do not have a least
upper bound in [ {4,5} and | {3,4}, respectively.
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A.7.2

|deal Completion: Embedding of Lattices
into Complete Lattices
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Lattice Ideals

Definition A.7.2.1 (Lattice Ideal)

Let (P,C) be a lattice, let ) # | C P be a non-empty subset of P,

and let p,g € P. Then:

1. I is called an ideal (or lattice ideal) of P, if:
» pgel =plgel.
»gel=plhigel.

2. Z(P) denotes the set of all ideals of P.
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Properties of Lattice ldeals

Lemma A.7.2.2 (Ideal Properties 1)
Let (P,C) be a lattice, let / € Z(P), and let g € . Then:

L. {peP[pCqtCl
2. P €Z(P) is a (trivial) ideal of P.

Lemma A.7.2.3 (Ideal Properties 2)

Let (P,C) be a lattice with least element L, and let / € Z(P).

Then:

1. Lel
2. {L} € Z(P) is a (trivial) ideal of P.
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Characterizing Lattice Ideals

Theorem A.7.2.4 (Ideal Characterization)

Let (P,C) be a lattice, and let ) # | C P be a non-empty subset
of P. Then:

I € Z(P) iff Vp,ge P.p,gel < pUqel
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Lattice Ideals and Order Ideals

Lemma A.7.2.5
Let (P,C) be a lattice, let / € Z(P), and let p, g € P with p C q.
Then: gel = pel.

Corollary A.7.1.5 — recalled

Let (P,C) be a partial order, let D € D(P), and let p,q € P with
pCq. Then: ge D= peD.

Corollary A.7.2.6
Let (P,C) be a lattice, and let / C P. Then:

l€Z(P)=1€D(P) (e, Z(P) CD(P)).
Note: The reverse implication of Corollary A.7.2.6 does not hold.

1600/17



The Complete Lattice of ldeals

Theorem A.7.2.7 (The Complete Lattice of Ideals)

Let (P,C) be a lattice with least element L, and let C7 be the
following ordering relation on the set Z(P) of ideals of P:

VI,JeZ(P). ICz Jiff I CJ

Then: (Z(P),Cz) is a complete lattice, the so-called lattice of
ideals of P, with join operation LIz defined by
VI,JeZ(P). IUgd=4{pe P|Ji€l, jeJ. pCilj}
and meet operation Mz defined by
VI,JeZ(P). INgd=g4r I NJ

and with least element { L} and greatest element P.
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Principal ldeals

Lemma A.7.2.8

Let (P,C) be a lattice, and let g € P be an element of P. Then:
lg={p e P|pC q} ideal € Z(P).

Definition A.7.2.9 (Principal Ideal)
Let (P,C) be a lattice, and let g € P be an element of P. Then:

1. | g is called the principal ideal of P generated by q.

2. PZ(P)=u4r {1 q| g € P} denotes the set of all principal ideals
of P.
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Towards the Sublattice of Principal ldeals

Lemma A.7.2.10
Let (P,C) be a lattice with least element, and let (Z(P),C7) be
the complete lattice of ideals of P. Then:

Vg, reP. lqfizlr=1(qrr) A lquzlr=l(qUr)
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The Sublattice of Principal ldeals

Theorem A.7.2.11 (Sublattice of Principal Ideals)

Let (P,C) be a lattice with least element, let (Z(P),Cz) be the
complete lattice of ideals of P, let PZ(P) be the set of the

principal ideals of P, and let Cpz be the restriction of C7 onto
PZ(P). Then:

(PZ(P),Epz) is a sublattice of (Z(P),Cx).

Note: The sublattice (PZ(P), Cpz) of (Z(P),C7) is
» usually not complete, not even if (P,C) is complete.
(The lattice (Z, <), e.g., enriched with a least element L and

a greatest element T is complete, while the lattice of its
principal ideals (PZ(Z), Cpz) is not.)
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|deal Completion and Embedding of a Lattice

Theorem A.7.2.12 (Ideal Completion & Embedding)

Let (P,C) be a lattice with least element, and let (Z(P),Cz) be
the complete lattice of its ideals. Then:

The mapping
er : P— PI(P) defined by Vp € P. ez(p) =ar |p

is a lattice isomorphism between P and the (sub)lattice PZ(P) of
its principal ideals.
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Intuitively

Theorem A.7.2.12 shows how a lattice (P, C) with least element

> can be considered a sublattice of the complete lattice of the
ideals of P; in more detail, how it can be considered the
sublattice (PZ(P), Cpz) of the complete lattice (Z(P), Cz).
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A.7.3

Cut Completion: Embedding of POs and
Lattices into Complete Lattices
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Cuts

Definition A.7.3.1 (Cut)

Let (P,C) be a partial order, and let Q C P be a subset of P.
Then:

1. Q is called a cut (in German: Schnitt) of P, if
Q=LB(UB(Q)).
2. C(P) denotes the set of all cuts of P.
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Properties of Cuts

Lemma A.7.3.2

Let (P,C) be a partial order, and let g € P be an element of P.
Then:

1. LB({q})=d¢r Lq=ar{p € P|pC q} € C(P)
2. LB(UB({q})={p € P|pE q} =LB({q})

Note: If (P,C) is a lattice,

1. LemmegAcTR3.26h)giels ¢he| principplid iy g19 cuty B P:

(or:VQ C P. Q€ PI(P) = Q € C(P))

2. Lemma A.7.3.2(2) characterizes the principal ideals of P in
terms of the function composition LB o UB.

1609/17



Principal Cuts

Definition A.7.3.3 (Principal Cut)
Let (P,C) be a partial order, and let g € P be an element of P.
Then:
1. g=a4r LB(UB({q})) is called the principal cut of P
generated by q.

2. PC(P)=4r{lq| g € P} denotes the set of all principal cuts
of P.
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Properties of Cuts and Ideals of Lattices

Lemma A.7.3.4
Let (P,C) be a lattice with least element, and let @ C P. Then:

QeC(P)= QeI(P)
Corollary A.7.3.5

Let (P,C) be a lattice with least element, and let Q@ C P. Then:

QeC(P)=Q#0

Note: Corollary A.7.3.5 does not hold for partial orders.
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The Complete Lattice of Cuts

Theorem A.7.3.6 (The Complete Lattice of Cuts)

Let (P,C) be a partial order, and let C¢ be the following ordering
relation on the set C(P) of cuts of P:

VC,DeC(P). CCe Diff CC D

Then: (C(P),C¢) is a complete lattice, the so-called lattice of cuts
of P, with join operation Llc defined by

VC,D €C(P). ClecD=gr [ {E €C(P)|CUD C E}
and meet operation Mg defined by
VC,D e C(P) CheD=g4 CND

and with least element { L} and greatest element P.
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Cut Completion and Embedding of a PO

Theorem A.7.3.7 (PO Cut Completion & Embedd'g)

Let (P,C) be a partial order, and let (C(P),C¢) be the complete
lattice of its cuts. Then:

The mapping
ec : P—PC(P) defined by Vp € P. ec(p)=ar LB(UB({p}))

is an order isomorphism between P and the partial order
(PC(P),Cpc) of the principal cuts of P.
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Cut Completion and Embedding of a Lattice

Theorem A.7.3.8 (Lattice Cut Completion & Emb'g)

Let (P,C) be a lattice, let (C(P),C¢) be the complete lattice of
its cuts, and let e¢c : P— PC(P) be the mapping of Theorem
A.7.3.7. Then:

(PC(P),Cpc) is a sublattice of (C(P),C) and e is a lattice
isomorphism between P and the sublattice PC(P) of the principal
cuts of P.
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AT.4

Downset Completion: Embedding of POs
into Complete Lattices
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Downsets, Ideals, and Cuts

Lemma A.7.4.1
We have:

1. C(P) C D(P), if (P,C) is a partial order.

2. C(P) CZ(P) C D(P), if (P,C) is a lattice with least
element.
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Downset Completion and Embedding of a PO

Theorem A.7.4.2 (Downset Completion and Emb.'g)

Let (P,C) be a partial order, and let (D(P), C) be the complete
and distributive lattice of its downsets (cf. Theorem A.7.1.6).
Then:

The mapping ez : P— PC(P) (of Theorem A.7.3.7) defined by
VpeP. e(p)=d4 LB(UB({p}))

is an order isomorphism between P and the partial order
(PC(P), C) of the principal cuts of P, or, equivalently, the
mapping ec : P — D(P) defined as above is a partial order
embedding of (PC(P),C) into (D(P),<).
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Intuitively

Theorem A.7.4.2 shows how a partial order (P,C)

> can be considered a partial order of the complete and
distributive lattice of its downsets; in more detail, how it can
be considered the partial order (PC(P), Cpc) of the complete
and distributive lattice (D(P),Cp) .
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Appendix B

Pragmatics of Flow Graph Representations
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B.1
Background and Motivation
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B.1.1
Flow Graph Variants
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Representing Instructions in Flow Graphs

...given a flow graph, program instructions (assignments, tests) can
be represented by

» nodes
> edges
where nodes and edges can be labelled by

> single instructions
» basic blocks.
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Flow Graph Variants

In total, this leads to four flow graph variants:

» Node-labelled flow graphs
(in the style of Kripke structures)

» Single instruction graphs (SI graphs)
» Basic block graphs (BB graphs)

» Edge-labelled flow graphs
(in the style of transition systems)
» Single instruction graphs (S| graphs)
» Basic block graphs (BB graphs)
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[llustration: Node-labelled Flow Graphs

Single instruction vs. basic block flow graphs:

a) b
s=1
2man] 4 \ \x P
s ] 6la=x ]
Slyast a:=btc
e=7
d:=a+b
Node-labelled SI Flow Graph ei=ctd
d:=b+c
Xi=y+z
ci=bee
yimy+z

Node-labelled BB Flow Graph .\

1631/17



lllustration: Edge-labelled Flow Graphs

Single instruction vs. basic block flow graphs:

a) c)
s=1 O
o

b)

Edge-labelled SI Flow Graphs

Edge-labelled BB Flow Graph
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Which Flow Graph Representation to Choose?

Conceptually, there is

» no difference between the various flow graph variants making
the choice of a particular one essentially a matter of taste.

Pragmatically, however,

> the flow graph variants differ in the ease and hence adequacy
of use for specifying and implementing program analyses and
optimizations.

This will be considered in detail next.
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B.1.2
Flow Graph Variants: Which one to Choose?
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Basic Block or Single Instruction Graphs

...this is the question.

In the following we will investigate and compare the adequacy of
different flow graph representations.

To this end we will consider node and edge-labelled flow graphs
with basic blocks and single instructions and investigate their
pragmatic

» advantages and disadvantages for program analysis

...addressing thereby especially the question:

» Basic block or single instruction graphs: Just a matter of
taste?

On the fly we will learn

» Faint variable analysis as an example of a non-separable real
world data flow analysis problem.
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Basic Block Graphs: Supposed Advantages

Advantages of basic block graphs commonly attributed to them in
the perception of “folk knowledge”:

Basic block graphs are smaller than

» single instruction graphs containing less nodes

...which leads to better scalability of program analyses because

» less nodes (edges) are involved in the (potentially)
computationally costly fixed point iteration

> larger programs fit into the main memory.

1636/17



Basic Block Graphs: Definite Disadvantages

Definite disadvantages of basic blocks in applications:

» Higher conceptual complexity: Basic blocks introduce an
undesired hierarchy into flow graphs making both theoretical
reasoning and practical implementations more difficult.

> Need for pre- and post-processes: These are usually required
in order to cope with the additional problems introduced by
the hierarchical structure of basic block flow graphs (e.g., in
dead code elimination, constant propagation,...); or which
necessitate “tricky” formulations to avoid them (e.g., in
partial redundancy elimination).

> Limited generality: Some practically relevant program analy-
ses and optimizations are difficult or not at all expressible on
the level of basic block flow graphs (e.g., faint variable elimi-
nation).
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lllustrating the Hierarchy Due to Basic Blocks
...for node-labelled and edge-labelled flow graphs:
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In the following

...we investigate and compare

» advantages and disadvantages of basic block (BB) flow
graphs and single instructions (SI) flow graphs

by means of DFA problems

> we already considered

» Available expressions
» Simple constants

» or consider afresh
» Faint variables
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B.2

MOP and MaxfFP Approach for Selected
Flow Graph Variants
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B.2.1

MOP and MaxFP Approach for
Edge-labelled SI Flow Graphs
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Fixing the Setting

Let
» G=(N,E,s,e) be an edge-labelled Sl flow graph
> Se=ar (C, [ le.. G, fw) be a DFA specification.
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The MOP Approach and MOP Solution

...for an edge-labelled single instruction flow graph.

Definition B.2.1.1 (The MOP Solution)
The MOPE , solution of S¢ is defined by:

MOPES, - N —C

Vnel. I\/IOP‘E-GL df|_|{|1p]]ELC5)|pEP[S n}
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The MaxFP Approach and MaxFP Solution

...for an edge-labelled single instruction flow graph.

Definition B.2.1.2 (The MaxFP Solution)

The MaxFPg , solution of S¢ is defined by:
MaxFPgS, : N —C

Vn € N. MaxFPES (n)=gr inf% (n)

where inf . denotes the greatest solution of the MaxFP Equation
System:

) G ifn=s
inf (n) = { [1{[(m,n)]g, (inf(m))|m € pred(n)} otherwise
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B.2.2

MOP and MaxFP Approach for
Node-labelled BB Flow Graphs
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Fixing the Setting (1)

In the following we denote

» basic block nodes by boldface letters (m, n,...)
» single instruction nodes by normalface letters (m, n,...)

We start from
» G=(N,E,s,e), a node-labelled S| flow graph
> Sc=ur (é\,[[ ]]N,w Gs, fw), a DFA specification

which induce a BB flow graph G and a corresponding DFA
specification Sg.
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Fixing the Setting (2)

Given G and Sg, let
> G:(N,E,SG,GG)

> Sa=ar (C.[ Iy 5 Gs: )

denote the node-labelled BB flow graph and the DFA specification
induced by G and Sg, respectively, where

» [ Insg:N=C—C

denotes the extension of the SI DFA functional [ ], from nodes
to basic blocks defined by

> Vn:<nL1,...,nLk> € N. IIn]]N,B:deI<n1" : '7nk> ]]N,L
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Fixing the Setting (3)

Auxiliary Mappings
» bb: maps a node n to the basic block n it is included in.

> start: maps a basic block node n to its entry node n.
» end: maps a basic block node n to its exit node n.
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The MOP Approach and MOP Solution (1)

...for a node-labelled basic block flow graph.

Definition B.2.2.1 (The MOP Solution, Part 1)
The MOPy g solution of Sg is defined by
MOPye, : N— (C,C)
¥n € N. MOPRS,(n)=ar ( N-MOPy¢ 5(n), X-MOPye4(n))
where

N-MOPye5(nm)=ar [ [{[PIn s(cs) | p € Pals.n}
X-MOPye5(m)=ar [ [{[PIns(c5) | P € Pals.n]}
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The MOP Approach and MOP Solution (2)

Entry (N) and exit (X) information for basic block nodes must be
pushed inside of the basic blocks:
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The MOP Approach and MOP Solution (3)

...and its refinement to the SI Level:

Definition B.2.2.1 (The MOP Solution, Part 2)
The MOPy,, solution of Sg is defined by

MOP3s, : N— (C.C)

Vn e N. MOP}S (n)=ar ( N-MOPYE, (n), X-MOP3S (n))
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The MOP Approach and MOP Solution (4)

where

N-MOPyS,(bb(n))
if n=start(bb(n))
N-MOPSE (n)  =ar s
" [P 1n, (N-MOP:5(bb(n)))
otherwise (note: p is the prefix path from
start(bb(n)) up to but exclusive of n)

X-MOPjE,(n) =gt [P 1y, (N-MOPyE;(bb(n)))
(note: p is the prefix path from
start(bb(n)) up to and inclusive of n)
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The MaxFP Approach and MaxFP Solution (1)

...for a node-labelled basic block flow graph.

Definition B.2.2.2 (The MaxFP Solution, Part 1)
The MaxFPy g solution of Sg is defined by
Vn € N. MaxFPys 5(n) = ( N-MaxFPE4(n), X-MaxFPE4(n))
where

N—I\/IaxFP‘,ffﬁ(n):df pre;, 5(n)

X-MaxFPRE 5(n)=af post?, ()
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The MaxFP Approach and MaxFP Solution (2)

...and where pre; 3 and post, 3 denote the greatest solution of the
MaxFP Equation System:

. Cs if n=s
pre(n) =\ [{post(m)|m € predg(n)} otherwise

post(n) = [n]ys(pre(n))

1654/17



The MaxFP Approach and MaxFP Solution (3)

Entry (N) and exit (X) information for basic block nodes must be
pushed inside of the basic blocks:
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The MaxFP Approach and MaxFP Solution (4)

...and its refinement to the SI Level:

Definition B.2.2.2 (The MaxFP Solution, Part 2)
The MaxFPy,, solution of Sg is defined by

V€ N. MaxFP3e,(n) =gr ( N-MaxFPRE, (n), X-MaxFPy¢,(n))

where

N-MaxFPy,(n)=ar pret (n)  and
X-MaxFPy¢,(n)=ar posts, ,(n)
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The MaxFP Approach and MaxFP Solution (5)

...and where pref | and posty , denote the greatest solution of the
MaxFP Equation System:

prey, 5(bb(n)) if n=start(bb(n))

pre(n) = post(m) otherwise, where m is the
unique predecessor of n
in bb(n)
posty 5(bb(n)) if n=end(bb(n))
post(n) =
[ 1w, (pre(n))
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B.3

Available Expressions
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B.3.1

Available Expressions for Node-labelled

BB Flow Graphs
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Available Expressions (1)

...for a single term t and a node-labelled BB flow graph.

Stage I: The Basic Block Level
Local Predicates (associated with BB nodes):
> BB-X—Compg: [ contains a statement ¢ computing t, and
neither ¢ nor a statement following ¢ in 5 modifies an operand

of t.
> BB—TranspZ,: [ does not contain a statement which modifies
an operand of t.
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Available Expressions (2)

The Basic Block MaxFP Equation System of Stage I:

GCs if 5=sg
BB-N-Availg = ) /A BB-X-Avail; otherwise
pepred(B)
BB-X-Avails = (BB-N-Availg A BB-Transpj) V

BB-X-Compj
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Available Expressions (3)

Stage II: The Instruction Level

Local Predicates (associated with SI nodes):
» Comp}: ¢ computes t.
» Transp!: ¢ does not modify an operand of t.

» BB-N-Avail*, BB-X-Avail*: the greatest solution of the
MaxFP Equation System of Stage |.

Auxiliary Mappings
» bb: maps an instruction ¢ to the basic block S it is included
in.
» start: maps a basic block /3 to its entry instruction ¢.
» end: maps a basic block 3 to its exit instruction ¢.
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Available Expressions (4)

The Single Instruction MaxFP Equation System of Stage II:

N-Avail, — BB—N—.Avallbb(L) if .= s.tart(bb(L))
X-Availpred(,) otherwise (note: | pred(t)| =1)
BB-X-Availy,y if t=end(bb(¢))

X-Avail, =

(N-Avail, V Comp!) A Transp!  otherwise
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B.3.2

Available Expressions for Node-labelled
S| Flow Graphs
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Available Expressions

...for a single term t and a node-labelled SI flow graph.

Local Predicates (associated with SI nodes):
» Comp!: ¢ computes t.

» Transp!: ¢ does not modify an operand of t.

The Single Instruction MaxFP Equation System:

Cs if t.=s
N-Avail, = /A  X-Avail; otherwise
t€pred(t)
X-Avail, = (N-Avail, V Comp}) A Transp!
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B.3.3

Available Expressions for Edge-labelled
S| Flow Graphs
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Available Expressions

...for a single term t and an edge-labelled Sl flow graph.

Locale Predicates (associated with SI edges):
» Comp!: Instruction ¢ of edge £ computes t.

» Transpl: Instruction ¢ of edge £ does not modify an operand
of t.

The Single Instruction MaxFP Equation System:

Cs if n=s
Avail — A (Availy, vV Compg,, ) A Transp(,,
n mé&pred(n)
otherwise
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Looking ahead

Next we consider two more examples to illustrate the impact of a
chosen flow graph variant on the conceptual and practical
complexity of data flow analysis:

» Simple constants analysis (cf. Chapter B.4)
» Faint variables analysis (cf. Chapter B.5)

To this end we will oppose and investigate MaxFP formulations of
these problems for

» node-labelled BB flow graphs
> edge-labelled Sl flow graphs
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B.4

Simple Constants

1669/17



Simple Constants Analysis

...for the formal problem formulation we require two auxiliary
functions:

» Backward substitution

» State transformation 6
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Backward Substitution, State Transformation

Let « = (x:= t) be an instruction. We define:

» Backward substitution 9,
0, : T— T defined by

VseT.6,(s)=ar s[t/x]
where s[t/x] denotes the simultaneous replacement of all
occurrences of x by t in s.
» State transformation 6,

0, : X — ¥ defined by

E(t)(o) if v=x
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The Relationship of ¢ and 6

Let Z denote the set of all instructions.

Lemma B.4.1 (Substitution Lemma for Instructions)

VieZIVteTVoeX E6.(t)(0)=E(t)(0.(0))

Proof by induction on the structure of t.
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B.4.1

Simple Constants for Edge-labelled
S| Flow Graphs
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Simple Constants Analysis
...for an edge-labelled SI flow graph.

The Slg MaxFP Equation System:

VveV.SCy(v)=
{ os(v) if n=s
[T E(O(m,ny(v))(SCm) | m € pred(n) } otherwise

where o € X start information.

The Solution of the SIg SC Analysis is given by
» SC*: N — X, the greatest solution of the above EQS.
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B.4.2

Simple Constants for Node-labelled
BB Flow Graphs
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Backward Substitution and State Transfor-
mation for Paths

...adapting and extending ¢ and 6 from edge-labelled flow graphs
to path (and hence basic blocks) on node-labelled flow graphs:

» A, : T— T defined by A, =g 6, for g=1 and by
A(ny....;ng 1) ©0n, for g>1

» Op: X — X defined by ©, =4r 0,, for g=1 and by
@( 0@, for g > 1.

N2y..iyNg)
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The Relationship of A and ©

Let B denote the set of all basic blocks.

Lemma B.4.2.1 (Substitution Lemma for BBs)
VBeBYteTVoe L. &(8s(t))(0)=E(t)(O5(0))

Proof by induction on the length of 5.

1677/17



Simple Constants Analysis (1)

...for a node-labelled BB flow graph.

Stage |: The Basic Block Level

The BBy MaxFP Equation System of Stage I

os ifB=s
BB-N-SCs = [{BB-X-SC; |5 € pred(B)}
otherwise
Vv eV.BB-X-SCg(v) = &(Ap(v))(BB-N-SCp)

where og € ¥ start information.

The Solution of the BBy SC Analysis is given by

» BB-N-SCj, BB-X-SC; : N — ¥, the greatest solutions of the
above equation systems.
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Simple Constants Analysis (2)

Stage IlI: The Instruction Level
Auxiliary Mappings
» bb: maps an instruction ¢ to the basic block £ it is included
in.
> start: maps a basic block (5 to its entry instruction .
» end: maps a basic block 3 to its exit instruction ¢.

The Sly MaxFP Equation System of Stage Il

BB-N-SCpy(,y  if v=start(bb(¢))
N-SC, = X-SCpred(1) otherwise (note:
| pred(v) | =1)

BB-X-SChy,(v)  if t=end(bb(:))

VveV.X-SC(v) = { E(6,(v))(N-CP,)  otherwise
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Simple Constants Analysis (3)

The Solution of the Sly SC Analysis is given by

» N-SC*,X-SC* : N — X, the greatest solution of the preceding
equation systems.
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B.5
Faint Variables
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Faint Variables: Between Life and Death

The instruction
> | = [+ 1is live,
» d := b+ cisdead,

» f = f+1,fl := f2,and 2 := f1 are live but faint (in
German: kraftlos, ohnmachtig, schattenhaft).

s=1
l:=1+1
d :=b+c
4| f:=f+
2 :=fl
fl:=12
3 [ ou)
e=5

1682/17



Faint Variables Analysis (1)

...for an edge-labelled SI flow graph.

Local Predicates (associated with S| edges):

> Rel-Used!: a relevant use of variable v, i.e., v is used in the
instruction ¢ associated with edge £ and “is forced to live" by
it (i.e., ¢ is an output or test operation).

> Ass-Used!: every other use of variable v, i.e., v occurs in the
right-hand side expression of the instruction ¢ associated with
edge €.

» Mod/!: the instruction ¢ at edge ¢ modifies variable v.

Auxiliary Mapping

» LhsVar: maps an edge ¢ to the left-hand side variable of the
instruction ¢ associated with it.

1683/17



Faint Variables Analysis (2)

The Slg MaxFP Equation System:

Vv e V. Faint] =

fve if n=e
/A —Rel-Used/,
(n,m)
mé&succ(n)
(Mod(,, ,» V Fainty) A
(—Ass-Used(,, . V Fainty™ 2"™™)  otherwise

where fve € IBIV! start information.

The Solution of the Slg Faint Variables Analysis is given by

» Faint* : N— BV, the greatest solution of the above
equation system.
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Summing up

The faint variables problem is an example of a non-separable DFA
problem, where a formulation leading to an efficient
implementation is

» obvious for (node and edge-labelled) SI flow graphs,

» not at all obvious, if not impossible at all, for (node and
edge-labelled) BB flow graphs.

(Note that the naive straightforward extension to BB graphs
would require for every basic block n to compute the full
semantic function [n]., . : IB® — IB*, where k, is the
number of variables occuring in n, a function with 2%
arguments. In the worst case, k;, coincides even with the
number of all variables in the program under consideration.)
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B.6

Conclusions
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In closing, all

...4 flow graph variants are essentially equivalent with in most
cases only minor pragmatic advantages and disadvantages.

Thus the general holistic framework and tool kit view of DFA

DFA
Specification
Theory | Practice Toolkit
% Im&rlut&%

( Property \<

(]

\/ 2 \\
Proof ,
Obligations:  Equivalence Optimality/Conservativity Effectivity

is conceptually adequate and sufficient while being aware of these
differences for the adequacy and ease of their use in specification,

implementation, and proof obligation accomplishment.
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Appendix C

Implementing Busy and Lazy Code Motion
on S| and BB Flow Graphs
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C.1
Implementing BCM and LCM on SI Graphs
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C.11

Preliminaries
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Busy and Lazy Code Motion

...for node-labelled SI graphs:

» BCM, transformation
» LCM, transformation

Convention: For the following we assume that only critical edges
are split. Therefore, BCM, and LCM, require insertions at both
node entries and node exits (N-insertions and X-insertions).
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Local Predicates for BCM, and LCM,

Local Predicates:

» COMP,(t): t is computed by ¢.
» TRANSP,(t): No operand of t is modified by ¢.
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C.1.2
Implementing BCM,
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Implementing BCM, (1)

1. Analyses for Up-Safety and Down-Safety

The MaxFP-Equation System for Up-Safety:

false if t=s
N-USAFE, = II X-USAFE; otherwise
tepred(L)

X-USAFE, = (N-USAFE, + COMP,) - TRANSP,
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Implementing BCM, (2)

The MaxFP-Equation System for Down-Safety:

N-DSAFE, = COMP, + X-DSAFE, - TRANSP,

X-DSAFE, = II N-DSAFE; otherwise

tesucc(t)

{ false if t.=e
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Implementing BCM, (3)

2. The Transformation: Insertion&Replacement Points

Local Predicates:

» N-USAFE*, X-USAFE*, N-DSAFE*, X-DSAFE*: ...denote
the greatest solutions of the equation systems for up-safety
and down-safety of step 1.

1698/17



Implementing BCM, (4)

Computing Earliestness (no data flow analysis!):

N-EARLIEST, =4 N-DSAFE;- [] (X-USAFE: + X-DSAFE})
tepred(L)

X-EARLIEST, =4 X-DSAFE’-TRANSP,
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Implementing BCM, (5)

The BCM, Transformation:
N-INSERTBM  —, N-EARLIEST,
X-INSERTBM  — - X-EARLIEST,

REPLACEB®M =, COMP,
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C.1.3
Implementing LCM,
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Implementing LCM, (1)

3. Analyses for Delayability and Isolation

The MaxFP-Equation System for Delayability:

N-DELAYED, = N-EARLIEST, +
false if 1=s

[I X-DELAYED,  otherwise
V' Epred(L)

X-DELAYED, = X-EARLIEST, + N-DELAYED, - COMP,
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Implementing LCM, (2)

Computing Latestness (no data flow analysis!):

N-LATEST, =4 N-DELAYED] - COMP,

X-LATEST, =4r X-DELAYED; - Y N-DELAYED;,

V' esucc(L)

where

» N-DELAYED*, X-DELAYED": ...denote the greatest
solutions of the equation system for delayability.
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Implementing LCM, (3)

The ALCM, Transformation:

N-INSERTALCM  —,.  N-LATEST,
X-INSERTALCM  — . X_LATEST,

REPLACEALCM  — . COMP,

1704/17



Implementing LCM, (4)

The MaxFP-Equation System for Isolation:

N-ISOLATED, = X-EARLIEST, + X-ISOLATED,

X-ISOLATED, = H N-EARLIEST, + COMP, - N-ISOLATED,

V Esucc(t)
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Implementing LCM, (5)

4. The Transformation: Insertion&Replacement Points

Local Predicates:

» N-ISOLATED*, X-ISOLATED”: ...denote the greatest
solutions of the equation system for isolation of step 3.
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Implementing LCM, (6)

The LCM, Transformation:

N-INSERTLCM  — . N-LATEST, - N-ISOLATED”
X-INSERTLCM  — . X-LATEST,

REPLACELCM =, COMP, - N-LATEST, - N-ISOLATED?
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C.2
Implementing BCM and LCM on BB Graphs
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C.21

Preliminaries
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Implementing Busy and Lazy Code Motion

...for node-labelled BB graphs:

» BCMg Transformation
» LCMg Transformation

Convention: For the following we assume that (1) only critical
edges are split. Therefore, BCMg and LCMpg require insertions at
both node entries and node exits (N-insertions and X-in- sertions),
and that (2) all redundancies within a basic block have been
removed by a preprocess.
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Conceptual Splitting of a Basic Block

...into entry, middle, and exit part.

a) b)
(X = b
|y = a+b,
Entry Part u=cood

Middle Part(s)

Unique Entry (Exit)
Computation after
Local Redundancy
Elimination

—
Entry (Exit)
Insertion Point

Exit Part

Original Basic Block Basic Block after Local
Redundancy Elimination
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Entry and Exit Parts of a Basic Block

For PRE, we do not need to distinguish between entry and middle
part(s), and can consider them a unit. This gives rise to the
following definition:

Given a computation t, a basic block n can be divided into two
parts:

> an entry part which consists of all statements up to and
including the last modification of t

> an exit part which consists of the remaining statements of n.

Note: The entry part of a non-empty basic block is always
non-empty; in distinction, the exit part of a non-empty basic block
can be empty (as illustrated in the following figure).
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lllustrating Entry & Exit Part

a)

b)

Entry Part
Exit Part

c)

of a Basic Block

=== =<

N~ - - = -

Entry (Exit) Computation

—= Entry (Exit) Insertion Point
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The General Pattern of CM on BB Graphs

1. Introducing temporay
1.1 Define a new temporary variable h¢p, for t.

2. Insertions
2.1 Insert assignments h¢yy:= t at the insertion point of
the entry art of all 8 € N satisfying N-INSERTM
2.2 Insert assignments h¢yy:= t at the insertion point of
the exit part of all 8 € N satisfying X-INSERTM

3. Replacements
3.1 Replace the (unique) entry computation of t by hc¢y in
every 3 € N satisfying N-REPLACEM
3.2 Replace the (unique) exit computation of t by h¢y in
every 3 € N satisfying X-REPLACEM
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Local Predicates for BEM 3 and LCM

Local Predicates:

» BB-N-Compg(t): B contains a statement ¢ that com- putes
t, and that is not preceded by a statement that modifies an
operand of t.

» BB-X-Compg(t): B contains a statement ¢ that com- putes
t and neither ¢ nor any other statement of 5 after ¢
modifies an operand of t.

» BB-Transpg(t): B contains no statement that modi- fies an
operand of t.
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C.2.2
Implementing BCM 5
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Implementing BCM 3 (1)

1. Analyses for Up-Safety and Down-Safety

The MaxFP-Equation System for Up-Safety:

{ false if B=s

BB-N-USAFEz = II (BB—X—CompﬁA + BB-X-USAFE;) otherwise

Bepred(B)

BB-X-USAFEs = (BB-N-USAFEg + BB-N-Compg) - BB-Transpy
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Implementing BCM 5 (2)

The MaxFP-Equation System for Down-Safety:

BB-N-DSAFE; = BB-N-Compg + BB-X-DSAFEg - BB-Transpg

BB-X-DSAFEs; = BB-X-Compg +

false if G=e
[T BB-N-DSAFEj; otherwise
Besucc(ﬁ)
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Implementing BCM 5 (3)

2. The Transformation: Insertion&Replacement Points

Local Predicates:

» BB-N-USAFE*, BB-X-USAFE*, BB-N-DSAFE*,
BB-X-DSAFE*: ...denote the greatest solutions of the
equation systems for up-safety and down-safety of

step 1.
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Implementing BCM 5 (4)

Computing Earliestness (no data flow analysis!):

N-EARLIESTs =g BB-N-DSAFE} -
1T ¢ BB-X-USAFE} + BB-X-DSAFE} )
Bepred(B)
X-EARLIESTs =4 BB-X-DSAFE} - BB-Transp,
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Implementing BCM 3 (5)

The BCMg Transformation:

N-lNSERTgCM =4f
X-lNSERTgCM =4f

N-REPLACEECM =4f
X-REPLACEgCM =4f

N-EARLIEST 3
X-EARLIEST

BB-N-Compg
BB-X-Compg
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C.2.3
Implementing LCM 3
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Implementing LCM 3 (1)

3. Analyses for Delayability and Isolation

The MaxFP-Equation System for Delayability:
N-DELAYEDg = N-EARLIEST g +
false if B=s

II BB-X—CompB . X—DELAYEDé otherwise
Bepred(B)

X-DELAYEDg = X-EARLIEST 3 + N-DELAYEDg - BB-N-Compg
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Implementing LCM 3 (2)

Computing Latestness (no data flow analysis!):

N-LATEST g =4 N-DELAYED} - BB-N-Comp

X-LATEST g =4f X—DELAYED’[; ( BB-X—CompB + Z N-DELAYEDE)
Besucc(B)

where

» N-DELAYED*, X-DELAYED": ...denote the greatest
solutions of the equation system for delayability.
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Implementing LCM 3 (3)

The ALCM g Transformation:

N-INSERTZEM - — ¢
X-INSERTZEM - — ¢

N-REPLACEQLCM =gf
x-REPLACEgLCM =

N-LATEST
X-LATEST;

BB-N-Compg
BB-X-Compg
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Implementing LCM 3 (4)

The MaxFP-Equation System for Isolation:

N-ISOLATEDg = X-EARLIESTg + X-ISOLATEDg

X-ISOLATEDg = H N-EARLIESTB + BB—N—COmpBA . N—ISOLATED,@
Besuce(B)
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Implementing LCM 3 (5)

4. The Transformation: Insertion&Replacement Points

Local Predicates:

» N-ISOLATED*, X-ISOLATED”: ...denote the greatest
solutions of the equation system for isolation of step 3.
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Implementing LCM 3 (6)

The LCMp Transformation:

N-INSERT'BCM =4r N-LATESTg - N-ISOLATED}
X-INSERTESM =4 X-LATEST - X-ISOLATED}

N-REPLACEL®™ =4  BB-N-Comp, - N-LATEST; - N-ISOLATED}
X-REPLACEL™™ =4 BB-X-Compy - X-LATEST; - X-ISOLATED
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C.3

lllustrating Example
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The Original Program
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After the Splitting of Critical Edges

afy:
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Up/Down-Safe, Earliest Computation Points

©® D-Safé

O Earliest
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The Result of the BCM 3 Transformation
1]

[ 5]
= FRE T
s
>

=2 n B
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Delayable and Latest Computation Points

@® Earliest
® Delayed
QO Latest
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The Result of the ALCM s-Transformation

-

[ 5]
= e
F
>

Wl
=2~ -~
3
=

1735/17



Latest and Isolated Program Points

* Earliest
® Isolated
QO Latest
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The Result of the LCM g Transformation
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C.4

References, Further Reading
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Further Reading for Appendix C

@ Jens Knoop, Oliver Riithing, Bernhard Steffen. Lazy Code
Motion. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI'92), ACM SIGPLAN Notices 27(7):224-234, 1992.

@ Jens Knoop, Oliver Riithing, Bernhard Steffen. Optimal Code
Motion: Theory and Practice. ACM Transactions on
Programming Languages and Systems 16(4):1117-1155, 1994.
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Appendix D
Lazy Strength Reduction
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D.1

Motivation
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From BCM to LSR

...from busy code motion to lazy strength reduction.

Objective: Developing a program optimization which

» uniformly covers

» Partial Redundancy Elimination (PRE)
» Strength Reduction (SR)

» avoids superfluous register pressure caused by unnecessary
code motion

> requires only uni-directional data flow analyses.
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The Approach

We will stepwise and modularly extend
» the BCM and the LCM to arrive at the

» Busy Strength Reduction (BSR)
» Lazy Strength Reduction (LSR)
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D.2

Running Example
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The Running Example

=

10 |::|

16

=ix10
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The Result of Lazy Strength Reduction

M
A=) 5| | o[f=i75]

T[h=ix10] 8[h:=ix10] 9[h:=h+80]
( J

10 |::|

16
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D.3

Preliminaries
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Candidate Expressions

...for lazy strength reduction.

Candidate expressions for

» Code motion: No restrictions, every term t € T

» Lazy strength reduction: Every term of the form vxc € T,
where

» v is a variable

» C is a source code constant
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Local Predicates for Lazy Strength Reduction

Local predicates for lazy strength reduction
» Used(n)=q4f v *x c € SubTerms(t)
> Transp(n)=4f x # v
» SR-Transp(n)=ar Transp(n) V t = v +d with d € C

Note: The value of a candidate expression v * c is
» killed at a node n, if =(Transp(n) vV SR-Transp(n))
while it is

» injured at a node n, if = Transp(n) A SR-Transp(n)
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The Essence of Strength Reduction

Values which are injured but not killed can be

» cured by inserting an update instruction of the form
h := h+ Cure(n), where Cure(n)=g4r c * d.

Note that the (correction) value of Cure(n) can be computed at
compile time since both ¢ and d are source code constants.
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Splitting of Critical Edges

As common for code motion transformations like BCM and LCM,
critical edges need to be split in order to get the full power of

» Lazy Strength Reduction (LSR)

a) b)
! \ \ ' \ \
1[a:=atb] 2| | 1 h::a;b 2
\ T =
\ / 4{h=ath]
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Splitting of Join Edges

Moreover, in order to allow insertions of statements

» uniformly at node entries

we assume that even

» all join edges (and not just critical edges)

are split as for the BCM and LCM transformations (cf. Chapter 7
and 8).
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D.4

Extending BCM to Strength Reduction: The
BSR Transformation
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Extending BCM to Strength Reduction

...straightforward leads to Busy Strength Reduction (BSR).

The BSR Transformation
1. Introduce a new auxiliary variable h for v xc
2. Insert at the entry of every node n satisfying

2.1 Inspsp the assignment h:=vx ¢

2.2 InsUpdgg, the assignment h:=h+ Cure(n)
3. Replace every (original) occurrence of v*c in G by h

Note: If Insggg and InsUpdggy hold both at some node n, the
initialization statement h:= v % ¢ must precede the update
instruction h:= h + Cure(n).
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Running Example: The Result of BSR

h:=ix10
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Shortcomings of BSR

Shortcoming

» BSR can suffer from multiplication-addition-sequences.

Remedy
» Moving insertions at (x, +)-critical insertion points in the

direction of the control flow to the “earliest” non-critical ones.

Note

» An insertion point is (x, +)-critical if there is a v  c-free
program path from this point to a modification site of v.
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D.5

The 1st Refinement: Avoiding
Multiplication-Addition Sequences — The
BSREstrer Transformation
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BSR Fstrer: Avoiding (*, +) Sequences

The BSRFEsrer Transformation
1. Introduce a new auxiliary variable h for v x ¢

2. Insert at the entry of every node n satisfying

2.1 Inspgrer the assignment h:= v xc

2.2 InsUpdgr,pes the assignment h:=h + Cure(n)
3. Replace every (original) occurrence of v c in G by h
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Running Example: The Re

10|:

h:=ix10

16

sult of BSR rstrer

12 i=it2
h:=h+20
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Shortcomings of BSR rstger

Shortcoming

> BSREgrer can suffer from unnecessary register pressure due
to unnecessary code motion.

Remedy
» Adding lazyness to BSRrstref-
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D.6

The 2nd Refinement: Avoiding Unnecessary
Register Pressure — The BSR s,dref
Transformation
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Running Example: Pre-Result of BSRspdrer

10 |::|

16
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Running Example: The Result of BSRsdrer

12| i=i+2
h:=h+20

10 |::|

16|
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Shortcomings of BSR s,qrer

Shortcoming

» BSRsndrer can suffer from multiple-addition sequences.

Remedy

» Replacing of multiple-addition sequences by a single
cumulated addition instruction.

Note

» The resulting third refinement of the BSR transforma- tion,
BSR Tharet, defines the

Lazy Strength Reduction (LSR), i.e., LSR=4f BSR ThdRef-
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lllustrating Multiple-Addition Sequences

‘h:h+20‘ ‘h:h+40‘
=i+42 =i+4
‘h::h+30‘ ‘h.:h+10‘
i:=i+3 =i+1
h:=h+20
i=it2 ‘
1 a:=h
I [ | [hi=ix10]
L
2[ a:=h]
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D.7

The 3rd Refinement: Avoiding Multiple-
Addition Sequences — The (BSR 1haref =)
LSR Transformation
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lllustrating Example

...suffering from multiple-addition sequences:

h:=h+20 ‘ ‘ h:=h+40 ‘
ii=1+2 i:=1+4
h:=h+30 h:=h+10
i=i+3 ‘ ‘ =i+l ‘
1
h:=h+20 h:=h+10
i=it2 ‘ i=itl ‘
1 a:=h
\ | | [h=ix10]
L
2[ a:=h |
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Avoiding Multiple-Addition Sequences (1)

...basic accumulation of the effect of cure instructions across basic
blocks:

[h:i=h+50] [h:=h+50]

[h:=h+40] [h:=ix10]

2| g:=h
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Avoiding Multiple-Addition Sequences (2)

...refined accumulation of the effect of cure instructions across
extended basic blocks:

[ | [h=h+90] [h:=ix10]

2| g:=h
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Running Example: The Result of LSR

o)
a[f=ir1) 5 | 6 [T= 73]

T[h=ix10] 8[h:=ix10] 9[h:=h+80]
( J

10 |::|

16
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Exercise

1. Specify the DFAs and transformations required for
» BSR
» BSRFEstrer (avoiding multiplication-addition sequences)
» BSRsndrer (avoiding unnecessary register pressure)
» LSR =4 BSR1hdrer (avoiding multiple-addition sequ.)
2. Implement the DFAs in PAG.

3. Validate the DFAs on the running example of Appendix D (or
an example coming close to it).
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Summary

Running Example

..of the predicate values of the properties required for LSR:

Jooolooolocooloo o oloocoo
Kool ooclocoo|~HHHO|lHO OO
Q| HlocorHoroOlcoo o
Sloocoolocoolwoolcorooloocooco
Rlooo|+ooltoocjloco-oolocooo
Nlocoolpoolmoolococoroloooo
Clooolcoo|lHooloco-oolocooo
BococoolHoolHoolococoo~oloocoo
Yool ooloroloccoo~o|l~oO~
=

5]

2

EQ~oo|~voocloroloccoo oo O~

S

2

g8lorolHoo|lHoojlcoco~oloooo

<]

2
dlHoo|l4ocolorolococoo~olocooo
Qoo+~ r|lHHolocoroolocooo
o~ H|lHoolocooclococoo~o|l+o~o
wlHoo|l1oolocoolH~o~r-|l+-H0O
~NHEH A AH OO O A HA|H A O A H|[H - OO
oo~ o|lHoolHoolococoo~oloooo
wlHoolHoolcool~o~ooloooo
tlo-olHoo|lwHOoloco~oOloooO
MmHoo|lvoolocoolHo~oolocooo
NjHoo|HoolocoolHo-oolocooo
|t HloOoHHOoOHO0OlooO O

0

b % %5
IR 8% 2 ne

o = e Glm N 9 o
® %m ku$ac_u ° Gha 3 A3
=B P|letr|lol | L or|ZoLrdg o
L83 R|AS Hn e hpg e E[EEE
Tlo= 0|lo= 0| 2 o[ d 4 @ © o=
R LR L
AW AWM W RO HA—SHD H|<HHA
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lllustrating Down-Safety and Earliestness

...using a new, “not related”, example:

s=1 Earliestey

Earliestcy 3 Earliestey 4

Earliestcey

D-Safecy

Earliesten

D-Safecy

Earliestcey

D-Safecy

Earliestcy

D-Safecy

Earliestey

D-Safecy

Earliestcy
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D.8

References, Further Reading
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Further Reading for Appendix D (1)

[§ Frances E. Allen, John Cocke, Ken Kennedy. Reduction of
Operator Strength. In Stephen S. Muchnick, Neil D. Jones
(Eds.). Program Flow Analysis: Theory and Applications.
Prentice Hall, 1981, Chapter 3, 79-101.

[§ Keith D. Cooper, Linda Torczon. Engineering a Compiler.
Morgan Kaufman Publishers, 2004. (Chapter 10.4.2, Strength
Reduction)

[§ Dhananjay M. Dhamdhere. A New Algorithm for Composite
Hoisting and Strength Reduction Optimisation (+
Corrigendum). International Journal of Computer Mathematics
27:1-14&31-32, 1989.
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Further Reading for Appendix D (2)

[M Dhananjay M. Dhamdhere, J. R. Isaac. A Composite
Algorithm for Strength Reduction and Code Movement
Optimization. International Journal of Computer and
Information Sciences 9(3):243-273, 1980.

[@ S. M. Joshi, Dhananjay M. Dhamdhere. A Composite
Hoisting-strength Reduction Transformation for Global
Program Optimization — Part | and Part II. International
Journal of Computer Mathematics 11:21-41&111-126, 1982.

[§ Robert Kennedy, Fred C. Chow, Peter Dahl, Shing-Ming Liu,
Raymond Lo, Mark Streich. Strength Reduction via SSAPRE.
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144-158, 1998.
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Further Reading for Appendix D (3)
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