Optimierende Compiler

LVA 185.A04, VU 2.0, ECTS 3.0
WS 2015/2016

(Stand: 24.01.2016)

Jens Knoop

Technische Universitat Wien comp\ii(:lg
Institut fiir Computersprachen Iang uages

1/925

Contents

Table of Contents

2/925

Table of Contents (1)

Part I: Introduction

» Chap. 1: Motivation
» Chap. 2: Data Flow Analysis in a Nutshell

2.1 Program Analysis
2.2 Forward Analyses
2.3 Backward Analyses

» Chap. 3: Taxonomy of DFA-Analyses

Contents

3/925

Table of Contents (2)

Part Il: Intraprocedural Data Flow Analysis Contents

» Chap. 4: Flow Graphs
» Chap. 5: The Intraprocedural DFA Framework
5.1 The MOP Approach
5.2 The MaxFP Approach
5.3 Coincidence and Safety Theorem
5.4 Examples: Available Expressions, Simple Constants
5.4.1 Available Expressions
5.4.2 Simple Constants
» Chap. 6: Partial Redundancy Elimination
6.1 Motivation
6.2 The PRE Algorithm of Morel&Renvoise
» Chap. 7: Busy Code Motion
7.1 Preliminaries
7.2 The BCM-Transformation
7.3 An Extended Example

4/925

Table of Contents (3)

Contents

» Chap. 8: Lazy Code Motion
8.1 Preliminaries
8.2 The ALCM-Transformation
8.3 The LCM-Transformation
8.4 An Extended Example

» Chap. 9: Implementing Busy and Lazy Code Motion
9.1 Implementing BCM and LCM on SI-Graphs

9.1.1 Preliminaries
9.1.2 Implementing BCM,
9.1.3 Implementing LCM,

9.2 Implementing BCM and LCM on BB-Graphs

9.2.1 Preliminaries
9.2.2 Implementing BCMg
9.2.3 Implementing LCMjp

9.3 An Extended Example

5/925

Table of Contents (4)

Contents

» Chap. 10: Sparse Code Motion
» Chap. 11: Lazy Strength Reduction
» Chap. 12: More on Code Motion

12.1 Motivation

12.2 Code Motion vs. Code Placement

12.3 Interactions of Elementary Transformations
12.4 Paradigm Impacts

12.5 Further Code Motion Transformations

6/925

Table of Contents (5)

Contents

Part Ill: Interprocedural Data Flow Analysis

» Chap. 13: The Functional Approach

13.1 The Setting

13.2 Local Abstract Semantics
13.3 The IMOP Approach
13.4 The IMaxFP Approach
13.5 Main Results

13.6 Algorithms

13.7 Applications

» Chap. 14: The Context Information Approach
» Chap. 15: The Cloning-Based Approach

7/925

Table of Contents (6)

» Chap. 16: The Stack-Based Functional Approach Contents
16.1 The Setting
16.2 Local Abstract Semantics
16.3 The IMOPs; Approach
16.4 The IMaxFPs, Approach
16.5 Main Results
16.6 Algorithms
16.7 Further Extensions
16.8 Applications
16.9 Interprocedural DFA: Framework and Toolkit

Part IV: Extensions, Other Settings

» Chap. 17: Alias Analysis
17.1 Sources of Aliasing
17.2 Relevance of Aliasing for Program Optimization
17.3 Shape Analysis

8/925

Table of Contents (7)

» Chap. 18: Optimizations for Object-Oriented Languages
18.1 Object Layout and Method Invocation
18.1.1 Single Inheritance
18.1.2 Multiple Inheritance
18.2 Devirtualization of Method Invocations
18.2.1 Class Hierarchy Analysis
18.2.2 Rapid Type Analysis
18.2.3 Inlining
18.3 Escape Analysis
18.3.1 Connection Graphs
18.3.2 Intraprocedural Setting
18.3.3 Interprocedural Setting

» Chap. 19: Program Slicing

Contents

9/925

Table of Contents (8)

Part V: Conclusions and Prospectives it

» Chap. 20: Summary and Outlook
» Bibliography
» Appendix
» A Mathematical Foundations
A.1 Sets and Relations
A.2 Partially Ordered Sets
A.3 Lattices
A.4 Complete Partially Ordered Sets
A.5 Fixed Point Theorems
» B Intricacies of Basic Block Graphs
B.1 Motivation
B.2 Availability of Expressions
B.3 Constant Propagation and Folding

B.4 Faint Variables
B.5 Conclusion

10/925

Contents

Part |

Introduction

11/925

Chap. 1

Chapter 1

Motivation

12/925

Languages and Their Perceived Performance

High
Optimization /

ideal cas
y Performance
Translation

- (straight forward) Low

High level Low level
Language

» Common perception is that high level languages/ab-
straction gives low level of performance.

» Translation (straight forward) preserves semantics but
does not exploit specific opportunities of lower level
language with respect to performance.

» Optimization improves performance (misnomer: usually
we do not achieve an “optimal” solution - but it is the
ideal case)

Chap. 1

13/925

Generic Structure of an Optimizing Compiler

i Source

Front End

LIR

Optimizer

LIR

Back End

¢ Target

Goal of code optimization

» Discover, at compile-time, information about the
run-time behavior of the program and use that
information to improve the code generated by the
compiler.

Chap. 1

14/925

Model of a Low Level Optimizer

i String of characters

Chap. 1

Lexical analyzer

i String of tokens

Parser

i Parse Tree

Semantic analyzer

¢ Parse Tree

Translator

i Low-level intermediate code

Optimizer

i Low-level intermediate code

Final assembly

i Relocatable object module
or runnable machine code

» All optimization is done on a low level intermediate code.

15/925

Model of a Mixed Level Optimizer

String of characters

Lexical analyzer

String of tokens

Parse Tree

Semantic analyzer

Parse Tree

Intermediate code
generator

Medium-level intermediate code

Optimizer
Medium~-level intermediate code
Code generator

Low-level intermediate code

Postpass optimizer

Relocatable object module
ar runnable machine code

» Optimization is divided into two phases, one operating
on a medium level and one on a low level.

Chap. 1

16/925

Model of a High Level Cache Optimizer

i String of characters

Lexical analyzer

i String of tokens

Parser

i Parse Tree or high—level intermediate code

Semantic analyzer

i High level intermediate code

Data—cache
optimizer

i Medium- or low level intermediate code

Adding data-cache optimization to an optimizing compiler

» Data-cache optimizations are most effective when
applied to a high-level intermediate form.

Chap. 1

17/925

Examples

» High-Level optimizations
» IBM's PowerPC compiler: first translates to LL code
(XIL) and then generates a HL representation (YIL)
from it to do data-cache optimization.
» Source-To-Source Optimizer Tools: Sage++,
LLNL-ROSE, JTransformer.

» Mixed model
» Sun Microsystem's compilers for SPARC
» Intel’s compilers for the 386 architecture family
» Silicon Graphic's compilers for MIPS

» Low level model

» IBM’s compilers for PowerPC
» Hewlett-Packard's compilers for PA-RISC.

Chap. 1

18/925

Practice: m-2-n Compilers and Optimizers

i Source 1 i Source 2 i Source m

Front End 1 FrontEnd2 | - Front End m

Optimizer

,//////?;// IR v:j\\\\\\\\\\ﬂi\\\-

Back End 1 BackEnd2 | = e Back End n

i Target 1 l Target 2 i Target n

Idea: Decoupling of Compiler Front Ends from Back Ends
» Without IR: m source languages, n targets — m x n
compilers
» With IR: m Front Ends, n Back Ends

» Problem: Appropriate choice of the level of IR (possible
solution: multiple levels of IR)

Chap. 1

19/925

IR-Decoupling of Compiler Front/Back Ends

...Is an application of the well-known UNCOL concept:

Chap. 1
| PL 1 | | PL 2 | ... | PLn|
| | |
|
\/
—————————— Universal
| UNCOL | Computer Oriented
—————————— Language
|
| | |
\/ \/ \/
| ML 1 | | ML 2 | | ML m |

» Melvin E. Conway. Proposal for an UNCOL. Communi-
cations of the ACM 1(3):5, 1958.

20/925

Intermediate Representation (IR)

» High level Chap. 1
» quite close to source language, e.g., abstract syntax
tree
» code generation issues are quite clumsy at high-level
» adequate for high-level optimizations (cache, loops)

» Medium level
» represent source variables, temporaries, (and registers)
» reduce control flow to conditional and unconditional
branches
» adequate to perform machine independent
optimizations

» Low level

» correspond to target-machine instructions
» adequate to perform machine dependent optimizations

21/925

Different Kinds of Optimizations

Chap. 1
...for different purposes, e.g.:

» Speeding up execution of compiled code

» Size of compiled code
» when committed to read-only memory where size is an
economic constraint
» or code is transmitted over a limited-bandwidth
communications channel

» Energy consumption

v

Response to real-time events

> etc.

22/925

Considerations for Optimization

Chap. 1

» Safety

» correctness: generated code must have the same
meaning as the input code
» meaning: is the observable behavior of the program

» Profitability

» improvement of code
» trade offs between different kinds of optimizations

» Problems
» reading past array bounds, pointer arithmetics, etc.

23/925

Scope of Optimization (1)

» Local

vV vV VvV VY

basic blocks

statements are executed sequentially

if any statement is executed the entire block is executed
limited to improvements that involve operations that all
occur in the same block

» Intra-procedural (global)

>

>

entire procedure

procedure provides a natural boundary for both analysis
and transformation

procedures are abstractions encapsulating and
insulating run-time environments

opportunities for improvements that local optimizations
do not have

Chap. 1

24/925

Scope of Optimization (2)

Chap. 1

» Inter-procedural (whole program)
» entire program
» exposes new opportunities but also new challenges
> name-scoping
» parameter binding
> virtual methods
» recursive methods (number of variables?)

» scalability to program size

25/925

Optimization Taxonomy

Optimizations are categorized by the effect they have on the
code.

» Machine independent
» largely ignore the details of the target machine
» in many cases profitability of a transformation depends
on detailed machine-dependent issues, but those are
ignored

» Machine dependent
» explicitly consider details of the target machine
» many of these transformations fall into the realm of
code generation
» some are within the scope of the optimizer (some cache
optimizations, some expose instruction level parallelism)

Chap. 1

26/925

Machine Independent Optimizations (1)

» Dead code elimination

» eliminate useless or unreachable code
» algebraic identities

» Code motion

» move operation to place where it executes less
frequently

» loop invariant code motion, hoisting, constant
propagation

» Specialize
» to specific context in which an operation will execute
» operator strength reduction, constant propagation,
peephole optimization

Chap. 1

27/925

Machine Independent Optimizations (2)

Chap. 1

» Eliminate redundancy
» replace redundant computation with a reference to
previously computed value
» e.g. common subexpression elimination, value
numbering

» Enable other transformations

» rearrange code to expose more opportunities for other
transformations
» e.g. inlining, cloning

28/925

Machine Dependent Optimizations

Chap. 1

» Take advantage of special hardware features
» Instruction selection

» Manage or hide latency

» Arrange final code in a way that hides the latency of
some operations
» Instruction scheduling

» Manage bounded machine resources

» Registers, functional units, cache memory, main
memory

29/925

Case Study: C++4STL Code Optimization

...on the impact of programming style and optimization on
performance.

» Different programming styles for iterating on a container
and performing operation on each element
» Use different levels of abstractions for iteration,
container, and operation on elements
» Optimization levels O1-3 compared with GNU 4.0
compiler
Concrete example: We iterate on container 'mycontainer’ and
perform an operation on each element.
» Container is a vector
Elements are of type numeric_type (double)

>
» Operation of adding 1 is applied to each element
» Evaluation Cases EC1-6

Acknowledgement: Joint work of Markus Schordan&Rene Heinzl.

Chap. 1

30/925

Programming Styles - 1&2

EC1: Imperative Programming Chap. 1
for (unsigned int i = 0; i < mycontainer.size(); ++1i)
{

mycontainer [i] += 1.0;
}

EC2: Weakly Generic Programming

for (vector<numeric_type>::iterator

it = mycontainer.begin();
it != mycontainer.end();
++it)

{
*it += 1.0;

}

31/925

Programming Style - 3

EC3: Generic Programming

Chap. 1

for_each(mycontainer.begin(),
mycontainer.end (),
plus_n<numeric_type>(1.0));

Functor

template<class datatype>
struct plus_n
{
plus_n(datatype member):member (member) {}
void operator () (datatype& value) {
value += member;
}
private:
datatype member;
s

32/925

Programming Style - 4

Chap. 1

EC4: Functional Programming with STL

transform(mycontainer.begin(),
mycontainer.end (),
mycontainer.begin(),
bind2nd (std::plus<numeric_type>(),1.0));

» plus: binary function object that returns the result of
adding its first and second arguments

» bind2nd: Templatized utility for binding values to
function objects

33/925

Programming Styles - 5&6

EC5: Functional Programming with Boost::lambda

std::for_each(mycontainer.begin(),
mycontainer.end (),
boost::lambda::_1 +=1.0);

EC6: Functional Programming with Boost::phoenix

std :: for_each(mycontainer.begin (),
mycontainer.end (),
phoenix::argl += 1.0);

» Use of unnamed function object.

Chap. 1

34/925

Evaluation (EC1-6 without optimization)

A

14.0

10.5

70 —

35 +

0

-00
» Compiler: GNU g++ 4.0

» Evaluation Cases 1-6

» Time measured in milliseconds, container size: 1,000

EC1
EC2
EC3
EC4
ECS
ECé6

JHilL

Chap. 1

35/925

Evaluation: Optimization Levels O1-3

Chap. 1

T

» Compiler: GNU g++ 4.0

» The actual run-time with different optimization levels
-01, -02, -03 for each programming style (EC1-6)

» An almost identical run-time is achieved at level -03.

36/925

Static Analysis and Tool Integration Engine

SATIrE:

Annotated
Program

Annotated
Program

SATIrE

Builder 1

‘IHHHIII

Tool IR
Mapper 1

Builder 2

Tool IR
Mapper 2

Tool IR
Builder n

s

Tool n

R

Tool IR
Mapper n

Chap. 1

37/925

SATIrE: Concrete Architecture (Oct'07)

EDG
C/C++
Front End

Chap. 1
Annotated

Program

Annotation
Mapper

]

Term

Builder Builder
Fortran D Prolog
SATIFE Loop PAG Term
ptimizer | | Analyzer Manipulator

'

Analysis | - [1erm_asT]

Results
Mapper Mapper

Annotated
Program

Iy

ROSE
C/C++
Back End

Program
Annotator

38/925

SATIrE Components (1)

Chap. 1

» C/C++ Front End (Edison Design Group)

» Annotation Mapper (maps source-code annotations to
an accessible representation in the ROSE-AST)

» Program Annotator (annotates programs with analysis
results; combined with the Annotation Mapper this
allows to make analysis results persistent in source-code
for subsequent analysis and optimization)

» C/C++ Back End (generates C++ code from
ROSE-AST)

39/925

SATIrE Components (2)

Chap. 1
» Integration 1 (Loop Optimizer)
» Loop Optimizer: ported from the Fortran D compiler
and integrated in LLNL-ROSE

» Integration 2 (PAG)

» |CFG Builder: Interprocedural Control Flow Graph
Generator, addresses full C++

» PAG Analyzer: a program analyzer, generated with
Abslnt's Program Analysis Generator (PAG) from a
user-specified program analysis

» Analysis Results Mapper: Maps Analysis Results from
ICFG back to ROSE-AST, makes them available as
AST-Attributes

40/925

SATIrE Components (3)

» Integration 3 (Termite)

» Term Builder: generates an external textual term
representation of the ROSE-AST (Term is in Prolog
syntax)

» Term-AST Mapper: parses the external textual program
representation and translates it into a ROSE-AST

Chap. 1

41/925

Optimization — Schematic View

> Analvsis » Transformation
IR Y IR+Results IR
» Analysis

» determine properties of program
» safe, pessimistic assumptions

» Transformation

» based on analysis results

Chap. 1

427925

The Essence of Program Analysis

...program analysis offers techniques for predicting statically
at compile-time safe and efficient approximations to the set of
configurations or behaviors arising dynamically at run-time.

» Safe: faithful to the semantics

» Efficient: implementation with

» good time performance
» low space consumption

Chap. 1

43/925

Typical Optimization Aspects

Chap. 1

» Avoid redundant computations

» reuse available results
» move loop invariant computations outside loops

» Avoid superfluous computations

» results known not to be needed
» results known already at compile time

...to be demonstrated in some examples next.

44/925

Example: Lowering, IR, Address Computation

int a[m] [n], blm][n]l, c[m][n];
Chap. 1
for(int i=0; i<m; ++i) {
for(int j=0; j<n; ++j) {
alil [j1=b[i]l [j1+c[il[j];
}
¥

i=0;
while(i<m) {
3=0;
while(j<n) {
temp=Base(a)+i*n+j;
* (temp) =+ (Base (b) +i*n+j)+*(Base(c)+i*n+j);
j=i*ts
}

i=i+1;

45/925

Analysis: Available Expressions Analysis

...determines for each program point, which expression must
have already been computed, and not later modified, on all
paths to the program point.

i=0;
while(i<m) {
j=0;
while(j<n) {
temp = (Base(a)+i*n+j);
*temp = *(Base(b)+) + *(Base(c)+);
j=j+1;
}
i=itl;

}

Chap. 1

46/925

Optimization: Common Subexpression Elim.

» Analysis: Available Expressions Analysis
» Transformation: Eliminate recomputations of

» Introduce

e [cizivns|
» Use [1] instead of

i=0;

while(i<m) {
j=0;
while(j<n) {

j=3*1s
}

i=i+1;

i=0;
while(i<m) {
j=0;
while(j<n) {
Eemp=(B1se(a)+[]);
*temp = *(Base(b)+[::])
+ *(Base(c)+[::]);
j=j+1;
}

i=i+1;

Chap. 1

47/925

Analysis: Loop Invariant Detection

...a loop invariant is an expression that is always computed to
the same value in each iteration of the loop.

i=0;
while(i<m) {
j=0;
while(j<n) {
ei x5
temp = (Base(a)+tl);
*temp = *(Base(b)+tl) + *(Base(c)+tl);
J=3+1s
}

i=i+l;

Chap. 1

48/925

Optimization: Loop Invariant Code Motion

» Analysis: loop invariant detection
» Transformation: move loop invariant outside loop

» introduce [2-1+n] and replace by [:2]
» move [:2-i+n | outside loop

i=0; i=0;

while(i<m) { while(i<m) {

Chap. 1

3=0;

while(j<n) {
GEEEESE
temp = (Base(a)+tl);
*temp = *(Base(b)+t1)
+ *(Base(c)+tl);
j=i*1;
}

i=i+1;

j=0;

while(j<n) {
1] 2]+5;
temp = (Base(a)+tl);
*temp = *(Base(b)+tl)

+ *(Base(c)+tl);

J=i+1

}

i=i+1;

49/925

Analysis: Induction Variable Detection

=)
while(i<m) {
j=0;
=)
while(j<n) {
t1=t2+j;
temp = (Base(a)+tl);
*temp = *(Base(b)+tl)
+ *(Base(c)+tl);
J=i+1
}
()
}

Basic Induction Variables

» Variables / whose only

definitions within a loop
are of the form i =i+ ¢
ori=i—candcisa
loop invariant.

Derived Induction Variables

» Variables j defined only

once in a loop whose
value is a linear function
of some basic induction
variable.

Chap. 1

50/925

Optimization: Strength Reduction (1)

Chap. 1

...replaces a repeated series of expensive (“strong”) opera-
tions with a series of that
compute the same values.

Classical example:

» Replacing integer multiplications based on a loop index
with equivalent additions.

Note: This particular case arises routinely from expansion of
array and structure addresses in loops.

51/925

Optimization: Strength Reduction (2)

» Analysis: induction variable detection
» Transformation: move multiplication outside of loop

» introduce [:3-in] before the loop, replace by [3]

i=0 |;

while(i<m) {
j=0;
=)
while(j<n) {
t1=t2+j;
temp = (Base(a)+tl);
*xtemp = *(Base(b)+t1)
+ *(Base(c)+tl);
J=j+1;
}
[t}

» add [t3-t3+i+c| at every update site of [i]

i=0;
E£;;;1i<m) {
j=0;
t2=[::];
while(j<n) {
t1=t2+j;
temp = (Base(a)+tl);
*temp = *(Base(b)+tl)
+ *(Base(c)+tl);
Jj=j+1;
}

i=i+1;

[z3=camn];

Chap. 1

52/925

Analysis: Copy Analysis

...determines for each program point, which copy statements
x = y that still are relevant (i.e. neither x nor y have been
redefined) when control reaches that point.

i=0;
t3=0;
while(i<m) {
j=0;
[a-a)
while(j<n) {
v1= v2 J+j;
temp = (Base(a)+tl);
*xtemp = *(Base(b)+t1)
+ *x(Base(c)+t1);
=3+
}
i=i+1;

t3=t3+n;

Chap. 1

53/925

Optimization: Copy Propagation

» Analysis: Copy Analysis and def-use chains (ensure only
one definition reaches the use of x)
» Transformation: Replace the use of x by y.

i=0;
t3=0;
while(i<m) {
j=0;
B
while(j<n) {
t1=+j;
temp = (Base(a)+tl);
*temp = *(Base(b)+t1)
+ x(Base(c)+t1);
j=3+1
}
i=it+l;

t3=t3+n;

i=0;
t3=0;
while(i<m) {
j=0;
t2=t3;
while(j<n) {
t1=[::]+j;
temp = (Base(a)+tl);
*temp = *(Base(b)+t1)
+ *(Base(c)+tl);
§=3+1;
}
i=i+1;

t3=t3+n;

Chap. 1

54/925

Live Variables, Dead Variables

Chap. 1

» A variable is live at a program point if there is a path
from this program point to a use of the variable that
does not re-define the variable.

» |f a variable is not live, it is dead.
A live (dead) variable analysis

» determines for each program point, which variable may
be live (is dead) at the exit from that point.

55/925

Analysis: Dead Variable Analysis

i=0; Chap. 1
t3=0;
while(i<m) {
j=0;
IIIFtB;
while(j<n) {
£1=t3+j;
temp = (Base(a)+tl);
*xtemp = *(Base(b)+t1)
+ *(Base(c)+tl);
Jj=j+1;
}
i=i+l;

t3=t3+n;

» Only variables are marked.

56/925

Optimization: Dead Code Elimination

» Analysis: dead variable analysis
» Transformation: remove all assignments to dead

variables

i=0;
t3=0;
while(i<m) {
j=0;
o)
while(j<n) {
£1=t3+j;
temp = (Base(a)+tl);
*temp = *(Base(b)+t1)
+ *(Base(c)+tl);
j=i*1;
}
i=i+1;
t3=t3+n;

i=0;

t3=0;

while(i<m) {
3=0;

while(j<n) {
t1=t3+5;
temp = (Base(a)+tl);
*temp = *(Base(b)+tl)

+ *(Base(c)+tl);

J=i+1

}

i=i+l;

t3=t3+n;

Chap. 1

57/925

Optimizations at a Glance

Analyses

Transformations

Available expr. analysis
Loop invariant detection
Induction variable detection
Copy analysis

Live variables analysis

Common subexpr. elim.
Invariant code motion
Strength reduction
Copy propagation

Dead code elimination

Further optimizations, i.e., analyses and transformations?

Chap. 1

58/925

Pointer/Alias/Shape Analysis (1)

Chap. 1
Problem

» Ambiguous memory references interfere with an
optimizer’s ability to improve code.

» One major source of ambiguity is the use of
pointer-based values.

Goal of Pointer/Alias/Shape Analysis

» determine for each pointer the set of memory locations
to which it may refer.

59/925

Pointer/Alias/Shape Analysis (2)

Without such analysis the compiler must assume that each
pointer can refer to any addressable value, including

» any space allocated in the run-time heap

» any variable whose address is explicitly taken

» any variable passed as a call-by-reference parameter

Forms of Pointer Analysis
» points-to sets
» alias pairs

» shape analysis

Chap. 1

60/925

Questions about Heap Contents (1)

Let execution state mean the set of cells in the heap, the
connections between them (via pointer components of heap
cells) and the values of pointer variables in the store.

» NULL pointers: Does a pointer variable or a pointer
component of a heap cell contain NULL at the entry to a
statement that dereferences the pointer or component?

» Yes (for every state). Issue an error message.
> . Eliminate a check for NULL.
> . Warn about the potential NULL dereference.

» Memory leak: Does a procedure or a program leave
behind unreachable heap cells when it returns?

> . Issue a warning.

Chap. 1

61/925

Questions about Heap Contents (2)

» Aliasing: Do two pointer expressions reference the same
heap cell?
>

» trigger a prefetch to improve cache performance
» predict a cache hit to improve cache behavior
prediction

» increase the sets of uses and definitions for an
improved liveness analysis

. Disambiguate memory references
and improve program dependence information.

» Sharing: Is a heap cell shared? (within the heap)

> . Warn about explicit deallocation,

because the memory manager may run into an incon-
sistent state.

> . Explicitly deallocate the heap cell
when the last pointer to ceases to exist.

Chap. 1

62/925

Questions about Heap Contents (3)

» Reachability: Is a heap cell reachable from a specific
variable or from any pointer variable?
> . Use this information for program
verification.
> . Insert code at compile time that
collects unreachable cells at run-time.

» Disjointness: Do two data structures pointed to by two
distinct pointer variables ever have common elements?
> . Distribute disjoint data structures
and their computations to different processors.

» Cyclicity: Is a heap cell part of a cycle?
> . Perform garbage collection of data
structures by reference counting. Process all elements
in an acyclic linked list in a doall-parallel fashion.

Chap. 1

63/925

Optimizations f. Object-Oriented Languages (1)

Invoking a method in an object-oriented language requires
looking up the address of the block of code which
implements that method and passing control to it.

Chap. 1

Opportunities for optimization
» Look-up may be performed at compile time

» Only one implementation of the method in the class and
in its subclasses

» Language provides a declaration which forces the call to
be non-virtual

» Compiler performs static analysis which can determine
that a unique implementation is always called at a
particular call-site.

64/925

Optimizations f. Object-Oriented Languages (2)

Chap. 1

Related Optimizations
» Dispatch Table Compression
» Devirtualization
» Inlining

» Escape Analysis for allocating objects on the run-time
stack (instead of the heap)

65/925

Further Reading for Chapter 1 (1)

Chap. 1

[@ Randy Allen, Ken Kennedy. Optimizing Compilers for
Modern Architectures. Morgan Kaufman Publishers,
2002. (Chapter 1, Compiler Challenges for
High-Performance Architectures)

[§ Melvin E. Conway. Proposal for an UNCOL. Communi-
cations of the ACM 1(3):5, 1958.

@ Keith D. Cooper, Linda Torczon. Engineering a Compiler.
Morgan Kaufman Publishers, 2004. (Chapter 1, Overview
of Compilation; Chapter 8, Introduction to Code Optimi-
zation; Chapter 10, Scalar Optimizations)

66/925

Further Reading for Chapter 1 (2)

Chap. 1

[§ Donald E. Knuth. An Empirical Study of Fortran Pro-
grams. Software — Practice and Experience 1:105-13,
1971.

[§ Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997. (Chapter
1, Introduction to Advanced Topics)

El Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition, Springer-V.,
2005. (Chapter 1, Introduction)

67/925

Chap. 2

Chapter 2

Data Flow Analysis in a Nutshell

68/925

21

Chapter 2.1

Program Analysis

69/925

Typical Questions

...of program analysis, especially data flow analysis: 21

» What is the value of a variable at a program point?
~» Constant progagation and folding

» |s the value of an expression available at a program
point?
~> (Partial) redundancy elimination

» |s a variable dead at a program point?
~» Elimination of (partially) dead code

70/925

Common (and also our) Application Scenario

...(program) analysis for (program) optimization:

(Programming"
: Language

Optimizer

Compiler

Code Motion

Constant Propagation =
Dead Code Eliminati —

Data Flow Analysis
Is term t available?
Is the value of term t a constant?

Is variable v dead?

Data Flow Analysis

¥

/I\E;chi;;
Language

71/925

Essential Issues

comprise... o

fundamental ones

» What does optimality mean?
...in analysis and optimization?

as (apparently) minor ones:

» What is an appropriate and suitable program represen-
tation?

72/925

Outlook

21

In more detail we will distinguish:

» intraprocedural
» interprocedural
» parallel

>

data flow analysis (DFA).

73/925

Outlook (cont'd)

Ingredients of (intraprocedural) data flow analysis: 21

» (Local) abstract semantics

1. A data flow analysis lattice ¢ = (C,mu,c,1,T)
2. A data flow analysis functional []| : E — (C—C)
3. A Start information (start assertion) ¢ € C

» Globalization strategies

1. Meet over all Paths Approach (MOP)
2. Maximum Fixed Point Approach (MaxFP)

» Generic Fixed Point Algorithm

74/925

Theory of Intraprocedural DFA

21

Main Results:

» Safety (Soundness) Theorem

» Coincidence (Completeness) Theorem

Plus:
» Effectivity (Termination) Theorem

75/925

Practice of Intraprocedural DFA

The Intraprocedural DFA Framework / DFA Toolkit View:

DFA
T Specification

DFA b ., Theory || Practice
Framework k Interface

Tool Kit

nwwwm{l;,mMm

sssee Coincidence Theorem
Progra Equ — Corr
Property <: - MEP-Solution Computed Solutior
¢ Safety Theorem

Proof
Obligations:

©)

Equivalence Coincidence/Safety Effectivity

21
2.2
2.3

76/925

Practice of DFA

The constraint “intraprocedural” can be dropped.

21
2.2

The DFA Framework / DFA-Toolkit View holds generally: 23

,, -~ DFA
: Specificatio

Intraprocedural

Interprocedural DFA AV4
Parallel Framework

Conditional

Coincidence
Safety

Theorem
Progra
Property
0 L

Proof @ @

Obligations:

Equivalence Coincidence/Safety Effectivity

77/925

Ultimate Goal

21

Optimal Program Optimization

...two twins (weiBer Schimmel) in computer science?

78/925

There is no free Lunch!

21

In the diction of optimizing compilation:

...w/out analysis no optimization!

79/925

Further Reading for Chapter 2.1

21

[§ Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.
Ullman. Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 2nd edition, 2007. (Chapter 1.2, The
Structure of a Compiler; Chapter 1.4, The Science of
Building a Compiler; Chapter 1.4.2, The Science of Code
Optimization; Chapter 9.1, The Principal Sources of
Program Optimization)

80/925

Chapter 2.2

Forward Analyses

81/925

Formalising the Development

» the programming language of interest

» abstract syntax
» labelled program fragments 22

» abstract flow graphs

» control and data flow between labelled program
fragments

» extract equations from the program

» specify the information to be computed at entry and
exit of labeled fragments

» compute the solution to the equations

» work list algorithms
» compute entry and exit information at entry and exit of
labelled fragments

82/925

WHILE Language

Syntactic categories

22

a € AExp arithmetic expressions
b € BExp boolean expressions
S € Stmt statements

x,y € Var variables
n € Num numerals

14 € Lab labels
op, € Op, arithmetic operators

opp € Op, boolean operators
op, € Op, relational operators

83/925

Abstract Syntax

a = x|n|aop,a
b = true | false | not b | by opp by | a1 op, a .
S = [x=a]"| [skip]*

| if [b]¢ then S; else S,
| while[b]* do S od
| 51;5

Assignments and tests are (uniquely) labelled to allow
analyses to refer to these program fragments — the labels
correspond to pointers into the syntax tree. We use abstract
syntax and insert paranthesis to disambiguate syntax.

We will often refer to labelled fragments as elementary
blocks.

84/925

Auxiliary Functions for Flow Graphs

labels(S) set of nodes of flow graphs of S

22

init(S) initial node of flow graph of S; the unique node
where execution of program starts

final(S) final nodes of flow graph for S; set of nodes where
program execution may terminate

flow(S) edges of flow graphs for S (used for forward
analyses)

flowR(S) reverse edges of flow graphs for S (used for
backward analyses)

blocks(S) set of elementary blocks in a flow graph

85/925

Computing the Information (1)

S labels(S) init(S) | final(S)

[x = a]’ {l} 14 {4}

[skip]* {£} ¢ {3

51; 5 labels(S;) U | init(S1) | final(Sy)
labels(S,)

if [b]¢ then (Sy) else (Sy) | {4} Ul final(S;)U
labels(S;) U final(S,)
labels(S,)

while [b]* do S od {¢}Ulabels(S) | ¢ {0}

86/925

Computing the Information (2)

S flow(S) blocks(S)

[x := a] 0 {[x := a]}

[skip]* 0 {[skip]‘}

51; 5 flow(S1) U flow(S;) U | blocks(S;) U
{(¢,init(S2)) | € € | blocks(Sz)
final(S1)}

if [b]¢ then (Sy) else (S,) | flow(S:) U flow(S:) U | {[b]‘} u
{(¢,init(51)), (¢,init(S2))} | blocks(S;) U

blocks(S,)

while [b]* do S od {(¢,init(S))} U flow(S) U | {[b]‘} U
{(¢,0)| ¢ €final(S)} | blocks(S)

flow®(S) =

(6, 0)] (¢, 6) € flow(S)}

87/925

Program of Interest (1)
We shall use the following notation:

» S, to represent the program being analyzed (the “top
level” statement) 22

» Lab, to represent the labels (labels(S,)) appearing in S,
» Var, to represent the variables (FV(S,)) appearing in S,

» Blocks, to represent the elementary blocks (blocks(S,))
occuring in S,

» AExp, to represent the set of non-trivial arithmetic
subexpressions in S,; an expression is trivial if it is a
single variable or constant

» AExp(a), AExp(b) to refer to the set of non-trivial
arithmetic subexpressions of a given arithmetic,
respectively boolean, expression

88/925

Program of Interest (2)

Free Variables FV(a)
The free variables of an arithmetic expression, a € AExp, are
defined to be variables occuring in it. 22

Compositional definition of subset FV(a) of Var

FV(n) =0

FV(x) = {x}
FV(ay + a2) = FV(a1) U FV(ay)
FV(a; x a2) = FV(a;1) U FV(ay)
FV(a; — a2) = FV(a1) UFV(ay)

Similarly for boolean expressions, b € BExp, and statements,
S € Stmt, such that Var, = FV(S,).

89/925

Flow Graphs — Example (1)

Example:
[y :=x]%; [z := 1]%, while[y > 1]3do[z:=z x y]*;[y :=y — 1]° od; [y := 0]°

22

flow(Sx) = {(1,2),(2,3), (3,4), flow®(S,) = {(6,3),(3,5), (5, 4),
(4,5),(5,3),(3,6)} (4,3),(3,2),(2,1)}

90/925

Flow Graphs — Example (2)

Example:
[y :=x]%; [z := 1]% while[y > 1]3do[z:=z x y]*;[y :=y — 1]° od; [y := 0]° 22

labels(S,) = {1,2,3,4,5,6}

init(S,) = 1

final(S,) = {6}

flow(S,) = {(1,2),(2,3),(3,4),(4,5),(5,3),(3,6)}
flow®(S,) = {(6,3),(3,5),(5,4),(4,3),(3,2),(2,1)}
blocks(S,) = {[y:=x]'[z:= 13 [y > 1J°,

[z:=zxy]*[y:=y — 1]° [y :=0]°}

91/925

Simplifying Assumptions

The program of interest S, is often assumed to satisfy:

» S, has isolated entries if there are no edges leading into

init(S,):

22

Ve (¢,init(S,)) ¢ flow(S,)

» S, has isolated exits if there are no edges leading out of
labels in final(S,):

Ve € final(S,), Ve : (¢,0') ¢ flow(S,)
» S, is label consistent if
VB! BS € blocks(S,) : {1 =l — By = B,
This holds if S, is uniquely labelled.

92/925

Reaching Definitions Analysis

...determines for each program point, which assignments may
have been made and not overwritten, when program execution
reaches this point along some path.

22

Example:
[y :=x%[z:= 1% while [y > 13 do [z:=z x y]*; [y :==y — 1]° od; [y := 0]°

» The assignments labelled 1,2,4,5 reach the entry at 4.
» Only the assignments labelled 1,4,5 reach the entry at 5.

93/925

Basic |dea

l RDO(’g) RD [...]Kl [...]KQ

) 0(61 RDQ(£2) 22
[x := a]

l RD.,(¢))\[.L“J]E/RDO(E)

Analysis information: RD,(¢),RD4(¢) : Lab, — PVar, x Labz
» RD,(¥): the definitions that reach entry of block /.
» RD,(¢): the definitions that reach exit of block /.
Analysis properties:
» Direction: forward

» May analysis with combination operator [J

94/925

Analysis of Elementary Blocks

killp([x := a]*)
kI”RD([SkIp]Z)
killrp ([]¢)
gengp([x == a°)
)
)

{(x,MD} U {(x,¢)| B"is assignment to x}

(x,0)}
gengp([skip]’
genRD([b]K

SeSAAE S

Example:
[x:=y]} [x:=x + 3]%

> killrp([x :=y]') = {(x,)} U{(x, 1), (x,2)}
> gengp([x :=y]") = {(x, 1)}

95/925

Analysis of the Program

[.]o [.]e
[| R[]);(‘) RD.(el\ / RD.(L2)
X:=a U
[RDL(0) LR

{(x,7) | x € FV(5,)} o if £ =init(S,)
U{RD.(¢)|(¢, ¢) € flow(S,)} : otherwise
RD.(¢) = (RD,(¢)\killrp(B%)) U gengp(B*) where B € blocks(S,)

96/925

Example

Example:

[y :=x]%; [z := 1]%, while[y > 1]3do[z:=z x y]*; [y :=y — 1]° od; [y := 0]°

Equations: Let

St={:":(¥,1),(y,5). (v, 6)}, % = {(2,7), (2, 2),(z,4)}
RDo(1) = {(x,7),(y,7). (2,7} RDe(1) = RDo(1)
RDo(2) = RDl(1) RDe(2) = RDo(2)
RDo(3) = RD4(2) U RD4(5) RDe(3) = RDo(3)
RDo(4) = RD.(3) RDe(4) = RD,(4)
RDo(5) = RD.(4) RD.(5) = RDo(5)
RDo(6) = RDe(3) RD.(6) = RDo(6)
¢ | RDo(0) RD.(¢)

L] {0z} {x?2).(v.1).(z7)}

2 | {(x7).(v1).(z7)} {(x?).(z.2).(v 1)}
3| {(x).(z4).(z.2).(v.5).(v. 1)} | {(x7).(z.4).(z.2).(v.5).(v.1)}
4 | {(x).(24).(2.2),(v5).(v 1)} | {(z4).(x7).(v.5).(v.1)}

5 | {(z4).(x7).(v.5).(v1)} {(z.4).(x,?).(v.5)}

6 | {(x7).(z4).(z.2).(v.5).(v. 1)} | {(z4).(x.?).(z.2).(v.6)}

22

u {1}
U {(z,2)}

U {(z,4)}

U {(y,5)}
U {(r:6)}

97/925

Solving RD Equations

Input

» a set of reaching definitions equations

Output

» the least solution to the equations: RD,

Data structures
» The current analysis result for block entries: RD,

» The worklist W: a list of pairs (¢, ¢) indicating that the
current analysis result has changed at the entry to the

block ¢ and hence the information must be recomputed
for (.

22

98/925

Solving RD Equations — Algorithm
W:=nil;
foreach (¢,¢') € flou(S,) do W := cons((¢,£'),W); od;
foreach ¢ € labels(Sx) do
if £ € init(S4) then
RDo(¢) := {(x,?) | x € FV(S4)}
else

RDo(¢) := 0

22

fi
od
while W # nil do
(,¢') := head(W);
W o= tail(W);
if (RDo(£)\killrp(B%)) U gengy(B%) & RDo(£') then
RDo(¢') := RDo(¢') U (RDo(£)\killpp(B)) U gengy(BY);
foreach ¢/ with (¢,¢") in flow(S,) do
W := cons((¢,¢"),W);
od
fi
od

99/925

Use-Definition and Definition-Use Chains

» Use-Definition chains or ud chains 22

each use of a variable is linked to all assignments that
reach it
[x == 0]%; [x := 5] [y := x]3; [z := x]*

» Definition-Use chains or du chains

each assignment of a variable is linked to all uses of it
[x := 0]%; [x := 5] [y := x]3; [z := x]*

100/925

UD/DU Chains — Defined via RDs

UD,DU : Var, x Lab, — P(Lab,)
are defined by

UD(x, ¢) = {0'| (x,0') € RD,(£)} : if x € used(B")
o= 0 . otherwise

where used([x := a]‘) = FV(a), used([b]*) = FV(b),
used([skip]?) = 0

and
DU(x, () ={¢ | ¢ € UD(x, ')}

101/925

Available Expressions Analysis

...determines for each program point, which expressions must
have already been computed, and not later modified, on all
paths to the program point.

22

Example:
[x := a+b]!; [y := a*x]%; while [y > a+b]®do [a:=a + 1]*/[x:=a + b]° od

» No expression is available at the start of the program.
» An expression is considered available if no path kills it.

» The expression a+b is available every time execution
reaches the test in the loop at 3.

102/925

Basic |dea

| AE.(0) [.]a [.]%

‘ AE(7 AE.((2)
[x := a]f \ N /
AE. ()

| AR.(0) [

Analysis information: AE.(¢),AE.(¢) : Lab, — PAExp,
» AE,(): the expressions that have been comp. at entry
of block ¢.
» AE,(/): the expressions that have been comp. at exit of
block .
Analysis properties:
» Direction: forward
» Must analysis with combination operator [

22

103/925

Analysis of Elementary Blocks

22

AE,(¢) AE,(¢) AE,(¢)
[x :=a] [b)f [skip]*
AE,(¢) AE,(¢) AE,(?)
killag([x == a]?) = {a € AExp, | x € FV(d)}
killag([skip]?) = 0
killag([b]) = 0
genae([x = a]") = {4’ € AExp(a) | x ¢ FV(d)}
genag([skip]’) = 0
genae([b]) = AExp(b)

Example: [x := a+b]!; [y := axx]?;
» killag([x := a+b]!)={a*x}
> genag([x := a+b]!)={a+b}

104/925

Analysis of the Program

l AEE Y AE. .(fz)
[x := a "
AE,(¢)

L]

0 cif £ =init(Sy)
ABo(() = { NHAEL(O)|(£,€) € flow(S,)} : otherwise
(AEo (£)\kI”AE(Bz)) U genae(BY) where BY € blocks(S,)

>
M
[]

~—~~
~
N—r

105/925

Example

Example:
[x :=a+b]!; [y := a*x]%, while [y > a+b]®do[a:=a + 1]*/[x :=a + b]° od

22

Equations:
AE(1) = 0 AE.(1) = AEo(1)\{a*x} U {a+b}
AEo(2) = AEl(1) AEe(2) = AEo(2)\ 0 U {axx}
AEo(3) = AE.(2) NAEe(5) AEe(3) = AE.(3)\ 0 U {a+b}
AEo(4) = AE.(3) AE.(4) = AEo(4)\{a+barx,a+1} U D
AEo(5) = AE.(4) AEe(5) = AEs(5)\ {a*x} U {a+b}

¢ | AEo(0) | AEL(0)

110 {a+b}

2 | {a+b} | {a+b,a*x}
3| {a+b} | {a+b}

4 | {a+b} | 0

510 {a+b}

Remark: predefined AE Analysis in PAG/WWW includes boolean
expressions
106/925

Solving AE Equations

Input

» a set of available expressions equations

Output

» the largest solution to the equations: AE,

Data structures
» The current analysis result for block entries: AE,

» The worklist W: a list of pairs (¢, ¢) indicating that the
current analysis result has changed at the entry to the

block ¢ and hence the information must be recomputed
for (.

22

107/925

Solving AE Equations — Algorithm
W:=nil;
foreach (¢,¢') € flou(S,) do W := cons((¢,£'),W); od;
foreach ¢ € labels(Sx) do
if £ € init(S.) then
AEo(¢) =0
else
AEo(¢) := AExp,

22

fi
od
while W # nil do
(€,0') := head(W);
W o:= tail(W);
if (AEo(£)\killae(B%)) U gen,p(B%) 2 AEo(¢') then
AEo (') := AEo(') N (AEo(£)\killse(B%)) U gen,;(BY);
foreach ¢/ with (¢,¢") in flow(Ss) do
W := cons((¢,¢"),W);
od
fi
od

108/925

Common Subexpression Elimination (CSE)

...aims at finding computations that are always performed at s
least twice on a given execution path and to eliminate the

second and later occurrences; it uses Available Expressions
Analysis to determine the redundant computations.

Example:
[x := a+b]!; [y := a#x]?; while [y > a+b]*do[a :=a + 1]*;[x := a + b]® od

» Expression a+b is computed at 1 and 5 and recomputa-
tion can be eliminated at 3.

109/925

The Optimization — CSE

Let Slv be the normalized form of S, such that there is at
most one operator on the right hand side of an assignment.

For each [...a...]° in SN with a € AE,(¢) do i

» determine the set {[y; := a]®, ..., [yx := a]%} of
elementary blocks in SV “defining” a that reaches
[...a..]"

» create a fresh variable v and

» replace each occurrence of [y; := a]’ with
[u:=al% [y :=u]l for 1 <i<k
» replace [...a...]¢ with [..u...]¢

[x := a]" reaches [...a...]" if there is a path in flow(SN) from
¢’ to (that does not contain any assignments with expression
a on the right hand side and no variable of a is modified.

110/925

Computing the “reaches” Information

¢’ to { that does not contain any assignments with expression 22
a on the right hand side and no variable of a is modified.

The set of elementary blocks that reaches [...a...]* can be
computed as reaches,(a, f) where

reacheso(a,£) = { 0 L ie= i.nit(S*)
Ureachese(a,¢’) : otherwise
{B*} :if BY has the form[x := a]¢ and x ¢ FV(a)
reachese(a,f) = { 1] :if BY has the form[x := ...]¢ and x € FV(a)
reacheso(a,£¢) : otherwise

111/925

Example — CSE

Example:
[x := a+b]!; [y := axx]?; while [y > a+b]®do[a:=a + 1]*/[x:=a + b]® od

22

AE,(¢)
0
{a+b}
{a+b}
{a+b}
0

reaches(a+b,3)={[x := a+ b]*, [x := a + b]°}

U‘I-PQ)I\)I—“N

Result of CSE optimization wrt reaches(a+b,3):
[u:=a+b]'; [x := u]l; [y := a*x]?; while [y > u]3do [a := a + 1]*;[u:=a + b]%; [x := u]® od

112/925

Copy Analysis

...aims at determining for each program point ¢, which copy
statements [x := y]’ that still are relevant (i.e. neither x nor
y have been redefined) when control reaches point ¢

Example:
[a := b]%;if [x > b]? then ([y := a]®) else ([b := b + 1]*; [y := a]®); [skip]®

0 Ct) | (o)

1[0 {(a,b)}

2 | {(ab)} | {(ab)}

3 {(ab)} | {(va).(ab)}
4 [{(a,b)} | 0

510 {(v.2)}

6| {(va)} | {(va)}

113/925

Copy Propagation (CP) (1)

...aims at finding copy statements [x := y]% and eliminating
them if possible.

If x is used in B then x can be replaced by y in BY provided
that

» [x := y]% is the only kind of definition of x that reaches
BY — this information can be obtained from the def-use
chain.

» on every path from /; to ¢’ (including paths going
through ¢’ several times but only once through ¢;) there
are no redefinitions of y; this can be detected by Copy
Analysis.

22

114/925

Copy Propagation (CP) (2)

22

Example 1
[u:= a+b]1/; [x ;= u]}; [y := a*x]%; while[y > uPdo [a :=a + 1]*;[u:=a + b]5,; [x :=u]® od

becomes after CP
[u:= a+b]1/; [y ;= a%u]?;while [y > u]® do[a:=a + 1]*[u:=a + b]5,; [x :=u]® od

115/925

The Optimization — CP

For each copy statement [x := y]% in S, do

> determine the set {[..x...]%, ..., [..x..]6},1 <i < k, of
elementary blocks in S, that uses [x := y]% — this can be
computed from DU(x,¢;)

{(X,y') € Co(4;) | X' = x} = {(x,y)}; if so then
[x := y] is the only kind of definition of x that reaches
¢; from all ¢;.
» if this holds for all i (1 < i < k) then
» remove [x 1= y]%
» replace [...x...]% with [...y...]5 for 1 < i < k.

22

116/925

Examples — CP

Example 2

[a:=2]%;if [y > u]? then ([a == a + 1]3; [x := a]*;) else ([a := a * 2]%; [x := a]%)[y := y*x]T5r0

becomes after CP

[a:=2]%;if [y > u]? then ([a == a + 1]3; ;) else ([a == a * 2]°; Dy == y*a]’;

Example 3
[a := 10]}; [b := a]?; while [a > 1]3 do [a:=a — 1]% [b:=a]% od [y := y*b]%;
becomes after CP

[a := 10]%; ;while [a > 1]3 do [a:=a — 1]*; ;od [y :=yxal®;

117/925

Summary: Forward Analyses

PUEEIEE
LA() A All)
[X — a]e o\t1 o\ t2
l A(0) \M]A(ﬁ)
LA if £ =init(S,)
All) = { LIA{A(0)|(£,0) € flow(S,)} : otherwise
Ad0) = (A(O)\killa(BY)) U geny(B*) where B € blocks(S,)
Analysis ‘ RD ‘ AE

where LA {(x,?) | x e FV(S,)} | 0
N

118/925

Further Reading for Chapter 2.2

22
2.3

[§ Flemming Nielson, Hanne Riis Nielson, Chris Hankin.

Principles of Program Analysis. 2nd edition, Springer-V.,
2005. (Chapter 2, Data Flow Analysis)

119/925

Chapter 2.3

Backward Analyses

120/925

Live Variable Analysis

Definition Live Variables

A variable is live at the exit from a label if there is a path
from the label to a use of the variable that does not re-define
the variable.

28

The Aim of the Live Variables Analysis is to

determine for each program point, which variables may be
live at the exit from the point.

Example
[y := 0] [u := a+b]%; [y := a*u]?; while [y > u]*do [a :=a + 1]*;[u := a + b]?; [x := u]® od
» y is dead (i.e., not live) at the exit from label 0

» x is dead (i.e., not live) at the exit from label 6

121/925

Basic |dea

[.]°

LV, (¢)
b= alf LV, (41)
LV, (¢) L

“

)

e

1%

(¢
LV

Analysis information: LV,(¢),LV.(¢) : Lab, — PVar,

» LV, (¢): the variables that are live at entry of block £.
» LV,(¢): the variables that are live at exit of block ¢.

Analysis properties:

» Direction: backward

» May analysis with combination operator (J

o(f2)

28

122/925

Analysis of Elementary Blocks

T LV, (€) LV, (€)

[x =2’ [b]°

T LV, (£) LV, (

)

T LV, (¢)
[skip]‘
T LV.(£)

28

ki||Lv([X = a]e)
kil ([skip]©)
killoy ([b]°)
genyy([x := 315)
genyy ([skip]“)
genLv([b]e)

123/925

Analysis of the Program

28

LV, (0)
[,
LV (0)
LVo(0) = (LVe(£)\killy(B?)) U genyy(BY) where B € blocks(S,)
0 . if £ = final(S,)

V() = {U{Lvo(e/)|(z',g)eﬂoWR(s*)} . otherwise

124/925

Example

Program LV.(¢) LV, (¢) 0| killoy(€) | genp(€)

[y := 0]°% {a, b} {a, b} 0 {y} 0 =

[u:= a+b]*; {u, a, b} {a, b} 1] {u} {a,b}

[y := a*u]?; {u, a, b, y} | {u, a, b} 2 | {y} {a,u}

whilely > u]®do | {a, b, y} {u,a, by} 3|0 {y,u}
a:=a+ 1% | {a, byt |{a by} 4| {a} {a}
[u:=a+ b’ | {u a b, y}|{a by} 5| {u} {a,b}
[x:=ul®od | {u a b, y}|{uab yt 6] {x} {u}

[skip]” 0 0 700 0

125/925

Dead Code Elimination (DCE)

An assignment [x := a]’ is dead if the value of x is not used
before it is redefined. Dead assignments can be eliminated.

28

» Analysis: Live Variables Analysis

» Transformation: For each [x := a]’ in S, with x ¢ LV,(¢)
(i.e. dead) eliminate [x := a]’ from the program.

Example:

Before DCE:

[y := 0] [u := a+b]}; [y := a*xu]?; while [y > u]*do [a :=a + 1]*;[u :=a + b]?; [x := u]® od

After DCE:

[u:=a+b]}; [y := axu]?; while [y > u]® do [a :=a + 1]*;[u :=a + b]%; od

126/925

Combining Optimizations
...usually strengthens the overall impact.

Example:

[x := a+b]'; [y := axx]?; while [y > a+b]3do[a:=a + 1]*/[x:=a + b]°od **
1. Common Subexpression Elimination gives

u:=a+b]¥; [x := u]!; [y := a*x]%; while [y > u]¥do[a:=a + 1]*; [u:=a + b]%; [x := u] od

N

. Copy Propagation gives
= a+b]1/; [y := a%u]?;while [y > u]® do[a:=a + 1]*[u:=a + b]s,; [x :=u]® od

=

3. Dead Code Elimination gives
= a+b]}; [y := a*u]?; while [y > u]® do [a:=a + 1]*;[u :=a + b]®; od

=

What are the results for other optimization sequences?

127/925

Faint Variables

...generalize the notion of dead variables.

Consider the following program consisting of three =
statements:

[x:=11%[x:= 2%y :== %%

Clearly x is dead at the exit from 1 and y is dead at the exit
of 3. But x is live at the exit of 2 although it is only used to
calculate a new value for y that turns out to be dead.

We shall say that a variable is a faint variable if it is dead or
if it is only used to calculate new values for faint variables;
otherwise it is strongly live.

128/925

Very Busy Expressions Analysis

Definition Very Busy Expressions

An expression is very busy at the exit from a label if, no

matter what path is taken from the label, the expression is 53
always used before any of the variables occurring in it are
redefined.

The Aim of the Very Busy Expression Analysis is to

determine for each program point, which expressions must be
very busy at the exit from the point.

Example
if [a > b]* then ([x := b—al]?; [y := 2 b]®) else ([y := b—a]*; [x := 2 b]?)
> b-a and are very busy at the exit from label 1

129/925

Basic |dea

HVB.(0) [.]°

| VB.(¢)
= al’ VBO(El)/ ﬂ\ VB.((,) s
e [..]e

[VB.() []

Analysis information: VB, (¢),VB,.(¢) : Lab, — PAExp,

» VB,({): the expressions that are very busy at entry of
block ¢.

» VB,(/): the expressions that are very busy at exit of
block ¢.

Analysis properties:
» Direction: backward

» Must analysis with combination operator [

130/925

Analysis of Elementary Blocks

VB, (¢) VB, (¢) VB, (¢)
b
VB.(¢) VB.(0) VB.(0)

killyg([x := a]‘) {a’ € AExp, | x € FV(a')}

killyg([skip]®) = 0
killvg([b]Y) = 0
genys([x :=2a]") = AExp(a)

genyg([skip]?) = 0
genyg([b]) = AExp(b)

131/925

Analysis of the Program

28

VBo(f) = (VBu(£)\Killvs(B)) U genys(B’) where B € blocks(S,)
B 0 :if £ = final(S,)
B { N{VB.(&)|(¢,0) € flow®(S,)} : otherwise

132/925

Example

if [a > b]! then ([x := b—a]?; [y := 13) else ([y := b—a]*; [x := 1%
¢ | VB4(?) VB, () ¢] killyg(€) | genyg(?)
1[{a—b,b—a}|{a—b, b—a} 1[0 0
2 | {a—b} {a—b,b—a} 2|0 {b—a}

310 {a—b} 310 {a—b}
4 | {a—b} {a—b,b—a} 4|0 {b—a}
5(0 {a—b} 5|0 {a—b}

133/925

Code Hoisting (CH)

...finds expressions that are always evaluated following some

point in the program regardless of the execution path — and

moves them to the earliest point (in execution order) beyond
which they would always be executed.

28

Example:

Before CH:
if [a > b]! then ([x := b—a]?; [y := 13) else ([y := b—a]*; [x := 1°)

After CH:

[t1 := a—b]%; [t2 := b—a]”;
if [a > b]! then ([x := t2]% [y := t1]3) else ([y := t2]*: [x := t1]°)

134/925

Further Reading for Chapter 2.3

[§ Flemming Nielson, Hanne Riis Nielson, Chris Hankin.

Principles of Program Analysis. 2nd edition, Springer-V.,
2005. (Chapter 2, Data Flow Analysis)

135/925

Chap. 3

Chapter 3
Taxonomy of DFA-Analyses

136/925

Taxonomy of Classical DFA-Analyses

—Chap. 3

Analysis | may | must

Forward Reaching Definitions | Available Expressions
Backward Live Variables Very Busy Expressions
Analysis may must

Combination Op. | U N

Solution of equ. smallest largest

Analysis H Extremal labels set ‘ Abstract flow graph
Forward {init(5,)} flow(S,)
Backward final(S,) flow®(S,)

137/925

Bit Vectors and Bit Vector Analyses

The classical analyses operate over elements of P(D) where
D is a finite set. Chap. 3

The elements can be represented as bit vectors. Each element
of D can be assigned a unique bit position i (1 < i< n). A
subset S of D is then represented by a vector of n bits:

» if the i'th element of D is in S then the /'th bit is 1.

» if the /'th element of D is not in S then the /'th bit is 0.

Then we have efficient implementations of
» set union as logical ‘or’

» set intersection as logical ‘and’

138/925

More Bit Vector Framework Examples

» Dual available expressions determines for each program
point which expressions may not be available when

execution reaches that point (forward may analysis) Chap. 3

» Copy analysis determines whether there on every
execution path from a copy statement x := y to a use of
x there are no assignments to y (forward must analysis).

» Dominators determines for each program point which
program points are guaranteed to have been executed
before the current one is reached (forward must
analysis).

» Upwards exposed uses determines for a program point,
what uses of a variable are reached by a particular
definition (assignment) (backward may analysis).

139/925

Some Non-Bit Vector Framework Examples (1)

» Constant propagation determines for each program point
whether or not a variable has a constant value whenever
execution reaches that point (forward must analysis).

Chap. 3

» Detection of signs analysis determines for each program
point the possible signs that the values of the variables
may have whenever execution reaches that point
(forward must analysis).

» Faint variables determines for each program point which
variables are faint: a variable is faint if it is dead or it is
only used to compute new values of faint variables
(backward must analysis).

140/925

Some Non-Bit Vector Framework Examples (2)

Chap. 3

» May be unitialized determines for each program point
which variables have dubious values: a variable has a
dubious value if either it is not initialized or its value
depends on variables with dubious values (forward may

analysis).

141/925

Further Reading for Chapter 3 (1)

[§ Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.
Ullman. Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 2nd edition, 2007. (Chapter 9.2, Intro- Chap. 3
duction to Data-Flow Analysis; Chapter 9.3, Foundations
of Data-Flow Analysis)

@ Keith D. Cooper, Linda Torczon. Engineering a Compiler.
Morgan Kaufman Publishers, 2004. (Chapter 10.2, A
Taxonomy for Transformations — Machine-Independent
Transformations, Machine-Dependent Transformations)

[§ Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997. (Chapter
8.3, Taxonomy of Data-Flow Problems and Solution
Methods)

142/925

Further Reading for Chapter 3 (2)

Chap. 3

[§ Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition, Springer-V.,
2005. (Chapter 1, Introduction; Chapter 2, Data Flow
Analysis; Chapter 6, Algorithms)

143/925

Chap. 3

Part 1l

Intraprocedural Data Flow Analysis

144925

Chap. 4

Chapter 4
Flow Graphs

145/925

Programs as Flow Graphs

Chap. 4

For program analysis, especially data flow analysis, it is usual
to

» represent programs in terms of (non-deterministic) flow
graphs

146/925

Flow Graphs
A (non-deterministic) flow graph is a tuple G = (N, E, s, e)
with
» node set
» edgeset EC N x N Chap. 4
» distinguished start node s w/out any predecessors
» distinguished end node e w/out successors

Nodes represent program points, edges represent the branch-
ing structure. Program statements (assignments, tests) can
be represented by

» nodes: node-labelled flow graph

» edges: edge-labelled flow graph

where nodes and edges are labelled by single instructions or

basic blocks, respectively.
147/925

A Node-Labelled Flow Graph

Chap. 4

148/925

An Edge-Labelled Flow Graph
1O

(zéo
‘Q__fQ

i)
'O
1o

Chap. 4

149/925

Single Instruction Flow Graphs

Node-labelled vs. edge-labelled:

b) Chap. 4
a)
1
2mab] 4] \ B
1 ¢ |
3 5 y=atb

i) Schematisch ii) "Optimiert"

150/925

Basic Block Flow Graphs
Node-labelled vs. edge-labelled:

X 5
a=bc
Chap. 4

asb
e
=bte

vz

e
-‘.l‘. =bte
{ .

N

Node-labeled (BB-) Graph Edge-labeled (BB-) Grap

151/925

Summing up

We distinguish:

Chap. 4

» Node-labelled flow graphs
» Single instruction graphs (SI graphs)
» Basic block graphs (BB graphs)

» Edge-labelled flow graphs
» Single instruction graphs (SI graphs)
» Basic block graphs (BB graphs)

Later on we will preferably deal w/ edge-labelled S| graphs.

152/925

Notations

Let G = (N, E,s,e) be a flow graph, let m, n be two nodes
of N. Then:

» Pg[m, n] denotes the set of all paths from m to n (inclu-
ding m and n)

» P¢[m, n[denotes the set of all paths from m to a pre-
decessor of n

» P¢]m, n] denotes the set of all paths from a successor of
mton

» P¢]m, n[denotes the set of all paths from a successor of
m to a predecessor of n

Note: If G is uniquely determined by the context, then we
drop the index and simply write P instead of Pg.

Chap. 4

153/925

Further Reading for Chapter 4

[§ Keith D. Cooper, Linda Torczon. Engineering a Compiler.
Morgan Kaufman Publishers, 2004. (Appendix B.3.1,

Chap. 4
Graphical Intermediate Representations) ’

[§ Jens Knoop, Dirk Koschiitzki, Bernhard Steffen. Basic-
block Graphs: Living Dinosaurs? In Proceedings of the
7th International Conference on Compiler Construction

(CC'98), Springer-V., LNCS 1383, 65-79, 1998.

[@ Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997. (Chapter
7, Control-Flow Analysis)

154/925

Chap. 5

Chapter 5
The Intraprocedural DFA Framework

155/925

DFA Specification, DFA Problem

Definition (5.1, DFA Specification)
A DFA specification is given by

» a (local) abstract semantics consisting of
1. a DFA lattice C=(C,M,U,C, 1, T)
2. a DFA functional [] : E—(C—C)

» a start information/assertion: ¢; € C

Definition (5.2, DFA Problem)
A DFA specification defines a DFA problem.

Chap. 5

156/925

Practically Relevant

...are DFA problems that are

Chap. 5
» monotonic

» distributive/additive
and satisfy the

» ascending/descending chain condition

157,/925

Properties

...of DFA functionals, DFA problems:

Definition (5.3)

A DFA functional [| : E — (C — C) is monotonic/distribu- craps
tive/additive iff for all e € E the local semantic function [e

is monotonic/distributive /additive.

Definition (5.4)
A DFA problem is monotonic/distributive/additive iff the

DFA functional [] of the underlying DFA specification
(C,[1 cs) is monotonic/distributive /additive.

These properties induce a taxonomy of DFA problems.

158/925

Monotonicity, Distributivity, Additivity (1)

Definition (5.5, Properties of DFA Functionals)
Let C=(C,M,U,C, L, T) be a complete (DFA) lattice and
f: C—C afunction on C. Then f is
1. monotonic iff Ve, € C. ¢ C ¢’ = f(c) C f(c')
(Preservation of the order of elements)
2. distributive iff VC' C C. f([1C") =[1{f(c)|ce C'}
(Preservation of greatest lower bounds)
3. additive iff Y C' € C. f(LUC") = LU {f(c)|ce C'}

(Preservation of least upper bounds)

Chap. 5

159/925

Monotonicity vs. Distributivity and Additivity

We have:

Lemma (5.6) S

Let C= (C,M,U,C, L, T) be a complete (DFA) lattice and
f: C—C a function on C. Then:

f is monotonic < VY C' C C. f(|_|C’ |_| {f(c)|ce C'}
«— v cc f(UC) aU{f(c)|ceC}

160/925

Chain Condition

Definition (5.7 Chain Condition)
A (DFA) lattice (= (C, M, LU, C, L, T) satisfies the
1. descending chain condition, if every descending chain
gets stationary, i.e. for each chain

ciJdcd...dc, ... thereis an index m > 1 such
that ¢, = ¢y holds for all j € N

Chap. 5

2. ascending chain condition, if every ascending chain gets
stationary, i.e. foreach chainggc C oo C...C ¢, C ...
there is an index m > 1 such that ¢, = ¢;,; holds for all
JEN

161/925

Next Step

...globalizing a local abstract semantics from statements to

flow graphs.
Chap. 5

For that we introduce two (globalization) strategies:

» Meet over all Paths (MOP) Approach
~» yields the specifying solution of a DFA problem

» Maximum Fixed Point (MaxFP) Approach
~» yields a computable solution of a DFA problem

162/925

Chapter 5.1
The MOP Approach

163/925

The MOP Approach

Essential for the MOP approach:
Definition (5.1.1, Extending [] onto Paths)

The extension of a local abstract semantics [] onto paths
p= (e, e...,eq) is defined by

[p]= lde falls g <1
" |[<62,---,eq>]]0|[el]] otherwise

where Ide denotes the identity on C.

164/925

The MOP Solution

Definition (5.1.2, MOP Solution)

Let (C,[],) be the specification of a DFA problem. Then,
for all nodes n € N the MOP solution is defined by:

MOP(é,ﬂ]],cs)(”) :|_| {[rl(c)|pePls,n]}

[E81

165/925

lllustrating MOP Approach and MOP Solution

a) Traditional DFA view: b) Traditional Al view:
‘Meeting’ infos: MOP ‘Joining' infos: JOP
(Universally quantified) (Existentially quantified)

166/925

Specifying Solution of a DFA Problem

As illustrated by the previous figure 51

» the MOP solution can be considered the specifying
solution of the DFA problem given by (C,[], cs)-

167,/925

Unfortunately

...the following negative result holds:

Theorem (5.1.1, Undecidabality)

There is no algorithm A satisfying:

» The input of A are
» algorithms for the computation of the meet, the
equality test, and the application of functions on the
lattice elements of a monotonic DFA framework
» a DFA problem p specified by an instance of a DFA
specification (C,[], ¢s)

» The output of A is the MOP solution of p.

(John B. Kam and Jeffrey D. Ullman. Monotone Data Flow
Analysis Frameworks. Acta Informatica 7, 305-317, 1977)

[E81

168/925

Towards the MaxFP Approach

Because of the preceding negative result we introduce a 51
second globalization approach of a local abstract semantics,
the MaxFP approach.

169/925

Chapter 5.2
The MaxFP Approach

170/925

The MaxFP Approach

Essential for the MaxFP approach:

Definition (5.2.1, MaxFP Equation System) o
The MaxFP equation system is given by:

. Cs if n=s
inf(n) = { [1{[(m,n)](inf(m))| m € pred(n) } otherwise

171/925

The MaxFP Solution

Definition (5.2.2, MaxFP Solution)

Let (C,[], cs) be the specification of a DFA problem. Then,
for all nodes n € N the MaxFP solution is defined by:

52

MaxFP ¢ |]LCs)(n):df inf (n)

where inf denotes the greatest solution of the MaxFP
Equation System 5.2.1 wrth (C,[],).

172/925

Essential

» The MaxFP solution is effectively computable under the 52
conditions of the Termination Theorem 5.2.4). It is thus
considered the computable solution of a DFA problem.

173/925

The Generic Fixed Point Algorithm 5.2.3 (1)

Input: (1) A flow graph G=(N, E,s,e), (2) a DFA problem
given by a (local) abstract semantics consisting of a DFA
lattice C, a DFA functional [| : E—(C—C), and (3) a
start information ¢; € C.

Output: The MaxFP solution, if the preconditions of the
Termination Theorem 5.2.4 hold. Depending on the
properties of the DFA functional we have:

(i) [] is distributive: The variable inf stores for each node
the strongest post-condition wrt the start information c.

(ii) [] is monotonic: The variable inf stores for each node a
safe (i.e. lower) approximation of the strongest
post-condition wrt the start information c;.

Remark: The variable workset controls the iterative process.
Its elements are nodes of G, whose annotation has recently
been updated.

52

174/925

The Generic Fixed Point Algorithm 5.2.3 (2)

(Prologue: Initializing inf and workset)
FORALL n € N\{s} DO inf[n]:= T OD;
inf[s] := cs;
workset := N;
(Main loop: The iterative fixed point computation)
WHILE workset # § DO
CHOOSE m € workset;
workset := workset\{ m };
(Update the annotations of all successors of node m)
FORALL n € succ(m) DO
meet := [(m, n) |(inf[m]) T inf[n];
IF inf[n] O meet
THEN
inf[n] := meet;
workset := workset U {n}

52

Fl
OD ESOOHC OD.

175/925

Effectivity

Theorem (5.2.4, Termination)

The Generic Fixed Point Algorithm 5.2.3 terminates with the

a) the DFA functional [] is monotonic

b) the DFA lattice C satisfies the descending chain
condition.

52

176/925

Note

The Generic Fixed Point Algorithm 5.2.3 is formulated for

» universally quantified (“distributive”) forward problems

The other three variants of DFA problems of
» existentially quantified (“additive”) problems

» backward problems

can be captured and solved with the Generic Fixed Point
Algorithm 5.2.3 by “turning round”

» the lattice (by replacing of T by 0)
» the flow graph (by reversing all edges)

52

177/925

Chapter 5.3

Coincidence and Safety Theorem

178/925

Main Results: Soundness and Completeness

The relationship of MOP and MaxFP solution

» Soundness

» Completeness

53

In Detail:

» Soundness:
Does always hold MaXFP(a[La) C MOP(CAJ[La) ?

» Completeness:

179/925

Soundness

Theorem (5.3.1, Safety)

The MaxFP solution is a safe (conservative), i.e. lower
approximation of the MOP solution, i.e., >

VCS c C VI‘I S N MaXFP(CA,[]|7CS)(I7) E MOP((?"I]I,CS)(H)

if the DFA functional [] is monotonic.

180/925

Completeness (and simultaneously Soundness)

Theorem (5.3.2, Coincidence)
The MaxFP solution coincides with the MOP solution, i.e.,

V& €CVneN. MaxFP ey g y(n)=MOP) (n)

if the DFA functional [| is distributive.

181/925

Note

In the context of DFA

» Safety

» Coincidence
are traditionally used instead of

» Soundness

» Completeness

53

182/925

Intraprocedural DFA at a Glance (1)

The schematic view:

Computation Tool 5.4.1
(Fixed Point Alg.) 5.4.2

<. Step3

\V4 [l =

Coincidence Theorem

N — /
MOP-Solution ‘ - I MaxFP-Solution

N J

Termination Theorem

Safety Theorem

Step 2

183/925

Intraprocedural DFA at a Glance (2)

Focused on the framework/toolkit view:

Intraprocedural C

oo bRA []

CS

Intraprocedural
DFA

Framework

Coincidence Theorem
Equivalence
> MOP-Solution

Progra: :
oy <:
Iy H Safey Th

MaxFP—Solution

Theory || Practice K

2

Tool Kit
Gener
Fixed Poi

ric
int Alg.

Termination

Theorem

Termina tion Theorem
= Computed Sululwg

Proof @ @

Obligations:
Equivalence Coincidence/Safety

Effectivity

184/925

Chapter 5.4

Examples: Available Expressions, Simple
Constants

54

185/925

Two Prototypical DFA Problems

» Available Expressions
~+ a canonical example of a distributive DFA problem

» Simple Constants
~» a canonical example of a monotonic DFA problem

186/925

Chapter 5.4.1

Available Expressions

187/925

Available Expressions

...a typical distributive DFA problem.

» Local abstract semantics for available expressions:

1. DFA lattice:
(C,m U, L, T)=4r (B, A, V, <, false, true)
2. DFA functional: [],, : E— (B — B) defined by 541

Cstywe if Comp, A Transp,
VecE. [e],,=a { ldB if ~Comp. N Transp,
Cstfalse Otherwise

188/925

Notations

> B=y4 (B, A, Vv, <, false, true): The lattice of Boolean
values w/ false < true and the logical A and V as meet
operation and join operation I and LI, respectively.

» Cstyye and Cstese: The constant functions “true” and
“false” on B, respectively.

> Idg: The identity function on B.

5.4.1

...and for a fixed candidate expression t:

» Comp,: tis computed by the instruction attached to
edge e (i.e., t is a subexpression of the right-hand side
expression)

» Transp,: no operand of t is assigned a new value by the
instruction attached to edge e (i.e. no operand of t
occurs on the left-hand side: e is transparent for t)

189/925

Main Results

Lemma (5.4.1.1)

[1., is distributive.

5.4.1

Corollary (5.4.1.2)

The MOP solution and the MaxFP solution coincide for
available expressions.

190/925

Chapter 5.4.2

Simple Constants

191/925

Simple Constants

..a typical monotonic (but non distributive) DFA problem.

a) o b) o)
ga:=2 ga;zz
a2
b:=a b:=2
ab—=2 a:=3
a—=3, bk4>2 Lc = a+b ic:=4
c:=a+tl| ab—=2, c—=4 c:=
a3, b—=2, c—=4 fd =a+l fd:=3
d:=c- O ab—2, c—=4, d—=3 d:= O
a3, b,d—=2, c—=4
b—=2, c—=4
le=a+d J/e.=a+d
b—=2, c—=4
if = a+b*c if: a+8

5.4.2

192/925

Abstract Semantics for Simple Constants

» Local abstract semantics for simple constants:
1. DFA lattice: (C,M,L,C, L, T)=gr (X,M,U,C,01,0T)
2. DFA functional: [], : E— (X — X) defined by

5.4.2

Vec E. [e], =arbe

193/925

DFA Lattice for Simple Constants

The “canonical” lattice for constant propagation and folding:

a) . b)
/\\
) ;//i://i;:;;yd{;:Ezr\i:\\;”.“ \\\\Agﬁ////;”m
IV S
L o \\//“J
/\\\
\\//"

194/925

The Semantics of Terms

The semantics of terms t € T is given by the inductively
defined evaluation function

E:T—-(X—D)

o(x) ift=xeV o
I(c) ift=ceC
VEETVo € 2 E())0 \ 1 (op)(E(t)(0).....E(£)(0))
if t=op(ty,...,t,)

195/925

Some Yet to be defined Notions

...to complete the definition of the semantics of terms:
» Term syntax
» Interpretation
» State

5.4.2

196/925

The Syntax of Terms (1)

Let
» V be a set of variables

» Op be a set of n-ary operators, n > 0, and C C Op be 542
the set of O-ary operators, the so-called constants in Op.

197,/925

The Syntax of Terms (2)

We define:
1. Each variable v € V and each constant ¢ € C is a term.
2. If op € Op is an n-ary operator, n > 1, and t;,...,t,
are terms, then op(t, ..., t,) is a term, too. o

3. There are no other terms in addition to those that can
be constructed by the above two rules.

The set of all terms is denoted by T.

198/925

Interpretation

Let D’ be a suitable data domain (e.g. the set of integers),
let 1 and T be two distinguished elements w/ L, T & D/,
and let D=4~ D'U{L, T}.

An interpretation on T and D is a tuple /| = (D, Iy), where

» Iy is a function, which associates w/ each 0-ary operator 5.42
c € Op a datum ky(c) € D’ and w/ each n-ary operator
op € Op, n > 1, a total function y(op) : D" — D, which
is assumed to be strict (i.e. lh(op)(ds,...,d,) =1, if
thereisaje{1,...,n} w/ di=1)

199/925

Set of States

Y=4{o|lo:V—->D}

...denotes the set of states, i.e. the set of mappings o from
the set of variables V to a suitable data domain D (that is
not specified in more detail here).

In particular

» o, ...denotes the totally undefined state of ¥ that is
defined as follows: Vv e V. o, (v) =L

5.4.2

200/925

The State Transformation Function

The state transformation function
0,2 =2 1=x=t

is defined by:

5.4.2

E(t)(o) falls y=x

VoeXVyeV.0,(0)(y)=d { o(y) sonst

201/925

Main Results

Lemma (5.4.2.1)

[1.. is monotonic.

Note: Distributivity does not hold! (Excercise)

5.4.2

Corollary (5.4.2.2)

The MOP solution and the MaxFP solution do in general not
coincide. The MaxFP solution, however, is always a safe
approximation of the MOP solution for simple constants.

202/925

Further Reading for Chapter 5 (1)

[§ Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.
Ullman. Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 2nd edition, 2007. (Chapter 1, Introduc-
tion; Chapter 9.2, Introduction to Data-Flow Analysis; .
Chapter 9.3, Foundations of Data-Flow Analyis) o

5.4
5.4.1

[4 F.E. Allen, J. A. Cocke. A Program Data Flow Analysis 542
Procedure. Communications of the ACM 19(3):137-147,
1976.

[@ Randy Allen, Ken Kennedy. Optimizing Compilers for
Modern Architectures. Morgan Kaufman Publishers,
2002. (Chapter 4.4, Data Flow Analysis)

203/925

Further Reading for Chapter 5 (2)

[§ Keith D. Cooper, Linda Torczon. Engineering a Compiler.
Morgan Kaufman Publishers, 2004. (Chapter 1, Overview
of Compilation; Chapter 8, Introduction to Code Optimi-
zation; Chapter 9, Data Flow Analysis)

[@ C. Fecht, Helmut Seidl. An Even Faster Solver for 51
General Systems of Equations. In Proceedings SAS'96, :
LNCS 1145, 189-204, 1996. 4

[§ C. Fecht, Helmut Seidl. Propagating Differences: An
Efficient New Fixpoint Algorithm for Distributive
Constraint Systems. In Proceedings ESOP’98, LNCS
1381, 90-104, 1998.

[1 C. Fecht, Helmut Seidl. A Faster Solver for General
Systems of Equations. Science of Computer
Programming 35(2):137-161, 1999.

204/925

Further Reading for Chapter 5 (3)

[§ Matthew S. Hecht. Flow Analysis of Computer Programs.
Elsevier, North-Holland, 1977.

[Susan Horwitz, A. Demers, T. Teitelbaum. An Efficient
General Iterative Algorithm for Dataflow Analysis. Acta
Informatica 24:679-694, 1987.

[§ John B. Kam, Jeffrey D. Ullman. Global Data Flow -
Analysis and Iterative Algorithms. Journal of the ACM 542
23:158-171, 1976.

[§ John B. Kam, Jeffrey D. Ullman. Monotone Data Flow
Analysis Frameworks. Acta Informatica 7:305-317, 1977.

[§ Gary A. Kildall. A Unified Approach to Global Program
Optimization. In Conference Record of the 1st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL'73), 194-206, 1973.

205/925

Further Reading for Chapter 5 (4)

[§ Marion Klein, Jens Knoop, Dirk Koschiitzki, Bernhard
Steffen. DFA&OPT-METAFrame: A Toolkit for Program
Analysis and Optimization. In Proceedings TACAS'96,
Springer-V., LNCS 1055, 422-426, 1996.

[§ Jens Knoop. From DFA-Frameworks to DFA-Generators: -
A Unifying Multiparadigm Approach. In Proceedings of \:1
the 5th International Conference on Tools and Algor- 542

ithms for the Construction and Analysis of Systems
(TACAS'99), Springer-V., LNCS 1579, 360-374, 1999.

[§ Janusz Laski, William Stanley. Software Verification and
Analysis. Springer-V., 2009. (Chapter 7, What can one
tell about a Program without its Execution: Static
Analysis)

206/925

Further Reading for Chapter 5 (5)

[Thomas J. Marlowe, Barbara G. Ryder. Properties of
Data Flow Frameworks. Acta Informatica 28(2):121-163,
1990.

[§ Florian Martin. PAG - An Efficient Program Analyzer
Generator. Journal of Software Tools for Technology
Transfer 2(1):46-67, 1998.

[8 Robert Morgan. Building an Optimizing Compiler. Digital 542
Press, 1998.

[§ Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997. (Chapter
1, Introduction to Advanced Topics; Chapter 4, Interme-
diate Representations; Chapter 7, Control-Flow Analysis;
Chapter 8, Data Flow Analysis; Chapter 11, Introduction
to Optimization; Chapter 12, Early Optimizations)

207/925

Further Reading for Chapter 5 (6)

[@ Flemming Nielson. Semantics-directed Program Analysis:
A Tool-maker’s Perspective. In Proceedings SAS'96,
Springer-V., LNCS 1145, 2-21, 1996.

[Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: A Formal Introduction. Wiley, 1992. L
(Chapter 5, Static Program Analysis) 542

[§ Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: An Appetizer. Springer-V., 2007. (Chapter
7, Program Analysis; Chapter 8, More on Program Analy-
sis; Appendix B, Implementation of Program Analysis)

208/925

Further Reading for Chapter 5 (7)

[§ Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition, Springer-V., 51
2005. (Chapter 1, Introduction; Chapter 2, Data Flow ;
Analysis; Chapter 6, Algorithms) s

5.4.2

[d Barry K. Rosen. High-level Data Flow Analysis.
Communications of the ACM 20(10):141-156, 1977.

209/925

Chapter 6

Partial Redundancy Elimination

210/925

Partial Redundancy Elimination (PRE)

What's it all about?

...avoiding multiple (re-) computations of the same value!

K (;hap.ﬁ
f h:= a+bf S N
X = a+b\ . » X :=h ’\ é h:=a+b
y :=a+b y :=h
/“//'//w ’,//:/'

211/925

Chapter 6.1

Motivation

212/925

PRE — Particularly Striking for Loops

213/925

A Computationally Optimal Program

...w/out any redundancy at all!

h:=a+b

6.1

214/925

Often there is more than one!

6.1
)

215/925

Which one shall PRE deliver?

® h:=at+b

216/925

The (Optimization) Goals make the Difference!

217/925

The first Transformation

...no redundancies but maximum register pressure!

The second Transformation

...no redundancies, too, but minimum register pressure!

The third Transformation

...no redundancies, moderate register pressure, no code replication!

The (Optimization) Goals make the Difference!

In our running example:

» Performance: Avoiding unnecessary (re-) computations
~» Computational quality, computational optimality

» Register pressure: Avoiding unnecessary code motion
~» Liftime quality, lifetime optimality

» Space: Avoiding unnecessary code replication
~» Code size quality, code size optimality

6.1

221/925

The Result of Busy Code Motion

...placing computations as early as possible!

6.1

...yields computationally optimal programs.
222/925

Note: As Early as Possible

...means earliest indeed but not earlier as earliest.

Incorrect!

6.1

223/925

The Result of Lazy Code Motion

...placing computations as late as possible!

6.1

...yields computationally and lifetime optimal programs.
204/925

The Result of Sparse Code Motion

...placing computations as late as possible but as early as
necessary!

6.1

@ h:=a+b

...yields comp. and lifetime best code-size optimal programs.
225/925

A More Complex Example (1

@\

V

A More Complex Example (2)

@\b\ @ B f\??
<) L

v
Two Code-size Optimal Programs

207/925

A More Complex Example (3)

SQ > CQ>LQ SQ>LQ>CA

228/925

A More Complex Example (4)

Note: The below transformation is not desired!

6.1

229/925

Summing up

The previous examples demonstrate that in general we can
not achieve
» computational, lifetime, and space optimality

at the same time.

Think, however, about the following problem (homework):

» Let P be a program containing partially redundant
computations.

Can you imagine an algorithm that always suceeds to
transform P into a program P’ such that P and P’ have
the same semantics and that P’ is free of any partially
redundant computation?

6.1

230/925

Chapter 6.2
The PRE Algorithm of Morel&Renvoise

231/925

The Groundbreaking Algorithm for PRE

PRE is intrinsically tied to Etienne Morel und Claude

Renvoise. The PRE algorithm they presented in 1979 can be
considered the prime father of all code motion (CM)

algorithms and was until the early 1990s the “state of the

art” PRE algorithm. 62

Technically, the PRE algorithm of Morel and Renvoise is
composed of:

» 3 uni-directional bitvector analyses (AV, ANT, PAV)
» 1 bi-directional bitvector analysis (PP)

232/925

The PRE Algorithm of Morel&Renvoise (1)

» Availability:
false ifn=s o2
AVIN(n) = [T AVOUT(m) otherwise
m € pred(n)

AVOUT(n) = TRANSP(n) * (COMP(n) + AVIN(n))

233/925

The PRE Algorithm of Morel&Renvoise (2)

» Very Busyness (Anticipability):
ANTIN(n) = COMP(n)+ TRANSP(n) « ANTOUT(n) ©

false ifn=e
ANTOUT(n) =

[I ANTIN(m) otherwise

m € succ(n)

234/925

The PRE Algorithm of Morel&Renvoise (3)

» Partial Availability:

false ifn=s 62
PAVIN(n) =

> PAVOUT(m) otherwise

m € pred(n)

PAVOUT(n) = TRANSP(n) % (COMP(n) -+ PAVIN(n))

235/925

The PRE Algorithm of Morel&Renvoise (4)

» Placement Possible:

((false ifn=s

CONST(n)x
PPIN(n) = (meprr[ed(n)(PPOUT(m) + AVOUT (m))*
(COMP(n) + TRANSP(n) * PPOUT(n))

otherwise

false ifn=e
PPOUT(n) = I[I PPIN(m) otherwise

m € succ(n)

where

CONST(n)=4r ANTIN(n)x(PAVIN(n)+—-COMP(n)*TRANSP(n))

236/925

The PRE Algorithm of Morel&Renvoise (5)

» Initializing temporaries where:

INSIN(n) =4 false

6.2

INSOUT(n) =4 PPOUT(n)*-AVOUT(n) *
(=PPIN(n) + ~TRANSP(n))

» Replacing original computations where:

REPLACE(n) =4 COMP(n)* PPIN(n)

237/925

Summing up (1)

Achievements and merits of Morel&Renvoise's PRE

algorithm:
6.2

» First systematic algorithm for PRE
» State-of-the-art PRE algorithm for about 15 years

238/925

Summing up (2)
Short-comings of Morel&Renvoise’'s PRE algorithm:

» Conceptually
» Fails computational optimality
~+ only, however, because of not splitting critical edges
» Fails lifetime optimality
~» Register pressure is heuristically dealt with .
» Fails code-size optimality
~» Not considered at all (in the early days of PRE)

» Technically

» Bi-directional
~» conceptually and computationally thus more

complex

...the transformation result lies (unpredictably) between those
of the BCM transformation and the LCM transformation.

239/925

Critical Edges

An edge is called critical, if it connects a branching node with
a join node.

llustration:

a)

6.2

[mard 2[]

...by introducing the synthetic node S, 3, the critical edge
from node 2 to node 3 is split which allows to eliminate the
partially redundant computation of a + b at node 3.

240/925

Instructive

...optimizing the following two programs using the PRE
algorithm of Morel&Renvoise:

G,
1
|] \“\ \
==
| \
°| \“’\x:=a+$ al

| J |
T

241/925

Further Reading for Chapter 6 (1)

[§ Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.
Ullman. Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 2nd edition, 2007. (Chapter 9.5, Partial-
Redundancy Elimination)

6.1

[@ Keith D. Cooper, Linda Torczon. Engineering a Compiler. 62
Morgan Kaufman Publishers, 2004. (Chapter 8.6, Global
Redundancy Elimination)

[D. M. Dhamdhere. Practical Adaptation of the Global
Optimization Algorithm of Morel and Renvoise. ACM
Transactions on Programming Languages and Systems
13(2):291-294, 1991, Technical Correspondence.

242/925

Further Reading for Chapter 6 (2)

[D. M. Dhamdhere. E-path_pre: Partial Redundancy
Elimination Made Easy. ACM SIGPLAN Notices
37(8):53-65, 2002.

[K.-H. Drechsler, M. P. Stadel. A Solution to a Problem
with Morel and Renvoise’s “Global Optimization by 62
Suppression of Partial Redundancies”. ACM Transactions
on Programming Languages and Systems 10(4):635-640,
1988, Technical Correspondence.

[@ Andrei P. Ershov. On Programming of Arithmetic Opera-
tions. Communications of the ACM 1(8):3-6, 1958.
(Three figures from this article are in CACM 1(9):16).

243/925

Further Reading for Chapter 6 (3)

[§ R. Nigel Horspool, H. C. Ho. Partial Redundancy Elimi-
nation Driven by a Cost-benefit Analysis. In Proceedings
of the 8th Israeli Conference on Computer Systems and
Software Engineering (CSSE'97), 111-118, 1997.

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Lazy
Code Motion. In Proceedings of the ACM SIGPLAN 62
Conference on Programming Language Design and
Implementation (PLDI'92), ACM SIGPLAN Notices
27(7):224-234, 1992.

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Optimal
Code Motion: Theory and Practice. ACM Transactions
on Programming Languages and Systems
16(4):1117-1155, 1994.

244925

Further Reading for Chapter 6 (4)

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Retro-
spective: Lazy Code Motion. In “20 Years of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (1979 - 1999): A Selection”, ACM
SIGPLAN Notices 39(4):460-461&462-472, 2004. 61

[@ Etienne Morel, Claude Renvoise. Global Optimization by
Suppression of Partial Redundancies. Communications of
the ACM 22(2):96-103, 1979.

[§ Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997. (Chapter
13, Redundancy Elimination)

245/925

Further Reading for Chapter 6 (5)

[Oliver Riithing, Jens Knoop, Bernhard Steffen. Sparse
Code Motion. In Conference Record of the 27th Annual -
ACM SIGPLAN-SIGACT Symposium on Principles of '
Programming Languages (POPL 2000), 170-183, 2000.

246/925

Chapter 7
Busy Code Motion

Chap. 7

247/925

The Very ldea

...of Code Motion (CM) — often synonymously used with
Partial Redundancy Elimination (PRE) — recalled:

...avoiding multiple (re-) computations of the same value!

, , Chap. 7
f hi=a+tbé
«_,////x /“//'/lw
X 1= a+b\ 4 ’ X :=h 0\ ® h:=a+b

y :=a+b y :=h

248/925

Chapter 7.1

Preliminaries

249/925

Notations

Given a flow gragh G=(N, E,s,e) let

» pred(n)=q4 {m|(m, n) € E} denote the set of all
predecessors

» succ(n)=q4r {m|(n,m) € E} denote the set of all
SUCCessors

7l

» source(e), dest(e) denote the start node and end node
of an edge

» a sequence of edges (ei, ..., ex) with dest(e;) =
source(e;y1) for all 1 < i < k denote a finite path.

Note: Instead of edge sequences we also consider node
sequences as paths, where reasonable.

250/925

Notations (Cont'd)

More specifically:

» p=(ey,...,e) denotes a path from m to n, if
source(e;) = m and dest(ex) = n

» P[m, n] denotes the set of all paths from m to n

»)\, denotes the length of p, i.e., the number of edges of
p
» ¢ denotes the path of length 0

7l

» N, C N denotes the set of join nodes, i.e., the set of
nodes w/ more than one predecessor

» Ng C N denotes the set of branch nodes, i.e. the set of
nodes w/ more than one successor

251/925

Convention

W /out losing generality we assume:

» Each node of a flow graph lies on a path from s to e

Intuition: There are no unreachable parts within a flow o
graph.

...this is a typical and usual assumption for analysis and
optimization!

252/925

An additional CM specific Convention

W /out losing generality we focus in the following on flow
graphs given

» as node labelled S| graphs

» where all edges leading to a join node are split by inser-
ting a so-called synthetic node (i.e., not just critical
edges are split)

7l

253/925

Reminder: Critical Edges

An edge is called critical, if it connects a branching node with
a join node.

[llustration: ...by introducing the synthetic node S, 3, the
critical edge from node 2 to node 3 is split.

a) b)

/

Lx:=a+h| 2 \

7l

In the following we assume that also edges like the one from
node 1 to node 3 are split by introducing a new node S; 3.

254/925

Background and Motivation

...underlying this convention:

» The CM process becomes simpler.

7.1
~» computationally optimal results can be achieved by
initializing temporaries always at node entries.

255/925

Note

Computationally optimal results can also be achieved, if only
critical edges are split.

This, however, requires that a PRE algorithm is able to per-
form initializations both at node entries (N-initializations) 7
and at node exits (X-Initializations).

This is not a problem at all. Agreeing, however, on the above
assumption simplifies the presentation of the CM algorithm
even more.

256/925

Work Plan

In the following we will define:

» The set of CM transformations
» The set of admissible CM transformations
» The set of computationally optimal CM transformations

7l

» The BCM transformation as a specific computationally
optimal CM transformation

» The LCM transformation as the one and only
computationally and lifetime optimal CM transformation
(Chapter 8)

257/925

The Generic Pattern of a CM Transformations

The generic 3-step (transformation) pattern for a term t:

» Introduce a fresh temporary h for t in G

» Insert at some nodes of G the assignment statement
h:=t

» Replace some of the original occurrences of t in G by h

7l

Remark: t is often called a candidate expression.

258/925

Observation

Two predicates (defined on nodes)

> Insertcpy

> Replem

7l

suffice to specify a CM (resp. PRE) transformation
completely

(the first step of declaring the temporary h is the same for
each CM transformation and thus does not need to be con-
sidered explicitly).

259/925

The Set of CM Transformations

...let CM; denote the set of all CM transformations (for the
candidate expression t).

7l

In the following we will consider a fixed candidate expression
t and thus drop the index t.

260/925

Observation

Obviously, some transformations in CM do not preserve the
semantics and are thus not acceptable.

7l

This leads us to the notion of admissible CM transformations.

261/925

Admissible CM Transformations

Let CM e CM.
CM is called admissible, if CM is safe and correct.

Intuitively:

» Safe: There is no path, on which by inserting an initiali-
zation a new value is computed.

» Correct: Whereever the temporary is used, it stores the
“right” value, i.e., it stores the same value that a recom-
putation of t at the use site yields.

7l

262/925

Formalising this

...requires two (local) predicates:

» Comp ,(n): the candidate expression t is computed at n.
» Transp,(n): nis transparent for t, i.e., n does not
modify any operand of t.

7l

Note: In the following we will drop the index t.

Moreover, it is useful to introduce a third (local) predicate:

» Comp cpy(n)=ar Insertcp(n)V Comp (n)A—Replcm(n):
The candidate expression t is computed after the appli-
cation of CM.

263/925

Extending Predicates from Nodes to Paths

Let p be a path and let p; denote the ith node of p.

Then we define:
» Predicate”(p) <= V1 <i<M\,. Predicate(p;)
» Predicate’(p) <= 31 < i< \,. Predicate(p;)

7l

264/925

Safety and Correctness

Definition (7.1.1, Safety and Correctness)
Let n€ N. Then:

1. Safe(n) <qr
V{(m,...,nx) € P[s,e] Vi. (nj=n) =

i) 3j < i. Comp(n;) A Transp”({nj,...,nj_1)) V “
i) 3j > i. Comp(n;) A Transp™({n;,...,nj_1))
2. Let CM € CM. Then:
Correctep(n) <=ar V(m,...,ng) € P[s, n]

3i. Insertem(n;) A Transp({n;, ..., m_1))

265/925

Up-Safety and Down-Safety

Constraining the definition of safety to condition (i) resp. (ii)
leads to the notions of

7l

» up-safety (availability)

» down-safety (anticipability, very busyness)

266/925

Intuition

A computation of t at program point n is

» up-safe, if t is computed on all paths p from s to n and
the last computation of t on p is not followed by a
modification of (an operand of) t.

7l

» down-safe, if t is computed on all paths p from n to e
and the first computation of t on p is not preceded by a
modification of (an operand of) t.

267/925

Up-Safety and Down-Safety

Definition (7.1.2, Up-Safety and Down-Safety)

1. Vn e N. U-Safe(n) <4

Vp € Pls,n] i< \,. Comp(p;)A Transp”(p[i, N\p[) ™
2. ¥ne N. D-Safe(n) <=4

Vp e Plnel 3i < \,. Comp(pi)A Transp”(p[L,i])

268/925

Admissible CM-Transformations

This allows us to define:

Definition (7.1.3, Admissible CM-Transformation)

A CM-transformation CM € CM is admissible iff for every
node n &€ N holds: 71

1. Insertcpy(n) = Safe(n)
2. Replcm(n) = Correctep(n)

The set of all admissible CM-transformations is denoted by
CMAdm-

269/925

First Results

Lemma (7.1.4, Safety)

V' n € N. Safe(n) <= D-Safe(n) Vv U-Safe(n)

7l

Lemma (7.1.5, Correctness)

V' CM € CM pgm ¥V n € N. Correctcpy(n) = Safe(n)

270/925

Computationally Better

Definition (7.1.6, Computationally Better)

A CM-transformation CM € CM aq4, is computationally
better as a CM-transformation CM’ € CM pgp, iff

7l

V pePls,e]l. | {i| Compcy(pi)}| < | {i| Compcpp(pi)} |

Note: The relation “computationally better” is a quasi-order,
i.e., a reflexive and transitive relation.

271/925

Computational Optimality

Definition (7.1.7, Comp. Optimal CM-Transf.)

An admissible CM-transformation CM € CM aq4y, is
computationally optimal iff CM is computationally better o
than any other admissible CM-transformation.

We denote the set of all computationally optimal CM-trans-
formations by CM cmpopt.

272/925

Properties of Relations — A Reminder

Let M be a set and R be a relation on M, i.e., RC M x M.

Then R is called

>

>

>

reflexive iff Vme M. mRm
transitive iff Vm,n.pe M. mRn AN nRp = mRp

anti-symmetric iff
VmneM. mRn AN nRm = m=n

quasi order iff R is reflexive and transitive

partial order iff R is reflexive, transitive and anti-symme-
tric

7l

273/925

Chapter 7.2
The BCM-Transformation

274/925

Conceptually

...CM can be considered a two-stage process consisting of:

1. Hoisting expressions
...hoisting expressions to “earlier” safe computation

points

2. Eliminating totally redundant expressions
...elimination computations that became totally redun-
dant by hoisting expressions

7.2

275/925

The Earliestness Principle

...induces an extreme placing (i.e., hoisting) strategy:

Placing computations as early as possible...

» Theorem (Computational Optimality)
...hoisting computations to their earliest safe 72
computation points yields computationally optimal
programs.

~> ...known as the Busy Code Motion

276/925

Earliestness Principle

Placing computations as early as possible...
yields computationally optimal programs.

7.2

277/925

Note

...earliest means indeed as early as possible, but not earlier!

Incorrect!

7.2

278/925

Busy Code Motion

Intuitively:

Place computations as early as possible in a program w/out
violating safety and correctness!

7.2

Note: Following this principle computations are moved as far
as possible in the opposite direction of the control flow

~> ...motivates the choice of the term busy.

279/925

Earliestness

Definition (7.2.1, Earliestness)
V'n e N. Earliest(n)=g4¢

true if n=s
Safe(n) A

\/ —Transp(m)V —Safe(m) otherwise
méepred(n)

280/925

The BCM Transformation

The BCM Transformation is defined by:

» Insertgcn(n)=gqr Earliest(n)

> Replgcm(n) =a4r Comp(n)

7.2

281/925

The BCM Theorem

Theorem (7.2.2, BCM Theorem)

The BCM-Transformation is computationally optimal, i.e.,
BCM G CMCmpOpt-

7.2

The proof of the BCM Theorem 7.2.2 relies on the Earliest-
ness Lemma 7.2.3 and the BCM Lemma 7.2.4.

282/925

The Earliestness Lemma

Lemma (7.2.3, Earliestness Lemma)
Let n € N. Then we have:
1. Safe(n) = VpeP[s,n] 3i <A,
Earliest(p;) A Transp” (p[i, \p[)

2. Earliest(n) <—
D-Safe(n) A N\ (= Transp(m)V —Safe(m))

méepred(n)
3. Earliest(n) <= Safe(n) A
YV CM € CM adgm. Correctcp(n) = Insertcy(n)

7.2

283/925

The BCM Lemma

Lemma (7.2.4, BCM Lemma)
Let p € P[s,e]. Then we have:
1. Vi < A, Insertgep(pi) <=
3j > i. pli,j] € FU-LtRg(BCM)
2.V CM € CMagm Vi, j < M. pli,j] € LtRg(BCM) =
Comp ¢ (pli.J])
3. VCM € CM cmpopt Vi < Ap. Comp cy(pi) =
3j <i<I. plj,l] € FU-LtRg(BCM)

7.2

284/925

The Result of the BCM Transformation

...computationally optimal, but maximum register pressure.

Chapter 7.3
An Extended Example

286/925

The Original Program

10‘y:=a+b‘ 11‘

N

14‘x::a+b‘ 15‘ y:=a+b‘

16‘Z:=a+b‘ 17‘x:=a+b‘

7.3

287/925

Up-Safe, Down-Safe & Earliest Program Points

7
7.3

. Up-Safe I:I Down-Safe . Earliest

288/925

The Result of the BCM Transformation

7.3

289/925

The BCM Transformation

Computationally optimal but maximum register pressure.

7.3

200/925

Note, Initializing Even Earlier is Not Correct!

6 7.1
73
8| |
br ™
10[y=h | 1] | 12| |13]
\b_]
14‘x:=h ‘ 15y:=>v

201/925

Further Reading for Chapter 7

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Lazy
Code Motion. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI'92), ACM SIGPLAN Notices
27(7):224-234, 1992.

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen. Optimal
Code Motion: Theory and Practice. ACM Transactions i
on Programming Languages and Systems ”
16(4):1117-1155, 1994.

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Retro-
spective: Lazy Code Motion. In “20 Years of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (1979 - 1999): A Selection”, ACM
SIGPLAN Notices 39(4):460-461&462-472, 2004.

202/925

Chapter 8
Lazy Code Motion Chap. 8

203/925

The Latestness Principle

...induces an extreme dual placing strategy:

Placing computations as late as possible...

» Theorem (Lifetime Optimality)
...hoisting computations as little as possible, but as far
as necessary (to achieve computational optimality),
yields computationally optimal programs w/ minimum
register pressure.

~> ...known as the Lazy Code Motion

Chap. 8

204/925

The Result of the LCM Transformation

...computationally optimal w/ minimum register pressure!

CCCCCC

Lazy Code Motion

Intuitively:
Place computations as late as possible in a program w/out
violating safety, correctness and computational optimality!

. Chap. 8
Note: Following this principle computations are moved as ’

little as possible in the opposite direction of the control flow

~» ...motivates the choice of the term lazy.

206/925

Work Plan

Next we will define:

» The set of lifetime optimal CM transformations

Chap. 8
» The LCM transformation as the unique determined sole ’

lifetime optimal CM transformation

207/925

Chapter 8.1

Preliminaries

208/925

Central to Capture Register Pressure Formally

...is the notion of a (first-use) lifetime range.

Definition (8.1.1, Lifetime Ranges)
Let CM € CM.
» Lifetime range
LtRg (CM)=a 22
{p|Insertcm(p1) A Replem(pa,) A —insertZy,(pl1, Ap])}
» First-use lifetime range
FU-LtRg (CM)= 4
{p € LtRg(CM) |V q € LtRg(CM). (¢ C p) = (g=p)}

209/925

First Result

Lemma (8.1.2, First-Use Lifetime-Range Lemma)

Let CM € CM, p € P[s, €], and let i, p, j1, jo indexes such
that p[i, 1] € FU-LtRg(CM) and
pli, jo] € FU-LtRg(CM). Then we have:
» either p[i,j1] and pli, j2] coincide, i.e., iy =i, and
A =j, or

» pli, 1] and plio, jo] are disjoint, i.e., j < ip or jo < iy.

8.1

300/925

Lifetime Better

Definition (8.1.3, Lifetime Better)

A CM-transformation CM € CM is lifetime better than a
CM-transformation CM' € CM iff

Vpe LtRg(CM) 3q € LtRg(CM'). p C g o1

Note: The relation “lifetime better” is a partial order, i.e., a
reflexive, transitive, and antisymmetric relation.

301/925

Lifetime Optimality

Definition (8.1.4, Lifetime Optimal CM-Transf.)

A computationally optimal CM-transformation
CM € CM cmpopt is lifetime optimal iff CM is lifetime better
than every other computationally optimal CM-transformation.

8.1

We denote the set of all lifetime optimal CM-transformations
by CMLtOpt-

302/925

We have

Lemma (8.1.5)

V' CM € CM cmpopt ¥ p € LtRg(CM)
dq € LtRg(BCM). pC q

Intuitively:
8.1

» No computationally optimal CM-transformation places
computations earlier as the BCM transformation

» The BCM transformation is that computationally
optimal CM-transformation w/ maximum register
pressure

303/925

Uniqueness of Lifetime Optimal PRE

Obviously we have:

CM 1t0pt € CM cmpopt © CM agm C CM

Actually, we have even more:

8.1
2

Theorem (8.1.6, Uniqueness of Lifetime Optimal
CM-Transformations)

‘Cyh1LtOpt’ fg 1

304/925

Chapter 8.2
The ALCM-Transformation

305/925

Delayability

Definition (8.2.1, Delayability)
V' n € N. Delayed (n) <= ur
Vp € P[s,n] i < \,. Earliest(p;) A =Comp(p[i, \,])

8.2

306/925

The Delayability Lemma

Lemma (8.2.2, Delayability Lemma)

1. Vn e N. Delayed(n) = D-Safe(n)
2. Vp e P[s,e] Vi < \,. Delayed (p;) =

3j<i<l plj,l] € FU-LtRg(BCM)
3. VCM € CM ¢mpopt V1 € N. Comp ¢,(n) = Delayed (n)

307/925

Latestness

Definition (8.2.3, Latestness)

Vn e N. Latest (n)=ur
Delayed (n) A (Comp(n)V \/ —Delayed(m))

mé&succ(n) 62

308/925

The Latestness Lemma

Lemma (8.2.4, Latestness Lemma)

1. Vp € LtRg(BCM) 3i < X,. Latest(p;)

2. Vpe LtRg(BCM) Vi < \,. Latest(p;) =
—Delayed(pli, \p])

8.2

309/925

The ALCM Transformation

The “Almost Lazy Code Motion" Transformation is defined
by:

» Inserta;cm(n)=qr Latest (n)

> Replarcm(n)=4r Comp (n)

8.2

310/925

Almost Lifetime Optimal

Definition (8.2.5, Almost Lifetime Optimal
CM-Transformation)

A computationally optimal CM-transformation
CM € CM cmpopt is almost lifetime optimal iff
Vpe LtRg(CM). A\, > 2 =
VCM' € CM cmpopt 3q € LtRg(CM'). p E g

8.2

We denote the set of all almost lifetime optimal CM-transfor-
mations by CM atopt-

311/925

The ALCM Theorem

Theorem (8.2.6, ALCM Theorem)

The ALCM transformation is almost lifetime optimal, i.e.,

ALCM 6 CMALtOpt 8.2

312/925

Chapter 8.3
Lazy Code Motion

313/925

Isolated Computations

Definition (8.3.1, CM-Isolation)

VCM € CM Y n € N. Isolatedcp(n) <= ar
Vp€P[ne]V1<i<\,. Replem(pi) = Insertd,,(p]1,1])

8.3

314/925

The Isolation Lemma

Lemma (8.3.2, Isolation Lemma)

1. VCM € CM V n € N. Isolatedcp(n) <=
VpeltRg(CM). (n) Cp=A,=1
2. VCM € CM ¢mpopt ¥V n € N. Latest(n) =
(Isolatedcp(n) <= Isolatedgcpm(n))

8.3

315/925

The LCM Transformation

The LCM Transformation is defined by:

» Insert,cp(n)=q4r Latest (n) A —lsolatedgcn(n)
» Replicm(n)=4r Comp(n) A —(Latest (n) A Isolatedgci(n))

316/925

The LCM Theorem

Theorem (8.3.3, LCM Theorem)

The LCM transformation is lifetime optimal, i.e.,

LCM € CMLtOpt

8.3

317/925

Chapter 8.4
An Extended Example

318/925

The Original Program

10[y =asb] 11| | 12| |13]

14‘x::a+b‘ 15‘ y:=a+b‘
s

16‘z:=a+b‘ 17‘x:=a+b‘

8.4

319/925

The Result of the BCM Transformation

8.4

320/925

The BCM Transformation

Computationally optimal but maximum register pressure.

8.4

321/925

Delayed and Latest Computation Points

8.4

I:‘ Delayable . Latest

302/925

The Result of the ALCM Transformation

8.4

3023/925

The ALCM Transformation

Comp. optimal, register pressure significantly reduced.

8.4

304/925

Latest and Isolated Computation Points

8.4

D Isolated . Latest

3025/925

The Result of the LCM Transformation

8.4

326/925

The LCM Transformation

Computationally optimal and minimum register pressure.

8.4

307/925

Further Reading for Chapter 8(1)

[§ Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.
Ullman. Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 2nd edition, 2007. (Chapter 9.5.3, The
Lazy-Code-Motion Problem; Chapter 9.5.5, The Lazy-
Code-Motion Algorithm)

[§ Keith D. Cooper, Linda Torczon. Engineering a Compiler.
Morgan Kaufman Publishers, 2004. (Chapter 10.3.2, :
Code Motion — Lazy Code Motion) B4

[K.H. Drechsler, M. P. Stadel. A variation of Knoop,
Riithing and Steffen’s LAZY CODE MOTION. ACM
SIGPLAN Notices 28(5):29-38, 1993.

3028/925

Further Reading for Chapter 8(2)

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Lazy
Code Motion. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI'92), ACM SIGPLAN Notices
27(7):224-234, 1992.

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen. Optimal
Code Motion: Theory and Practice. ACM Transactions
on Programming Languages and Systems Si
16(4):1117-1155, 1994. e
[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Retro-
spective: Lazy Code Motion. In “20 Years of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (1979 - 1999): A Selection”, ACM
SIGPLAN Notices 39(4):460-461&462-472, 2004.

329/925

Further Reading for Chapter 8(3)

[§ Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997. (Chapter
13.3, Partial-Redundancy Elimination — Lazy Code
Motion) 2

8.4

330/925

Chapter 9
Implementing Busy and Lazy Code Motion

Chap. 9

331/925

Chapter 9.1
Implementing BCM and LCM on SI-Graphs

332/925

Chapter 9.1.1

Preliminaries

333/925

Busy and Lazy Code Motion

...for node-labelled Sl-graphs:

» BCM, transformation

» LCM, transformation

Convention: For the following we assume that only critical
edges are split. Therefore, BCM, and LCM, require insertions
at both node entries and node exits (N-insertions and
X-insertions).

GBI}

334/925

Local Predicates for BCM, and LCM,

Local Predicates:

» COMP,(t): t is computed by ¢.
» TRANSP,(t): No operand of t is modified by «.

GBI}

335/925

Chapter 9.1.2
Implementing BCM,

336/925

Implementing BCM, (1)

1. Analyses for Up-Safety and Down-Safety
The MaxFP-Equation System for Up-Safety:

false if t=s
N-USAFE, = [T X-USAFE; otherwise

tepred()

X-USAFE, = (N-USAFE, + COMP,) - TRANSP,

337/925

Implementing BCM, (2)

The MaxFP-Equation System for Down-Safety:

N-DSAFE, = COMP, + X-DSAFE, - TRANSP,

X-DSAFE, = IT N-DSAFE; otherwise

tesucc(t)

{ false if t=e

9.1.2

338/925

Implementing BCM, (3)

2. The Transformation: Insertion&Replacement Points

Local Predicates:

» N-USAFE*, X-USAFE*, N-DSAFE*, X-DSAFE*:
...denote the greatest solutions of the equation systems
for up-safety and down-safety of step 1.

339/925

Implementing BCM, (4)

Computing Earliestness (no data flow analysis!):

N-EARLIEST, =4 N-DSAFE;- [] (X-USAFE; + X-DSAFE)

tepred(L)

X-EARLIEST, =4 X-DSAFE;- TRANSP, 912

340/925

Implementing BCM, (5)

The BCM, Transformation:

N-INSERTBM =, N-EARLIEST,
X-INSERTBM — . X-EARLIEST,

REPLACEBM =, COMP,

341/925

Chapter 9.1.3
Implementing LCM,

342/925

Implementing LCM, (1)

3. Analyses for Delayability and Isolation

The MaxFP-Equation System for Delayability:

N-DELAYED, = N-EARLIEST, +

false if 1=s
[X-DELAYED, otherwise 913
i epred(L)

X-DELAYED, = X-EARLIEST, + N-DELAYED, - COMP,

343/925

Implementing LCM, (2)

Computing Latestness (no data flow analysis!):

N-LATEST, =4 N-DELAYED] - COMP,

X-LATEST, =4r X-DELAYED] - Z N-DELAYED},

V Esucc(L)

where 9.13

» N-DELAYED*, X-DELAYED™: ...denote the greatest
solutions of the equation system for delayability.

344/925

Implementing LCM, (3)

The ALCM, Transformation:

N-INSERTALCM - — . N-LATEST,
X-INSERTALCM - — - X-LATEST,

REPLACEALCM — . COMP,

9.1.3

345/925

Implementing LCM, (4)

The MaxFP-Equation System for Isolation:

N-ISOLATED, = X-EARLIEST, + X-ISOLATED,

X-ISOLATED, = H N-EARLIEST, + COMP, - N-ISOLATED,/

’
 €succ(t) o

346/925

Implementing LCM, (5)

4. The Transformation: Insertion&Replacement Points

Local Predicates:

» N-ISOLATED*, X-ISOLATED™: ...denote the greatest
solutions of the equation system for isolation of step 3.

347/925

Implementing LCM, (6)

The LCM, Transformation:

N-INSERT-CM —_ N-LATEST, - N-ISOLATED*
X-INSERT-M - — . X-LATEST,

REPLACELCM —, COMP, - N-LATEST, - N-ISOLATED*

9.1.3

348/925

Chapter 9.2
Implementing BCM and LCM on BB-Graphs

349/925

Chapter 9.2.1

Preliminaries

350/925

Implementing Busy and Lazy Code Motion

...for node-labelled BB-graphs:

» BCMg Transformation
» LCMp Transformation

Convention: For the following we assume that (1) only
critical edges are split. Therefore, BCMz and LCMg require
insertions at both node entries and node exits (N-insertions
and X-in- sertions), and that (2) all redundancies within a
basic block have been removed by a preprocess.

351/925

Conceptual Splitting of a Basic Block

...into entry, middle, and exit part.

a) b)
(X = b¥ch
o= a+b,
Entry Part u=c
1z = a+b
b = a+b/\

Middle Part(s)

Unique Entry (Exit)
Computation after

Local Redundancy
fffffffffff Elimination
di=b d=b
1 p— 1
Exit Part |z = a+b |z = a+b = .
| - [|y o= | Entry (Exit)
y = a+b, yi=z . .
S - - Y- - Insertion Point
Original Basic Block Basic Block after Local

Redundancy Elimination

2l
912
9.13
9.2
9.2.1

352/925

Entry and Exit Parts of a Basic Block

For PRE, we do not need to distinguish between entry and
middle part(s), and can consider them a unit. This gives rise
to the following definition:

Given a computation t, a basic block n can be divided into
two parts:

» an entry part which consists of all statements up to and
including the last modification of t
» an exit part which consists of the remaining statements
of n.
9.2.1
Note: The entry part of a non-empty basic block is always
non-empty; in distinction, the exit part of a non-empty basic
block can be empty (as illustrated in the following figure).

353/925

lllustrating Entry & Exit Part of a Basic Block

a)

x T=_b""E\I

:y = a+b,

1a =¢ !

:y = a+b,

\b = /'

‘u = a+b:
--- Entry Part
""" Exit Part

o) I _
t'x :=b*c
|
Lid=b
9.1
9.1.1
9.1.2
Entry (Exit) Computation o
—> Entry (Exit) Insertion Point o

354/925

The General Pattern of CM on BB-Graphs

1. Introducing temporay
1.1 Define a new temporary variable h¢yy for t.

2. Insertions
2.1 Insert assignments h¢yy:=t at the insertion point of
the entry art of all 3 € N satisfying N-INSERTM
2.2 Insert assignments h¢cyy:=t at the insertion point of
the exit part of all 8 € N satisfying X-INSERTM

3. Replacements
3.1 Replace the (unique) entry computation of t by hcy
in every 3 € N satisfying N-REPLACEM
3.2 Replace the (unique) exit computation of t by h¢py in
every 3 € N satisfying X-REPLACE®M

9.2.1

355/925

Local Predicates for BEM 3 and LCM

Local Predicates:

» BB-NCOMPgy(t): /5 contains a statement ¢ that com-
putes t, and that is not preceded by a statement that
modifies an operand of t.

» BB-XCOMPg(t): [contains a statement ¢ that com-
putes t and neither + nor any other statement of [
after + modifies an operand of t.

» BB-TRANSP;(t): /5 contains no statement that modi- 921
fies an operand of t.

356/925

Chapter 9.2.2
Implementing BCM 5

357/925

Implementing BCM 3 (1)

1. Analyses for Up-Safety and Down-Safety
The MaxFP-Equation System for Up-Safety:

false if 6=s
BB-N-USAFEg = II (BB—XCOMPB + BB—X—USAFEé) otherwise

Bepred(p)

BB-X-USAFEz = (BB-N-USAFEg + BB-NCOMPg3) - BB-TRANSPg

9.2.2

358/925

Implementing BCM 5 (2)

The MaxFP-Equation System for Down-Safety:

BB-N-DSAFE; = BB-NCOMPg + BB-X-DSAFE - BB-TRANSP
BB-X-DSAFE; = BB-XCOMP; +

false if B=e
) I1 BB—N—DSAFEB otherwise
B€succ(B)

9.2.2

359/925

Implementing BCM 5 (3)
2. The Transformation: Insertion&Replacement Points

Local Predicates:

» BB-N-USAFE*, BB-X-USAFE*, BB-N-DSAFE*,
BB-X-DSAFE*: ...denote the greatest solutions of the
equation systems for up-safety and down-safety of
step 1.

9.2.2

360/925

Implementing BCM 5 (4)

Computing Earliestness (no data flow analysis!):

N-EARLIEST; =4 BB-N-DSAFE} -

H (BB—X—USAFE% + BB—X—DSAFEZ,)
Bepred(B)

X-EARLIEST; =4 BB-X-DSAFEj; - BB-TRANSPg

9.2.2

361/925

Implementing BCM 3 (5)

The BCMg Transformation:

N-INSERTEM =
X-INSERTE™M =

N—REPLACEEC'\/I =df
X—REPLACEEC'\’I =df

N-EARLIEST
X-EARLIEST ;4

BB-NCOMP,
BB-XCOMP;

9.2.2

362/925

Chapter 9.2.3
Implementing LCM g

363/925

Implementing LCM 3 (1)

3. Analyses for Delayability and Isolation

The MaxFP-Equation System for Delayability:

N-DELAYEDg = N-EARLIEST 3 +
false if B=s

IT BB-XCOMP 5 - X-DELAYED; otherwise
Bepred(B)

X-DELAYEDg = X-EARLIEST + N-DELAYEDg - BB-NCOMPg

364/925

Implementing LCM 3 (2)

Computing Latestness (no data flow analysis!):

N-LATEST s =4 N-DELAYED} - BB-NCOMPy

X-LATEST; =g X-DELAYED}; - (BB-XCOMP; + > N-DELAVED})
BEsucc(ﬁ)

where

» N-DELAYED*, X-DELAYED": ...denote the greatest
solutions of the equation system for delayability.

365/925

Implementing LCM 3 (3)

The ALCM 3 Transformation:

N-INSERTZEM =4
X-INSERTZEM - — ¢

N-REPLACEA'™M =
X-REPLACEALM =4

N-LATEST;
X-LATESTj

BB-NCOMP;
BB-XCOMP;

366/925

Implementing LCM 3 (4)

The MaxFP-Equation System for Isolation:

N-ISOLATEDg = X-EARLIESTg + X-ISOLATEDg

X-ISOLATEDg = H N—EARLIESTﬂA + BB—NCOMPB . N—ISOLATEDB
Eesucc(ﬂ)

367/925

Implementing LCM 3 (5)

4. The Transformation: Insertion&Replacement Points

Local Predicates:

» N-ISOLATED*, X-ISOLATED": ...denote the greatest
solutions of the equation system for isolation of step 3.

gi2i3;

368/925

Implementing LCM 3 (6)

The LCMg Transformation:

N-INSERTLCM =4 N-LATEST - N-ISOLATED},
X-INSERTEEM =4 X-LATEST; - X-ISOLATED},

N-REPLACEZ;M =4 BB-NCOMPg - N-LATEST - N-ISOLATED}
X-REPLACE'BCM =4r BB-XCOMPg - X-LATEST3 - X-ISOLATED

369/925

Chapter 9.3
An Extended Example

370/925

The Original Program

9.3

371/925

After the Splitting of Critical Edges

9.3

372/925

Up/Down-Safe, Earliest Computation Points

2l
9.1.2
9.1.3

9.21
9.2.2
O8NS

9.3

© D-Safé

O Earliest

373/925

The Result of the BCM 3 Transformation

-

¥
>

[8]
FERCE
2
S

=S 0 5o

9.2
9.3

374/925

Delayable and Latest Computation Points

9.1.1
912
9.1.3

9.21

9.2.2

O8NS
9.3

@ Earliest
[) DeIayeJ
O Latest

375/925

The Result of the ALCM s-Transformation

Bl

(5]
= <=
F
=

300
TR o e
2
i~

9.3

376/925

Latest and Isolated Program Points

4 ly = a+bl 5[
9.1
| 9.1.1
38 9.1.2
9.13
9.2
9.2.1
9.2.2
9.23
9.3
® Earliest
® Isolated
O Latest

377/925

The Result of the LCM g Transformation

9.3

378/925

Further Reading for Chapter 9

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Lazy
Code Motion. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI'92), ACM SIGPLAN Notices
27(7):224-234, 1992.

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen. Optimal .
Code Motion: Theory and Practice. ACM Transactions o

on Programming Languages and Systems 13
16(4):1117-1155, 1994. 521

O8NS
9.3

379/925

Chapter 10
Sparse Code Motion

Chap. 10

380/925

Motivation

These days Lazy Code Motion is the

» de-facto standard algorithm for PRE that is used in
current state-of-the-art compilers
» Gnu compiler family
» Sun Sparc compiler family

> e

Chap. 10

381/925

In the following

...we consider a (modular) extension of LCM in order to take
user priorities into account!

Code-Size Quality

Computational Quality Chap. 10

...Run-Time Performance

Lifetime Quality

...Register Pressur;

382/925

To render possible

...also the below transformation:

CCCCCCC

There is more than speed!

...for instance space!

CCCCCCC

The World Market for Microprocessors in 1999

Chip Category Sold Processors

Embedded 4-bit 2000 Millions

Embedded 8-bit 4700 Millions

Embedded 16-bit | 700 Millions

Embedded 32-bit | 400 Millions

DSP 600 Millions

Desktop 32/64-bit | 150 Milliones R—

...David Tennenhouse (Intel Director of Research), key note lecture at
the 20th IEEE Real-Time Systems Symposium (RTSS'99), Phoenix,
Arizona, December 1999.

385/925

Chip Category

Sold Processors

Embedded 4-bit
Embedded 8-bit
Embedded 16-bit
Embedded 32-bit
DSP

Desktop 32/64-bit

2000 Millions
4700 Millions
700 Millions
400 Millions
600 Millions
150 Milliones

The World Market for Microprocessors in 1999

~ 2% Chap. 10

...David Tennenhouse (Intel Director of Research), key note lecture at
the 20th IEEE Real-Time Systems Symposium (RTSS'99), Phoenix,
Arizona, December 1999.

386/925

Think about

...domain-specific processors used in embedded systems:

» Telecommunication

» Cellular phones, pagers,...
» Consumer electronics

» MP3-players, cameras, game consoles,...
» Automative field Chap. 10

» GPS navigation, airbags,...

387/925

Code for Embedded Systems

Demands:

» Performance (often real-time demands)

» Code size (system-on-chip, on-chip RAM/ROM)

> .

Chap. 10

For embedded systems:

» Code size is often more critical than speed!

388/925

Code for Embedded Systems (Cont'd)

Demands (and how they are often still addressed):

» Assembler programming

» Manual post-optimization

Shortcomings:

» Error prone

» Delayed time-to-market

...problems getting more severe with increasing complexity.

Generally, we observe:

» a trend towards high-level languages programming
(C/C++)

Chap. 10

389/925

In View of this Trend

...how do traditional compiler and optimizer technologies
support the specific demands of code for embedded systems?

\ Code Size

Chap. 10

Run-Time Performance

...unfortunately, only little.
390/925

W /out Doubt

Traditional Optimizations

» are almost exclusively tuned towards performance
optimization
» are not code-size sensitive and in general do not provide
any control on their impact on the code size e, 20

391/925

This holds especially

...for code motion based optimizations.

In particular, this includes:

v

Partial redundancy elimination

v

Partial dead-code elimination (cf. Lecture Course
185.A05 Analysis and Verification)

Partial redundant-assignment elimination (cf. Lecture Gt
Course 185.A05 Analysis and Verification)

Strength reduction

v

v

392/925

Recalling the Essence of PRE

PRE can conceptually be considered a two-stage process:

1. Expression Hoisting
...hoisting computations to “earlier” safe computation
points

2. Totally Redundant Expression Elimination
...eliminating computations, which become totally
redundant by expression hoisting

Chap. 10

393/925

Recalling the Essence of LCM

LCM can conceptually be considered the result of a two-stage
process:

1. Hoisting Expressions
...to their “earliest” safe computation points

2. Sinking Expressions
...to their “latest” safe still computationally optimal Chap. 10
computation points

394/925

The Road to Code-size Sensitive PRE

Classical PRE

» The PRE Algorithm of Morel&Renvoise (CACM 22,
1979)
» Computationally and Lifetime Optimal Code Motion
~> Busy Code Motion (BCM) / Lazy Code Motion (LCM)
(Knoop, Riithing, Steffen, PLDI'92)

» Distinguished w/ the ACM SIGPLAN Most Influential
PLDI Paper Award 2002 (for 1992)

» Selected for the “20 Years of the ACM SIGPLAN PLDI:

A Selection” (60 articles out of about 600 articles)

Chap. 10

395/925

The Road to Code-size Sensitive PRE (Cont'd)

Non-Classical PRE

» Code-size Sensitive PRE
~> Sparse Code Motion (SpCM)
(Knoop, Riithing, Steffen, POPL'00)
» ...modular extension of BCM/LCM

~» Modelling and solving the problem: Chap. 10
...based on graph-theoretic means

~» Main Results:
...Correctness, Optimality

396/925

The Running Example (1)

Chap. 10

397/925

The Running Example (2)

a) ‘ b)

Chap. 10

398/925

The Running Example (3)

Chap. 10

SQ > CQ>LQ SQ >LAQ>CQ

399/925

The Running Example (4)

Recall: The below transformation is not desired!

Chap. 10

400/925

Code-size Sensitive PRE

~» The Problem
...how do we get code-size minimal placement of the
computations, i.e., a placement that is

» admissible (semantics & performance preserving)
» code-size minimal?

~> The Solution: A new View to PRE
...consider PRE as a trade-off problem: Exchange
original computations for newly inserted ones!

~> The Clou: Use Graph Theory!
...reduce the trade-off problem to the computation of
tight sets in bipartite graphs based on maximum
matchings!

Chap. 10

401/925

We postpone but keep in mind

...that we have to answer:

» Where are computations to be inserted and where are
original computations to be replaced?

...and to prove:

» Why is this correct (i.e., semantics preserving)?

» What is the impact on the code size? Chap. 10

» Why is this “optimal” wrt a given prioritization of goals?

For each of these questions we will provide a specific theorem
that yields the corresponding answer!

402/925

Bipartite Graphs
T

S

Tight Set
...of a bipartite graph (SU T, E): Subset S;s C S w/

VS CS. [Si| = IT(Ss)| = |S|—|F(S)]

F(S‘S) Chap. 10
T ——
S ‘ ,
S

ts

Two Variants: (1) Largest Tight Sets (2) Smallest Tight

403/925

Bipartite Graphs
T

S

Tight Set
...of a bipartite graph (SU T, E): Subset S;s C S w/

VS CS. [Si| —T(Ss)| > |S|—|T(S)]

F(S‘S) Chap. 10
T ——
S ‘ ;
S

ts

Two Variants: (1) Largest Tight Sets (2) Smallest Tight

404/925

Obviously

...we can make use of off-the-shelve algorithms from graph
theory in order to compute

» Maximum matchings and
» Tight sets

This way the PRE problem boils down to

» constructing the bipartite graph that models the
problem!

Chap. 10

405/925

Computing Largest/Smallest Tight Sets

...based on maximum matchings:

LN = LY
=> LN = LY

7.8)

Chap. 10

406/925

LTS-Algorithm 10.1: Largest Tight Sets

Input: A bipartite graph (SUT, E), a maximum matching M.

Output: The largest tight set 7,,7S) C S.

Sm:=S; D:={t € T|tis unmatched};
WHILE D # () DO
choose some x € D; D:= D\ {x};
IFxeS
THEN Sy := Sm \ {x}; SRz
D:=D U {y|{xy}eM}
ELSED:=D U (I'(x) N Swm)
FI
0D;
TiarS) = Su

407/925

STS-Algorithmus 10.2: Smallest Tight Sets

Input: A bipartite graph (SUT, E), a maximum matching M.

Output: The smallest tight set 7s,74S) C S.

Sm:=0; A:={s €S| s is unmatched};
WHILE A # () DO
choose some x € A; A:= A\ {x};
IFxeS
THEN Sy :=Sm U {x}; Chap. 10
A=A U (IF'(x)\ Sm)
ELSEA:=A U {y | {x,y} € M}
FI
0D;
Tomro(S) 1= Su

408/925

Modelling the Trade-off Problem

The Set of Nodes
TisUSrs © ®© @ O O O O ® ® ®
Insert, ., Comp/UpSafe
DownSafe/
(CompUUpSafe)

Chap. 10

The Set of Edges...

409/925

The Set of Nodes

CCCCCCC

Modelling the Trade-off Problem
The Set of Nodes

TosUSes © ® ®© O O O O ®@ ® ©®
Insert, ., Comp/UpSafe

DownSafe/
(CompUUpSafe)

The Bipartite Graph

The Set of Edges ..Vn € Sps Vm € Tps.
{n, m} € Eps <=4 m € Closure(pred(n))

Chap. 10

411/925

Down-Safety Closures

Definition (10.3, Down-Safety Closure)

Let n € DownSafe/Upsafe. Then the Down-Safety Closure
Closure(n) is the smallest set of nodes such that

1. n € Closure(n)
2. ¥'m € Closure(n) \ Comp. succ(m) C Closure(n)

3. Vm € Closure(n). pred(m) N Closure(n) # (0 =
pred(m) \ UpSafe C Closure(n)

Chap. 10

412/925

Down-Safety Closures: The Intuition (1)

Chap. 10

413/925

Down-Safety Closures: The Intuition (2)

Chap. 10

414/925

Down-Safety Closures: The Intuition (3)

Chap. 10

415/925

Down-Safety Closures: The Intuition (4)

Chap. 10

416/925

This intuition

...Is condensed in the notion of down-safety closures. Recall:

Definition (10.3, Down-Safety Closure)

Let n € DownSafe/Upsafe. Then the Down-Safety Closure
Closure(n) is the smallest set of nodes such that

1. n € Closure(n)
2. ¥m € Closure(n) \ Comp. succ(m) C Closure(n) Chap. 10

3. Vm € Closure(n). pred(m) N Closure(n) # (0 =
pred(m) \ UpSafe C Closure(n)

417/925

Down-Safety Regions

...lead to a characterization of semantics-preserving PRE
transformations via their insertion points.

Definition (10.4, Down-Safety Region)

A set RC N of nodes is a down-safety region iff
1. Comp\UpSafe C R C DownSafe\ UpSafe
2. Closure(R) = R

Chap. 10

418/925

Fundamental

Theorem (10.5, Initialization Theorem)

Initializations of admissible PRE transformationen are always
at the earliestness frontiers of down-safety regions.

- UpSafev ~Transp
e O O

e EarliestFrontigy

DownSafe/UpSafe Chap. 10

® Comp

...characterizes exactly the set of semantics preserving PRE
transformations.

419/925

The Key Questions

...regarding correctness and optimality:

1. Where to insert computations, why is it correct?
2. What is the impact on the code size?

3. Why is the result optimal, i.e., code-size minimal?
Chap. 10

...three theorems will answer one of these questions each.

420/925

Main Results / Question 1

1. Where to insert computations, why is it correct?

Intuitively: At the earliestness frontier of the DS-region
induced by the tight set.

Theorem (10.6, Tight Sets: Insertion Points)

Let TS C Sps be a tight set.
Then Rrs=qr [(TS) U (Comp\UpSafe)
is a down-safety region w/ Bodyr_ =TS Chap. 10

Correctness

» An immediate corollary of Theorem 10.6 and the
Initialization Theorem 10.5

421/925

Main Results / Question 2

2. What is the impact on the code size?

Intuitively: The difference between the number of inserted
and replaced computations.

Theorem (10.7, Down-Safety Regions: Space Gain)
Let R be a down-safety region w/

Bodyr=q4r R\ EarliestFrontierr

Then

» Space Gain by Inserting at EarliestFrontiers:
| Comp\ UpSafe| — |EarliestFrontierg | =
|Bodyy | — |T(Bodyg)| 4 = defic(Bodyz)

Chap. 10

422/925

Main Results / Question 3

3. Why is the result optimal, i.e., code-size minimal?

Intuitively: Due to a property inherent to tight sets
(non-negative deficiency!).

Theorem (10.8, Optimality: Transformation)
Let TS C Sps be a tight set.
» Insertion Points: Chap. 10
Inserts,cm=aqr EarliestFrontierg,,=Rrs\ TS

» Space Gain:
defic(TS)=qr | TS| — |T(TS)| > 0 max.

423/925

Largest vs. Smallest Tight Sets: The Impact

) EarliestFrontii{
'LaTS

Largesttight sets favor
Computational Quality
= Earliestness Principle

® FEarliestF rontig
SmTS

Smallesttight sets favor
Lifetime Quality
@ Latestness Principle

® Comp

Chap. 10

424/925

The Impact illustrated on the Running Exam.

Chap. 10

Largest Tight Set Smallest Tight Set
(SQ>CQ) (SQ>LQ)

Earliestness Principle Latestness Principle

425/925

Code-size Sensitive PRE at a Glance

Preprocess
o Optional:PerformL.CM (3 GEN/KILL-DFAs

® Compute Predicates ¢fCV
for G resp. LCM(G) (2 GEN/KILL-DFAs

\

Main Process

Reduction Phase

o Construct Bipartite Graph
o Compute Maximum Matching

V

Optimization Phase

o Compute Largest/Smallest Tight Set|
e Determine Insertion Points

Chap. 10

426/925

The Cookbook of Recipes for Prioritization

-

~

Choice of Auxiliary
Priorit Apply To Using Yields Information
riority Required
L£Q Not meaningful: The identity, i.e., G itself is optimal!
SQ Subsumed by §Q > CQ and SQ > LQ!
co BCM G UpSafe(G), DownSafe(G)
Q> L9 LCM G LCM(G) UpSate(G), DownSafe(G), Delay(G)
so>co || spem G e | SPOML1s(C) UpSate(G), DownSate(G)
50> L0 SpCM ¢ tsllgll}?:l:;: UpSafe(G), DounSafe(C)
N " Largest UpSafe(G), DownSafe(G), Delay(G)
cQ>s5Q SpCM LoM(G) tight set UpSafe(LCM(G)), DownSafe(LCM(C))
X - § Smallest UpSafe(G), DownSafe(G), Delay(G)
€Q>5Q>LQ || SpCM LoM(G) tight set UpSate(LCM(G)), DownSafe(LCM(G))
UpSafe(G), DownSafe(G),
)) Smallest Delay(SpCM 115(G)),
$Q>C€Q>LQ || SpCM DL(SpCMyrs(G)) | fiopt set UpSafe(DL(SpCM75(G))),

DownSate(DL(SpCM75(G)))

36

Chap. 10

427/925

Flexibility as the Reward of SpCM (1)

The original program:

Contents

Chap

-

Chap. 2
Chap. 3
Chap. 4
Chap. 5
Chap. 6
Chap. 7
Chap. 8
Chap. 9
Chap. 10
Chap. 11
Chap. 12
Chap. 13
Chap. 14
Chap. 15
Chap. 16

Chap. 17

(4287925

Flexibility as the Reward of SpCM (2)

BCM: A computationally optimal program (CQ) Contents
o Chap. 1

oy Chap. 2

h:=a+b Oh:=a+b 9h:= a+b ® a=.. Chap. 4

~ % P) Chap. 5

Chap. 6
Chap. 7
Chap. 8
Chap. 9
Chap. 10
Chap. 11
Chap. 12
Chap. 13
Chap. 14
Chap. 15
Chap. 16

Chap. 17

Y 429/935

Flexibility as the Reward of SpCM (3)

LCM: A computationally & lifetime opt. program (CQ > LQ)

Contents
Chap. 1
Chap. 2
Chap. 3
Chap. 4
Chap. 5
Chap. 6
Chap. 7
Chap. 8
Chap. 9
Chap. 10
Chap. 11
Chap. 12
Chap. 13
Chap. 14
Chap. 15
Chap. 16

Chap. 17

(4307925

Flexibility as the Reward of SpCM (4)
SpCM: A code-size & lifetime opt. program (SQ > LQ)

Contents
Chap. 1
Chap. 2
Chap. 3
Chap. 4
Chap. 5
Chap. 6
Chap. 7
Chap. 8
Chap. 9
Chap. 10
Chap. 11
Chap. 12
Chap. 13
Chap. 14
Chap. 15
Chap. 16

Chap. 17

(431/925

Flexibility as the Reward of SpCM (5)

SpCM: A computationally & lifetime best code-size optimal
program (SQ > CQ > LQ)

Contents
Chap. 1
Chap. 2
Chap. 3
Chap. 4
Chap. 5
Chap. 6
Chap. 7
Chap. 8
Chap. 9
Chap. 10
Chap. 11
Chap. 12
Chap. 13
Chap. 14
Chap. 15
Chap. 16

Chap. 17

(432/925

Flexibility as the Reward of SpCM (6)

SpCM: A code-size & lifetime best computationally optimal

program (CQ > SQ > LO

)

Contents
Chap. 1

Chap
Chap
Chap
Chap
Chap

Chap

® N o o B W N

Chap
Chap. 9
Chap. 10
Chap. 11
Chap. 12
Chap. 13
Chap. 14
Chap. 15
Chap. 16

Chap. 17

(433/925

On the Origin and Advancement of PRE (1)

» 1958: A first glimpse of PRE
~» Ershov's work on “On Programming of Arithmetic
Operations.”
» < 1979: Special techniques

~» Total redundancy elimination, loop invariant code
motion

» 1979: The origin of modern PRE
~> Morel/Renvoise's seminal work on PRE
» < ca. 1992: Heuristic improvements of the PRE algo-
rithm of Morel and Renvoise
~> Dhamdhere [1988, 1991]; Drechsler, Stadel [1988];
Sorkin [1989]; Dhamdhere, Rosen, Zadeck [1992],
Briggs, Cooper [1994],...

Chap. 10

434/925

On the Origin and Advancement of PRE (2)

» 1992: BCM and LCM [Knoop Riithing, Steffen (PLDI'92)]

~» BCM first to achieve computational optimality based
on the earliestness principle

~+ LCM first to achieve computational optimality with
minimum register pressure based on the latestness
principle

~» first to rigorously be proven correct and optimal

» 2000: SpCM: The origin of code-size sensitive PRE
[Knoop, Riithing, Steffen (POPL 2000)]

~» first to allow prioritization of goals

~» rigorously be proven correct and optimal

~» first to bridge the gap between traditional compilation
and compilation for embedded systems

Chap. 10

435/925

On the Origin and Advancement of PRE (3)

» Since ca. 1997: A new strand of research on PRE
~+ Speculative PRE: Gupta, Horspool, Soffa, Xue, Scholz,
Knoop,...
» 2005: Another fresh look at PRE (as maximum flow
problem)

~» Unifying PRE and Speculative PRE [Xue, Knoop (CC Cliep. 16
2006)]

436/925

Further Reading for Chapter 10

[§ Oliver Riithing, Jens Knoop, Bernhard Steffen. Sparse
Code Motion. In Conference Record of the 27th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2000), 170-183, 2000.

[§ Bernhard Scholz, R. Nigel Horspool, Jens Knoop.
Optimizing for Space and Time Usage with Speculative
Partial Redundancy Elimination. Proceedings of the ACM Chap. 10
SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems (LCTES 2004), ACM SIGPLAN
Notices 39(7):221-230, 2004.

437/925

Chapter 11
Lazy Strength Reduction

Chap. 11

438/925

Objective

Developing a program optimization that

» uniformly covers

» Partial Redundancy Elimination (PRE) and
» Strength Reduction (SR)

» avoids superfluous register pressure due to unnecessary
code motion

» requires only uni-directional data flow analyses

Chap. 11

The Approach:

» Stepwise and modularly extending the BCM and the
LCM to arrive at the

» Busy (BSR) and Lazy Strength Reduction (LSR)

439/925

lllustration: The Original Program

i

16

Chap. 11

440/925

The Result of Lazy Strength Reduction

T[h=ix10] 8[h:=ix10] 9[h:=h+80]

—
afi=i1] 5 | 6[T=i735]

Chap. 11

441/925

From PRE towards LSR (1)

First, the notion of a candidate expression has to be adapted:

Candidate expressions for

» PRE: Each term t
» SR: Terms of the form v * ¢, where

» v is a variable Chap. 11
» c is a source code constant

442/925

From PRE towards LSR (2)

Second, the set of local predicates has to be extended:

» Used(n)=q4r v * ¢ € SubTerms(t)
» Transp(n)=gqr x £ v
» SR-Trarsp(n)=4r Transp(n) V t =v +d with d € C

Intuitively

The value of a candidate expression is

» killed at a node n, if =(Transp(n) vV SR-Transp(n))
» injured at a node n, if = Transp(n) A SR-Transp(n)

Chap. 11

Important: Injured but not killed values can be

» cured by inserting an update assignment of the form
h := h+ Eff(n) where Eff(n)=4 c % d.

Note that Eff(n) can be computed at compile time since

both ¢ and d are source code constants.
443/925

Extending BCM straigthforward to SR

...leads to Simple Strength Reduction (SSR).

The SSR-Transformation:

1. Introduce a new auxiliary variable h for v *c

2. Insert at the entry of every node satisfying
2.1 Insgggp the assignment h:=vx ¢
2.2 InsUpdgg, the assignment h:=h + Eff(n)

3. Replace every (original) occurrence of vxc in G by h

Note: If both Insgsg and InsUpdgg, hold, the initialization

statement h:= v % ¢ must precede the update assignment
h:= h + Eff(n).

Chap. 11

444925

The Result of SSR

h:=ix10

10[h:=ix10

16

Chap. 11

445/925

Discussing the Effect of SSR

Shortcoming
» The multiplication-addition-deficiency

Remedy:

» Moving critical insertion points in the direction of the
control flow to “earliest” non-critical ones.

Intuitively: Chap. 11

» A program point is critical if there is a v * c-free
program path from this point to a modification of v

446/925

The 1st Refinement of SSR

The SSREqger- Transformation:

1. Introduce a new auxiliary variable h for v x ¢
2. Insert at the entry of every node satisfying

2.1 InsggRrer the assignment h:=v ¢
2.2 InsUpdgr,p.s the assignment h:=h + Eff(n)

3. Replace every (original) occurrence of vxc in G by h

Chap. 11

A447/925

The Result of SSR rctrer

h:=ix10

T[h=ix10] 8]

L

16

Chap. 11

448/925

Adding Laziness

T[h:=ix10] 8[h:=ix10] 9]

L

16

Chap. 11

449/925

The Result of SSRs,4rer

4[i=i+1] 5]

T[h:=ix10] 8[h:=ix10] 9]

L

16

Chap. 11

450/925

The Multiple-Addition Deficiency

llustration:

‘ 2 =i+4
h:=h+30 h:=h+10
i:=i+3 =it1
h:=h+20 h:=h+10
i=1i4+2 ti=1+1
1 -+ -
a:=h i

Chap. 11

451/925

Overcoming the Multiple-Addition Deficiency

Accumulating the effect of cure assignments:

[h:i=h+50] [h:=h+50]

Chap. 11

[h:=h+40] [h:=ix10]

2] a:=h

452/925

Refined Accumulation of Cure Assignments

Chap. 11

\ | [h=h+90] [h:=ix10]

2]

453/925

The 3rd Refinement of SSR: LSR

0

4[i=i+1] 5] |

T[h=ix10] 8[h:=ix10] 9[h:=h+80]

16

Chap. 11

454/925

Homework

Assignment 5:

1. Specify the data flow analyses and transformations for
» SSR
» SSREstrer (overcoming the multiplication-addition
deficiency)
» SSRsndrer (overcoming the register-pressure deficiency)
» SSRThdrer = LSR (overcoming the multiple-addition
deficiency) Chap. 11
2. implement them in PAG, and

3. validate them on the running example of this chapter (or
an example coming close to it).

455/925

Critical Edges

Like for BCM and LCM critical edges need to be split in
order to get the full power of

» Lazy Strength Reduction (LSR)

Chap. 11

456/925

Summary of Predicate Values

..of the analyses of the LSR transformation:

Node Number

22

10 11 12 13 14 15 16 17 18 19 20 21

9

— O O

0

(=}

0

0

(=)

oo

Predicate
Safecy

Earliestcy

Insertcy
Safesg

Earliestsg.

Insertgsg
Critical

Subst-Crit

InsertrstResf

Delay

Latest

Isolated

Updategngper

Insertspdresf

Accumulating
Insertisp

InsUpd;gp
Deletersg

457/925

lllustrating Down-Safety and Earliestness

s=1 Earliestey

Earliestcy 3 Earliestcy 4

v:=v/w |Earliestcy

D-Safecy

Earliestcen

D-Safecy

Earliestcey

D-Safecy

D-Safecy

Earliestey

Earliestcey

D-Safecy

Earliestcy

Chap. 11

458/925

Further Reading for Chapter 11 (1)

[@ F. E. Allen, John Cocke, Ken Kennedy. Reduction of
Operator Strength. In Stephen S. Muchnick, Neil
D. Jones (Eds.). Program Flow Analysis: Theory and
Applications. Prentice Hall, 1981, Chapter 3, 79-101.

[§ Keith D. Cooper, Linda Torczon. Engineering a Compiler.
Morgan Kaufman Publishers, 2004. (Chapter 10.4.2,
Strength Reduction)

[§ D. M. Dhamdhere. A New Algorithm for Composite Chap. 11
Hoisting and Strength Reduction Optimisation (+

Corrigendum). International Journal of Computer
Mathematics 27:1-14,31-32, 1989.

459/925

Further Reading for Chapter 11 (2)

[§ D. M. Dhamdhere, J. R. Isaac. A Composite Algorithm
for Strength Reduction and Code Movement
Optimization. International Journal of Computer and
Information Sciences 9(3):243-273, 1980.

[@ S. M. Joshi, D. M. Dhamdhere. A Composite Hoisting-
strength Reduction Transformation for Global Program
Optimization — Part | and Part Il. International Journal
of Computer Mathematics 11:21-41,111-126, 1982. ol

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Lazy
Strength Reduction. Journal of Programming Languages
1(1):71-91, 1993.

460/925

Further Reading for Chapter 11 (2)

[@ Bernhard Steffen, Jens Knoop, Oliver Riithing. Efficient
Code Motion and an Adaption to Strength Reduction. In
Proceedings of the 4th International Joint Conference on

Theory and Practice of Software Development
(TAPSOFT'91), Springer-V., LNCS 494, 394-415, 1991.

Chap. 11

461/925

Chapter 12

More on Code Motion

Chap. 12

462/925

Chapter 12.1

Motivation

463/925

Motivation
Why is it rewarding to consider PRE?

Because PRE is

» General: A family of optimizations rather than a single
optimization
» Well understood: Proven correct and optimal
» Relevant: Widely used in practice because of its power
» Truly classical: Looks back to a long history beginning
with
» Etienne Morel, Claude Renvoise. Global Optimization
by Suppression of Partial Redundancies.
Communications of the ACM 22(2):96-103, 1979.

» Andrei P. Ershov. On Programming of Arithmetic Ope-
rations. Communications of the ACM 1(8):3-6, 1958.

464/925

Motivation (Cont'd)

Last but not least, PRE is

» Challenging: Conceptually simple but exhibits a variety
of thought provoking phenomenons

Some of these challenges we are going to sketch next.

465/925

Code Motion Reconsidered

Traditionally:

» Code (C) means expressions

» Motion (M) means hoisting

But:
» CM is more than hoisting of expressions and PR(E)E!

466/925

Obviously

...assignments are code, too.

/

f X = a+lf
X :=a+ o3 X 34+ Jo/x:=a+b
X = aﬁi %bi

¥ A

» Here, CM means eliminating partially redundant assign-
ments (PRAE)

467/925

Differently from expressions...

...assignments can also be sunk.

/

X :=a+b

out(x)

X =y+z » X:=at i%

out(x)

out(x)« out(x)

Y T/

» Here, CM means eliminating partially dead code (PDCE)

468/925

Design Space of CM-Algorithms (1)

This results in the following design space of CM-algorithms:

Generally:

» Code means expressions/assignments

» Motion means hoisting/sinking

| Code / Motion || Hoisting | Sinking |
Expressions EH /-
Assignments AH A 121

469/925

Design Space of CM-Algorithms (2)

Adding further dimensions to the design space of
CM-algorithms:

EH X :=a+b

AH, AS \

Syntactic g) - %
: S i =a+t |
Paradigm Semantic y €7D
syn. red.
— Intraprocedural N
— Interprocedural
— Parallelism E o
— Predicated co z éCj—E
= sem. red
12.1
122
12.3
. . 12.4
Introducing semantics... ! 125

470/925

Semantic Code Motion

...enables more powerful optimizations!

(x,y.z) := (a,ba+ (a,b,c) := (X,y,y+2)

h:= a+t1 h:=x+y
= (x.y.2) = (a.b) lQO (@b.c) = (x.31)

(Example from B. Steffen, TAPSOFT'87)

12.1

471/925

What is the Impact on Optimality?

Optimality statements are quite sensitive towards setting
changes!

Three examples shall provide evidence for this:

» Code motion vs. code placement
» Interdependencies of elementary transformations

» Paradigm dependencies

472/925

Further Reading for Chapter 12.1

[§ Bernhard Steffen. Optimal Run Time Optimization —
Proved by a New Look at Abstract Interpretation. In Pro-
ceedings of the 2nd Joint Conference on Theory and
Practice of Software Development (TAPSOFT'87),
Springer-V., LNCS 249, 52-68, 1987.

[§ Bernhard Steffen, Jens Knoop, Oliver Riithing. The Value
Flow Graph: A Program Representation for Optimal Pro-
gram Transformations. In Proceedings of the 3rd
European Symposium on Programming (ESOP'90), 121

12.2

Springer-V., LNCS 432, 389-405, 1990. 123

125

473/925

Chapter 12.2

Code Motion vs. Code Placement

474/925

Code Motion (CM) vs. Code Placement (CP)

CM and CP are no synonyms!

c=a % (X’y) = (a+b,c+b) ’ Motion gets stuck!
T (h1,h2) := (a+b,c+b)
cima 40xy) = (h1,h2)
z= a+bp R z:=ctb ‘@ VMotion gets stuck! hl :=a+b
hl := a+b(\ \hZ :=c+b ’ f h2:=c+b
Original Program : !
z:=hl (l; z:=h2 (ch2):=(ahl) (x,y) := (h1,h2)
S ‘ :
' . Placing c+b' 121
Placihg a+b
After Sem. Code Motion) 12.2
) 12.3
z:=hl O z:=h2 12.
- - 12.5
Lf;,} ’_f*/

After Sem. Code Placement

475/925

Even worse

Optimality is lost!

S S
£ 3

/\ h= a+b<l>/\ h:=c+b

o

C al ? +b c:=a =h

= \ yi=¢ k = K y:
<

Z:= a+b§/ Oz= c+b 7= a+l;6/

o o /

o o
¥ ¥ 12.1

Z =

Incomparable! 2

476/925

Even more worse

The performance can be impaired, when applied naively!

o S
L7, -7
I ¥

N AN

O h:=a+bO ?

C:= Zl<;1\\\\\ i c:=a (2\\\\&
z:= a+b<§/ 7 :=c+b 7= a+b<§/ z:=ctb o
5 //’//) 5 //’//\ /“ ,;//V ~ ,/‘/[Y

477/925

Further Reading for Chapter 12.2

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen. Code
Motion and Code Placement: Just Synonyms? In Procee-

dings of the 7th European Symposium on Programming
(ESOP’98), Springer-V., LNCS 1381, 154-169, 1998.

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen.
Expansion- based Removal of Semantic Partial
Redundancies. In Proceedings of the 8th International
Conference on Compiler Construction (CC'99),
Springer-V., LNCS 1575, 91-106, 1999. 122

123

125

478/925

Chapter 12.3

Interactions of Elementary
Transformations

123

479/925

Assignment Hoisting (AH) plus Totally
Redundant Assignment Elimination (TRAE)

...leads to Partially Redundant Assignment Elimination
(PRAE):

é a:=b+é6 a::b+gg
a:= b+cj>/\ AH cl> <l>
- l - l/\@ 3 TRAE l/\@
b:= a+c<l> b:= a+ci ar=btc > . a+c<f
out(a,b)/ pj out(a,b)¢ \/ out(a,b)Q\/

v T/ J 123

...2nd Order Effects!

480/925

Assignment Sinking (AS) plus Total
Dead-Code Elimination (TDCE)

...leads to Partial Dead-Code Elimination (PDCE):

a:= bﬂ?/\o

X :=a+b TDCE
-

X :=a+b X:=z X 1= a+b

out(x,a
12.1
...2nd Order Effects! 122
123
12.4
12,5

481/925

Conceptually

...we can understand PREE, PRAE, and PDCE as follows:

» PREE = EH ; TREE
> PRAE = (AH + TRAE)*
» PDCE = (AS + TDCE)*

123

482/925

Optimality Results for PREE

Theorem (12.2.1, Optimality)

1. The BCM transformation yields computationally optimal
results.

2. The LCM transformation yields computationally and
lifetime optimal results.

3. The SpCM transformation yields optimal results wrt a
given prioritization of the goals of redundancy
avoidance, register pressure, and code size.

123

483/925

Optimality Results for (Pure) PRAE/PDCE

Deriving relation I-...

» PRAE... G I_AH,TRAE G’ (ET:{AH,TRAE})
» PDCE... G }_AS,TDCE G’ (ET:{AS,TDCE})

We can prove:

Theorem (12.2.2, Optimality)

For PRAE and PDCE the deriving relation Fg1 is confluent
and terminiating.

Universe

G

484/925

Now

...extend and amalgate PRAE and PDCE to Assignment
Placement (AP):

» AP = (AH + TRAE + AS + TDCE)*
...AP should be more powerful than PRAE and PDCE alone!

Indeed, it is but:

X 1= a+b “Ux = ath X a+/:/; “Ux = ath
C\ / out(x) H\ / out(x) h\ out(x)
PDCE PRAE
X = a+lb,/o\> « ;.- a+bo/0\ -> out(x)
out(x) 7

out(x) o N
L <

The resulting two programs are incomparable.
485/925

Confluence

...and hence (global) optimality is lost!

Universe

CiocOpt

123

Fortunately, we retain local optimality!

486/925

However

...there are settings, where we end up w/ universes like the
following:

Universe

123

Here, even local optimality is lost!

487/925

Further Reading for Chapter 12.3

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Partial
Dead Code Elimination. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI'94), ACM SIGPLAN Notices
29(6):147-158, 1994.

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. The
Power of Assignment Motion. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI'95), ACM SIGPLAN Notices 121

12.2

30(6)233—245, 1995. 123

125

488/925

Chapter 12.4

Paradigm Impacts

489/925

Adding Parallelism

(h1,h2,h3) := (a+b,c+b,d+b)

ParBegin arBegin
i\ /> ParBeg
X = a+@/o> [1} e g\
+

A i I
~ ParEnd - ParEnd
o, -
Original Program After Earliestness Transformatio:

...a naive transfer of the “place computations as early as
possible” transformation strategy leads here to an essentially
sequential program!

490/925

Adding Procedures

Similar phenomena are encountered when naively applying
successful transformation strategies from the intraprocedural
to the interprocedural setting.

12.4

491/925

Further Reading for Chapter 12.4

[§ Jens Knoop. Optimal Interprocedural Program Optimiza-
tion: A New Framework and Its Application. Springer-V.,
LNCS 1428, 1998. (Chapter 10, Interprocedural Code
Motion: The Transformations)

[§ Jens Knoop, Bernhard Steffen. Code Motion for
Explicitly Parallel Programs. In Proceedings of the 7th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’99), ACM SIGPLAN
Notices 34(8):13-24, 1999. 122

492/925

Chapter 12.5

Further Code Motion Transformations

493/925

Suggested Reading (1)

» Syntactic PRE

» Knoop, J., Riithing, O., and Steffen, B. Retrospective:
Lazy Code Motion. In “20 Years of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (1979 - 1999): A Selection”, ACM
SIGPLAN Notices 39, 4 (2004), 460 - 461 & 462-472.

» Knoop, J., Riithing, O., and Steffen, B. Optimal code
motion: Theory and practice. ACM Transactions on
Programming Languages and Systems 16, 4 (1994),
1117 - 1155.

» Riithing, O., Knoop, J., and Steffen, B. Sparse code
motion. In Conference Record of the 27th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2000) (Boston, MA, =
Jan. 19 - 21, 2000), ACM New York, (2000), 170 - 183.

494/925

Suggested Reading (2)

» Eliminating partially dead code

» Knoop, J., Riithing, O., and Steffen, B. Partial dead
code elimination. In Proceedings of the ACM
SIGPLAN’'94 Conference on Programming Language
Design and Implementation (PLDI'94) (Orlando, FL,
USA, June 20 - 24, 1994), ACM SIGPLAN Notices 29,
6 (1994), 147 - 158.

» Eliminating partially redundant assignments

» Knoop, J., Rithing, O., and Steffen, B. The power of
assignment motion. In Proceedings of the ACM
SIGPLAN'95 Conference on Programming Language
Design and Implementation (PLDI'95) (La Jolla, CA,
USA, June 18 - 21, 1995), ACM SIGPLAN Notices 30,
6 (1995), 233 - 245.

495/925

Suggested Reading (3)

» BB-graphs vs. Sl-graphs

» Knoop, J., Koschiitzki, D., and Steffen, B. Basic-block
graphs: Living dinosaurs? In Proceedings of the 7th
International Conference on Compiler Construction
(CC'98) (Lisbon, Portugal, March 30 - April 3, 1998),
Springer-Verlag, Heidelberg, LNCS 1383 (1998), 65 -
79.

» Moving vs. placing code

» Knoop, J., Rithing, O., and Steffen, B. Code motion
and code placement: Just synonyms? In Proceedings of
the 7th European Symposium On Programming
(ESOP’98) (Lisbon, Portugal, March 30 - April 3,
1998), Springer-Verlag, Heidelberg, LNCS 1381 (1998),
154 - 1609.

496/925

Suggested Reading (4)

» Speculative vs. classical PRE

» Scholz, B., Horspool, N. and Knoop, J. Optimizing for
space and time usage with speculative partial
redundancy elimination. In Proceedings of the ACM
SIGPLAN/SIGBED 2004 Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES
2004) (Washington, DC, June 11 - 13, 2004), ACM
SIGPLAN Notices 39, 7 (2004), 221 -230.

» Xue, J., Knoop, J. A fresh look at PRE as a maximum
flow problem. In Proceedings of the 15th International
Conference on Compiler Construction (CC 2006)
(Vienna, Austria, March 25 - April 2, 2006),
Springer-Verlag, Heidelberg, LNCS 3923 (2006), 139 - 05
154.

497/925

Suggested Reading (5)

» Further techniques

» Geser, A., Knoop, J., Liittgen, G., Riithing, O., and
Steffen, B. Non-monotone fixpoint iterations to resolve
second order effects. In Proceedings of the 6th Inter-
national Conference on Compiler Construction (CC'96)
(Linkoping, Sweden, April 24 - 26, 1996), Springer-V.,
Heidelberg, LNCS 1060 (1996), 106 - 120.

» Knoop, J., and Mehofer, E. Optimal distribution
assignment placement. In Proceedings of the 3rd
European Conference on Parallel Processing
(Euro-Par'97) (Passau, Germany, August 26 - 29,
1997), Springer-V., Heidelberg, LNCS 1300 (1997), 364
- 373. 12

498/925

Further Reading for Chapter 12 (1)

[@ B. Alpern, Mark N. Wegman, F. Ken Zadeck. Detecting
Equality of Variables in Programs. In Proceedings of
POPL'88, 1-11, 1988.

[Jens Knoop, Oliver Riithing, Bernhard Steffen. Partial
Dead Code Elimination. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI'94), ACM SIGPLAN Notices
29(6):147-158, 1994.

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. The
Power of Assignment Motion. In Proceedings of the ACM 121
SIGPLAN Conference on Programming Language Design -
and Implementation (PLDI'95), ACM SIGPLAN Notices 125
30(6):233-245, 1995.

499/925

Further Reading for Chapter 12 (2)

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Code
Motion and Code Placement: Just Synonyms? In Procee-

dings of the 7th European Symposium on Programming
(ESOP’98), Springer-V., LNCS 1381, 154-169, 1998.

[Jens Knoop. Optimal Interprocedural Program Optimiza-
tion: A New Framework and Its Application. Springer-V.,
LNCS 1428, 1998. (Chapter 10.1, Essential Differences to
the Intraprocedural Setting)

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen.
Expansion-based Removal of Semantic Partial 121
Redundancies. In Pro- ceedings of the 8th International o
Conference on Compiler Construction (CC'99), 12
Springer-V., LNCS 1575, 91-106, 1999.

500/925

Further Reading for Chapter 12 (3)

[§ Jens Knoop, Bernhard Steffen. Code Motion for
Explicitly Parallel Programs. In Proceedings of the 7th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP'99), ACM SIGPLAN
Notices 34(8):13-24, 1999.

[§ Bernhard Steffen. Optimal Run Time Optimization —
Proved by a New Look at Abstract Interpretation. In Pro-
ceedings of the 2nd Joint Conference on Theory and
Practice of Software Development (TAPSOFT'87),
Springer-V., LNCS 249, 52-68, 1987.

[§ Bernhard Steffen, Jens Knoop, Oliver Riithing. The Value o
Flow Graph: A Program Representation for Optimal Pro- ...
gram Transformations. In Proceedings of the 3rd Europe- -
an Symposium on Programming (ESOP'90), Springer-V.,

LNCS 432, 389-405, 1990.

501/925

Part |lI

Interprocedural Data Flow Analysis

502/925

Outline

We consider:

» The Functional Approach (cf. Chapter 13)

» The Base Setting
Procedures but no parameters or local variables

» The Context Information Approach (cf. Chapter 14)

» Call Strings
» Assumption Sets Strings

» The Cloning-Based Approach (cf. Chapter 15)
» The Stack-Based Functional Approach (cf. Chapter 16)

» The General Setting
Adding value parameters and local variables

» Extensions
Adding reference parameters and procedural parameters

503/925

Chapter 13
The Functional Approach

Chap. 13

504/925

Chapter 13.1
The Setting

505/925

The Setting

We consider programs w/ procedures that will be represented
in terms of

» Flow graph systems

» Interprocedural flow graphs

13.1

506/925

Flow Graph Systems

Definition (13.1.1, Flow Graph System)

A flow graph system S=g4r (Go, ..., Gi) is a system of (intra-
procedural) flow graphs in the sense of Chapter 4, where
each flow graph G; represents a procedure of the underlying
program [1. The flow graph Gy of S represents the main
procedure or the main program of [1.

13.1

507/925

lllustration: Flow Graph System

Ty a.b.x,y nl;c,d

1O

7

y call 7, (a+b)
2

0
1o

T

3.6
3.7

508/925

Interprocedural Flow Graphs

Definition (13.1.2, Interprocedural Flow Graph)

A flow graph system S induces an interprocedural flow graph,
where the flow graphs of S are melted to a single flow graph
G*=(N* E* s* e*).

G* evolves from S by replacing each call edge e of a proce-
dure 7 by two new edges e. and e,.

The edge e. connects the source node of e w/ the start node
of the called procedure.

The edge e, connects the end node of the called procedure
w/ the final node of e.

13.1

509/925

[[lustration:

T
1

1

, X, Y

&-O—8. 050 ¢

Interprocedural Flow Gra ph

e (+y)

46

131
13.2
13.3
13.4
13.5
13.6
187

510/925

Notations for Flow Graph Systems

» Gy represents the main procedure.
» The start node sg of Gy is often abbreviated by s.

» The sets of nodes and edges N; und E;, 0 < i < k, are
assumed to be pairwise disjoint.

> N:df U{N, ‘ i € {0, . ,k}} and
E=4 U{Ei|i €{0,...,k}} denote the set of all nodes
and edges of a flow graph system.

» E..,;y C E denotes the set of edges, which represent a
procedure call, for short, the set of call edges. 131

511/925

Notations for Interprocedural Call Graphs

» The set of new edges in an interprocedural flow graph
are called the call edges and return edges of G*, and are
denoted by E} und E;.

*
call—

of G*.

> ¢f EX U EJ denotes the set of call and return edges

13.1

512/925

Streamlining Flow Graph Systems

...by removing unnecessary nodes and edges in flow graph
systems:

main procedure T

X = at+b

O

callm

13.1

513/925

Streamlining Interprocedural Flow Graphs

...as well as in interprocedural flow graphs:

13.1
13.2

1,

13
5!
13

1

514/925

The Key to Interprocedural DFA (1)

The Functional MaxFP-Approach:

The “functional” MaxFP results from lifting the analysis level
from elements to functions. It is the pointwise extension of
the MaxFP approach to all DFA-lattice elements:

The Functional MaxFP Equation System 13.1.3

o Idc if n=s
[~1= { [l (n,m)]Jo[m] | m € pred(n)} otherwise

Let 13.1
Il :N—=(C—C)

denote the greatest solution of the above equation system.

515/925

The Key to Interprocedural DFA (2)

Intuitively

The functional MaxFP approach lifts the MaxFP approach to
the level of functions, i.e.

» it computes the MaxFP solution not just for a specially
selected single lattice element as start information but
simultaneously for all.

13.1

516/925

The Key to Interprocedural DFA (3)

MaxFP approach vs. functional MaxFP approach:

The Equivalence Theorem 13.1.4 characterizes the relation-
ship of the MaxFP approach and the functional MaxFP
approach:

Theorem (13.1.4, Equivalence)
Vne NVe eC. MaxFPgpp(n)(c)=InT"(c)

In the following we will overload the symbol [[]] and use it to
also denote the greatest fixed point [[n]|" of the functional
MaxFP equation system 13.1.3.

13.1

517/925

Outlook

The functional variant of the MaxFP approach is the key to

» interprocedural (i.e., of programs w/ procedures)

» object-oriented (i.e., of programs w/ classes, objects,
and methods)

» parallel (i.e., of programs w/ parallelism)

data flow analysis.

13.1

518/925

Chapter 13.2

Local Abstract Semantics

519/925

(Local) Abstract Semantics

Two components:

» Data flow analysis lattice C = (C,m,U,C, 1, T)
» Data flow analysis functional [] : E* = (C —C)

Note: In the parameterless base setting call edges and return

edges of E* are given the identity function on C as their
semantics.

132

520/925

Chapter 13.3
The IMOP Approach

521/925

Interprocedurally Valid Paths (1)

Observations:

» The notion of a finite path for intraprocedural flow
graphs extends naturally to interprocedural flow graphs.

» Unlike, however, as in intraprocedural flow graphs, where
each path connecting two nodes represents (up to non-
determinism) a possible execution of the program, this
does not hold for interprocedural flow graphs.

» In interprocedural DFA this is taken care of by focusing
on interprocedurally valid paths.

133

522/925

Interprocedurally Valid Paths (2)

Intuitively: Interprocedurally valid paths respect the call/re-
turn behaviour of procedures.

Definition (13.3.1, Interprocedurally Valid Path)

Identifying call and return edges of G* with opening and
closing brackets “(" and “)", the set of interprocedurally
valid paths is given by the set of prefix-closed expressions of
the language of balanced bracket expressions.

Notation: In the following we denote the set of interproce-
durally valid paths (for short: interprocedural paths) from a
node m to a node n by IP[m, n].

133

523/925

Interprocedurally Valid Paths (3)

Observation: If we consider the sequences of edge labelings
(we suppose that each edge is uniquely marked by some
label) of a path as word of a formal language, then the set of
intraprocedurally valid paths is given by a regular language,
the one of interprocedurally valid paths by a context-free
language.

Note:
» Sharir and Pnueli gave an algorithmic definition of inter-
procedurally valid paths in 1981.
» An immediate definition of interprocedurally valid paths
in terms of a context-free language is possible, too.

» The definition of interprocedurally valid paths as in 133
Definition 13.3.1 is due to Reps, Horwitz, and Sagiv,
POPL'95.

524/925

The IMOP Approach

The IMOP Solution:

Ve €CVne N IMOP,(n)=4 [1{[P](c)|p € IP[s,n]}

where IP[s, n| denotes the set of interprocedurally valid paths
from s to n.

133

525/925

Chapter 13.4
The IMaxFP Approach

526/925

The IMaxFP Approach

...Is a two-stage approach:

» Stage 1: Preprocess — Computing the Semantics of
Procedures

» Stage 2: Main Process — Computing the IMaxFP solution

13.4

527/925

Notations

The definition of the IMaxFP approach requires the following
mappings on a flow graph system S:

» flowGraph : N U E — S maps the nodes and edges of S

to the flow graph containing them.

» callee : E.,y — S maps every call edge to the flow graph
of the called procedure.

» caller : S — P(E..i) maps every flow graph to the set of
call edges calling it.

» start © S — {sp,...,sx} and end : S —{eo,...,ex} map
every flow graph of S to its start node and stop node.

13.4

528/925

The IMaxFP Approach (1)

Stage 1: Preprocess — Computing the Semantics of Proce-
dures

The 2nd Order IMaxFP Equation System 13.4.1
[~1=

{/dc ifne{so,...,sk}
[HL(m,n) oI m]| m € prediowcrapnny(n)} otherwise

and

]], if e c E\Ecall
nd(caller(e))]| otherwise

[e1-{

[e
Ie

13.4

529/925

The IMaxFP Approach (2)

Stage 2: Main Process — The “Actual” Interprocedural DFA

The 1st Order IMaxFP Equation System 13.4.2
inf(n)=

¢ ifn=s
[1{inf(src(e))|e € caller(flowGraph(n))} if n€ {sq,..., sk}
[1{ [(m, n) 1(inf(m)) | m € predpowcrapnny(n) } otherwise

The IMaxFP Solution:

Ve € CVne N. IMaxFP(n)=qf inf? (n)

13.4

530/925

Chapter 13.5

Main Results

531/925

Main Results — 1st Stage

Safety and coincidence results of the 2nd-order 1st-stage
analysis:

Theorem (13.5.1, 2nd Order)
For all e € E_,; hold:

L. [elETHIp] | p € CIP[src(e), dst(e)]}, if the data
flow analysis functional [| is monotonic.

2. [el=THIr] | p € CIP[src(e), dst(e)]}, if the data
flow analysis functional [| is distributive.

where the mappings src and dst yield the start and final node
of an edge.

135

532/925

Complete Interprocedural Paths

Definition (13.5.2, Complete Interproc. Path)

An interprocedural path p from the start node s; of a proce-
dure G;, i € {0,..., k}, to a node n within G; is complete, if
every procedure call, i.e., call edge, along p is completed by a
corresponding procedure return, i.e., a return edge.

We denote the set of all complete interprocedural paths from
s; to n with CIP[s;, n].

Note:

» Intuitively, the completeness requirement states that the
occurrences of s; and n belong to the same incarnation
of the procedure.

» We have that the subpaths of a complete interproce-
dural path that belong to a procedure call, are either
disjoint or properly nested.

135

533/925

Main Results — 2nd Stage

Safety and coincidence results of the lst-order 2nd-stage
analysis:
Theorem (13.5.3, Interprocedural Safety)

The IMaxFP solution is a safe, i.e., a lower approximation of
the IMOP solution, i.e.

Ve €CVne N. IMaxFP.(n) C IMOP(n)

if the data flow analysis functional [] is monotonic.

Theorem (13.5.4, Interprocedural Coincidence)
The IMaxFP solution coincides with the IMOP solution, i.e.
Ve € CVne N. IMaxFP. (n) = IMOP(n)

if the data flow analysis functional [| is distributive.
534/925

Chapter 13.6
Algorithms

535/925

The 2nd Order Alg. 13.6.1 — Preprocess

Input: (1) A flow-graph system S, and (2) an abstract semantics
consisting of a data-flow lattice C, and a data-flow functional
[1:E"—(C—0).

Output: Under the assumption of termination (cf. Theorem
13.6.4), an annotation of S with functions [[n]] : C —C (stored
in gtr , which stands for global transformation), and [e] : C—C
(stored in [tr , which stands for local transformation) representing
the greatest solution of the 2nd order Equation System 13.4.1.

Remark: The variable workset controls the iterative process. lIts
elements are nodes of the flow-graph system S. Note that due to
the mutual interdependence of the definitions of [[J] and [] the
iterative approximation of [[]| is superposed by an interprocedural
iteration step, which updates the current approximation of the
effect [] of call edges. The temporary meet stores the result of o

the most recent meet operation.

536/925

The 2nd Order Alg. 13.6.1 — Preprocess

(Prologue: Initializing the annotation arrays gtr and /tr and the
variable workset)
FORALL ne N DO

IF ne{so,...,sk} THEN gtr [n]:= Id¢

ELSE gtr [n]:= T{¢— ¢ FI OD;

FORALL e € E DO

IF e € Ecoyy THEN Jtr [e] := T[¢c — ¢ ELSE ltr [e]:=[e] FI
OD;
workset = {sg,...,Sk};

13.6

537/925

The 2nd Order Alg. 13.6.1 — Preprocess

(Main process: lterative fixed point computation)
WHILE workset # () DO
CHOOSE m € workset ;
workset := workset\{m};
(Update the successor-environment of node m)
IF me {el,...,ek}
THEN
FORALL e € caller(flowGraph(m)) DO
Itr[e] := gtr[m];
meet := ltr[e] o gtr[src(e)] M gtr[dst(e)];
IF gtr[dst(e)] O meet
THEN
gtr[dst(e)] := meet;
workset := workset U {dst(e)}
Fl
oD

13.6

538/925

The 2nd Order Alg. 13.6.1 — Preprocess

ELSE (i.e., m € {el, ce ,ek})
FORALL n € succiowGrapn(m)(m) DO
meet := ltr[(m, n)] o gtr[m] M gtr[n];
IF gtr[n] O meet
THEN
gtr[n] :== meet;
workset := workset U {n}
Fl
oD
Fl
ESOOHC
OD.

13.6

539/925

The 1st Order Alg. 13.6.2 — Main Process

Input: (1) A flow-graph system S, (2) an abstract semantics con-
sisting of a data-flow lattice C, and a data-flow functional []
computed by Algorithm 13.6.1, and (3) a context information

e €C.

Output: Under the assumption of termination (cf. Theorem
13.6.4), the IMaxFP-solution. Depending on the properties of the
data-flow functional, this has the following interpretation:

(1) [] is distributive: variable inf stores for every node the
strongest component information valid there wrt the context
information ;.

(2) [] is monotonic: variable inf stores for every node a valid
component information wrt the context information ¢, i.e., a
lower bound of the strongest component information valid there.

Remark: The variable workset controls the iterative process. lIts
elements are nodes of the flow-graph system S. The temporary
meet stores the result of the most recent meet operation.

13.6

540/925

The 1st Order Alg. 13.6.2 — Main Process

(Prologue: Initialization of the annotation array inf and the
variable workset)

FORALL n e N\{so} DO inf[n]:= T OD;

inf[so] := ¢s;

workset := { s };

13.6

541/925

The 1st Order Alg. 13.6.2 — Main Process

(Main process: lterative fixed point computation)
WHILE workset # () DO
CHOOSE m € workset;
workset := workset\{ m };
(Update the successor-environment of node m)
FORALL n € succfiowGrapn(m)(m) DO
meet := [(m, n) |(inf[m]) M inf[n];
IF inf[n] O meet
THEN
inf[n] := meet;
workset := workset U {n}
Fl;

13.6

542/925

The 1st Order Alg. 13.6.2 — Main Process

IF (m, n) € E.y
THEN
meet := inf[m] M inf[start(callee((m, n)))];
IF inf[start(callee((m, n)))] O meet
THEN
inf [start(callee((m, n)))] := meet;
workset := workset U { start(callee((m, n))) }
Fl
FI
oD
ESOOHC
OD.

13.6

543/925

A First Variant of the IMaxFP-Algorithm

» Algorithm 13.6.3 uses the semantics functions compu-
ted by Algorithm 13.6.1 more efficiently.

» Algorithm 13.6.1 and 13.6.3 constitute a pair of
algorithms computing the /IMaxFP solution, too.

» Replacing Algorithm 13.6.2 by Algorithm 13.6.3 has no
impact on Algorithm 13.6.1.

» Unlike Algorithm 13.6.2, Algorithm 13.6.3 does not
iterate over all nodes but only over procedure start
nodes. After stabilization of the solution for the start
nodes, a single run over all other nodes in the epilogue
suffices to compute the IMaxFP solution at every node.

13.6

544/925

The 1st Order Algorithm 13.6.3 — The
“Functional” Main Process

Input: (1) A flow-graph system S, (2) an abstract semantics
consisting of a data-flow lattice C, and the data-flow functionals
[I=ar gtr and [J=ar Itr with respect to C (computed by
Algorithm 13.6.1), and (4) a context information ¢ € C.

Output: Under the assumption of termination (cf. Theorem
13.6.4), the IMaxFP-solution. Depending on the properties of the
data-flow functional, this has the following interpretation:

(1) [] is distributive: variable inf stores for every node the
strongest component information valid there wrt the context
information c;.

(2) [1 is monotonic: variable inf stores for every node a valid
component information wrt the context information ¢, i.e., a
lower bound of the strongest component information valid there.

Remark: The variable workset controls the iterative process, and
the temporary meet stores the most recent approximation.

13.6

545/925

The 1st Order Algorithm 13.6.3 — The
“Functional” Main Process

(Prologue: Initialization of the annotation array inf, and the
variable workset)

FORALL s € {s;|i €{1,...,k}} DO inf[s]:= T OD;
inf[so] := ¢s;

workset := {s;|i € {1,2,... k}};

3.1

3.5
3.6

1

1
133
13.4
1
b

1

546/925

The 1st Order Algorithm 13.6.3 — The
“Functional” Main Process

(Main process: lterative fixed point computation)
WHILE workset # () DO
CHOOSE s € workset;
workset := workset\{s};
meet := inf[s]M
[{[src(e) N|(inf[start(flowGraph(e))]) | e €
caller(flowGraph(s)) };
IF inf[s] O meet
THEN
inf[s] := meet;
workset := workset U {start(callee(e))| e € Ecay.
flowGraph(e) = flowGraph(s) }
Fl
ESOOHC
OD;

13.6

547/925

The 1st Order IMaxFP-Algorithm 13.6.3 — The

“Functional” Main Process

(Epilogue)
FORALL ne N\{s;|i € {0,..., k}} DO
inf[n]:= [[n[|(inf[start(flowGraph(n))]) OD.

13.5
13.6
L&D

548/925

Termination

Theorem (13.6.4, Termination)

The sequential composition of Algorithm 13.6.1 and Algor-
ithm 13.6.2 resp. Algorithm 13.6.3 terminates with the
IMaxFP solution, if the data flow analysis functional [| is
monotonic and the function lattice [C — C| satisfies the
descending chain condition.

Note: The descending chain condition on [C — C| implies the
descending chain condition on C.

13.6

549/925

A 2nd Variant of the IMaxFP-Algorithm (1)

Partial instead of total computation of the semantics of the
procedures:

» Unlike to the previous two algorithm variants, the new
variant allows an interleaving of preprocess and main
process.

» The computation starts with the main process algorithm.

» If a procedure call is encountered during the iterative
process, the preprocess algorithm is started for this
procedure and the current data flow fact.

» After completion of the computation of the effect of the
procedure for this data flow fact, the main process algo-
rithm is continued with the computed result.

13.6

550/925

A 2nd Variant of the IMaxFP-Algorithm (2)

Note:

» The computation of the semantics of the procedures is
performed demand-drivenly.

» The semantics of procedures are only computed as as far
as necessary.

» Overall, this results in some efficiency gain in practice,
which, however, is difficult to quantify.

13.6

551/925

Chapter 13.7
Applications

552/925

Applications

» For the parameterless base setting the specifications of
intraprocedural DFA problems can be reused unmodified.

» In order to be effective, the descending chain condition
must hold both for the data flow analysis lattice and its
corresponding function lattice.

» This condition holds in particular for all bitvector
problems (availability of expressions, lifeness of variables,
reaching definitions, etc.) but not for simple constants.
Therefore, weaker and simpler classes of constants are
used interprocedurally, e.g., the set of linear constants.

13.7

553/925

Further Reading for Chapter 13 (1)

[§ Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.
Ullman. Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 2nd edition, 2007. (Chapter 12, Inter-
procedural Analysis)

@ Randy Allen, Ken Kennedy. Optimizing Compilers for
Modern Architectures. Morgan Kaufman Publishers,
2002. (Chapter 11, Interprocedural Analysis and
Optimization)

554/925

Further Reading for Chapter 13 (2)

[§ Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997. (Chapter
19, Interprocedural Analysis and Optimization)

[8 Micha Sharir, Amir Pnueli. Two Approaches to Interpro-
cedural Data Flow Analysis. In Stephen S. Muchnick, Neil
D. Jones (Eds.). Program Flow Analysis: Theory and
Applications. Prentice Hall, 1981, Chapter 7.3, The
Functional Approach to Interprocedural Analysis,
196-209.

13.1
13.2
1L
13.4
5!
13.6
13.7

555/925

Chapter 14

The Context Information Approach

Chap. 14

556/925

Outline

From intraprocedural to interprocedural data-flow analysis...
To this end we extend our programming language WHILE by
introducing programs with

» top-level declarations of global mutually recursive
procedures and

» a call-by-value and a call-by-result parameter.

Note: Extensions to multiple call-by-value, call-by-result, and

call-by-value-result parameters are straightforward.
Chap. 14

557/925

Syntax

Extended WHILE-Language WHILE,:

P, = begin D, S, end
D = D;D | proc p(val x; res y) is S end"
S u= .| [call p(a, 2)]c

Labeling scheme

» Procedure declarations
£,: for entering the body
£y for exiting the body
» Procedure calls

{.: for the call
¢, for the return

Chap. 14

558/925

Assumptions

We assume that

v

WHILE, is statically scoped.
The parameter mechanism is

v

» call-by-value for the first parameter
» call-by-result for the second parameter.

v

Procedures may be mutually recursive.

v

Programs are uniquely labelled.

v

There are no procedures of the same name.

v

Only procedures may be called by a program that have
been declared in it. Chap. 14

559/925

Example

The procedure proc fib computing the Fibonacci numbers:

begin
proc fib(val z,u; res v) is
if z<3 then
(vi=u+l; r:=r+1)
else (
call fib (z-1,u,v);
call fib (z-2,v,v)
)
end;
r:=0;
call fib(x,0,y)

end Chap. 14

560/925

The Flow Graph of Procedure proc fib

main proc fib(val z, u; res v)

\[ca" fib(xvo,y)]%%\ [[v = ut1P? | ’[call fib(z—17u7v)]g‘::

' b !

‘ [r:=r+1]* ‘ ’ [call fib(z-2, v, v)]g ‘:

Chap. 14

561/925

Notions and Notations for Flow Graphs (1)

...for procedure calls and procedure declarations:

[call p(a,z)]ﬁf proc p(val x; res y) is S end™
init £l L
final {6} {0}
blocks | {[call p(a, z)]gf} {is"} U blocks(S) U {end*}
labels {lc.lr} {€n, 4} Ulabels(S)
flow {(lci n), (e:)} | {(£n,init(S))} Uflow(S) U {¢,¢x) | £ € final(S))}

Note: (¢¢; ¢n) and ({; ¢,) denote a new kind of flow, interproce-
dural flow:

> (lc; €p) is the flow corresponding to calling a procedure at /.
and entering the procedure body at ¢, and

> (x;) is the flow corresponding to exiting a procedure body Chap. 14
at £, and returning to the call at Z,.

Remark: Intraprocedural flow uses ‘," while interprocedural flow
[}

uses ;.
562/925

Notions and Notations for Flow Graphs (2)

...for (whole) programs:

P*

init, init(Sx)
final, final(S4)
blocks,. | | {blocks (p)|proc p(val x; res y) |s‘)” S end® is in D,} U blocks(S.)
labels, | | {labels (p)|proc p(val x; res y) i |s S end® is in D,} U labels(S,)
flow, U {flow (p) | proc p(val x; res y) is‘ S end* is in D,} U flow(S.)
Lab, labels,

inter-flow, = {({c,%n,lx, ;)| Px contains [call p(a,z)]gf as well as

Chap. 14

proc p(val x; res y) is S end®}

563/925

Example

feall fib(x,0, I | | v i= w1

I1

[call fib(z-1,u,V)]2 ‘:

{

flow, =

inter-flow, =

1

’ [r = r+1]* ‘ ’ [call fib(z-2,v,v)]Z ‘ —

(1,2)
) ES),
1

(2,3),(3,4),(4,9),
51),(9:6),(6,7),(7:1).(9:8),(8,9), . .
,(9;12), (10, 11)}

112),(5,1,9,6),(7,1,9,8)}

= ~ <
O

564/925

Metavariables for Forward /Backward Analyses

Forward Analyses:
» F = flow,
» E = init,
» [F = inter-flow,
Backward Analyses:
» F = flowR
» E — final,

» IF = inter-flowR
Chap. 14

565/925

Towards Interprocedural DFA

New transfer functions dealing with interprocedural flow are
required:

» For each procedure call [call p(a, z)], we require two
transfer functions

» f.and f,
corresponding to calling the procedure and returning
from the call.
» For each procedure definition

proc p(val x; res y) is* S end” we require two transfer
funcions

» f,, and f

corresponding to entering and exiting the procedure
body.

Chap. 14

566/925

Interprocedural DFA: Naive Formulation (1)

» Treat the three kinds of flow, (¢1,05), (c; €n), (x;£,) in
the same way.

» Assume that the 4 transfer functions associated with
procedure calls and procedure definitions are given by
the identity functions, i.e., the parameter-passing is
effectively ignored.

Then:

Naive Interprocedural MaxFP-Equation System:

A(0) = THALL)| (¢, 0) e Fv(;0) € FYym
All) = fAA(0))

Chap. 14
where

. [Wfl€E
LETIN L ifI¢E

567/925

Interprocedural DFA: Naive Formulation (2)

Given the previous assumptions we have:

» Both procedure calls (¢.; ¢,) and procedure returns

1

(Uy; £,) are treated like "goto's”.

» There is no mechanism for ensuring that information
flowing along (¢.; ¢,) flows back along (/; ¢,) to the
same call

» Intuitively, the equation system considers a much too
large set of “paths” through the program and hence will

be grossly imprecise (although formally on the safe side)
Chap. 14

568/925

Interprocedural DFA: Naive Formulation (3)

We want to overcome the shortcoming of the naive formu-
lation by restricting attention to paths that have the proper
nesting of procedure calls and exits. Important are the
notions of matching procedure entries and exits and of
complete and valid paths.

main proc fib(val z, u; res v)

’ [call fib(x, 0, y)]1} ‘ [Iv = ut1P | ‘ [call fib(z-1, u, v)]2 ‘::
v ' ¥ Chap. 14
‘ [r:=r+1]* ‘ [call fib(z-2, v, v)]§ ‘:

[end]®

569/925

Matching Procedure Entries and Exits

proc p(val x; res y)

[call p(a, 2)]§ body

[end]

Chap. 14

570/925

Complete Paths

A complete path from /¢; to ¢, in P, has proper nesting of
procedure entries and exits; and a procedure returns to the
point where it was called:

CPy o, — 11 whenever /1 = ¢,
CPy, oy — 1, CPy, 4, whenever ({1, () € flow,
CPy.y —> le, CPy, 4., CPy, o whenever ({0, Uy, L,) € inter-flow,

Recall:

(le,p, l,r, Ly) € inter-flow,, if P, contains [call p(a,z)]ﬁf as
well as proc p(val x; res y) is* S end®. Chap. 14

571/925

Example: Complete Paths

[call fib(x, 0, y)]} ‘ ‘ [v:= ut1]? ‘ [call fib(z-1, u, v)]3 ‘::
1 v 1
= r+1)* | [feall fib(z-2,v, V)] ‘:
[end]®
CP — 3,CP
CPyp,12 — 10,CP112 39 -9
cp 11, CPro, CPipis 0 7 HCPas
% 9 b
2 9 12’1%/35,9 — 5,CP1,9,CPsGP12,12
CPl 9 — 1, CP2 9
P ’ 2 Cp ’ CP679 — 6, CP779 CPg’g
% b
29 39 CP7g — 7,CP1o,CPsg
CP3 9 — 2,CPsg
’ ! CPgg9g — 8,CPgp

—
—

12
9

Chap. 14

572/925

Valid Paths

A valid path starts at the entry node init, of P,, all the pro-
cedure exits match the procedure entries but some proce-
dures might be entered but not yet exited:

VP, — VPiit, ¢ whenever ¢ € Lab,

VP o, — 11 whenever (1 = (,

VP oy — 11, VP, 4, whenever ({1, () € flow,

VPy.o — le, CPy, 4., VP, o whenever (¢, 0y, Ly, () € inter-flow,
VPo o — le, VP, 4 whenever (¢, 0,, Uy, ;) € inter-flow,

Note: The valid paths are generated by the non-terminal
VP,.

Chap. 14

573/925

Example: Valid Paths

[call fib(x, 0,)11 |

‘ [v:i=u+1]3 ‘ ‘ [call fib(z-1, u, v)]2 ‘

'

CP10,12
CP11,12
CPi1y
CP2,9
CP2,9

Ll bl

Some valid paths

A non-valid path:

—
Y 1
\ [r = r1)* \ ‘ [call fib(z-2, v, V)] ‘:
[end]®
CP — 3,CP
10, CP11,12 >0 9
] CP4 9 — 4, CPg 9
11, CPy 9, CP12,1% ’ ’
1 cp Psg — 5,CP19,CPc6P12,12
e CPes — 6,CP7o9 CPoy
2, CP3 9 ’ ’ ’
’ CP79 —r 7, CP1 9,CP39
2,CPs9 ’ ’ ’
’ CP3,9 — 8, CPg,g
: [10,11,1,2,3,4,9,12] and [10,11,1,2,5, ,6,7,

[10,11,1,2,5, 12]

— 12
- 9
Chap. 14
8,9,12]

574/925

Meet over Valid Paths: The MVP Solution

MVP,(£) = [|{£()I € vpath,(£)}

MVP,(£) = [|{£(0)I€ € vpath,(0)}

where

vpath,(¢) =
{[la,. - loa] | n=>1AL,=CA[le, ..., L,] is valid path}

vpath,(¢) =
{[le,..] | n >IN, =CN[ly,..., L] is valid path} Chap. 14

575/925

Discussing the MVP Solution (1)

The MVP solution may be undecidable (even) for lattices
satisfying the Descending Chain Condition, just as was the
case for the MOP solution.

Therefore, we need to reconsider the maximal fixed point
approach and adapt it to

» avoid considering too many paths

» taking call context information into account.

Chap. 14

576/925

Discussing the MVP Solution (2)

In more detail:

We have to

» reconsider the MFP solution and avoid taking too many
invalid paths into account.

An obvious approach is to

» encode information about the paths taken into the data
flow properties themselves.

This can be achieved by

Chap. 14
» introducing context information § € A.

577/925

Towards the MFP Counterpart

» Context insensitive analysis: No context information is
used.

» Context sensitive analysis: Context information § € A is
used.

» Call strings:

» An abstraction of the sequences of procedure calls that
have been performed so far.
» Example: The program point where the call was initia-
ted.
» Assumption sets:

» An abstraction of the states in which previous calls
have been performed.

» Example: An abstraction of the actual parameters of
the call.

Chap. 14

578/925

Call Strings 0 as Context Information A

» Encode the path taken.

» Only record flows of the form (¢.;¢,) corresponding to a
procedure call.

» we take as context /\ = Lab] where the most recent
label /. of a procedure call is at the right end.

» Elements of /\ are called call strings.

» The sequence of labels ¢%,¢2 ... (™ is the call string
leading to the current call which happened at ¢7; the
previous calls where at ¢2... (L. If m =0 then no calls

have been performed so far.

For the example program the following call strings are of
interest:

A, [11],[11,5],[11,7],[11,5,5], [11,5,7],[11,7,5], [11,7,7], ...

Chap. 14

579/925

The Adapted MFP Equation System

The Adapted MFP-Equation System:

A(l) = THALO) | (£.0) € FV(C30) € FyN ik
All) = fA(A(0)

where

»l=A— L maps a context to a data flow property
(i.e., a data flow lattice element)

» each transfer function f is given by £(1)(5) = £(/(5))
(i.e., f; adapts resp. specializes f; to the call context §)

0 e ifd=A
Le=—df .
E 1 otherwise

Chap. 14

580/925

Making it Practical: Bounding Call Strings

Problem: Call strings can be arbitrarily long (recursive
calls)

Solution: Truncate the call strings to have length of at
most k for some fixed number k

In practice:
» A= Lab=¥, i.e. call strings of bounded length k.
» k = 0: Context insensitive analysis
» A (the call string is the empty string)
» k = 1. Remember the last procedure call
> A [11],[5], [7]
» k = 2: Remember the last two procedure calls
» A, [11],[11,5],[11,7],[5,5],[5,7],[7,5], [7, 7]

Chap. 14

581/925

Assumption Sets 0 as Context Information A

Instead of describing a path directly in terms of the calls
being performed (as a call string does), information about
the state in which a call was made can be stored (as an
assumption set does).

For a more detailed account of the assumption set approach
refer to

» Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition, Springer-V.,
2005. (Chapter 2.5.5, Assumption Sets as Context)

Chap. 14

582/925

Advanced Topics

. of interprocedural program analysis and a glimpse on how
they can be addressed by static program analysis.

» Function pointers
» Virtual function calls

» Overloaded functions

Chap. 14

583/925

Function Pointers

Values of function pointer variables

The value of a function pointer variable is the address of a
function. At run-time different values can be assigned to
pointer variables.

Interprocedural Control Flow
Any function with the same signature (=parameter types)
can be potentially called by using a function pointer.

Program analysis can reduce the number of functions that

may be called at run-time by computing the set of possible

pointer values assigned to function pointer variables in a Chap. 14
given program.

584/925

Virtual Function Calls & Overloaded Functions

...in object-oriented programming.

Virtual function calls

By taking the class hierarchy into account, we can limit the
methods that can be called to the set of overriding methods
of subclasses. Program analysis can further reduce the
number of methods that may be called at run-time.

Overloaded functions

Calls to overloaded functions are resolved at compile time.
Chap. 14

585/925

Further Reading for Chapter 14 (1)

[Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.
Ullman. Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 2nd edition, 2007. (Chapter 12.1.3, Call
Strings)

[@ Uday P. Khedker, B. Karkare. Efficiency, Precision,
Simplicity, and Generality in Interprocedural Dataflow
Analysis: Resurrecting the Classical Call Strings Method.
In Proceedings CC 2008, Springer-V., LNCS 4959,
213-228, 2008.

[§ Ravi Mangal, Mayur Naik, Hongseok Yang. A
Correspondence between Two Approaches to
Interprocedural Analysis in the Presence of Join. In Chap. 14
Proceedings of the 23rd European Symposium on
Programming (ESOP 2014), Springer-V., LNCS 8410,
2014.

586/925

Further Reading for Chapter 14 (2)

[§ Matthew Might, Y. Smaragdakis, D. Horn. Resolving and
Exploiting the k-CFA Paradox: llluminating Functional
vs. OO Program Analysis. In Proceedings PLDI 2010,
2010.

[§ Micha Sharir, Amir Pnueli. Two Approaches to Interpro-
cedural Data Flow Analysis. In Stephen S. Muchnick, Neil
D. Jones (Eds.). Program Flow Analysis: Theory and
Applications. Prentice Hall, 1981, Chapter 7.3, The Call-
String Approach to Interprocedural Analysis, 210-217.

[§ Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition, Springer-V., Chap. 14
2005. (Chapter 2.5, Interprocedural Analysis)

587/925

Further Reading for Chapter 14 (3)

[@ Y. Smaragdakis, M. Bravenboer, O. Lhothdk. Pick Your
Contexts Well: Understanding Object-Sensitivity. In
Proceedings POPL 2011, 2011.

Chap. 14

588/925

Chapter 15
The Cloning-Based Approach

Chap. 15

589/925

Key ldea

Distinguish contexts via cloning.

Chap. 15

590/925

Applications

Especially popular for object-oriented and points-to analyses.

» k-object sensitive analysis for object-oriented programs
(e.g., [MRR02,SBL11]).

» Pointer analyses (e.g., [BLQ03,WL04,ZC04,Wha07,
BS09)

» Cloning-based pointer analyses are often expressed in
Datalog solved using specialized Datalog solvers
exploiting redundancy arising from large numbers of
similar contexts for high k values ([Wha07,BS09])

» Contexts are typically represented by binary decision
diagrams (BDDs) ([BLQHUO03,WL04,ZC04]) or explicit
representations from the database literature ([BS09]).

» Recursion is typically approximated in an ad hoc
manner. Exceptions are the approaches of
[KK08,KMR12]

Chap. 15

591/925

Further Reading for Chapter 15 (1)

[M. Berndl, O. Lothak, F. Qian. Laurie Hendren,
N. Umanee. Points-to Analysis using BDDs. In
Proceedings PLDI 2003, 2003.

[M. Bravenboer, Y. Smaragdakis. Strictly Declarative
Specification of Sophisticated Points-to Analyses. In
Proceedings OOPSLA 2009, 2009.

[§ Uday P. Khedker, B. Karkare. Efficiency, Precision,
Simplicity, and Generality in Interprocedural Dataflow
Analysis: Resurrecting the Classical Call Strings Method.
In Proceedings CC 2008, LNCS 4959, Springer-V.,
213-228, 2008.

Chap. 15

592/925

Further Reading for Chapter 15 (2)

[§ Uday P. Khedker, Alan Mycroft, P. S. Rawat.
Liveness-based Pointer Analysis. In Proceedings SAS
2012, Springer-V., LNCS 7460, 265-282, 2012.

[@ A. Milanova, A. Rountev, Barbara G. Ryder.
Parameterized Object Sensitivity for Points-to and
Side-effect Analyses for JAVA. In Proceedings ISSTA
2002, 2002.

[§ A. Milanova, A. Rountev, Barbara G. Ryder.
Parameterized Object Sensitivity for Points-to Analysis
for JAVA. ACM TOSEM 14(1), 2005.

Chap. 15

593/925

Further Reading for Chapter 15 (3)

[O. Shivers. Control-Flow Analysis in Scheme. In
Proceedings PLDI 1988, 1988.

[§ Y. Smaragdakis, M. Bravenboer, O. Lhothak. Pick Your
Contexts Well: Understanding Object-Sensitivity. In
Proceedings POPL 2011, 2011.

8 J. Whaley. Context-sensitive Pointer Analysis using
Binary Decision Diagrams. PhD Thesis, Stanford
University, 2007.

[§ J. Whaley, Monica Lam. Cloning-based Context-sensitive
Pointer Alias Analysis using Binary Decision Diagrams. In
Proceedings PLDI 2004, 2004.

[§ J. Zhu, S. Chalman. Symbolic Pointer Analysis Revisited. Chap. 15
In Proceedings PLDI 2004, 2004.

594/925

Chapter 16
The Stack-Based Functional Approach

Chap. 16

595/925

Chapter 16.1
The Setting

596/925

Outline

We extend our setting by adding

» Value parameters

» Local variables

This requires to adjust our program representations towards

» Flow graph systems (FGS) w/ value parameters and
local variables

» Interprocedural flow graphs (IFG) w/ value parameters
and local variables

16.1

597/925

FGS w/ Value Parameters and Local Variables

main; VAR a,b,x,z procedure T (f,g); VAR y

X :=a+b

Q -~
call T (x,a+b) X = a+i y = aH

a:=a+b

call T (y,x+y)
16.1

16.3
598/925

IFG w/ Value Parameters and Local Variables

: y = a+

16.1

16.3
599 /925

New Phenomena

...related to procedures, value parameters, and local variables.

Conceptually most important:

» Existence of an unlimited number of copies
(incarnations) of local variables and value parameters at
run-time due to recursive procedures.

» After termination of a recursive procedure call the local
variables and value parameters of the proceding not yet
finished procedure call become valid again.

» The run-time system handles this phenomena by means
of of a run-time stack which stores the activation
records of the various procedure incarnations.

For program analysis, we have to take these phenomena into
account and to model them properly.

16.1

600/925

Data Flow Analysis Stacks

Intuitively:

» DFA stacks are a compile-time equivalent of run-time
stacks.

» Entries in DFA stacks are data flow facts of an
underlying DFA lattics C.

» We denote the set of all non-empty DFA stacks by
STACK.

16.1

601/925

Manipulating DFA Stacks

DFA stacks can be manipulated by:

1. newstack : C — STACK
newstack(c) generates a new DFA stack with entry c.

2. push : STACK x C— STACK
push stores a new entry on top of a DFA stack.

3. pop: STACK — STACK
pop removes the top-most entry of a DFA stack.

4. top: STACK —C
top yields the contents of the top-most entry of a DFA
stack w/out modifying the stack.

16.1

602/925

Remarks (1)

» The usual stack function emptystack : — STACK is
replaced by newstack. Empty DFA stacks are not con-
sidered since they do not occur in interprocedural DFA.

» push and pop allow to manipulate the top-most entries
of a DFA stack. This is different to and less flexible as
for run-time stacks but suffices for interprocedural DFA.

» In fact, DFA stacks are only conceptually relevant, i.e.,
for the specifying, i.e., for the specifying IMOP approach
but not for the algorithmic IMaxFP approach.

16.1

603/925

Remarks (2)

» Like run-time stacks DFA stacks store that part of the
history of a program path that is relevant after finishing
a procedure call.

» DFA stack entries can be considered abstractions of the
activation records of procedure calls.

» The top-most entry of a DFA stack represents always
the currently valid activation record (therefore, DFA
stacks are never empty).

» Other than the top-most DFA stack entries represent the
activation records of already started but not yet finished
procedure calls.

16.1

604 /925

Chapter 16.2

Local Abstract Semantics

605/925

Basic Local Abstract Semantics

Basic Local Abstract Semantics on DFA Lattice

1. DFA lattics C=(C,n,U,C, L, T)
2. DFA functional [J': E*—(C—=C)
3. Return functional R : E.oy — (C x C —C)

16.2

606/925

Induced Local Abstract Semantics

Induced Local Abstract Semantics on DFA Stacks

» DFA functional [[: E* — (STACK — STACK) on
DFA stacks induced by a basic local abstract semantics
that is defined by
Vee E* Vstk € STACK. [e]"(stk)=ur

push(pop(stk), [e] (top(stk))) if e € EX\ES,

push(stk, [e] (top(stk))) ifec E;

push(pop(pop(stk)), Re(tor_>f(pop(SEtk)), [e]'(top(stk))))
ifec E;f

16.2

607/925

Notations related to DFA Stacks

» STACK>; (STACK <, etc.), i € N denotes the set of all
DFA Stacks w/ at last (at most, etc.) i entries (hence
STACK equals STACK »1.

» STACK;, i € N, denotes the set of all DFA Stacks w/
exactly / entries.

» Uy denotes the number of entries of the DFA stack stk.

» stk;, 1 < i < gy, denotes the ith entry of the DFA
stack stk.

16.2

608/925

Properties

Lemma (16.2.1)
Let e € E* and stk € STK. Then we have:
STKy,, ife € E*\E},
L [e]'(stkye s STKy_, 41 ife€E;
STKﬁstk—l ifee Er*/\ﬁstk > 2

[€] (stk)) = pop(stk), if e € E*\E,,
3. pop([e](stk)) =stk, ife € E}

[e 1x(stk)) = pop(pop(stk)), if e € Ef NDspc > 2

16.2

609/925

The Structure of the Semantic Functions

All semantic functions occurring in interprocedural DFA are
an element of the following subsets of the set of all functions
F=q4r [STACK — STACK | on DFA stacks:

> ord

> psh

> Fpop
These sets of functions are given by:
Ford=ar { f € F|Vstk € STACK. pop(f(stk)) = pop(stk) }
Fosh=ar { f € F |V stk € STACK. pop(f(stk)) = stk }

Foop=ar { f € F |V stk € STACK >,. pop(f(stk)) = pop(pop(stk)) }

16.2

610/925

Properties

Lemma (16.2.2)

\V/fpp €]:pop Vfo, fol € Ford prh €]:psh-

]_. fo @) f‘; - Ford
2. fpp O fO o) fph € ford

Lemma (16.2.3)
1. Vee EX\E:,. [e]” € Fou
2.VeeE:. [e]” € Fpsn
3. VeeEf. [e] € Fpop

16.2

611/925

The Significant Part of DFA Functions

Only the two top-most entries of DFA stacks are modified by
DFA functions. This gives rise to the following definition:

Definition (16.2.4, Significant Part)

» f € FordU Fpsn: Then £ : C— C is defined by:
fs(c)=ar top(f (newstack(c)))

» £ € Fpop: Then f,:C x C—C is defined by:
fs(c1, c2)=4qr top(f (push(newstack(ci), 2)))

(Note that C x C is a lattice, if C is a lattice.)

We have:
Lemma (16.2.5)

1. Veec EX\E. [el:=[e]
2.Ve€EVa,elCxC. [e]:=Relc,[e](c)) 163

612/925

Properties
Lemma (16.2.6)

1.

Ve € E*\EY, Vstk € STK. [e]"(stk) = stk” with Ospkr = Vsti
and

stk; if I < Vg

VIS TS Do sthi=ar { [eli(stho,) ifi=0su

. Ve€ E Vstk € STK. [e]"(stk) = stk with O =Vsex + 1 and

. / stk; if i <O +1
< < / ;= * r -
V1<i< g sth;=gr { [[e]ls(Stkﬂstk) ifi=0u +1
Vece Er* V stk € STKZQ. |[6]]*(Stk)251.’k/ with O = Ustie — 1

and
. - stk; ifi<tgr —1
VLSS Daver- sthi =ar { [elc(stho,,—1,Sthkyy) ifi=0su —1

16.2

613/925

S-Monotonicity, S-Distributivity

Definition (16.2.7, S-Mon., S-Distrib.)
A DFA function f € FoqU Fpspld Fpop 1S

1. s-monotonic iff £ is monotonic

2. s-distributive iff £, is distributive

16.1
16.2

16.3
614/925

Properties

Lemma (16.2.8)
For all e € E* the function [e]" is s-monotonic (s-distribu-
tive), if

» ec EX\E*: [e] is monotonic (distributive)

»ecE: [e] and R. are monotonic (distributive)

16.2

615/925

Conventions

In the following

» we consider s-monotonicity and s-distributivity as genera-
lizations of the usual monotonicity and distributivity.

To this end, we

» identify lattice elements with their representation as a
DFA stack with just a single entry.

» extend the meet and join operation M and LI as follows
to (the top most entries of) DFA stacks:

|—| STK =4 newstack(|—|{top(stk) | stk € STK})

LISTK =4 newstack(LI{top(stk)|stk € STK})

16.2

616/925

Chapter 16.3
The IMOPs Approach

16.3
617/925

The IMOPs;, Approach

The IMOPs,, Solution:

VCS ceCVneN. IMOPStkCS(n):df
[1{[p] (newstack(c))|p € IP[s, n] }

16.3
618/925

Chapter 16.4
The IMaxFPs; Approach

£19/925

The IMaxFPsy Approach

...Is a two-stage approach:

» Stage 1: Preprocess — Computing the Semantics of
Procedures

» Stage 2: Main Process — Computing the IMaxFP solution

£20/925

Preliminaries

Let
» ldstack denote the identity on STACK, and
» [1the pointwise meet-operation on F,,4

Note:
> VI € Fog. FMF =g " € Forg with Vstk €

STACK. topl(f"(stk))=rtop(f(stk)) M top(f’(stk)).
» “" induces an inclusion relation “C " on F,4 by:

fCf gdw. fT1f =f.

£21/925

The IMaxFPs, Approach (1)

Stage 1: Preprocess — Computing the Semantics of Proce-
dures:

The 2nd Order Equation System 16.4.1

[KI(m,n)] ohﬂl m]| m € predsoncrap(n) (1)}
otherwise

ldsTack if ne start(S)
[~1=

and

ol — I[e]]* if e € E\Eca//
[el= { [e] ol end(callee(e))Jo[e.]" otherwise

£22/925

The IMaxFPs;, Approach (2)

The 1st Order IMaxFPs;, Equation System 16.4.2:

newstack(cs) if n=sg
[1{[e 1 (inf(src(e)))|e € caller(flowGraph(n)) }
inf(n)= falls n € start(S)\{so}

[T (m, n) J(inf (m)) | mhe predsioncraph(n) (1) }
otherwise

The IMaxFPs Solution:

V¢ € CVn e N. IMaxFPsu,(n)=ar inf?, ()

£23/925

Chapter 16.5

Main Results

624/925

Towards the Main Results

Important:

Lemma (16.5.1)
For all n € N the semantic functions [e]", e € E*, are
1. s-monotonic: [n]] C imop,,
2. s-distributive: [[n] = imop,
where imop,, : N — (STACK — STACK) denotes a functional
that is defined by:

Vne N. imop,=4f

ldstack ifne start(S)
[H{Ip]" | p € CIP|[start(flowGraph(n)), n]} otherwise

625/925

Main Results — 1st Stage

Safety and coincidence results of the 2nd order 1st stage
analysis:

Theorem (16.5.2, 2nd-Order)

For all e € E_.;y we have:
L [elSTHIrT | p € CIP[src(e), dst(e)]}, if[1" is

s-monotonic.

2. Tel=THIrI | p € CIP[src(e), dst(e)]}, if[T is
s-distributive.

where the mappings src and dst yield the start and final node
of an edge.

626/925

Main Results — 2nd Stage

Safety and coincidence results of the 1st order 2nd stage
analysis:
Theorem (16.5.3, Interprocedural Safety)

The IMaxFPsy. solution is a lower (i.e., safe) approximation
of the IMOPs, solution, i.e.

Ve € CVne N. IMaxFPsy. (n) T IMOPsy (1)

if[1" is s-monotonic.

Theorem (16.5.4, Interprocedural Coincidence)
The IMaxFPs; solution coincides with the IMOPs,, solution,
ie.

Ve € CVne N. IMaxFPsy. (n) = IMOPsy . (n)
if [17 is s-distributive.

627/925

Chapter 16.6
Algorithms

628/925

Algorithms

» The algorithms of Chapter 13.6 can straightforwardly be
extended to stack-based functions.

» This way we receive
» the standard variant of pre- and post-process
» the more efficient variant of pre- and functional main
process.
» a demand-driven “by-need” variant.

» In the following we present another stackless variant.
The clou of this variant is that stacks have at most 2
entries during analysis time.

Therefore, a single temporary storing the temporarily
existing stack entry during procedure calls is sufficient
for the implementation.

629/925

The Stackless 2nd Order Algorithm 16.6.1 —
Preprocess

Input: (1) A flow-graph system S, and (2) an abstract semantics
consisting of a data-flow lattice C, and a data-flow functional
[1:E"—=(C—C).

Output: Under the assumption of termination (cf. Theorem
16.6.4), an annotation of S with functions [[n]] : C —C (stored
in gtr, which stands for global transformation), and [e] : C—C
(stored in [tr, which stands for local transformation) representing
the greatest solution of Equation System 16.4.1.

Remark: The variable workset controls the iterative process. Its
elements are nodes of the flow-graph system S. Note that due to
the mutual interdependence of the definitions of [[J] and [] the
iterative approximation of [[]| is superposed by an interprocedural
iteration step, which updates the current approximation of the
effect [] of call edges. The temporary meet stores the result of
the most recent meet operation.

630/925

The Stackless 2nd Order Algorithm 16.6.1 —
Preprocess

(Prologue: Initialization of the annotation arrays gtr and /tr and
the variable workset)
FORALL ne N DO
IF ne {So, .. .,Sk} THEN gtr[n] = lde
ELSE gtr[n]:= T{¢c — ¢ FI OD;
FORALL e € E DO
IF e € E.oy THEN Jtr[e]:=[e] o Tie—crolec ¥
ELSE /tr[e]:=[e] FI OD; (x)
workset := {sg,...,Sk};

631/925

The Stackless 2nd Order Algorithm 16.6.1 —

Preprocess

(Main process: lterative fixed point computation)
WHILE workset # () DO
CHOOSE m € workset;
workset := workset\{ m };
(Update the successor-environment of node m)
IF me {el,...,ek}
THEN
FORALL e € caller(flowGraph(m)) DO
Itr[e] := Re o (Idc, [e] o gtr[m] o[ec]');
meet := ltr[e] o gtr[src(e)] M gtr[dst(e)];
IF gtr[dst(e)] O meet
THEN
gtr[dst(e)] := meet;
workset := workset U {dst(e)}
FI
oD

632/925

The Stackless 2nd Order Algorithm 16.6.1 —
Preprocess

ELSE (i.e., m € {el, . ,ek})
FORALL n € Succf/owGraph(m)(m) DO
meet := Itr[(m, n)] o gtr[m] M gtr[n];
IF gtr[n] O meet
THEN
gtr[n] := meet;
workset := workset U {n}
FI
oD
FI
ESOOHC
OD.

633/925

The Stackless 1st Order Algorithm 16.6.2 —
Main Process

Input: (1) A flow-graph system S, (2) an abstract semantics consisting
of a data-flow lattice C, and a data-flow functional [] computed by
Algorithm 16.6.1, and (3) a context information ¢ € C.

Output: Under the assumption of termination (cf. Theorem 16.6.4), the
IMaxFPs ss-solution. Depending on the properties of the data-flow
functional, this has the following interpretation:

(1) [1 is distributive: variable inf stores for every node the strongest
component information valid there with respect to the context
information c;.

(2) [1is monotonic: variable inf stores for every node a valid
component information with respect to the context information ¢, i.e.,
a lower bound of the strongest component information valid there.

Remark: The variable workset controls the iterative process. Its
elements are nodes of the flow-graph system S. The temporary meet

stores the result of the most recent meet operation.
634/925

The Stackless 1st Order Algorithm 16.6.2 —
Main Process

(Prologue: Initialization of the annotation array inf and the
variable workset)
FORALL n € N\{so} DO inf[n]:= T OD;
inf[so] := ¢s;
workset := { sg };
(Main process: lterative fixed point computation)
WHILE workset # () DO
CHOOSE m € workset;
workset := workset\{ m };
(Update the successor-environment of node m)
FORALL n € succponGraph(m)(m) DO
meet := [(m, n) [(inf[m]) M inf [n];
IF inf[n] O meet
THEN
inf[n] := meet;
workset := workset U {n} FlI, ey

The Stackless 1st Order Algorithm 16.6.2 —

Main Process

IF (m, n) c Eca/l
THEN

meet := [(m, n)c] (inf[m])r
inf [start(callee((m, n)))]; ()
IF (m, n) S Ecall
THEN
meet := [(m, n)c] (inf[m])M
inf [start(callee((m, n)))]; (x)
IF inf[start(callee((m, n)))] 3 meet
THEN

inf [start(callee((m, n)))] := meet;
workset := workset U { start(callee((m, n))) }
FI
FI
oD
ESOOHC OD.

636/925

The Stackless 1st Order Algorithm 16.6.3 -
“Functional” Main Process

Input: (1) A flow-graph system S, (2) an abstract semantics consisting
of a data-flow lattice C, and the data-flow functionals [[[l=ar gtr and

[1=ar Itr with respect to C (computed by Algorithm 16.6.1), and (4) a
context information ¢ € C.

Output: Under the assumption of termination (cf. Theorem 16.6.4), the
IMaxFPs; ss-solution. Depending on the properties of the data-flow
functional, this has the following interpretation:

(1) [] is distributive: variable inf stores for every node the strongest
component information valid there with respect to the context
information c;.

(2) [1 is monotonic: variable inf stores for every node a valid
component information with respect to the context information ¢, i.e.,
a lower bound of the strongest component information valid there.

Remark: The variable workset controls the iterative process, and the
temporary meet stores the most recent approximation.

637/925

The Stackless 1st Order Algorithm 16.6.3 -
“Functional” Main Process

(Prologue: Initialization of the annotation array inf, and the
variable workset)

FORALL s € {s;|i €{1,...,k}} DO inf[s]:= T OD;

inf[so] := ¢s;

workset := {s;|i € {1,2,...,k}};

16.1
16.2

16.3
638/925

The Stackless 1st Order Algorithm 16.6.3 —
“Functional” Main Process

(Main process: lterative fixed point computation)
WHILE workset # () DO
CHOOSE s € workset;
workset := workset\{s};
meet := inf[s]M
[ec 1 o[sre(e) [|(inf[start(flowGraph(e))]) |
e € caller(flowGraph(s)) }; (%)
IF inf[s] O meet
THEN
inf[s] := meet;
workset := workset U
{start(callee(e)) | e € Ecay-
flowGraph(e) = flowGraph(s) }
Fl
ESOOHC
OoD;

639/925

The Stackless 1st Order Algorithm 16.6.3 -
“Functional” Main Process

(Epilogue)

FORALL n € N\{s;|i € {0,...,k}} DO
inf[n] := [[n[|(inf[start(flowGraph(n))])

OD.

16.3
640/925

Termination

Theorem (16.6.4, Termination)

The sequential composition of Algorithm 16.6.1 and Algor-
ithmus 16.6.2 resp. Algorithm 16.6.3 terminates with the
IMaxFPsy, solution, if the DFA functional [|' and the return
functional R are monotonic and the lattice of functions

[C — C] satisfies the descending chain condition.

Note: If [C — C] satisfies the descending chain condition,
then C does so as well.

641/925

Chapter 16.7

Extensions

642/925

Extensions

» Further parameter transfer mechanisms

» Reference parameters

» Procedural parameters, for short: procedure parameters

» Static nesting of procedures

643/925

Reference Parameters

Intuitively:

» The effect of reference parameters is encoded in the
local semantic functionals of the application problems.

» Reference parameters can thus be handled and
computed by suitable preprocesses computing may and
must aliases of variables and parameters.

» The computed alias information is then fed into the
definitions of the local semantics functions of the
application problems (cf. Chapter 16.8)

644 /925

Procedure Parameter

Intuitively:

» A formal procedure call is replaced by the set of all
ordinary procedure calls that it may call.

» This set of procedures can be computed by a suitable
preprocess; dependingly on the program or programming
language class this can be either a safe approximation or
an exact solution.

» The computed calling information for formal procedure
call reduces then the analysis of programs w/ formal
procedure calls to the analysis of programs w/out formal
procedure calls.

645/925

Static Procedure Nesting

Various variants are possible:

» De-nesting of procedures by a suitable preprocess; this
way the analysis of programs w/ static procedure nesting
is reduced to analysing programs w/out static procedure
nesting.

» Taking into account the effect of relatively global variab-
les in the definition of the local semantics functions of
the application problems.

646/925

Chapter 16.8
Applications

647/925

Preliminaries

In the following we assume:

» No static procedure nesting, no procedure parameters.

» MstAliases ¢(v) und MayAliases ;(v) denote the sets of
must-Aliases and may-Aliases different from v.

These notions can straightforward be extended to terms t:

» A term t’ is a must-alias (may-alias) of t, if t’ results
from t by replacing of variables by variables that are
must-aliases (may-aliases) of each other.

This allows us to feed alias information in a parameterized
fashion into the definitions of DFA functionals and return
functionals and to take their effects during the analysis into
account.

648/925

Notations (1)

» GlobVar(S): the set of global variables of S, i.e., the set
of variables which are declared in the main program of
S. They are accessible in each procedure of S.

» Var(t): the set of variables occurring in t.

» LhsVar(e): the left hand side variable of the assignment
of edge e.

» Globld(t) and Locld(t): abbreviations of
GlobVar(S) N Var(t) and Var(t)\ GlobVar(S).

649/925

Notations (2)

» NoGlobalChanges : E* — B: indicates that if a variable
v € Var(t) is modified by e, then this modification will
not be visible after finishing the call as the relevant
memory location of v is local for the currently active
call.

» PotAccessible : S — B: indicates that the memory
locations of all variables v € Var(t), which are accessible
immediately before entering G remain accessible after
entering it, either by referring to v itself or by referring
to one of its must-aliases.

650/925

Local Predicates

The definition of the preceding functions relies on the predi-

cates Transp 4 and Transp ¢ .p;4 that are defined as
follows:

Transp Locld(e):df
Locld(t) N MayAliases focrapn(e)(LhsVar(e)) = 0

Transp ¢iopiq(€)=ar Globld(t) N
(LhsVar(e) U MayAliases gorapn(e)(LhsVar(e))) = 0

This allows us to define:
Ve € E*. NoGlobalChanges(e)

{ true ifeec Ef UE!
=df

Transp [oeq(n) A Transp gopg(n) otherwise

651/925

Parameterized Local Predicates (1)

...parameterized wrt alias information:

Ve c E*. A-Comp =4 Comp, \V Comp™M
* _ true ifec EX
Vee€ E*. A-Transp ,=q4¢ Transp, N\ { Transpg/layAl otherwise

652/925

Parameterized Local Predicates (2)

Intuitively:

» A-Comp, is true for t, if t itself (i.e., Comp,) or one of
its must-aliases is computed at edge e (i.e., Comp V™).

» A-Transp,, e € E*\E},,, is true, if neither an operand of
t (i.e., Transp,) nor one of its may-aliases is modified by
the statement at edge e (i.e., TranspY>*').

» For call and return edges e € E,,, A-Transp, is true, if
no operand of t is modified (i.e., Transp,). This makes
the difference between ordinary assignments and ref-

erence parameters and parameter transfers to reference
parameters; the latter are updates of pointers that leave

the memory invariant except of that update.

653/925

Remark

» Bx=qr {false, true, failure}

Note: The element failure is introduced as an artifical
T-element in B in order to be prepared for reverse data flow
analysis as required for demand-driven data flow analysis
(cf. LVA 185.276 Analysis and Verification).

654/925

Interprocedural Availability (1)
Local Abstract Semantics:

1. Data flow lattice:
(Ca |_|7 l—la ;7 J—a T):df (63(7 A) V 5 S?
(false, false), (failure, failure))

2. Data flow functional: []];V . E* — (B% — B%) defined
by

Ve e E*V (b, by) € Bx. [el,, (b1, bo)=ar (by, by)
where

by=gr A-Transp, A (A-Comp, V by)

b by A NoGlobalChanges, if e € E*\E}
2797 true otherwise

655/925

Interprocedural Availability (2)

3. Return functional: R,, : Ecy — (B% x B% — B%)
defined by Vece E. \V/((bl, b2), (b3, b4)) S Bi X Bg(
Rav(e)((b1, b2), (b3, ba))=ar (bs, bs) where

b bs if PotAccessible(callee(e))
>4\ (by V A-Comp_) A b, otherwise

be=ar bo N\ by

656/925

Interprocedural Availability (3)

Lemma (16.8.1)

1. The lattice B% and the induced lattice of functions
satisfy the descending chain condition.

2. The functionals []];v and R, are distributive.

~» Hence, the preconditions of the Interprocedural Coinci-
dence Theorem 16.5.4 and the Termination Theorem 16.6.4
are satisfied.

657/925

Interprocedural Simple Constants

Local Abstract Semantics:
1. Data flow lattice:
(C, [—|, |—|7 E, J—, T):df (ZX) |_|7 |—|7 Ea 01, O failure)
2. Data flow functional: []];C : E— (Xx — Xx) defined by
VeeE. ﬂe]];czdfﬁe
3. Return functional: R : Eca — (£x X Lx = Xx)
defined by

Vee EqLyV(o1,02)) € Xx X Lx. Rsc(e)(01,02)=dr 03

where

oa2(x) if x € GlobVar(S)
o1(x) otherwise

Vx € Var. o3(x)=qf {

658/925

Problems and Solutions/Work-Arounds

In practice

» the preceding analysis specification for simple interproce-
dural constants does not induce a terminating analysis
since the lattice of functions does not satisfy the descen-
ding chain condition

» thus simpler constant propagation problems are con-
sidered like copy constants and linear constants.

659/925

Copy Constants and Linear Constants

A term is a

» copy constant at a program point, if it is a source-code
constant or an operator-less term that is itself a copy
constant

» linear constant at a program point, if it is a source-code
constant or of the form ax x + b w/ a, b source-code
constants and x a linear constant.

660/925

Interprocedural Copy Constants (1)

The specification of copy constants is based on the following
simpler evaluation function of terms:

Eee : T— (XEx — D)

& .. is undefined for the failure state opjje; Otherwise it is
defined as follows:

o(x) ift=xeV
VteTVoeX E(t)(o)=ar § b(c) ift=ceC
1 otherwise

Note that X x is analogously to Bx extended by an artificial
top-element.

661/925

Interprocedural Copy Constants (2)

» Replacing 6, in & by € yields the data flow analysis
functional []..

» Replacing of |]]lsC by []],CC yields the definition of the
local abstract semantics of interprocedural copy
constants.

662/925

Interprocedural Copy Constants (3)

Note:

» The number of source-code constants is finite.

» Hence, the lattice of functions that belongs to the
relevant sublattice > ., of X x satisfies the descending
chain condition.

» Thus, the IMaxFP algorithm terminates.

» Unlike as interprocedural simple constants are copy con-
stants distributive; thus, the IMaxFPs: solution and the
IMOPs, solution coincide.

663/925

Interprocedural Copy Constants (4)

Lemma (16.8.2)

1. The lattice X, and the induced lattice of functions
satisfy the descending chain condition.

2. The functionals []]ICC and R are distributive.

Therefore, the preconditions of the Interprocedural Coinci-
dence Theorem 16.5.4 and the Termination Theorem 16.6.4
are satisfied.

664 /925

Chapter 16.9

Interprocedural DFA: Framework and
Toolkit

665/925

Interprocedural DFA: The Framework View

The interprocedural DFA Framework at a glance:

Step 2

V

@B C 11RO g

Theory : Practice

Computation Tool 2
(Preprocess)

Computed Solutior

[[E— -

Interprocedural
Carrecmex’s Lemma

Procedure Call Effects Step 3
(]
[Computation Tool |
(Main Process)
<
Interprocedural

Correctness Lemma

Computed Solutio

Interprocedural
Coines

IMOP-Solution

Step 1

Theorem
IMFP—Solution

666/925

Interprocedural DFA: The Toolkit View

The Toolkit View of the interprocedural DFA Framework:

Interprocedural
DFA

C
Interprocedural |
e

Framework

P Equivalence
S
9

In

Theory

Praclici

Tool Ki

N

IMFP-Solution

667/925

Further Reading for Chapter 16 (1)

[@ Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.
Ullman. Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 2nd edition, 2007. (Chapter 12, Inter-
procedural Analysis)

[§ Randy Allen, Ken Kennedy. Optimizing Compilers for
Modern Architectures. Morgan Kaufman Publishers,
2002. (Chapter 11, Interprocedural Analysis and
Optimization)

[§ Thomas Ball, S. Rajamani. Bebop: A Path-Sensitive
Interprocedural Dataflow Engine. In Proceedings PASTE
2001, 2001.

16.1
16.2

16.3
668/925

Further Reading for Chapter 16 (2)

[§ Jens Knoop. Optimal Interprocedural Program Optimiza-
tion: A New Framework and Its Application. Springer-V.,
LNCS 1428, 1998. (Chapter 10, Interprocedural Code
Motion: The Transformations, Chapter 11, Interpro-
cedural Code Motion: The IDFA-Algorithms)

8 Jens Knoop. Formal Callability and its Relevance and
Application to Interprocedural Data Flow Analysis. In
Proceedings of the 6th IEEE International Conference on
Computer Languages (ICCL'98), 252-261, 1998.

[§ Jens Knoop. From DFA-Frameworks to DFA-Generators:
A Unifying Multiparadigm Approach. In Proceedings of
the 5th International Conference on Tools and Algor-
ithms for the Construction and Analysis of Systems
(TACAS'99), Springer-V., LNCS 1579, 360-374, 1999. 01

16.3
669/925

Further Reading for Chapter 16 (3)

[§ Jens Knoop, Bernhard Steffen. The Interprocedural
Coincidence Theorem. In Proceedings of the 4th Inter-
national Conference on Compiler Construction (CC'92),
Springer-V., LNCS 641, 125-140, 1992.

[§ Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997. (Chapter
19, Interprocedural Analysis and Optimization)

[M Tom Reps, Susan Horwitz, Mooly Sagiv. Precise
Interprocedural Dataflow Analysis via Graph Reachability.
In Proceedings POPL 1995, 1995.

[§ Mooly Sagiv, Tom Reps, Susan Horwitz. Precise Interpro-
cedural Dataflow Analysis with Applications to Constant
Propagation. In Proceedings TAPSOFT'95, Springer-V.,
LNCS 915, 651-665, 1995. o

16.3
670/925

Further Reading for Chapter 16 (4)

[8 Micha Sharir, Amir Pnueli. Two Approaches to Interpro-
cedural Data Flow Analysis. In Stephen S. Muchnick, Neil
D. Jones (Eds.). Program Flow Analysis: Theory and
Applications. Prentice Hall, 1981, Chapter 7.3, The
Functional Approach to Interprocedural Analysis,
196-209.

16.1

16.3
671/925

Part |V

Extensions, Other Settings

672/925

Chapter 17
Aliasing

Chap. 17

673/925

Chapter 17.1

Sources of Aliasing

17.1
674/925

Aliasing Everywhere

Answers to the question “What is an alias?” in different
areas:

» A short, easy to remember name created for use in place
of a longer, more complicated name; commonly used in
e-mail applications. Also referred to as a "nickname”.

» A hostname that replaces another hostname, such as an
alias which is another name for the same Internet
address. For example, www.company.com could be an
alias for server03.company.com.

» A feature of UNIX shells that enables users to define
program names (and parameters) and commands with
abbreviations. (e.g. alias Is ‘Is -I')

» In MGI (Mouse Genome Informatics), an alternative
symbol or name for part of the sequence of a known
gene that resembles names for other anonymous DNA
segments. For example, D6Mit236 is an alias for Cftr.

675/925

Aliasing in Programs

In programs aliasing occurs when there exists more than one

access path to a storage location.

An access path is the I-value of an expression that is
constructed from variables, pointer dereference operators,

and structure field operation o
Java (References)

perators.
C++ (References)

A% a = *new A(Q);
A& b = a;
b.val = 0;

A a,b;
a = new AQ);
b = a;
b.val = 0;
C++ (Pointers)
Ax a; Ax b;
a = new AQ);
b = a;
b->val = 0;

C (Pointers)

A *a, xb;

a (A*)malloc(sizeof (A));
b=a;
b->

=0: 17.1
) 676/925

Examples of Different Forms of Aliasing (1)

Fortran 77

EQUIVALENCE statement can be used to specify that two or
more scalar variables, array variables, and/or contiguous
portions of array variables begin at the same storage location.

Pascal,Modula 2/3,Java

» Variable of a reference type is restricted to have either
the value nil/null or to refer to objects of a particular
specified type.

» An object may be accessible through several references
at once, but it cannot both have its own variable name
and be accessible through a pointer.

17.1
677/925

Examples of Different Forms of Aliasing (2)

C/CH+

» The union type specifier allows to create static aliases.
A union type may have several fields declared, all of
which overlap in (= share) storage.

» It is legal to compute the address of an object with the
& operator (statically, automatically, or dynamically
allocated).

» Allows arithmetic on pointers and considers it equivalent
to array indexing

17.1
678/925

Chapter 17.2

Relevance of Aliasing for Program
Optimization

679/925

Relevance of Alias Analysis to Optimization

Alias analysis refers to the determination of storage locations
that may be accessed in two or more ways.

» Ambiguous memory references interfere with an
optimizer’s ability to improve code.

» One major source of ambiguity is the use of
pointer-based values.

Goal: determine for each pointer the set of memory
locations to which it may refer.

Without alias analysis the compiler must assume that each
pointer can refer to any addressable value, including

» any space allocated in the run-time heap

» any variable whose address is explicitly taken

» any variable passed as a call-by-reference parameter

£86/925

Characterization of Aliasing

Flow-insensitive information
Binary relation on the variables in a procedure, alias € Var x Var

such that x alias y if and only if x and y
» may possibly at different times refer to the same memory
location.

» must throughout the execution of the procedure refer to the
same memory location.

Flow-sensitive information
A function from program points and variables to sets of abstract
storage locations. alias(p, v) = Loc means that at program point
p variable v

» may refer to any of the locations in Loc.

» must refer to the location / € Loc with |Loc| < 1.

681 /925

Representation of Alias Information

Representation of aliasing with pairs
q=&p; p=&a; r=ka;

complete alias pairs <*q,p>, <*p,a>, <kr,a>,<k*q,*p>,
<x*q,a>,<*p,*r>,<kxq, *r>

compact alias pairs <*q,p>, <*p,a>, <xr,a>

points-to relations (q,p),(p,a),(r,a)

Representation of aliases and shapes of data
structures

- e (D~

» regular expressions °

» 3-valued logic ’

£82/925

Chapter 17.3
Shape Analysis

683/925

Questions about Heap Contents (1)

Execution State

Let execution state mean the set of cells in the heap, the
connections between them (via pointer components of heap
cells) and the values of pointer variables in the store.

NULL pointers (Question 1)

Does a pointer variable or a pointer component of a heap cell
contain NULL at the entry to a statement that dereferences
the pointer or component?

» Yes (for every state). Issue an error message
» No (for every state). Eliminate a check for NULL.
» Maybe. Warn about the potential NULL dereference.

684/925

Questions about Heap Contents (2)
Memory leak (Question 2)

Does a procedure or a program leave behind unreachable
heap cells when it returns?

» Yes (in some state). Issue a warning.

Aliasing (Question 3)
Do two pointer expressions reference the same heap cell?

» Yes (for every state).
» trigger a prefetch to improve cache performance
» predict a cache hit to improve cache behavior prediction
» increase the sets of uses and definitions for an improved
liveness analysis

» No (for every state). Disambiguate memory references
and improve program dependence information.

685/925

Questions about Heap Contents (3)

Sharing (Question 4)
Is a heap cell shared? (within the heap)

» Yes (for some state). Warn about explicit deallocation,

because the memory manager may run into an
inconsistent state.

» No (for every state). Explicitly deallocate the heap cell
when the last pointer to ceases to exist.

Reachability (Question 5)

Is a heap cell reachable from a specific variable or from any
pointer variable?

» Yes (for every state). Information for program
verification.

» No (for every state). Insert code at compile time that
collects unreachable cells at run-time.

686/925

Questions about Heap Contents (4)

Disjointness (Question 6)

Do two data structures pointed to by two distinct pointer
variables ever have common elements?

» No (for every state). Distribute disjoint data structures
and their computations to different processors.

Cyclicity (Question 7)
Is a heap cell part of a cycle?

» No (for every state). Perform garbage collection of data
structures by reference counting. Process all elements in
an acyclic linked list in a doall-parallel fashion.

687/925

Shape Analysis
Aim of Shape Analysis

The aim of shape analysis is to determine a finite
representation of heap allocated data structures which can
grow arbitrarily large.
It can determine the possible shapes data structures may take
such as:

> lists

> trees
directed acyclic graphs
arbitrary graphs
properties such as whether a data structure is or may be
cyclic
As example we shall discuss a precise shape analysis (from
PoPA Ch 2.6) that performs strong update and uses shape
graphs to represent heap allocated data structures. It
emphasises the analysis of list like data structures. "

v

v

v

Strong Update

Here “strong” means that an update or nullification of a
pointer expression allows one to remove (kill) the existing
binding before adding a new one (gen).

We shall study a powerful analysis that achieves

» Strong nullification
» Strong update
for destructive updates that destroy (overwrite) existing

values in pointer variables and in heap allocated data
structures in general.

Examples:
> [x := nil]*
> [x.seh = y.seb]’

689/925

Extending the WHILE Language

We extend the WHILE-language syntax with constructs that
allow to create cells in the heap.

» the cells are structured and may contain values as well
as pointers to other cells

» the data stored in cells is accessed via selectors; we
assume that a finite and non-empty set Sel of selector
names is given:

sel € Sel selector names
» we add a new syntactic category
p € PExp pointer expressions

» op, is extended to allow for testing of equality of pointers

> unary operations op, on pointers (e.g. is-null) are added

690/925

Abstract Syntax of Pointer Language

The syntax of the while language is extended to have:

m= x| x.sel | null
x| n|a;op,a
= true | false | not b | by opy by | a1 op, az
n= [p:=a]’ | [skip]*
| if [b]¢ then S; else S,
| while[b]* do S od
[Inew (o))"
\ 51; 5

o oo
I

In the case where p contains a selector we have a destructive
update of the heap. Statement new creates a new cell
pointed to by p.

691/925

Shape Graphs

We shall introduce a method for combining the locations of
the semantics into a finite number of abstract locations.

The analysis operates on shape graphs (S, H, is) consisting of:
» an abstract state, S (mapping variables to abstract
locations)

» an abstract heap, H (specifying links between abstract
locations)

» sharing information, is, for the abstract locations.

The last component allows us to recover some of the
imprecision introduced by combining many locations into one
abstract location.

692/925

Example

digraph9

next

next

8o = (S, H,is) where
S ={(xnm)}

H= {(n{x}7 next, n@)> (nﬂa next, n@)}

is=10

693/925

Abstract Locations
The abstract locations have the form ny where X is a subset
of the variables of Var,:
Aloc = {nx | X C Var,}
A shape graph contains a subset of the abstract locations of
Aloc

The abstract location ny is called the abstract summary
location and represents all the locations that cannot be
reached directly from the state without consulting the heap.

Clearly nx and ny represent disjoint sets of locations when

X 0.

Invariant 1: If two abstract locations nx and ny occur in the
same shape graph then either X =Y or
XNY ={0. (i.e. two distinct abstract locations
nx and ny always represent disjoint sets of

locations)
694/925

Abstract State

The abstract state, S, maps variables to abstract locations.
To maintain the naming convention for abstract locations we
shall ensure that:

Invariant 2: If x is mapped to nx by the abstract state then
x € X.

From Invariant 1 it follows that there will be at most one
abstract location in the (same) shape graph containing a
given variable.

We shall only be interested in the shape of heap so we shall
not distinguish between integer values, nil-pointers, and
uninitialized fields; hence we can view the abstract state as
an element of

S € AState = PVar, x AlLoc

695/925

Example: Creating Linked Data Structures

[new(x)]?

digraph2

[new(y)P®

digraph3

[x.next := y|*

digraph4

v}

1

17.1
696 /925

Abstract Heap

The abstract heap, H, specifies the links between the
abstract locations.

The links will be specified by triples (ny, sel, ny) and
formally we take the abstract heap as an element of

H € AHeap = PALoc x Sel x AlLoc

where we again not distinguish between integers, nil-pointers
and uninitialized fields.

Invariant 3: Whenever (ny, sel, ny) and (ny, sel, ny,) are in
the abstract heap then either V = () or
w=Ww.

Thus the target of a selector field will be uniquely determined
by the source unless the source is the abstract summary

location ny.
697/925

Sharing Information

The idea is to specify a subset, is, of the abstract locations
that represents locations that are shared due to pointers in
the heap:

» an abstract location nx will be included in is if it
represents a location that is the target of more than one
pointer in the heap.

In the case of the abstract summary location, ny, the explicit
sharing information clearly gives extra information:

» if ny € is then there might be a location represented by
ng that is the target of two or more heap pointers.

» if ny ¢ is then all the locations of represented by ny will
be the target of at most one heap pointer.

698/925

Maintaining Sharing Information

[y.next := z]°

x

digraph6

next

]

{2

[y := null]’

xt

digraph7

next

§

{2

17.1
699/925

Maintaining Sharing Information

[y := null]’

x

digraph7

next

@

{2

[z := null]®

digraph8

17.1
700/925

Sharing Information Invariants (1)

We shall impose two invariants to ensure that information in
the sharing component is also reflected in the abstract heap.

The first ensures that information in the sharing component
is also reflected in the abstract heap:

Invariant 4: If ny € is then either
a) (ng,sel, nx) is in the abstract heap for some
sel, or
b) there exist two distinct triples (ny, seh, nx)
and (nw, seh, nx) in the abstract heap
(that is either sely # seh or V # W).

» case 4a) means that there might be several locations
represented by ng that point to nx

» case 4b) means that two distinct pointers (with different
source or different selectors) point to nx.

701/925

Sharing Information Invariants (2)

The second invariant ensures that sharing information present
in the abstract heap is also reflected in the sharing
component:

Invariant 5: Whenever there are two distinct triples
(nv, seh, nx) and (ny, seh, nx) in the abstract
heap and nx # ny then nx € is.

This invariant takes care of the situation where ny represents
a single location being the target of two or more heap
pointers.

Note that invariant 5 is the “inverse” of invariant 4(b).

We have no “inverse” of invariant 4(a) - the presence of a
pointer from ny to nx gives no information about sharing
properties of nx that are represented in is.

702/925

Sharing Component Example 1

[y.next := z]° [x.next := z]”

digraph25

digraph6

[y := null]®

digraph26

17.1
703/925

Sharing Component Example 2

[y.next := z]° [z.next :=y]”"

digraph28

17.1
704 /925

Compatible Shape Graphs

A shape graph is a triple (S, H, is):

S € AState = ‘PVar, x AlLoc
H € AHeap = "PALoc x Sel x AlLoc
is € IsShared = 7PAloc

where ALoc = {nx | X C Var,}.

A shape graph is a compatible shape graph if it fulfills the
five invariants, 1-5, presented above. The set of compatible
shape graphs is denoted

SG = {(S,H,is) | (S,H,is) is compatible}

705/925

Complete Lattice of Shape Graphs

The analysis, to be called Shape, will operate over sets of
compatible shape graphs, i.e. elements of PSG.
Since PSG is a power set it is trivially a complete lattice with
» ordering relation C being C
» combination operator I being U (may analysis)

PSG is finite because SG C AState x AHeap x IsShared and
all of AState, AHeap, IsShared are finite.

The analysis will be specified as an instance of a Monotone
Framework with the complete lattice of properties being
PSG, and as a forward analysis.

706/925

Analysis

Shape,(¥) L]

BE

Shape, (/)
Shape,(¢) = f;(Shape,(())

[x := a]* Shape.(\% U

[

Shape.(?>)
Shape, (¢)
if ¢ = init(S.)

(U{Shape,(¢")|(¢',) € flow(S,)} otherwise

where ¢ € PSG is the extremal value holding at entry to S,.

707/925

Transfer Functions
The transfer function f>* : PSG — PSG has the form
£24(SG) = | J{¢2"((S.H.is)) | (S.H,is) € SG}

where ¢2* specifies how a single shape graph (in Shape,(¢))
may be transformed into a set of shape graphs (in Shape, ().

The functions ¢ for the statements

x=3 ‘ X~ ‘ X = y.sel (illustrated b
x.sel ;== a ‘ x.sel ==y ‘ x.sel := y.sel y
example)

transform a shape graph into a set of different shape graphs.

The transfer functions for other statements and expressions
are specified by the identity function.

708/925

Example: Materialization

digraph23

[z := y.next]”

digraph24

next

17.1
709/925

Example: Reverse List

[y := null]*;
while [not isnull(x)]® do
[t :=y]*;
[y :=x]*;
[x := x.next]®;
[y.next := t]°;
od
[t := null]’

The program reverses the list pointed to by x and leaves the
result in y.

710/925

Reverse List: Extremal Value

The extremal value ¢ is a set of graphs. The above graph is
an element of this set for our example analysis of the list

reversal program.

digraph8

711/925

Shape Graphs in Shape, (/)

[x := x.next]®

digraph13

[y.next := t]°

digraph12 digraph14

17.1
712/925

Shape Graphs in Shape, (/)

[t := null]’

digraph23

W

17.1
713/925

Reverse List: Established Properties

For the list reversal program shape analysis can detect that
at the beginning of each iteration of the loop the following
properties hold:

Invariant 1: Variable x points to an unshared, acyclic, singly
linked list.

Invariant 2: Variable y points to an unshared, acyclic, singly
linked list, and variable t may point to the
second element of the y-list (if such an element
exists).

Invariant 3: The lists pointed to by x and y are disjoint.

digraph14

714/925

Drawbacks and Improvements
An improved version, on which the discussed analysis is based
on, can be found in [SRW'98]:
» Operates on a single shape graph instead of sets of
shape graphs
» Merges sets of compatible shape graphs in one summary
shape graph
» Uses various mechanisms for extracting parts of
individual compatible shape graphs

» Avoids the exponential factor in the cost of the
discussed analysis

The sharing component of the shape graphs is designed to
detect list-like properties:

» It can be replaced by other components detecting other
shape properties [SRW'02, CDH Ch 5]

715/925

Further Reading for Chapter 17 (1)

[§ D. Chase, Mark N. Wegmann, F. Ken Zadeck. Analysis
of Pointers and Structures. In Proceedings PLDI'90,
296-310, 1990.

[M. Emami, R. Ghiya, Laurie J. Hendren. Context-Sen-
sitive Interprocedural Points-to Analysis in the Presence
of Function Pointers. In Proceedings PLDI'94, 1-14,
1994.

[@ R. Ghiya, Laurie J. Hendren. Is it a Tree, a DAG, or a
Cyclic Graph? In Proceedings POPL'96, 1-15, 1996.

[§ Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997. (Chapter
10, Alias Analysis)

17.1
716/925

Further Reading for Chapter 17 (2)

[§ R. Manevich, Mooly Sagiv, G. Ramalingam, J. Field.
Partially Disjunctive Heap Abstraction. In Proceedings
SAS 2004. Springer-V., LNCS 3248, 265-279, 2004.

[§ Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition, Springer-V.,
2005. (Chapter 2.6, Shape Analysis)

[§ Viktor Pavlu, Markus Schordan, Andreas Krall. Compu-
tation of Alias Sets from Shape Graphs for Comparison of
Shape Analysis Precision. In Proceedings of the 11th
International IEEE Working Conference on Source Code
Analysis and Manipulation (SCAM 2011), 2011. [Best
Paper Award SCAM 2011]

17.1
717/925

Further Reading for Chapter 17 (3)

[Mooly Sagiv, Tom Reps, Reinhard Wilhelm. Solving
Shape-Analysis Problems in Languages with Destructive
Updating. ACM Transactions on Programming
20(1):1-50, 1998.

[§ Mooly Sagiv, Tom Reps, Reinhard Wilhelm. Parametric
Shape Analysis via 3-Valued Logic. In Proceedings
POPL'99, 105-118, 1999.

[§ Mooly Sagiv, Tom Reps, Reinhard Wilhelm. Parametric
Shape Analysis via 3-valued Logic. ACM Transactions on
Programming Languages and Systems 24(3), 2002.

17.1
718/925

Further Reading for Chapter 17 (4)

[@ Y. N. Srikant, Priti Shankar. The Compiler Design Hand-
book: Optimizations & Machine Code Generation. CRC
Press, 2002. (Chapter 5, Shape Analysis and Application)

[§ H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook,
D. Distefano, P. W. O'Hearn. Scalable Shape Analysis for
Systems Code. In Proceedings CAV 2008, Springer-V.,
LNCS 5123, 385-398, 2008.

17.1
719/925

Chapter 18

Optimizations for Object-Oriented
Languages

Crop/dhs

Overview

» Object layout and method invocation

» Single inheritance
» Multiple Inheritance

» Devirtualization

» Class hierarchy analysis
» Rapid type analysis
» Inlining

» Escape Analysis

» Connection graphs
» Intra-procedural
» Inter-procedural

Grep/dhs

Chapter 18.1

Object Layout and Method Invocation

722/925

Object Layout and Method Invocation

The memory layout of an object and how the layout supports
dynamic dispatch are crucial factors for performance.
» Single Inheritance

» with and without virtual dispatch table (i.e., direct
calling guarded by a type test)

» Multiple Inheritance
...various techniques with different compromises
» embedding superclasses
» trampolines
» table compression

723/925

Chapter 18.1.1

Single Inheritance

724/925

Single Inheritance Layout

class Point { class ColorPnt extends Point {
int x, y; int color;
} }
color
y y
Point * ColorPnt *

» Memory layout of an object of a superclass is a prefix of the
memory layout of an object of the subclass.

> Instance variables access requires just one load or store
instruction.

725/925

Single Inheritance Layout with vtbl

class Point { class ColorPnt extends Point {
int x, y; int color;
void move(int x, int y) {...} void draw() {...}
void draw() {...} void setcolor(int c) {...}
} }
y
draw
X drawptr
. vtblptr moveptr J |
Point p p |1 move
color
setcolor
y setcolorptr
X drawptr m J draw |
moveptr
ColorPnt vtblptr P

726/925

Invocation of Virtual Methods with vtbl

» Dynamic dispatching using a vtbl has the advantage of
being fast and executing in constant time.

> It is possible to add new methods and to override methods.

» Each method is assigned a fixed offset in the virtual method

table (vtbl).

» Method invocation is just three machine code instructions:
LDQ vtblptr, (obj) ; load vtbl pointer
LDQ mptr,method(vtblptr) ; load method pointer
JSR (mptr) ; call method

» One extra word of memory is needed in each object for the
pointer to the virtual method table (vtbl).

727/925

Dispatch Without Virtual Method Tables

Despite the use of branch target caches, indirect branches are
expensive on modern architectures.

The pointer to the class information and virtual method table is
replaced by a type identifier:

> A type identifier is an integer representing the type of the
object.

> It is used in a dispatch function which searches for the type
of the receiver.

» Example: SmallEiffel (binary search).

» Dispatch functions are shared between calls with the same
statically determined set of concrete types.

> In the dispatch function a direct branch to the dispatched
method is used (or it is inlined).

728/925

Example

Let type identifiers Ta, Tg, Tc, if id, < Tg then

and Tp be sorted by increasing if id, < Tx then fa(x)

number. The dispatch code for else fg(x)

calling x.f is: else if id, < T¢ then fc(x)
else fp(x)

Comparison with dispatching using a virtual method table:

» Empirical study showed that for a method invocation with
three concrete types, dispatching with binary search is
between 10% and 48% faster.

» For a megamorphic call with 50 concrete types, the
performance is about the same.

729/925

Chapter 18.1.2

Multiple Inheritance

730/925

Multiple Inheritance

» Extending the superclasses as in single inheritance does not
work anymore.

> Fields of superclass are embedded as contiguous block.

» Embedding allows fast access to instance variables exactly as
in single inheritance.

» Garbage collection becomes more complex because pointers
also point into the middle of objects.

731/925

Object Memory Layout (without vtbl)

class Point { class Colored {
int x, y; int color;

} }

class ColorPnt extends Point, Colored {

3

Colored

color

Point
Point X ColoredColorPnt

732/925

Dynamic Dispatching for Embedding

> Allows fast access to instance variables exactly as with single
inheritance.
» For every superclass

» virtual method tables have to be created.
» multiple vtb/ pointers are included in the object.

» The object pointer is adjusted to the embedded object
whenever explicit or implicit pointer casting occurs
(assignments, type casts, parameter and result passing).

733/925

Multiple Inheritance with vtbl (1)

class Point {
int x, y;
void move(int x, int y) {...}
void draw() {...}
}

class Colored {
int color;
void setcolor(int c) {...}

3

class ColorPnt extends Point, Colored {
void draw() {...}
+

734/925

Multiple Inheritance with vtbl (2)

y
X 0| drawptr J___a;;;__w
Point vtblptr |- |0| moveptr J move |
color J___;__E___1
setcolor
Colored vtblptr *jAJOFetcolorptq
color
Jo%etcolorpt
Colored vtblptr
y 3Bgetcolorpty J__________1
Point X 0| drawptr draw
oin
ColorPnt || VEPIPtr [— |0| moveptr

735/925

Pointer Adjustment and Adjustment Offset

Pointer adjustment has to be suppressed for casts of null pointers:

Colored col; ColorPnt cp; ...;
col = cp; // if (cp'=null)col=(Colored) ((int*)cp+3)

Problem with implicit casts from actual receiver to formal receiver

» Caller has no type info of formal receiver in the callee.
» Callee has no type info of actual receiver of the caller.

» Therefore this type info has to be stored as an adjustment
offset in the vtbl.

736/925

Method Invocation with vtbl

Method invocation now takes 4 to 5 machine instructions

(depending on the architecture).

LD vtblptr, (obj) ;
LD mptr,method_ptr(vtblptr) ;
LD off,method_off (vtblptr) ;
ADD obj,off,obj ;
JSR (mptr) ;

load vtbl pointer
load method pointer
load adjustment offset
adjust receiver

call method

This overhead in table space and program code is even necessary
when multiple inheritance is not used (in the code).

Furthermore, adjustments to the remaining parameters and the

result are not possible.

737/925

Trampoline

To eliminate much of the overhead a small piece of code, called
trampolin is inserted that performs the pointer adjustments and
the jumps to the original code.

The advantages are
» smaller table size (no storing of an offset)

» fast method invocation when multiple inheritance is not
used

» the same dispatch code as in single inheritance

The method pointer setcolorptr in the virtual method table of
Colorpoint would (instead) point to code which adds 3 to the
receiver before jumping to the code of method setcolor:

ADD obj,3,0bj ; adjust receiver
BR setcolor ; call method

738/925

Lookup at Compile-Time

Invoking a method requires looking up the address of the method
and passing control to it.

In some cases, the lookup may be performed at compile-time:
> There is only one implementation of the method in the class
and its subclasses.

» The language provides a declaration that forces the call to
be non-virtual.

» The compiler has performed static analysis that can
determine that a unique implementation is always called at a
particular call site.

In other cases, a runtime lookup is required.

739/925

Dispatch Table

In principle the lookup can be implemented as indexing a
two-dimensional table. A number is given to

» each method in the program
> each class in the program

The method call

result = obj.m(al,a2);

can be implemented by the following three actions:

1. Fetch a pointer to the appropriate row of the dispatch table
from the object obj.
2. Index the dispatch table row with the method number.

3. Transfer control to the address obtained.

740/925

Dispatch Table Compression (1)

» Virtual Tables

» Effective method for statically typed languages.
» Methods can be numbered compactly for each class
hierarchy to leave no unused entries in each vtbl.

» Row Displacement Compression

» |dea: combine all rows into a single very large vector.

» It is possible to have rows overlapping as long as an
entry in one row corresponds to empty entries in the
other rows.

» Greedy algorithm: place first row; for all subsequent
rows: place on top and shift right if conflicts exist.

» Unchanged: implementation of method invocation.

» Penalty: verify class of current object at the beginning
of any method that can be accessed via more than one
row.

741/925

Dispatch Table Compression (2)

» Selector Coloring Compression

>

Graph coloring: two rows can be merged if no column
contains different method addresses for the two classes.
Graph: one node per class; an edge connects two nodes
if the corresponding classes provide different
implementations for the same method name.

Coloring: each color corresponds to the index for a row
in the compressed table.

Each object contains a reference to a possibly shared
row.

Unchanged: implementation of method invocation
code.

Penalty: if classes C1 and C2 share the same row and
C1 implements method m whereas C2 does not, then
the code for m should begin with a check that control
was reached via dispatching on an object of type C1.

742/925

Chapter 18.2

Devirtualization of Method Invocations

743/925

Devirtualization

Devirtualization is a technique to reduce the overhead of virtual
method invocation.

The aim of this technique is to statically determine which
methods can be invoked by virtual method calls.

> |If exactly one method is resolved for a method call, the
method can be inlined or the virtual method call can be
replaced by a static method call.

The analyses necessary for devirtualization also improve the
accuracy of the call graph and the accuracy of subsequent
interprocedural analyses.

744/925

Chapter 18.2.1
Class Hierarchy Analysis

745/925

Class Hierarchy Analysis

The simplest devirtualization technique is class hierarchy analysis
(CHA), which determines the class hierarchy used in a program.

The information about all referenced classes is used to create a
conservative approximation of the class hierarchy.

» The transitive closure of all classes referenced by the class
containing the main method is computed.

» The declared types of the receiver of a virtual method call
are used for determining all possible receivers.

746/925

Example: Class Hierarchy Analysis

class A extends Object {
void m1() {...}
void m2() {...}
}
class B extends A {
void m1() {...}
}
class C extends A {
void m1() {...}
public static void main(...) {
A a = new AQ;
B b = new BQ;

a.mO;: b.m1O: b.m20;
}

747/925

Example: Class Hierarchy and Call Graph

Gy
) (o

C.main

a.ml()

b.m1()

b.m2()

|A.m1| |B.m1| |C.m1| |A.m2|

748/925

The CHA Algorithm

main // the main method in a program

x() // call of static method x

type(x) // the declared type of the expression x
x.y() // call of virtual method y in expression x

subtype(x) // x and all classes which are a subtype of class x
method(x,y) // the method y which is defined for class x

callgraph := main
hierarchy := {}
for each m € callgraph do
for each mg,:() occuring in m do
if mgae & callgraph then
add mga: to callgraph
for each e.m,;,() occuring in m do
for each c € subtype(type(e)) do
Mger := method(c, my;,)
if myer & callgraph then
add myer to callgraph
add c to hierarchy
749/925

Chapter 18.2.2
Rapid Type Analysis

750/925

Rapid Type Analysis (1)

Rapid type analysis uses the fact that a method m of a class ¢
can be invoked only if an object of type c is created during the
execution of the program.

» It refines the class hierarchy (compared to CHA) by only
including classes for which objects can be created at runtime.

Based on this idea
> pessimistic
> optimistic

algorithms are possible.

751/925

Rapid Type Analysis (2)

1. The pessimistic algorithm

...includes all classes in the class hierarchy for which instantiations
occur in methods of the call graph from CHA.

2. The optimistic algorithm

> Initially assumes that no methods besides main are called
and that no objects are instantiated.

> It traverses the call graph initially ignoring virtual calls
(marking them in a mapping as potential calls only)
following static calls only.

» When an instantiation of an object is found during analysis,
all virtual methods of the corresponding objects that were
left out previously are then traversed as well.

» The live part of the call graph and the set of instantiated
classes grow interleaved as the algorithm proceeds.

752/925

Chapter 18.2.3

Inlining

Using Devirtualization Information

Inlining is an important usage of devirtualization information.

If a virtual method call can be devirtualized

> it might completely be replaced by inlining the call
(supposed it is not recursive).

754/925

Chapter 18.3
Escape Analysis

755/925

Escape Analysis

The goal of escape analysis is to determine which objects have
lifetimes which do not stretch outside the lifetime of their
immediately enclosing scopes.

» The storage for such objects can be safely allocated as part
of the current stack frame — that is, their storage can be
allocated on the run-time stack.

» At method return, deallocation of the memory space used by
non-escaping objects is automatic. No garbage collection is
required.

» The transformation also improves the data locality of the
program and, depending on the computer's cache, can
significantly reduce execution time. Objects not escaping a
thread can be allocated in the processor where that thread is
scheduled.

756/925

Using Escape Information

Objects whose lifetimes are confined to within a single scope
cannot be shared between two threads.

» Synchronization actions for these objects can be eliminated.

757/925

Escape Analysis by Abstract Interpretation

A prototype implementation of escape analysis was included in
the IBM High Performance Compiler for Java.

The approach of Choi et al. (OOPSLA'99) attempts to determine
whether the object

» escapes from a method (i.e. from the scope where it is
allocated).

> escapes from the thread that created it

» the object can escape a method but does not escape
from the thread.

Note: The converse is not possible (if it does not
escape the method then it cannot escape the thread).

758/925

Essence of Choi et al.’'s Approach

» Introducing of a simple program abstraction called
connection graph:

Intuitively, a connection graph captures the connectivity
relationship between heap allocated objects and object
references.

» Demonstrating that escape analysis boils down to a
reachability problem within connections graphs:

If an object is reachable from an object that might escape, it
might escape as well.

759/925

Experimental Results Reported by Choi et al.

...based on 10 benchmark programs:
» Percentage of objects that may be allocated on the stack:
Up to 70 + %, with a median of 19%.

» Percentage of all lock operations eliminated:
From 11% to 92%, with a median of 51%.

» Overall execution time reduction:
From 2% to 23%, with a median of 7%.

These results make escape analysis and the optimizations based
theron whorthwhile.

760/925

Escape States

The analysis uses a simple lattice to represent different escape
states:

NoEscape (T)

ArgEscape

GlobalEscape (1)

State | Escapes the method | Escapes the thread
NoEscape no no

ArgEscape may (via args) no

GlobalEscape | may may

761/925

Using Escape Information

All objects which are marked

» NoEscape: are stack-allocatable in the method where they
are created.

> NoEscape or ArgEscape: are local to the thread in which
they are created; hence synchronization statements in
accessing these objects can be eliminated.

762/925

Chapter 18.3.1

Connection Graphs

763/925

Connection Graphs

We are interested only in

» following the object O from its point of allocation.
» knowing which variables reference O.
» and which other objects are referenced by O fields.

We “abstract out” the referencing information, using a graph
structure where

» a circle node represents a variable.

> a square node represents objects in the heap.

> an edge from circle to square represents a reference.

> an edge from square to circle represents ownership of fields.

764/925

Example: Connection Graphs

A a = new AQ); // line L1
a.bl = new B(); // line L2
a.b2 = a.bi; // line L3

An edge drawn as a dotted arrow is called a deferred edge and
shows the effect of an assignment from one variable to another
(example: created by the assignment in line 3) ~ improves
efficiency of the approach.

765/925

Chapter 18.3.2

Intraprocedural Setting

766/925

Intraprocedural Abstract Interpretation

Actions for assignments involve an update of the connection
graph.

» An assignment to a variable p kills any value the variable
previously had. The kill function is called byPass(p):

767/925

Analyzing Statements (1)

p = new C(); // line L The operation byPass(p) is applied. An

object node labeled L is added to the graph - and
nodes for the fields of C that have nonintrinsic
types are also created and connected by edges
pointing from the object node.

; The operation byPass(p) is applied. A new deferred

edge from p to g is created.

; The operation byPass is not applied for f (no

strong update!). If p does not point to any node in
the graph a new (phantom) node is created. Then,
for each object node connected to p by an edge, an
assignment to the field f of that object is
performed.

768/925

Analyzing Statements (2)

p = q.f; If g does not point at any object node then a phan-
tom node is created and an edge from g to the new
node is added. Then byPass(p) is applied and de-
ferred edges are added from p to all the f nodes
that g is connected to by field edges.

For each statement one graph represents the state of the program
at the statement.

At a point where two or more control paths converge, the con-
nection graphs from each predecessor statements are merged.

769/925

Example: Connection Graphs (1)

Suppose that the code inside some method is as follows. The
declarations of classes A, B1 and B2 are omitted.

A a = new AQ;
if (1 > 0)

// line

a.fl = new B1(); // line

else

a.fl1 = new B2(); // line

a.f2 = a.f1;

// line

L1

L3

L5
L6

770/925

Example: Connection Graphs (2)

Gli
G2:
G3Z
G4Z
G5Z

out:
out:
out:
out:
out:

A a = new A(); // line L1
a.fl = new B1(); // line L3
a.fl1 = new B2(); // line L5
Gy U G3

a.f2 = a.fl; // line L6

771/925

Chapter 18.3.3

Interprocedural Setting

772/925

Interprocedural Abstract Interpretation (1)

Analyzing methods:

> It is necessary to analyze each method in the reverse order
implied by the call graph.

> |f method A may call methods B and C, then B and C
should be analyzed before A.

> Recursive edges in the call graph are ignored when
determining the order.

» Java has virtual method calls — at a method call site where
it is not known which method implementation is being
invoked, the analysis must assume that all of the possible
implementations are called, combining the effects from all
the possibilities.

» The interprocedural analysis iterates over all the methods in
the call graph until the results converge (fixed point).

773/925

Interprocedural Abstract Interpretation (2)

> A call to a method M is equivalent to copying the actual
parameters (i.e. the arguments being passed in the method
call) to the formal parameters, then executing the body of
M, and finally copying any value returned by M as its result
back to the caller.

> |f M has already been analyzed intraprocedurally following
the approach described above, the effect of M can be
summarized with a connection graph. That summary
information eliminates the need to re-analyze M for each call
site in the program.

774/925

Analysis Results (1)

After the operation byPass has been used to eliminate all deferred
edges, the connection graph can be partitioned into three
subgraphs:

Global escape nodes: All nodes reachable from a node whose
associated state is GlobalEscape are themselves
considered to be global escape nodes (Subgraph 1)

» the nodes initially marked as GlobalEscape are
the static fields of any classes and instances of
any class that implements the Runnable
interface.

Argument escape nodes: All nodes reachable from a node whose
associated state is ArgEscape, but are not reachable
from a Global Escape node. (Subgraph 2)

» the nodes initially marked as ArgEscape are
the argument nodes ay, ..., an.

775/925

Analysis Results (2)

No escape nodes: All other nodes have NoEscape status.
(Subgraph 3).

The third subgraph represents the summary information for the
method because it shows which objects can be reached via the
arguments passed to the method.

All objects created within a method M and that have the
NoEscape status after the three subgraphs have been determined
can be safely allocated on the stack.

776/925

Further Reading for Chapter 18 (1)

[

B

J.-G. Choi, M. Gupta, M. Serrano, V.C. Sreedar, and Sam
Midkiff. Escape Analysis for Java. In Proceedings of
OOPSLA'99, ACM Press, 1-19, 1999.

Flemming Nielson, Hanne Riis Nielson, Chris Hankin. Prin-
ciples of Program Analysis. 2nd edition, Springer-V., 2005.
(Chapter 1, Introduction; Chapter 2, Data Flow Analysis;
Chapter 6, Algorithms)

H. D. Pande, Barbara Ryder. Data-flow-based Virtual
Function Resolution. In Proceedings SAS'96, Springer-V.,
LNCS 1145, 238-254, 1996.

777/925

Further Reading for Chapter 18 (2)

[@ Y. N. Srikant, Priti Shankar. The Compiler Design Hand-
book: Optimizations and Machine Code Generation. 1st
edition, CRC Press, 2002. (Chapter 6, Optimizations for
Object-Oriented Languages)

[Y. N. Srikant, Priti Shankar. The Compiler Design Hand-
book: Optimizations and Machine Code Generation. 2nd
edition, CRC Press, 2008. (Chapter 13, Optimizations for
Object-Oriented Languages)

778/925

Chapter 19
Slicing

779/925

Overview

Collection of Examples

>

Definition of executable slice (liveness analysis)
Example with scalar variables

Example with pointers to stack-allocated variables
Example with strong and weak update in alias analysis
Example with non-cyclic dynamic data structures
Example with cyclic data structures

Comparison of slice size

780/925

Reaching Defs with /out Pointers

ReachingDefs(var,n, F) = [without pointers]
let
F=(V,A En Ex), A = A\{(x,n)}
return |J if var ¢ def(x) then ReachingDefs(var,x,(V,A’, En, Ex))
(x,n)eA
else {x}

ReachingDefs(var, n, F) = [with pointers|
let
F=(V,A En Ex), A = A\{(x,n)}
return |J if var ¢ def(x) then ReachingDefs(var,x,(V, A’ En, Ex))
(x,n)eA
else (if #def(x) =1 then {x}
else {x} U ReachingDefs(var, x, (V,A’, En, Ex)))

781/925

Program Dependence Graph

DataDep(P) =
let CFG(P) = (V,A, En, Ex)
D= U {(n,x)}

neV ,var€use(n),x€ ReachingDefs(var,n,CFG(P))
return (V,D)

ProgramDep(P) =
let DataDep(P) = (V, D),
ControlDep(P) = (V, C, In),
return (V,D U C)

782/925

Static Slice

ReachableNodes(v, G) =
let G=(V,A)
return {v} U |J ReachableNodes(x,(V,A\{(v,x)}))
(v,x)eA

StaticSlice(P, n, Vars) =
let F = CFG(P)
D = ProgramDep(P)
return | U ReachableNodes(x, D)

var€ Vars x€ ReachingDefs(var,n,F)

783/925

Example: Artificial Sum (only scalar vars)

©O© o00~NO”H~ O

main() {

int a,b,i,j,n,y;

n=read();
a=0;
b=0;
i=n;
J=n;

10
11
12
13
14
15
16

17
18

while (i>0) {
a=a+l;
i=i-1;
J=1;
while (j>0) {
b=b+1;
3= 1

I
y=a+b;
write(y);

784/925

Example: With Pointers

main() {
int a,b,i,j,n, *ap,*bp,**cp;
n=read () ;
cp=&bp
ap=&a;
bp=ap;
*cp=&b;
a=0;
b=0;
i=n;

j=n;

O©Oo00~NOUdd WNHF-O

Slicing criterion 17: *ap

10
11
12
13
14
15
16

17
18

while (i>0)
*ap=*ap+1;
i=i-1;
j=1i;
while (j>0)
*bp=*bp+1;
3=i-1

write(y);

785/925

Example: Strong vs. Weak Update

0

O W N

int a,b,i,j,*ap,*bp,**cp;
cp=&bp
ap=&a;
bp=ap;
*cp=&b;

®© o O

................. . GH—0)

786/925

Example: Reaching Definitions

R(nJ {1
D={}

R(i)=)(8,12}

R(ep)={2}

=(i}
R()={12}
D=(}

4(
R)={1}
D=(}

U={i}
R()={(8,12}

D={ab}
U={a,b,bp}
R(a)={6,11,15}
R(b)={7,15}
R(bp)={5}
D={j}

u={j}
R()={13}

;) U={ab,

R(ap) {3}
D={bp}
U={b,cp}
R(b)={}
R(ep)=(2}

D={a}
U={ap,a}
R(2)=(6,11}
R(ap)={3}

R(I) {12}
D={}

=(j}

)= D={b}
R()={13,16} o
R(b)={7.15}
ROP(5)
8:9;

D= =

2 e RO=13

R(2)={6.11}. R(b)={7.15}

Example: Computation of Slice

788/925

Example: With Pointers (Slices)

main () 10 while (i>0) }
int a,b,i,j,n, *ap,*bp,**cp; 11 *ap=*ap+1;
12 i=i-1;
1 n=read() ; 13 j=1;
2 cp=&bp; 14 while (j>0) {
3 ap=¢&a; 15 *bp=*bp+1;
4 bp=ap; 16 j=i-1;
5 *cp=&b; }
6 a=0; }
7 b=0; 17 y=+*bp;
8 i=n; 18 write(y);
9 j=n; }

Slicing criterion 17: *ap

789/925

Example: Comparison

| Program [Alias Analysis | Slice | Size |
Sum None {1,6,8,10,11,12,17} 7
Sum (ptrs) | Flow insensitive | {1,2,3,5,6,7,8,10,11, 15

12,13,14,15,16,17}
Sum (ptrs) | Flow sensitive {1,3,6,8,10,11,12,17} 8

790/925

Example: With Dynamic Data Structures

©O© 0 Ol WN -

main() {

List *a,*b,*ap,*bp;
int i,j,n;
n=read();

a=new List();
b=new List();

ap=a;

bp=b;

i=n;

j=n;

10 while (i>0) {

11 ap->next=new List();
11b ap=ap->next;
12 i=i-1;
13 j=i;
14 while (j>0) {
15 bp—->next=new List();
15b bp=bp->next;
16 Jj=j-1;

}

}

1 - v 11 conc
17b y=a;

18 write(length(y)-2)

791/925

Example: Shape Analysis
17:
p

S N ——
next

{b.bp} tbp} M
next next
[

next

{} next

\
th ‘% {ap}

{a,ap}

—
o
-

=

o

>

Result for 17: ap->next;

792/925

Example: W/ Dynamic Data Structures (Slice)

©O© 0 01 WN -

main() {

List *a,*b,*ap,*bp;
int i, j,n;
n=read();

a=new List();

b=new List();

ap=a;

bp=b;

i=n;

j=n;

10 while (i>0) {

11 ap->next=new List();
11b ap=ap->next;
12 i=i-1;
13 j=i;
14 while (j>0) {
15 bp->next=new List();
15b bp=bp->next;
16 j=i-14

}

}

17 v 11 cone
17b y=a;

18 write(length(y)-2)

793/925

Example: Shape Analysis with Cycle
17:

794/925

Example: Comparison

Program Alias Analysis Inner
Loop in
Slice
Sum None No
Sum

(ptrs) Flow insensitive (weak update) | Yes
(ptrs) Flow sensitive (strong update) No
Sum (dyn) Heap represented by 1 node only | Yes
(
(

Sum (dyn) Shape analysis (strong update) No
Sum (dyn—+cycle) | Shape analysis Yes

795/925

Further Reading for Chapter 19

E Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition, Springer- Verlag,
2005. (Chapter 1, Introduction; Chapter 2, Data Flow
Analysis; Chapter 6, Algorithms)

796/925

Part V

Conclusions and Prospectives

797/925

Chapter 20

Summary and Outlook

798/925

A Conclusion

...a question for the sense of life, or for what we did achieve resp.

» What did we consider?

The least!
Or vice versa...

» What did we not consider?

The most!

799/925

Especially not (or not in detail) (1)

» Extensions of syntactic PRE beyond PDCE/PRAE

» Lazy Strength Reduction

L

» Semantic Extensions

» Semantic Code Motion/Code Placement
» Semantic Strength Reduction

L

» Language Extensions

» Parallelitat

> L.

8007925

Especially not (or not in detail) (2)

» Dynamic, profile-guided extensions

» Speculative PRE

> ...

801/925

Hints to Further Reading (1)

» Syntactic PRE

» Knoop, J., Rithing, O., and Steffen, B. Retrospective:
Lazy Code Motion. In "20 Years of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (1979 - 1999): A Selection”, ACM
SIGPLAN Notices 39, 4 (2004), 460 - 461 & 462-472.

» Knoop, J., Riithing, O., and Steffen, B. Optimal code
motion: Theory and practice. ACM Transactions on
Programming Languages and Systems 16, 4 (1994),
1117 - 1155.

» Riithing, O., Knoop, J., and Steffen, B. Sparse code
motion. In Conference Record of the 27th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2000) (Boston, MA,
Jan. 19 - 21, 2000), ACM New York, (2000), 170 - 183.

802/925

Hints to Further Reading (2)

» Eliminating partially dead code

» Knoop, J., Riithing, O., and Steffen, B. Partial dead
code elimination. In Proceedings of the ACM
SIGPLAN'94 Conference on Programming Language
Design and Implementation (PLDI'94) (Orlando, FL,
USA, June 20 - 24, 1994), ACM SIGPLAN Notices 29,
6 (1994), 147 - 158.

> Eliminating partially redundant assignments

» Knoop, J., Rithing, O., and Steffen, B. The power of
assignment motion. In Proceedings of the ACM
SIGPLAN’'95 Conference on Programming Language
Design and Implementation (PLDI'95) (La Jolla, CA,
USA, June 18 - 21, 1995), ACM SIGPLAN Notices 30,
6 (1995), 233 - 245.

803/925

Hints to Further Reading (3)

» BB- vs. SI-Graphs

» Knoop, J., Koschiitzki, D., and Steffen, B. Basic-block
graphs: Living dinosaurs? In Proceedings of the 7th
International Conference on Compiler Construction
(CC'98) (Lisbon, Portugal, March 30 - April 3, 1998),
Springer-Verlag, Heidelberg, LNCS 1383 (1998), 65 -
79.

» Moving vs. Placing

» Knoop, J., Riithing, O., and Steffen, B. Code motion
and code placement: Just synonyms? In Proceedings of
the 7th European Symposium On Programming
(ESOP’'98) (Lisbon, Portugal, March 30 - April 3,
1998), Springer-Verlag, Heidelberg, LNCS 1381 (1998),
154 - 1609.

804/925

Hints to Further Reading (4)

» Speculative vs. classical PRE

» Scholz, B., Horspool, N. and Knoop, J. Optimizing for
space and time usage with speculative partial
redundancy elimination. In Proceedings of the ACM
SIGPLAN/SIGBED 2004 Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES
2004) (Washington, DC, June 11 - 13, 2004), ACM
SIGPLAN Notices 39, 7 (2004), 221 -230.

» Xue, J., Knoop, J. A fresh look at PRE as a maximum
flow problem. In Proceedings of the 15th International
Conference on Compiler Construction (CC 2006)
(Vienna, Austria, March 25 - April 2, 2006),
Springer-Verlag, Heidelberg, LNCS 3923 (2006), 139 -
154.

805/925

Hints to Further Reading (5)

> Further Techniques and algorithms
» Geser, A., Knoop, J., Luttgen, G., Ruthing, O., and

L

Steffen, B. Non-monotone fixpoint iterations to resolve
second order effects. In Proceedings of the 6th Inter-
national Conference on Compiler Construction (CC'96)
(Linkoping, Sweden, April 24 - 26, 1996), Springer-V.,
Heidelberg, LNCS 1060 (1996), 106 - 120.

Knoop, J., and Mehofer, E. Optimal distribution
assignment placement. In Proceedings of the 3rd
European Conference on Parallel Processing
(Euro-Par'97) (Passau, Germany, August 26 - 29,
1997), Springer-V., Heidelberg, LNCS 1300 (1997), 364
- 373.

Knoop, J., Riithing, O., and Steffen, B. Lazy strength
reduction. Journal of Programming Languages 1, 1
(1993), 71 - 91.

: siehe auch www.complang.tuwien.ac.at/knoop y
806/925

Outlook

Emerging applications of (static) program analysis beyond
optimization:

» Security Analysis
> Program Understanding

» Refactoring
> .

...topics for master and PhD theses to come!

807/925

Bibliography

808/925

Recommended Reading

...for deepened and independent studies.

| Textbooks

[I Monographs
[l Volumes

[l Articles

vV v vy

809/925

| Textbooks (1)

[

) & = =)

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.
Ullman. Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 2nd edition, 2007.

Randy Allen, Ken Kennedy. Optimizing Compilers for Modern
Architectures. Morgan Kaufman Publishers, 2002.

A. Arnold, |. Guessarian. Mathematics for Computer Science.
Prentice Hall, 1996.

Keith D. Cooper, Linda Torczon. Engineering a Compiler.
Morgan Kaufman Publishers, 2004.

B. A. Davey, H. A. Priestley. Introduction to Lattices and
Order. Cambridge Mathematical Textbooks, Cambridge
University Press, 1990.

810/925

| Textbooks (2)

B
B

) & & =

S. Even. Graph Algorithms. Pitman, 1979.

Matthew S. Hecht. Flow Analysis of Computer Programs.

Elsevier, North-Holland, 1977.

Janusz Laski, William Stanley. Software Verification and
Analysis. Springer-V., 2009.

Robert Morgan. Building an Optimizing Compiler. Digital
Press, 1998.

Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997.

Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: A Formal Introduction. Wiley, 1992.

811/925

| Textbooks (3)

[Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: An Appetizer. Springer-V., 2007.

@ Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition, Springer-V.,
2005.

[4 Peter Pepper, Petra Hofstedt. Funktionale Programmie- rung:
Sprachdesign und Programmiertechnik. Springer-V., 2006.

812/925

Il Monographs

[d Jens Knoop. Optimal Interprocedural Program Optimiza-
tion: A New Framework and Its Application. Springer-V.,
LNCS 1428, 1998.

813/925

11 Volumes

E Stephen S. Muchnick, Neil D. Jones. Program Flow Analysis:
Theory and Applications. Prentice Hall, 1981.

[4 Y. N. Srikant, Priti Shankar. The Compiler Design Hand-
book: Optimizations and Machine Code Generation. 1st
edition, CRC Press, 2002.

[4 Y. N. Srikant, Priti Shankar. The Compiler Design Hand-
book: Optimizations and Machine Code Generation. 2nd
edition, CRC Press, 2008.

814/925

Il Articles (1)

B

B

F. E. Allen, John A. Cocke. A Program Data Flow Analysis
Procedure. Communications of the ACM 19(3):137-147,
1976.

F. E. Allen, John Cocke, Ken Kennedy. Reduction of
Operator Strength. In Stephen S. Muchnick, Neil D. Jones
(Eds.). Program Flow Analysis: Theory and Applications.
Prentice Hall, 1981, Chapter 3, 79-101.

B. Alpern, Mark N. Wegman, F. Ken Zadeck. Detecting
Equality of Variables in Programs. In Proceedings of
POPL'88, 1-11, 1988.

Thomas Ball, S. Rajamani. Bebop: A Path-Sensitive
Interprocedural Dataflow Engine. In Proceedings PASTE
2001, 2001.

815/925

11l Articles (2)

B

B

M. Berndl, O. Lothdk, F. Qian. Laurie Hendren, N. Umanee.

Points-to Analysis using BDDs. In Proceedings PLDI 2003,
2003.

M. Bravenboer, Y. Smaragdakis. Strictly Declarative
Specification of Sophisticated Points-to Analyses. In
Proceedings OOPSLA 2009, 2009.

D. Chase, Mark N. Wegmann, F. Ken Zadeck. Analysis of
Pointers and Structures. In Proceedings PLDI'90, 296-310,
1990.

J.-G. Choi, M. Gupta, M. Serrano, V.C. Sreedhar, and Sam
Midkiff. Escape Analysis for Java. In Proceedings of
OOPSLA'99, ACM Press, 1-19, 1999.

816/925

Il Articles (3)

[4 Melvin E. Conway. Proposal for an UNCOL. Communica-
tions of the ACM 1(3):5, 1958.

[4 D. M. Dhamdhere. A New Algorithm for Composite Hoisting
and Strength Reduction Optimisation (+ Corrigendum).
International Journal of Computer Mathematics
27:1-14,31-32, 1989.

[1 D. M. Dhamdhere. Practical Adaptation of the Global
Optimization Algorithm of Morel and Renvoise. ACM
Transactions on Programming Languages and Systems
13(2):291-294, 1991, Technical Correspondence.

[4 D. M. Dhamdhere. E-path_pre: Partial Redundancy Eli-
mination Made Easy. ACM SIGPLAN Notices 37(8):53-65,
2002.

817/925

Il Articles (4)

[§ D. M. Dhamdhere, J. R. Isaac. A Composite Algorithm for
Strength Reduction and Code Movement Optimization.
International Journal of Computer and Information Sciences
9(3):243-273, 1980.

[d K.-H. Drechsler, M. P. Stadel. A Solution to a Problem with
Morel and Renvoise’s “Global Optimization by Suppression of
Partial Redundancies”. ACM Transactions on Programming
Languages and Systems 10(4):635-640, 1988, Technical
Correspondence.

[§ K.-H. Drechsler, M. P. Stadel. A variation of Knoop, Riithing
and Steffen’s LAZY CODE MOTION. ACM SIGPLAN
Notices 28(5):29-38, 1993.

818/925

Il Articles (5)

B

B

M. Emami, R. Ghiya, Laurie J. Hendren. Context-Sen- sitive
Interprocedural Points-to Analysis in the Presence of
Function Pointers. In Proceedings PLDI'94, 1-14, 1994.

Andrei P. Ershov. On Programming of Arithmetic Opera-
tions. Communications of the ACM 1(8):3-6, 1958. (Three
figures from this article are in CACM 1(9):16).

C. Fecht, Helmut Seidl. An Even Faster Solver for General
Systems of Equations. In Proceedings SAS'96, LNCS 1145,
189-204, 1996.

819/925

Il Articles (6)

B

[

C. Fecht, Helmut Seidl. Propagating Differences: An Efficient
New Fixpoint Algorithm for Distributive Constraint Systems.
In Proceedings ESOP'98, LNCS 1381, 90-104, 1998.

C. Fecht, Helmut Seidl. A Faster Solver for General Systems
of Equations. Science of Computer Programming
35(2):137-161, 1999.

R. Ghiya, Laurie J. Hendren. Is it a Tree, a DAG, or a Cyclic
Graph? In Proceedings POPL'96, 1-15, 1996.

R. Nigel Horspool, H. C. Ho. Partial Redundancy Elimi-
nation Driven by a Cost-benefit Analysis. In Proceedings of
the 8th Israeli Conference on Computer Systems and
Software Engineering (CSSE'97), 111-118, 1997.

820/925

Il Articles (7)

B

B

Susan Horwitz, A. Demers, T. Teitelbaum. An Efficient
General Iterative Algorithm for Dataflow Analysis. Acta
Informatica 24:679-694, 1987.

S. M. Joshi, D. M. Dhamdhere. A Composite Hoisting-
strength Reduction Transformation for Global Program
Optimization — Part | and Part Il. International Journal of
Computer Mathematics 11:21-41,111-126, 1982.

John B. Kam, Jeffrey D. Ullman. Global Data Flow Analysis
and lterative Algorithms. Journal of the ACM 23:158-171,
1976.

John B. Kam, Jeffrey D. Ullman. Monotone Data Flow
Analysis Frameworks. Acta Informatica 7:305-317, 1977.

821/925

Il Articles (8)

[d Uday P. Khedker, B. Karkare. Efficiency, Precision, Simplicity,
and Generality in Interprocedural Dataflow Analysis:
Resurrecting the Classical Call Strings Method. In
Proceedings CC 2008, LNCS 4959, Springer-V., 213-228,
2008.

E Uday P. Khedker, Alan Mycroft, P. S. Rawat. Liveness-based
Pointer Analysis. In Proceedings SAS 2012, Springer-V.,
LNCS 7460, 265-282, 2012.

[§ Gary A. Kildall. A Unified Approach to Global Program
Optimization. In Conference Record of the 1st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL'73), 194-206, 1973.

822/925

Il Articles (9)

@ Marion Klein, Jens Knoop, Dirk Koschiitzki, Bernhard
Steffen. DFA&OPT-METAFrame: A Toolkit for Program
Analysis and Optimization. In Proceedings TACAS'96,
Springer-V., LNCS 1055, 422-426, 1996.

[§ Jens Knoop. Formal Callability and its Relevance and
Application to Interprocedural Data Flow Analysis. In
Proceedings of the 6th IEEE International Conference on
Computer Languages (ICCL'98), 252-261, 1998.

[4 Jens Knoop. From DFA-Frameworks to DFA-Generators: A
Unifying Multiparadigm Approach. In Proceedings of the 5th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS'99),
Springer-V., LNCS 1579, 360-374, 1999.

823/925

11l Articles (10)

ﬁ Jens Knoop, Dirk Koschiitzki, Bernhard Steffen. Basic- block
Graphs: Living Dinosaurs? In Proceedings of the 7th
International Conference on Compiler Construction (CC'98),
Springer-V., LNCS 1383, 65-79, 1998.

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Lazy Code
Motion. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Imple- mentation
(PLDI'92), ACM SIGPLAN Notices 27(7):224-234, 1992.

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Lazy Strength
Reduction. Journal of Programming Languages 1(1):71-91,
1993.

824/925

Il Articles (11)

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen. Optimal Code
Motion: Theory and Practice. ACM Transactions on
Programming Languages and Systems 16(4):1117-1155,
1994.

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Code Motion
and Code Placement: Just Synonyms? In Procee- dings of
the 7th European Symposium on Programming (ESOP’98),
Springer-V., LNCS 1381, 154-169, 1998.

6 Jens Knoop, Oliver Riithing, Bernhard Steffen.
Expansion-based Removal of Semantic Partial Redundancies.
In Pro- ceedings of the 8th International Conference on
Compiler Construction (CC'99), Springer-V., LNCS 1575,
91-106, 1999.

825/925

Il Articles (12)

ﬁ Jens Knoop, Oliver Riithing, Bernhard Steffen. Partial Dead
Code Elimination. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI'94), ACM SIGPLAN Notices
29(6):147-158, 1994.

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. The Power of
Assignment Motion. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI'95), ACM SIGPLAN Notices
30(6):233-245, 1995.

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Retro-
spective: Lazy Code Motion. In “20 Years of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation (1979 - 1999): A Selection”, ACM SIGPLAN
Notices 39(4):460-461&462-472, 2004.

826/925

11l Articles (13)

[4 Jens Knoop, Bernhard Steffen. The Interprocedural
Coincidence Theorem. In Proceedings of the 4th Inter-
national Conference on Compiler Construction (CC'92),
Springer-V., LNCS 641, 125-140, 1992.

[d Jens Knoop, Bernhard Steffen. Code Motion for Explicitly
Parallel Programs. In Proceedings of the 7th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP'99), ACM SIGPLAN Notices
34(8):13-24, 1999.

[d Donald E. Knuth. An Empirical Study of Fortran Pro- grams.
Software — Practice and Experience 1:105-13, 1971.

827/925

Il Articles (14)

B

B

R. Manevich, Mooly Sagiv, G. Ramalingam, J. Field. Partially
Disjunctive Heap Abstraction. In Proceedings SAS 2004.
Springer-V., LNCS 3248, 265-279, 2004.

Ravi Mangal, Mayur Naik, Hongseok Yang. A Correspondence
between Two Approaches to Interprocedural Analysis in the
Presence of Join. In Proceedings of the 23rd European
Symposium on Programming (ESOP 2014), Grenoble,
France, April 5-13, 2014, LNCS 8410, Springer-V., 2014.

Thomas J. Marlowe, Barbara G. Ryder. Properties of Data
Flow Frameworks. Acta Informatica 28(2):121-163, 1990.

828/925

11l Articles (15)

[4 Florian Martin. PAG - An Efficient Program Analyzer
Generator. Journal of Software Tools for Technology Transfer
2(1):46-67, 1998.

[§ Matthew Might, Y. Smaragdakis, D. Horn. Resolving and
Exploiting the k-CFA Paradox: llluminating Functional
vs. OO Program Analysis. In Proceedings PLDI 2010, 2010.

@ A. Milanova, A. Rountev, Barbara G. Ryder. Parameterized
Object Sensitivity for Points-to and Side-effect Analyses for
JAVA. In Proceedings ISSTA 2002, 2002.

[A. Milanova, A. Rountev, Barbara G. Ryder. Parameterized
Object Sensitivity for Points-to Analysis for JAVA. ACM
TOSEM 14(1), 2005.

829/925

11l Articles (16)

B

Etienne Morel, Claude Renvoise. Global Optimization by
Suppression of Partial Redundancies. Communications of the
ACM 22(2):96-103, 1979.

Flemming Nielson. Semantics-directed Program Analysis: A
Tool-maker’s Perspective. In Proceedings SAS’'96,
Springer-V., LNCS 1145, 2-21, 1996.

Flemming Nielson, Hanne Riis Nielson. Finiteness Conditions
for Fixed Point Iteration. In Proceedings LFP'92, ACM Press,
96-108, 1992.

H. D. Pande, Barbara Ryder. Data-flow-based Virtual
Function Resolution. In Proceedings SAS'96, Springer-V.,
LNCS 1145, 238-254, 1996.

830/925

11l Articles (17)

[@ Viktor Pavlu, Markus Schordan, Andreas Krall. Compu-
tation of Alias Sets from Shape Graphs for Comparison of
Shape Analysis Precision. In Proceedings of the 11th
International IEEE Working Conference on Source Code
Analysis and Manipulation (SCAM 2011), 2011. [Best Paper
Award SCAM 2011]

[Tom Reps, Susan Horwitz, Mooly Sagiv. Precise
Interprocedural Dataflow Analysis via Graph Reachability. In
Proceedings POPL 1995, 1995.

[4 Barry K. Rosen. High-level Data Flow Analysis.
Communications of the ACM 20(10):141-156, 1977.

831/925

11l Articles (18)

[

3
B

B

Oliver Rithing, Jens Knoop, Bernhard Steffen. Sparse Code
Motion. In Conference Record of the 27th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2000), 170-183, 2000.

O. Shivers. Control-Flow Analysis in Scheme. In Proceedings
PLDI 1988, 1988.

Y. Smaragdakis, M. Bravenboer, O. Lhothdk. Pick Your
Contexts Well: Understanding Object-Sensitivity. In
Proceedings POPL 2011, 2011.

Mooly Sagiv, Tom Reps, Reinhard Wilhelm. Solving
Shape-Analysis Problems in Languages with Destructive
Updating. ACM Transactions on Programming 20(1):1-50,
1998.

832/925

11l Articles (19)

[

B

Mooly Sagiv, Tom Reps, Reinhard Wilhelm. Parametric
Shape Analysis via 3-Valued Logic. In Proceedings POPL’99,
105-118, 1999.

Mooly Sagiv, Tom Reps, Reinhard Wilhelm. Parametric
Shape Analysis via 3-valued Logic. ACM Transactions on
Programming Languages and Systems 24(3), 2002.

Micha Sharir, Amir Pnueli. Two Approaches to Interpro-
cedural Data Flow Analysis. In Stephen S. Muchnick, Neil
D. Jones (Eds.). Program Flow Analysis: Theory and
Applications. Prentice Hall, 1981, Chapter 7.3, The
Functional Approach to Interprocedural Analysis, 196-209.

833/925

11l Articles (20)

[d Micha Sharir, Amir Pnueli. Two Approaches to Interpro-
cedural Data Flow Analysis. In Stephen S. Muchnick, Neil
D. Jones (Eds.). Program Flow Analysis: Theory and
Applications. Prentice Hall, 1981, Chapter 7.3, The Call-
String Approach to Interprocedural Analysis, 210-217.

[§ Bernhard Scholz, R. Nigel Horspool, Jens Knoop. Optimizing
for Space and Time Usage with Speculative Partial
Redundancy Elimination. Proceedings of the ACM SIGPLAN
Workshop on Languages, Compilers, and Tools for Embedded
Systems (LCTES 2004), ACM SIGPLAN Notices
39(7):221-230, 2004.

834/925

Il Articles (21)

[§ Bernhard Steffen. Optimal Run Time Optimization — Proved
by a New Look at Abstract Interpretation. In Pro- ceedings of
the 2nd Joint Conference on Theory and Practice of Software
Development (TAPSOFT'87), Springer-V., LNCS 249, 52-68,
1987.

[d Bernhard Steffen. Property-Oriented Expansion. In Pro-
ceedings of the 3rd Static Analysis Symposium (SAS'96),
Springer-V., LNCS 1145, 22-41, 1996.

[§ Bernhard Steffen, Jens Knoop, Oliver Riithing. The Value
Flow Graph: A Program Representation for Optimal Pro-
gram Transformations. In Proceedings of the 3rd European
Symposium on Programming (ESOP’90), Springer-V., LNCS
432, 389-405, 1990.

835/925

Il Articles (22)

[§ Bernhard Steffen, Jens Knoop, Oliver Riithing. Efficient Code
Motion and an Adaption to Strength Reduction. In
Proceedings of the 4th International Joint Conference on

Theory and Practice of Software Development
(TAPSOFT'91), Springer-V., LNCS 494, 394-415, 1991.

[d Mooly Sagiv, Tom Reps, Susan Horwitz. Precise Interpro-
cedural Dataflow Analysis with Applications to Constant
Propagation. In Proceedings TAPSOFT'95, Springer-V.,
LNCS 915, 651-665, 1995.

[§ Mooly Sagiv, Tom Reps, Reinhard Wilhelm. Parametric
Shape Analysis via 3-Valued Logic. In Proceedings POPL'99,
105-118, 1999.

836/925

11l Articles (23)

[d J. Whaley. Context-sensitive Pointer Analysis using Binary
Decision Diagrams. PhD Thesis, Stanford University, 2007.

[4 J. Whaley, Monica Lam. Cloning-based Context-sensitive
Pointer Alias Analysis using Binary Decision Diagrams. In
Proceedings PLDI 2004, 2004.

& H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook,
D. Distefano, P. W. O'Hearn. Scalable Shape Analysis for
Systems Code. In Proceedings CAV 2008, Springer-V., LNCS
5123, 385-398, 2008.

@ J. Zhu, S. Chalman. Symbolic Pointer Analysis Revisited. In
Proceedings PLDI 2004, 2004.

837/925

Appendix

838/925

A

Mathematical Foundations

839/925

A.l

Sets and Relations

840/925

Sets and Relations (1)

Definition (A.1.1)
Let M be a set and R a relation on M, i.e. RC M x M.

Then R is called

> reflexive iff Vme M. mRm
> transitive iff Vmn,pe M. mRn A nRp = mRp
> anti-symmetric iff Ymne M. mRn A nRm = m=n

841/925

Sets and Relations (2)

Related notions (though less important for us here):

Definition (A.1.2)

Let M be asetand R C M x M a relation on M. Then R is
called

> symmetric iff VYmne M. mRn <= nRm
> total iff Ymne M. mRn V nRm

842/925

A.2
Partially Ordered Sets

843/925

Partially Ordered Sets

Definition (A.2.1, Quasi-Order, Partial Order)

A relation R on M is called a

» quasi-order iff R is reflexive and transitive
> partial order iff R is reflexive, transitive, and anti-symmetric

For the sake of completeness we recall:

Definition (A.2.2, Equivalence Relation)

A relation R on M is called an

» equivalence relation iff R is reflexive, transitive, and
symmetric

844925

Remark

...a partial order is an anti-symmetric quasi-order, an equivalence
relation a symmetric quasi-order.

Note: We here use terms like “partial order” as a short hand for
the more accurate term “partially ordered set.”

845/925

Bounds, least and greatest Elements

Definition (A.2.3, Bounds, least/greatest Elements)
Let (Q,C) be a quasi-order, let g € Q and Q' C Q.
Then q is called
» upper (lower) bound of @', insigns: Q' C g (¢ C Q'), if for
all ¢’ € Q' holds: ¢ C g (qC ¢)
» least upper (greatest lower) bound of @', if g is an upper
(lower) bound of Q" and for every other upper (lower) bound
g of @' holds: g C 4 (4 C q)
» greatest (least) element of Q, if holds: Q C ¢ (¢ C Q)

846/925

Existence and Uniqueness of Bounds

We have:

> Given a partial order, least upper and greatest lower bounds
are uniquely determined, if they exist.

» Given existence (and thus uniqueness), the least upper
(greatest lower) bound of a set P’ C P of the basic set of a

partial order (P,C) is denoted by LIP" ([TP’). These
elements are also called supremum and infimum of P’.

» Analogously this holds for least and greatest elements. Given
existence, these elements are usually denoted by L and T.

847/925

A3

Lattices

Chap. 17
(848/925

Lattices and Complete Lattices

Definition (A.3.1, (Complete) Lattice)
Let (P,C) be a partial order.
Then (P,C) is called a

» lattice, if each finite subset P’ of P contains a least upper
and a greatest lower bound in P.

» complete lattice, if each subset P’ of P contains a least
upper and a greatest lower bound in P.

Hence:
...(complete) lattices are special partial orders.

849/925

Properties of Complete Lattices

Lemma (A.3.2)

Let (P,C) be a complete lattice. Then we have:
1. L =LIp =P is the least element of P.
2. T =[10 = LIP is the greatest element of P.

Lemma (A.3.3)

Let (P,C) be a partial order. Then the following claims are
equivalent:

1. (P,C) is a complete lattice.
2. Every subset of P has a least upper bound.
3. Every subset of P has a greatest lower upper bound.

850/925

A4
Complete Partially Ordered Sets

851/925

Complete Partial Orders

...a slightly weaker notion than a lattice that, however, is often
sufficient in computer science and thus often a more adequate
notion:

Definition (A.4.1, Complete Partial Order)
Let (P,C) be a partial order.

Then (P,C) is called

» complete, or shorter a CPO (complete partial order), if each
ascending chain C C P has a least upper bound in P.

852/925

Remark

We have:

» A CPO (C,C) (more accurate would be: “chain-complete
partially ordered set (CCPO)") has always a least element.
This element is uniquely determined as the supremum of the
empty chain and usually denoted by L: 1 =4 Llp.

853/925

Chains

Definition (A.4.2, Chain)
Let (P,C) be a partial order.
A subset C C P is called

» chain of P, if the elements of C are totally ordered. For
C={ooCalaol..}{on2adced...})wealso
speak more precisely of an ascending (descending) chain of
P.

A chain C is called

» finite, if C is finite; infinite otherwise.

854/925

Finite Chains, finite Elements

Definition (A.4.3, Chain-finite)
A partial order (P,C) is called

» chain-finite (German: kettenendlich) iff P does not contain
infinite chains

Definition (A.4.4, Finite Elements)
An element p € P is called

> finite iff the set Q=4r {q € P|q C p} is free of infinite
chains

» finite relative to r € P iff the set Q=4 {q € P|rC q C p}
does not contain infinite chains

855/925

(Standard) CPO Constructions (1)

Flat CPOs.
Let (C,C) be a CPO. Then (C,C) is called
» flat, if forallc,d € Cholds: cCd<c=1 V c=d

C

1

856/925

(Standard) CPO Constructions (2)

Product construction.
Let (P1,C1), (P2, C2),...,(Pn,C,) be CPOs. Then

» the non-strict (direct) product (X P;, C) with
» (XP,E)=(P1x Py x...x P, C) with
V(p1,p2; -, Pn),
(91,92, --.qn) € XPi. (p1,p2s- -, Pn) C
(91,92,---,qn) © Vie{l,....,n}. pi C; q;

» and the strict (direct) product (smash product) with

» (QPLE)=(Pi®P®...® P,,C), where C is
defined as above under the additional constraint:

(p1,p2,---,pn)=L <= 3Fie{l,....n}. pi=_L;
are CPOs, too.

857/925

(Standard) CPO Constructions (3)

Sum construction.
Let (P1,C1),(P2,C2),...,(Pn,E,) CPOs. Then

» the direct sum (€ P;, C) with
» (P P;,C)= (PLUP, U...U P, C) disjoint union of
Pi,i€{l,....,n} andVp,ge P P.pCg<3ic
{1,...,n}. p,ge Pi N pCigq
is a CPO.

Note: The least elements of (P;,C;), i € {1,...,n}, are
usually identified, i.e., L=g4r L;, i € {1,...,n}

858/925

(Standard) CPO Constructions (4)

Function-space construction.

Let (C,Cc¢) and (D,Cp) be two CPOs and [C — D]=4f
{f : C — D | f continuous} the set of continuous functions from
CtoD.

Then

» the continuous function space ([C — D],C) is a CPO where
» Vf,ge[C—D]l. fCg<=VceC. f(c)Cp g(c)

859/925

Monotonic, Continuous Functions on CPOs

Definition (A.4.5, Monotonic, Continuous

Function)
Let (C,C¢) and (D,Cp) be two CPOs and let f : C — D be a
function from C to D.

Then f is called
» monotonic iff Ve, c’ € C. cC¢ ¢’ = f(c) Cp (')
(Preservation of the ordering of elements)

» continuous iff VC' C C. f(LdcC") =p Lpf(C)
(Preservation of least upper bounds)

8607925

Properties

Using the notations introduced before, we have:

Lemma (A.4.6)
f is monotonic iff vV C' C C. f(LlcC’) Tp Lpf(C))

Corollary (A.4.7)

A continuous function is always monotonic, i.e. f continuous
implies f monotonic.

861/925

Inflationary Functions on CPOs

Definition (A.4.8, Inflationary Function)

Let (C,C) be a CPO and let f : C — C be a function on C.
Then f is called

» inflationary (increasing) iff Vc € C. ¢ C f(c¢)

862/925

A.5

Fixed Point Theorems

863/925

Least and Greatest Fixed Points

Definition (A.5.1, (Least/Greatest) Fixed Point)

Let (C,C) be a CPO, f: C — C be a function on C and let ¢ be
an element of C, i.e,, c € C.

Then c is called
» fixed point of f iff f(c) =c¢
A fixed point ¢ of f is called

> least fixed point of f iff Vd € C. f(d)=d=cCd
» greatest fixed point of f iff Vd € C. f(d)=d=dLC ¢

Notation:
> The least resp. greatest fixed point of a function f is usually
denoted by uf resp. vf.

864/925

Conditional Fixed Points (2)

Definition (A.5.2, Conditional Fixed Point)

Let (C,C) be a CPO, f: C — C be a function on C and let
d,cqy € C.

Then ¢4 is called

» conditional (German: bedingter) least fixed point of f wrt d
iff cg4 is the least fixed point of C with d C ¢y, i.e. for all
other fixed points x of f with d C x holds: ¢4 C x.

865/925

Fixed Point Theorem

Theorem (A.5.3, Knaster/Tarski, Kleene)

Let (C,C) be a CPO and let f : C — C be a continuous function
on C.

Then f has a least fixed point uf, which equals the least upper
bound of the chain (so-called Kleene-Chain)
{L,F(L),f2(L),...}, e

pf = I—liEINo fi(J—) = I—l{J-’ f(J-)v fz(J-)’ s }

866/925

Proof of Fixed Point Theorem A.5.3 (1)

We have to prove:

wf

1. exists

2. is a fixed point

3. is the least fixed point
of f.

867/925

Proof of Fixed Point Theorem A.5.3 (2)

1. Existence

» It holds f© L =1 and L C ¢ forall ce C.

» By means of (natural) induction we can show: f"L C f"c
for all c € C.

» Thus we have "L C f™_L for all n, m with n < m. Hence,
{f"L | n> 0} is a (non-finite) chain of C.

» The existence of Lljcn, f7(L) is thus an immediate
consequence of the CPO properties of (C,C).

8687925

Proof of Fixed Point Theorem A.5.3 (3)

2. Fixed point property

F(Lien, F/(1))
(f continuous) = Llien, F(F/L)
= Uien,f'L
(K chain = Lk=1ullk) = (WjenfL) U L

(FOL=1) = Uenf'L

869/925

Proof of Fixed Point Theorem A.5.3 (4)

3. Least fixed point

> Let ¢ be an arbitrarily chosen fixed point of f. Then we
have L C ¢, and hence also f"1L C f"c for all n > 0.

» Thus, we have f"L C ¢ because of our choice of ¢ as fixed
point of f.

» Thus, we also have that c is an upper bound of
{FI(L) | i € No}.

» Since |_|;6|N0fi(J_) is the least upper bound of this chain by
definition, we obtain as desired [l;cp, /(L) C c.
Od

870/925

Conditional Fixed Points

Theorem (A.5.4, Conditional Fixed Points)
Let (C,C) be a CPO, let f : C — C be a continuous, inflationary
function on C, and let d € C.

Then f has a unique conditional fixed point ufy. This fixed point
equals the least upper bound of the chain {d, f(d), f?(d), ...},
ie.

pfy=Uien,f'(d) =LI{d, f(d), F*(d)....}

871/925

Finite Fixed Points

Theorem (A.5.5, Finite Fixed Points)

Let (C,C) be a CPO and let f : C — C be a continuous function
on C.

Then we have: If two elements in a row occurring in the
Kleene-chain of f are equal, e.g. f'(1)=f"*1(L), then we have:

puf=fi(L1).

872/925

Existence of Finite Fixed Points

Sufficient conditions for the existence of finite fixed points
e.g. are

» Finiteness of domain and range of f

» f is of the form f(c)=c U g(c) for monotone g on some
chain-complete domain

873/925

Appendix A: Further Reading (1)

[@ A. Arnold, |. Guessarian. Mathematics for Computer Science.
Prentice Hall, 1996.

[§ B. A. Davey, H. A. Priestley. Introduction to Lattices and
Order. Cambridge Mathematical Textbooks, Cambridge
University Press, 1990.

[§ Flemming Nielson, Hanne Riis Nielson. Finiteness Conditions
for Fixed Point Iteration. In Proceedings LFP'92, ACM Press,
96-108, 1992.

[§ Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: A Formal Introduction. Wiley, 1992. (Chapter
4, Denotational Semantics)

874/925

Appendix A: Further Reading (2)

B

B

Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: An Appetizer. Springer-V., 2007.
(Chapter 5, Denotational Semantics)

Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition, Springer-V.,
2005. (Appendix A, Partially Ordered Sets)

Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung: Sprachdesign und Programmiertechnik. Springer-V.,
2006. (Chapter 10, Beispiel: Berechnung von Fixpunkten)

875/925

B

Intricacies of Basis Block Graphs

876/925

Chapter B.1

Motivation

877/925

Basic Block vs. Single Instruction Graphs

In this chapter we investigate the adequacy of different program
representations.

To this end we will consider and compare programs in form of
node and edge-labelled flow graphs with basic blocks and single
instructions and investigate their

» advantages and disadvantages for program analysis

...thereby addressing the question:

» Basic Block vs. Single Instruction Graphs: Just a Matter of
Taste?

On the fly we will learn:

» Some further examples of real world data flow analysis
problems and data flow analyses.

878/925

Basic Blocks: Supposed Advantages

Advantages of basic blocks in applications that are commonly
attributed to them (“folk knowledge"):

Better scalability because

» less nodes are involved in the (potentially) compu- tationally
expensive fixed point iteration and thus

> larger programs fit into the main memory.

879/925

Basic Blocks: Definite Disadvantages

Definite disadvantages of basic blocks in applications:

» Higher conceptual complexity: Basic blocks introduce an un-
desired hierarchy into flow graghs that makes both
theoretical reasoning and practical implemenentations more
difficult.

> Necessity of pre- and post-processes: These are usually re-
quired in order to cope with the additional problems intro-
duced by the hierarchical structure of basic block flow graph
(e.g. in dead code elimination, constant propagation,...); or
that require “tricky” formulations to avoid them (e.g. in
partial redundancy elimination).

> Limited generality: Some practically relevant program analy-
ses and optimizations are difficult or not at all expressible on
the level of basic block flow graphs (e.g. faint variable elimi-
nation).

8807925

Hierarchy by Basic Blocks

Illustration:

®
®)
| =) |,

“A
r

881/925

In the following

Investigating the

» advantages and disadvantages of basic block (BB) flow
graphs compared to single instructions (SI) flow graphs.

by means of examples

» of some data flow analysis problems we already considered

» Availability of expressions
» Simple constants

and some new ones:
» Faint variables

882/925

Chapter B.1.1
Edge-labelled Single Instruction Approach

883/925

The MOPs; Approach

...for edge-labelled single instruction flow graphs.

The MOP Solution:

VeseCVneN. MOP('I]IC) df|_|{|[p]] C5|pEPG[S n]}

884/925

The MaxFPs; Approach

...for edge-labelled single instruction flow graphs.

The MaxFP Solution:
VeseCVneN. MaXFP(ﬂ]IUCs)(n):df inft.s(n)

where infZ denotes the greatest solution of the MaxFP Equation
System:

. Cs ifn=s
inf(n) = { [1{[(m, n)],(inf(m))| m e predg(n)} otherwise

885/925

Chapter B.1.2
Node-labelled Basic Block Approach

886/925

Notations

In the following we denote

» basic block nodes by boldface letters (m, n,...)
» single instruction nodes by normalface letters (m, n,...)

Furthermore we denote by

> [] and
[

(local) abstract data flow analysis functionals on the level of basic
blocks and single instructions, respectively.

887/925

The MOPgg Approach (1)

...for node-labelled basic block flow graphs.

The MOP Solution on the BB-Level:

Ve € C Ve N. MOP]]ﬁ,cs)("):df
(N—MOP([]Ig»cs)(n)’ X‘MOP(|[]IB,CS)(n))
with
N—MOP(|[]| ,G) n df|_|{[[p]]6 |p€PG[S n[}
X-MOP(1, c)(m)=ar [[{[P1s(cs)| p € Pels.n] }

888/925

The MOPgg Approach (2)

...and its continuation on the Sl-Level:

Ve €CVne N MOP]IUCS)(H):df
(N-MOP(§, c)(n), X-MOR(f 1, c)(n))

889/925

The MOPgg Approach (3)

...with

N—MOP(II]]ﬂjcs)(block(n))
if n=start(block(n))

NMOPE L)) =ar [o] (N-MORy , o (bLock(m))
otherwise (p prefix path from

start(block(n)) to (exclusively) n)

X-MOR(1,,¢)(n) =ar [p],(N-MOP , c,)(block(n)))
(p prefix path from start(block(n))

up to (inclusively) n)

8907925

The MaxFPgg Approach (1)

...for node-labelled basic block flow graphs:

The MaxFP Solution on the BB-Level:

Ve €CVn e N MaxFR o) (n) =af
(N-MFP(1,,c)(n), X-MFP1y,.c)(n))
with
N-MFR(Hﬁ,cs)("):df Preé(n) and
X-MFP(1, c)(n)=ar postZ,(n)

891/925

The MaxFPgg Approach (2)

...where pre'gs and post'gs denote the greatest solution of the

equation system

G ifn=s
pre(n) = { [1{ post(m)|m € predg(n)} otherwise
post(n) = [n]s(pre(n))

892/925

The MaxFPgg Approach (3)

...and its continuation on the Sl-Level:

VCS S CVn cN. MaxFP([[]Ichs)(n) =4f

(N-MFP], c)(n), X-MFP] c)(n))
with
N-MFRq]]L,Cs)(n):df pre; (n) and
X-MFRq]IL,cs)(n):df pOStLCS(n)

893/925

The MaxFPgg Approach (4)

...where pre¢and post; denote the greatest solution of the
equation system

(prefs(block(n))
if n=start(block(n))

pre(n) = post(m)

otherwise (m is here the uniquely
determined predecessor of n

in block(n))

post(n) = [n],(pre(n))

894/925

Chapter B.2

Availability of Expressions

895/925

Chapter B.2.1
Node-labelled Basic Block Approach

896/925

Availability of Expressions (1)

...for node-labelled basic-block flow graphs.

Stage I: The Basic-block Level

Local Predicates (associated with BB-nodes):

» BB-XCOMPg(t): [contains a statement ¢ that com- putes
t, and neither ¢ nor a statement following ¢ in 3 modifies an
operand of t.

» BB-TRANSPg(t): /3 does not contain a statement that
modifies an operand of t.

897/925

Availability of Expressions (2)

The BB-Equation System of Stage I

false if B=s
BB-N-AVAILg = [T BB-X-AVAIL; otherwise
Bepred(s)

BB-X-AVAILg = BB-N-AVAILg - BB-TRANSPg + BB-XCOMPg

898/925

Availability of Expressions (3)
Stage IlI: The Instruction Level

Lokale Pradikate (associated with Sl-nodes):
» COMP,(t): ¢ computes t.

» TRANSP,(t): ¢ does not modify an operand of t.

» BB-N-AVAIL*, BB-X-AVAIL*: the greatest solution of the
equation system of Stage |.

The SlI-Equation System of Stage Il
BB—N—AVAIL%lOCk(L) if = start(block(t))
N-AVAIL, = X-AVAIL preq(1) otherwise
(note: |pred(:)| =1)
BB—X—AVAlLElock(L) if t=end(block())
X-AVAIL, =
(N-AVAIL, + COMP,) - TRANSP, otherwise

899/925

Chapter B.2.2
Node-labelled Single Instruction Approach

9007925

Availability of Expressions

...for node-labelled single instruction flow graphs.

Local Predicates (associated with Sl-nodes):
» COMP,(t): ¢ computes t.
» TRANSP,(t): ¢ does not modify an operand of t.

The EA-Equation System:

N-AVAIL, = [I X-AVAIL; otherwise

tepred(L)

{ false if t=s

X-AVAIL, = (N-AVAIL, + COMP,) - TRANSP,

901/925

Chapter B.2.3
Edge-labelled Single Instruction Approach

902/925

Availability of Expressions

...for edge-labelled single-instruction flow graphs.

Locale Predicates (associated with Sl-edges):
» COMP_(t): Staement ¢ of edge £ computes t.

» TRANSP.(t): Statement ¢ of edge € does not modify an
operand of t.

The SI-Equation System:

false if n=s
Avail. — [T (Availp, + COMP(mm)) . TRANSP(mm)
n— méepred(n)

otherwise

903/925

Outlook

Next we consider two further examples in order to illustrate the
impact of the chosen flow graph representation variant on the
conceptual and practical complexity of data flow analysis:

» Constant propagation and folding
» Faint variable elimination

To this end we consider formulations of these problems for:

> node-labelled basic-block flow grapns
> edge-labelled single instruction flow graphs

904/925

Chapter B.3
Constant Propagation and Folding

905/925

Constant Propagation and Folding

...considering the example of so-called simple constants.

To this end we need two auxiliary functions:

» Backward substitution

» State transformation

906/925

Backward Substitution and State Transfor-

mation for Assignments

Let « = (x:=t) be a statement. Then we define:

» Backward substitution
0,: T—=T by 6,(s)=4rs[t/x] for all s € T, where s[t/x]
denotes the simultaneous replacement of all occurrences of

x by tin s.

» State transformation

0.(0)(y) =ar { ig;))(a) ijﬂ{ew:\li;

907/925

The Relationship of ¢ and 6

Let Z denote the set of all statements.

Lemma (B.3.1, Substitution Lemma)

VteTVoeX Ve E6.(t)(0)=E(t)(0.(0))

Proof by induction on the structure of t.

908/925

Chapter B.3.1
Edge-labelled Single Instruction Approach

909/925

Simple Constants

...for edge-labelled single instruction flow graphs.

» CP,e X
> 09 € X start information

The Sl-Equation System:
YveV.CP,=

{ oo(v) if n=s
[E(S(m,ny(v))(CPm) | m € pred(n) } otherwise

910/925

Chapter B.3.2
Node-labelled Basic Block Approach

911/925

Backward Substitution and State Transfor-
mation on Paths

Extending ¢ and 6 to paths (and hence to basic blocks, too):
» Ap: T—T defined by A,=4 dp, for g=1 and by
Ap,,...ny1) ©0n, for g>1

» ©p: X — X defined by ©p,=4f 0, for g=1 and by
e(ng,...,nq) o6, for g>1.

912/925

The Relationship of A and ©

Let B denote the set of all basic blocks.

Lemma (B.3.1.1, Generalized Substitution Lemma)

Vte TVoeXLVpeB. E(As(t))(oc)=E(t)(©s(0))

Proof by induction on the length of p.

913/925

Simple Constants (1)

...for node-labelled basic-block flow graphs.

Stage |: Basic-block Level

Remark:

» Apg(v)=grd, 0...06,(v), where 3 =u1;...;

> BB-N-CP4, BB-X-CP4,N-CP,, X-CP, € ¥

> 0g € X start information

914/925

Simple Constants (2)

The BB-Equation System of Stage I

go if ﬂ:S
BB-N-CPz = H{BB—X—CPB | 5 € pred(B)}
otherwise

Vv eV.BB-X-CPs(v) = &(Ap(v))(BB-N-CPg)

915/925

Simple Constants (3)

Stage II: Instruction Level
Pre-computed Results (of Stage I):

» BB-N-CP*, BB-X-CP*: the greatest solution of the equation
system of Stage I.

916/925

Simple Constants (4)

The SlI-Equation System of Stage Il

BB'N‘Cpglock(L)
if += start(block(¢))

N-CP, =
X'CPpred(L)

otherwise (note: |pred(t)| =1)

VveV.X-CP(v) = if ¢ =end(block(t))

BB‘X‘Cpglock(L)(V)
E(6,(v))(N-CP,) otherwise

917/925

Chapter B.4
Faint Variables

918/925

Motivation

Statement

» | ;= [+ 1is live.
> t := u-+visdead.
» s ;= s+ 1aswell as sl := s2; s2

:= sl are live but
faint (schwach, kraftlos, ohnmachtig, schattenhaft).

ﬂl+]
ti=uty

s:=s+1

s2:=s1
sl :=s2
ou@
e[]

919/925

Preliminaries

...for edge-labelled single instruction flow graphs.

Local Predicates (associated with single instruction edges):

» USED.(v): Statement ¢ of edge ¢ uses v.
» MOD.(v): Statement ¢ of edge € modifies v.

» REL-USED.(v): v is a variable that occurs in the state-
ment ¢ of the edge € and “is forced to live" by it (e.g. for ¢
being an output operation).

» ASS-USED.(v): v is a variable that occurs in the right-
hand side expression of the assignment ¢ of the edge ¢.

920/925

Faint Variable Analysis

The Sl-Equation System:

FAINT ,(v) =
[I REL-USED(,m(v) *

mesucc(n)

(FA|NTm(V) + MOD(n’m)(V)) *

(FAINT yy(LhsVar ,) + ASS-USED, ;) ()

921/925

Summary

The faint variables problem is an example of a DFA problem, for
which a formulation is

» obvious on (node- and edge-labelled) single instruction flow
graphs,

» not at all obvious, if not impossible at all on (node- and
edge-labelled) basic-block flow graphs.

922/925

Chapter B.5

Conclusion

923/925

Conclusion

In principle, all 4 representation variants of flow graphs are
equally powerful.

Hence, conceptually the general framework resp. tool kit view

DFA N
ificati v
* Intraprocedural
« Interprocedural DFA
« Parallel Framework
| * Conditional
Safety/ Termination
i Coincidence Theorem
‘ Theorem @ N
& o
Program .
Property (
Proof @ @ .@ .@
Obligations:

Effectivity

and knowing that the variants differ in their adequacy and in the
specification, implementation and proof obligations they require
depending on the task at hand suffices.

924/925

Appendix B: Further Reading

B

[

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman.

Compilers: Principles, Techniques, & Tools. Addison-Wesley,
2nd edition, 2007. (Chapter 9.4, Constant Propagation)

Jens Knoop. From DFA-Frameworks to DFA-Generators: A
Unifying Multiparadigm Approach. In Proceedings of the 5th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS'99),
Springer-V., LNCS 1579, 360-374, 1999.

Jens Knoop, Dirk Koschiitzki, Bernhard Steffen. Basic-block
Graphs: Living Dinosaurs? In Proceedings of the 7th Inter-
national Conference on Compiler Construction (CC'98),
Springer-V., LNCS 1383, 65 - 79, 1998.

925/925

	Table of Contents
	1 Motivation
	2 Data Flow Analysis in a Nutshell
	2.1 Program Analysis
	2.2 Forward Analyses
	2.3 Backward Analyses

	3 Taxonomy of DFA-Analyses
	4 Flow Graphs
	5 The Intraprocedural DFA Framework
	5.1: The MOP Approach
	5.2: The MaxFP Approach
	5.3: Coincidence and Safety Theorem
	5.4: Examples: Available Expressions, Simple Constants

	6 Partial Redundancy Elimination
	6.1 Motivation
	6.2 The PRE Algorithm of Morel&Renvoise

	7 Busy Code Motion
	7.1 Preliminaries
	7.2 The BCM-Transformation
	7.3 An Extended Example

	8 Lazy Code Motion
	8.1 Preliminaries
	8.2 The ALCM-Transformation
	8.3 Lazy Code Motion
	8.4 An Extended Example

	9 Implementing Busy and Lazy Code Motion
	9.1 Implementing BCM and LCM on SI-Graphs
	9.2 Implementing BCM and LCM on BB-Graphs
	9.3 An Extended Example

	10 Sparse Code Motion
	11 Lazy Strength Reduction
	12 More on Code Motion
	12.1 Motivation
	12.2 Code Motion vs. Code Placement
	12.3 Interactions of Elementary Transformations
	12.4 Paradigm Impacts
	12.5 Further Code Motion Transformations

	13 The Functional Approach
	13.1 The Setting
	13.2
	13.3
	13.4
	13.5
	13.6
	13.7

	14 The Context Information Approach
	15 The Cloning-Based Approach
	16 The Stack-Based Functional Approach
	16.1 The Setting
	16.2
	16.3
	16.4
	16.5
	16.6
	16.7: Extensions
	16.8: Applications
	16.9: Interprocedural DFA: Framework and Toolkit

	17 Aliasing
	17.1 Sources of Aliasing
	17.2 Relevance of Aliasing for Program Optimization
	17.3 Shape Analysis

	18 Optimizations for Object-Oriented Languages
	18.1 Object Layout and Method Invocation
	18.2 Devirtualization of Method Invocations
	18.3 Escape Analysis

	19 Slicing
	20 Summary and Outlook
	Bibliography
	Appendix
	A: Mathematical Foundations
	Intricacies of Basis Block Graphs

