Optimierende Compiler

LVA 185.A04, VU 2.0, ECTS 3.0
WS 2012/13

(Stand: 17.01.2013)

Jens Knoop

Technische Universitat Wien comp\ii:lg
Institut fiir Computersprachen Iang uages

1/513

Contents

Table of Contents

2/513

Table of Contents (1)

Part |: Introduction Contents

v

Chap. 1: Motivation
Chap. 2: Program Analysis

v

v

Chap. 3: First Examples

v

Chap. 4: Program Representation

Part Il: Intraprocedural Data Flow Analysis

» Chap. 5: The Intraprocedural DFA Framework
5.1 The MOP Approach
5.2 The MaxFP Approach

5.3 Coincidence and Safety Theorem
5.4 Two Examples: Available Expressions, Simple Constants

5.4.1 Available Expressions
5.4.2 Simple Constants

3/513

Table of Contents (2)

» Chap. 6: Partial Redundancy Elimination
6.1 Motivation
6.2 The PRE Algorithm of Morel&Renvoise
6.3 Formalizing Code Motion
6.4 Busy Code Motion
6.5 Lazy Code Motion
6.6 An Extended Example
6.7 Implementing Busy and Lazy Code Motion
6.7.1 Implementing BCM on SI-Graphs
6.7.2 Implementing BCM on BB-Graphs
6.7.3 Implementing LCM
6.7.4 An Extended Example
6.8 Sparse Code Motion
» Chap. 7: More on Code Motion
7.1 Code Motion vs. Code Placement
7.2 Interactions of Elementary Transformations
7.3 Paradigm Impacts
7.4 Extending Code Motion to Strength Reduction

Contents

4/513

Table of Contents (3)

Part Ill: Interprocedural Data Flow Analysis

» Chap. 8:

IDFA — The Functional Approach

8.1 The Base Setting

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6

Local Abstract Semantics
The IMOP Approach

The IMaxFP Approach
Main Results

Algorithms

Applications

8.2 The General Setting

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5

Local Abstract Semantics
The IMOPs, Approach
The IMaxFPsy Approach
Main Results

Algorithms

8.3 Further Extensions
8.4 Applications
8.5 Interprocedural DFA: Framework and Toolkit

n Chan O-

IDEA — The CAll S+vinea Annras~h

Contents

5/513

Table of Contents (4)

Part IV: Extensions, Other Settings Contents

» Chap. 10: Alias Analysis
10.1 Sources of Aliasing
10.2 Relevance of Aliasing for Program Optimization
10.3 Shape Analysis
» Chap. 11: Optimizations for Object-Oriented Languages
11.1 Object Layout and Method Invocation
11.1.1 Single Inheritance
11.1.2 Multiple Inheritance
11.2 Devirtualization of Method Invocations
11.2.1 Class Hierarchy
11.2.2 Rapid Type Analysis
11.2.3 Inlining
11.3 Escape Analysis
11.3.1 Connection Graphs
11.3.2 Intraprocedural Setting
11.3.3 Interprocedural Setting

» Chap. 12: Program Slicing

6/513

Table of Contents (5)

Part V: Conclusions and Prospectives

» Chap. 13: Summary and Outlook
» Bibliography
» Appendix

» A Mathematical Foundations

A.1 Sets and Relations

A.2 Partially Ordered Sets

A.3 Lattices

A.4 Complete Partially Ordered Sets
A.5 Fixed Point Theorems

Contents

7/513

Part |

Introduction

8/513

Chap. 1

Chapter 1

Motivation

9/513

Chap. 1

See Separate Slide Package of Lecture 1.

10/513

Further Reading for Chapter 1

Chap. 1

[@ Keith D. Cooper, Linda Torczon. Engineering a Compiler.
Morgan Kaufman Publishers, 2004. (Chapter 1, Overview
of Compilation; Chapter 10, Scalar Optimizations)

[§ Stephen S. Muchnick. Advanced Compiler Design
Implementation. Morgan Kaufman Publishers, 1997.
(Chapter 1, Introduction to Advanced Topics)

[§ Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition, Springer-
Verlag, 2005. (Chapter 1, Introduction)

11/513

Chap. 2

Chapter 2

Program Analysis

12/513

Typical Questions

Chap. 2

...of program analysis, especially data flow analysis:

» What is the value of a variable at a program point?
~~ Constant progagation and folding

» |s the value of an expression available at a program point?
~~ (Partial) redundancy elimination

» Is a variable dead at a program point?
~~ Elimination of (partially) dead code

13/513

Background

...(program) analysis for (program) optimization:

Programming
Language

Chap. 2

Compiler
Optimizer P Data Flow Analysis
® Code Motion - ® Is term t available?
® Constant Propagation <—‘—> @ Is the value of term t a constant?
® Dead Code Eliminati B B — @ s variable v dead?
. .. L e ..
Data Flow Analysis T

Machine
Language

14/513

Essential Issues

Chap. 2

comprise...

fundamental ones

» What does optimality mean?
...in analysis and optimization?

as (apparently) minor ones:

» What is an appropriate and suitable program represen-
tation?

15/513

Outlook

Chap. 2

In more detail we will distinguish:

v

intraprocedural

interprocedural

v

parallel

v

>

data flow analysis (DFA).

16/513

Outlook (cont'd)

. . . Chap. 2
Ingredients of (intraprocedural) data flow analysis: ’
» (Local) abstract semantics

1. A data flow analysis lattice C = (C,muc,1,T)
2. A data flow analysis functional [] : E— (C —C)
3. A Start information (start assertion) ¢ € C

» Globalization strategies

1. "Meet over all Paths” Approach (MOP)
2. Maximum Fixed Point Approach (MaxFP)

» Generic Fixed Point Algorithm

17/513

Theory of Intraprocedural DFA

Main Results:

» Safety (Soundness) Theorem

» Coincidence (Completeness Theorem

Plus:
» Effectivity (Termination) Theorem

Chap. 2

18/513

Practice of Intraprocedural DFA

The Intraprocedural DFA Framework / DFA Toolkit View:

DFA
T Specificatio:

DFA . The
Framework

Program Equivalence Coincidence Theorem
Property <77> MOP-Solution = MFP-Solution

©) ®

Chap. 2

19/513

Practice of DFA

The constraint “intraprocedural” can be dropped.

The DFA Framework / DFA-Toolkit View holds generally:

,, . DFA [N
| Specification))/

Intraprocedural v

.
e Interprocedural DFA N7
e Parallel Framework

* Conditional

Effectivity
Theorem .

Correctness Termination)

|
Progra
Property (
¢ L

Oblljirgo;t‘i.ons: @ @

Equivalence Coincidence Effectivity

Chap. 2

20/513

Ultimate Goal

Chap. 2

Optimal Program Optimization

...a white “Schimmel” (two twins) in computer science?

21/513

There is no free Lunch!

Chap. 2

In the diction of optimizing compilation:

...w/out analysis no optimization!

22/513

Chap. 3

Chapter 3

First Examples

23/513

Chapter 3.1

Forward Analyses

24/513

&l

See Separate Slide Package of Lecture 2.

25/513

Chapter 3.2

Backward Analyses

26/513

32

See Separate Slide Package of Lecture 3.

27/513

Chapter 3.3

Framework

28/513

3.3

See Separate Slide Package of Lecture 4.

29/513

Further Reading for Chapter 3

[@ Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition, Springer-
Verlag, 2005. (Chapter 1, Introduction; Chapter 2, Data
Flow Analysis; Chapter 6, Algorithms)

30/513

3.3

Part 1l

Intraprocedural Data Flow Analysis

31/513

Chap. 4

Chapter 4

Program Representation

32/513

Programs as Flow Graphs

Chap. 4

For program analysis, especially data flow analysis, it is usual
to

» represent programs in terms of (non-deterministic) flow
graphs

33/513

Flow Graphs

A (non-deterministic) flow graph is a 4-tuple G = (N, E, s, €)
with

node set N

edgeset EC N x N

distinguished start node s w/out any predecessors

v

Chap. 4

v

v

v

distinguished end node e w/out successors

Nodes represent program points, edges represent the
branching structure. Elementary program statements
(assignments, tests) can be represented by

» either nodes (~ node labelled flow graph)

» or edges (~ edge labelled flow graph)

34/513

Example: A Node Labelled Flow Graph

Chap. 4

35/513

Example: An Edge Labelled Flow Graph
1O

O/ZE\O

i)
'O
1o

Chap. 4

36/513

Flow Graphs: Single Instruction Variants

Node labelled vs. edge labelled single instruction flow graphs

a)
!
e S
3 5 y :=a+h

oo

Chap. 4

3%@ Q)
O

i) Schematisch ii) "Optimiert"

37/513

Flow Graphs: Basic Block Variants
Node labelled vs. edge labelled basic block flow graphs

Chap. 4

Node-labeled (BB-) Graph Edge-labeled (BB-) Grap

38/513

Summing up

We distinguish:

» Node labelled flow graphs Chap. 4
» Single instruction graphs (S| graphs)
» Basic block graphs (BB graphs)
» Edge labelled flow graphs
» Single instruction graphs (S| graphs)
» Basic block graphs (BB graphs)

In the following we will preferably deal w/ edge labelled SI
graphs.

39/513

Notations

Let G = (N, E,s,e) be a flow graph, let m, n be two nodes of
N. Then let denote:

» Pg[m, n]: The set of all paths from m to n (including m
and n)

» Pg[m, n[: The set of all paths from m to a predecessor of
n

» Pg]m, n]: The set of all paths from a successor of m to n

» Pg]m, n[: The set of all paths from a successor of m to a
predecessor of n

Remark: If G is uniquely determined by the context, then we
drop the index and simply write P instead of Pg.

Chap. 4

40/513

Chap. 5

Chapter 5
The Intraprocedural DFA Framework

41/513

DFA Specification

» (Local) abstract semantics Chap. 5

1. A data flow analysis lattice = (C,nM,uU,C, 1, T)
2. A data flow analysis functional [] : E— (C —C)

» A start information (start assertion) ¢ € C

42/513

Globalizing a Local Abstract Semantics

Two Strategies:

» “Meet over all Paths” Approach (MOP))
~~ yields the specifying solution

» Maximum Fixed Point (MaxFP) Approach
~> yields a computable solution

Chap. 5

43/513

Chapter 5.1
The MOP Approach

44/513

The MOP Approach

Essential:

Extending the local abstract semantics to paths:

B Id. ifg<1
ﬂP]]—df{ [{e2,...,eq)Joer] otherwise

where Ide denotes the identity function on C.

[E81

45/513

The MOP Solution

VeeCV¥ne N MOP. (n)=[1{[p](c)|p € P[s,n]}

[E81

The MOP Solution: The specifying solution of the DFA
problem given by C, [], and .

46/513

Unfortunately

The MOP solution is undecidable in general:

Theorem (5.1.1, Undecidabality)

(John B. Kam and Jeffrey D. Ullman. Monotone Data Flow
Analysis Frameworks. Acta Informatica 7, 305-317, 1977) 51
There is no algorithm A satisfying:
1. The input of A are
1.1 algorithms for the computation of the meet, the equality
test, and the application of functions on the lattice
elements of a monotonic DFA framework
1.2 an instance | of the framework given by C, [], and ¢

2. The output of A is the MOP solution of I.

Because of this negative result we introduce a second globali-

zation strategy.
47/513

Chapter 5.2
The MaxFP Approach

48/513

The MaxFP Approach

Essential:
The MaxFP Equation System: o
inf (n) — Gs if n=s

— L TH{[(m,n)](inf (m))| m € pred(n)} otherwise

49/513

The MaxFP Solution

Ve €CVne N MaxFP(f ., (n)=ar inf Z(n)

where inf [denotes the greatest solution of the MaxfFP
equation system wrt [] and c.

The MaxFP Solution: The effectively computable solution of
the DFA problem given by C, [], and ¢, if these satisfy
certain constraints.

50/513

The Generic Fixed Point Algorithm (1)

Input: (1) A flow graph G = (N, E,s,e), (2) a (local) abstract
semantics consisting of a DFA lattice C, a DFA functional
[1:E—(C—C), and (3) a start information ¢ € C.

Output: The MaxFP solution, if the preconditions of the
Effectivity Theorem hold (cf. Chap. 5.3). Depending on the
properties of the DFA functional we have:

(1) [] is distributive: The variable inf stores for each node
the strongest post-condition wrt the start information c.

(2) [] is monotonic: The variable inf stores for each node a
safe (i.e. lower) approximation of the strongest post-condition
wrt the start information c.

Remark: The variable workset controls the iterative process.
Its elements are nodes of G, whose annotation has recently
been updated.

52

51/513

The Generic Fixed Point Algorithm (2)

(Prologue: Initializing inf and workset)
FORALL n € N\{s} DO inf[n]:= T OD;
inf[s] := cs;
workset := {s };
(Main loop: The iterative fixed point computation)
WHILE workset # () DO
CHOOSE m € workset;
workset := workset\{ m };
(Update the annotations of all successors of node m)
FORALL n € succ(m) DO
meet := [(m, n) |(inf[m]) T inf[n];
IF inf[n] 3 meet
THEN
inf[n] := meet;
workset := workset U {n}
FI
OD ESOOHC OD.

52

52/513

Some yet to be defined Notions

...related to the generic fixed point algorithm:

52

» Descending (ascending) chain condition

» Monotonicity and distributivity of a
» local abstract semantic functions
» DFA functional

53/513

Ascending and Descending Chain Condition

Definition (5.2.1, Ascending, Descending Chain
Condition)

A lattice C=(C,M, U, C, L, T) satifies

1. the ascending chain condition, if each ascending chain
eventually gets stationary, i.e. for each chain
prEpE...Cp,C...thereisanindex m > 1 such
that xp, = xmyj forall j € N

2. the descending chain condition, if every descending chain
eventually gets stationary, i.e. for each chain
prdp ... dp, ... thereis an index m > 1 such
that Xp, = xmyj forall j € N

54/513

Monotonicity, Distributivity, Additivity

...of functions on (DFA) lattices.

Definition (5.2.2, Monotonicity, Distributivity,
Additivity)
Let C= (C,m,U,C, L, T) be a complete lattice and let
f :C—C be a function on C. Then f is called
1. monotonic iff Ve, c’ € C. cC ¢’ = f(c) C f(c)
(Preservation of the order of elements)
2. distributive iff Y C' C C. f(['1C") = [1{f(c)|c € C'}
(Preservation of greatest lower bounds)
3. additive iff Y C’ C C. f(LUC") = LU {f(c)|ce C"}
(Preservation of least upper bounds)

52

55/513

Often useful

...the following equivalent characterization of monotonicity:

Lemma (5.2.3) 5

Let C=(C,M,U,C, L, T) be a complete lattice and let
f : C—C be a function on C. Then we have:

f is monotonic <= ¥ C' C C. f(['1C") C ['1{f(c)|ce C'}

56/513

Monotonicity, Distributivity, and Additivity

...of DFA functionals.

52

Definition (5.2.4)
A DFA functional []| : E — (C — C) is monotonic (distribu-
tive, additive) iff Ve € E. [e] is monotonic (distributive,

additive).

57/513

Chapter 5.3

Coincidence and Safety Theorem

58/513

Main Results: Soundness, Completeness,
Effectivity (Termination)

The relationship of

53

» MOP and MaxFP Solution

» Soundness
» Completeness

» MaxFP solution and generic algorithm
» Termination with the MaxFP solution

59/513

Soundness

Theorem (5.3.1, Safety)

The MaxFP solution is a safe (conservative), i.e. lower
approximation of the MOP solution, i.e.,

53

Ve € CVne N MaxFP.(n) © MOP(n)

if the DFA functional [| is monotonic.

60/513

Completeness (and Soundness)

Theorem (5.3.2, Coincidence)
The MaxFP solution coincides with the MOP solution, i.e.,

Ve € CVne N MaxFP(n) = MOP(n)

if the DFA functional [| is distributive.

61/513

Effectivity (Termination)

Theorem (5.3.3, Effectivity (Termination))

The generic fixed point algorithm terminates with the MaxFP
solution, if the DFA functional is monotonic and the DFA
lattice satisfies the descending chain condition.

53

62/513

Overview on Intraprocedural DFA (1)

The schematic view:

Computation Tool
(Fixed Point Alg.)

Step 2 <. Step3
Computed Solutio Correctness Lemma
\% [
Coincide Theorem
MOP-Solution — MFP-Solution

Step 1

53

63/513

Overview on Intraprocedural DFA (2)

Focused on the framework /toolkit view:

Intraprocedural C
; = DFA (]
)
53
Intraprocedural Theory || Practice
DFA
Framework
Tool Kit
Generic
Fixed Point Alg. A
; Intraprpcedural
Termination| Lemma
Intraprocedural

Intraprocedural

Progra Equivalence Coincidence Theorem Correctness Lemma
Property <7> MOP-Solution = MFP-Solution = Computed So!unoa
® ® W)

64/513

Chapter 5.4

Two Examples: Available Expressions and
Simple Constants

65/513

Two Prototypical DFA Problems

» Available Expressions
~~ a canonical example of a distributive DFA problem

» Simple Constants
~~ a canonical example of a monotonic DFA problem

66/513

Chapter 5.4.1

Available Expressions

67/513

Available Expressions

...a typical distributive DFA problem.
» Local abstract semantics for available expressions:

1. DFA lattice:
(C,m U, L, T)=4r (B, A, V, <, false, true)
2. DFA functional: [],, : E— (B —B) defined by 5:4.1

Cstywe if Comp, A Transp,
ldg if ~Comp, A Transp,

VeeE. |[e]]av:df
Cstfaise Otherwise

68/513

Notations

» B=y4 (B, A, Vv, <, false, true): The lattice of Boolean
values w/ false < true and the logical A and V as meet
operation and join operation I and LI, respectively.

» Cstyye and Cstese: The constant functions “true” and
“false” on B, respectively.

» Idg: The identity function on B.

5.4.1

...and for a fixed candidate expression t:

» Comp,: tis computed by the instruction attached to
edge e (i.e., t is a subexpression of the right-hand side
expression)

» Transp,: no operand of t is assigned a new value by the
instruction attached to edge e (i.e. no operand of t
occurs on the left-hand side: e is transparent for t)

69/513

Main Results

Lemma (5.4.1.1)

[1., is distributive.

5.4.1

Corollary (5.4.1.2)

The MOP solution and the MaxFP solution coincide for
available expressions.

70/513

Chapter 5.4.2

Simple Constants

71/513

Simple Constants

..a typical monotonic (but non distributive) DFA problem.

a) o b) o)
ga:=2 ga;zz
a2
b:=a b:=2
ab—=2 a:=3
a—=3, bk4>2 Lc = a+b ic:=4
c:=a+tl| ab—=2, c—=4 c:=
a3, b—=2, c—=4 fd =a+l fd:=3
d:=c- O ab—2, c—=4, d—=3 d:= O
a3, b,d—=2, c—=4
b—=2, c—=4
le=a+d J/e.=a+d
b—=2, c—=4
if = a+b*c if: a+8

5.4.2

72/513

Abstract Semantics for Simple Constants

» Local abstract semantics for simple constants:
1. DFA lattice: (C,M,U,C, L, T)=gr (X,M,U,C,0,,07)
2. DFA functional: [], : E— (X — X) defined by

5.4.2

Vec E. [e], =arbe

73/513

DFA Lattice for Simple Constants

The “canonical” lattice for constant propagation and folding:

a) b)

//T
\\

d;

E.

L

/\\

= ‘ o

/\\

=L ‘ I

/\\

\\//"

5.4.2

74/513

The Semantics of Terms

The semantics of terms t € T is given by the inductively
defined evaluation function

E:T—-(X—D)

o(x) ift=xeV o
I(c) ift=ceC
VEeTVo €2 E()0)wr | | iop)E(t)(0). .. £(8) (o))
if t=op(t1,...,t,)

75/513

Some Yet to be defined Notions

...to complete the definition of the semantics of terms:
» Term syntax
» Interpretation
» State

5.4.2

76/513

The Syntax of Terms (1)

Let
» V be a set of variables

» Op be a set of n-ary operators, n > 0, and C C Op be 542
the set of 0-ary operators, the so-called constants in Op.

77/513

The Syntax of Terms (2)

We legen fest:
1. Each variable v € V and each constant ¢ € C is a term.
2. If op € Op is an n-ary operator, n > 1, and t;,...,t, are
terms, then op(ty,...,t,) is a term, too.
3. There are no other terms in addition to those that can be
constructed by the above two rules.

5.4.2

The set of all terms is denoted by T.

78/513

Interpretation

Let D’ be a suitable data domain (e.g. the set of integers), let

1 and T be two distinguished elements w/ L, T ¢ D’, and let

D=,D'U{Ll, T}

An interpretation on T and D is a tuple /| = (D, ly), where

» Iy is a function, which associates w/ each 0-ary operator 5.42

c € Op a datum fy(c) € D’ and w/ each n-ary operator
op € Op, n > 1, a total function y(op) : D" — D, which
is assumed to be strict (i.e. lh(op)(ds,...,d,) =1, if
thereisaje{1,...,n} w/ di=1)

79/513

Set of States

Y=4{o|lo:V—->D}

...denotes the set of states, i.e. the set of mappings ¢ from the
set of variables V to a suitable data domain D (that is not
specified in more detail here). 542

In particular

» o, ...denotes the totally undefined state of ¥ that is
defined as follows: Vv e V. o (v) = L

80/513

The State Transformation Function

The state transformation function
0,2 =2 1=x=t
is defined by:

5.4.2

E(t)(o) falls y=x

VoeXVyeV.0,(0)(y)=a { o(y) sonst

81/513

Main Results

Lemma (5.4.2.1)

[1.. is monotonic.

Note: Distributivity does not hold! (Excercise)
Corollary (5.4.2.2)

The MOP solution and the MaxFP solution do in general not
coincide. The MaxFP solution, however, is always a safe
approximation of the MOP solution for simple constants.

82/513

Further Reading for Chapter 5 (1)

[§ Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey
D. Ullman. Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 2nd edition, 2007. (Chapter 1,
Introduction; Chapter 9.2, Introduction to Data-Flow
Analysis; Chapter 9.3, Foundations of Data-Flow Analysis)

@ Randy Allen, Ken Kennedy. Optimizing Compilers for a
Modern Architectures. Morgan Kaufman Publishers, 2002.
(Chapter 4.4, Data Flow Analysis)

[§ Keith D. Cooper, Linda Torczon. Engineering a Compiler.
Morgan Kaufman Publishers, 2004. (Chapter 1, Overview
of Compilation; Chapter 8, Introduction to Code
Optimization; Chapter 9, Data Flow Analysis)

83/513

Further Reading for Chapter 5 (2)

[§ Matthew S. Hecht. Flow Analysis of Computer Programs.
Elsevier, North-Holland, 1977.

[@ John B. Kam, Jeffrey D. Ullman. Monotone Data Flow
Analysis Frameworks. Acta Informatica 7:305-317, 1977.

[§ Gary A. Kildall. A Unified Approach to Global Program 55
Optimization. In Conference Record of the 1st Annual o
ACM SIGPLAN-SIGACT Symposium on Principles of o

Programming Languages (POPL'73), 194-206, 1973.

[§ Jens Knoop. From DFA-Frameworks to DFA-Generators:
A Unifying Multiparadigm Approach. In Proceedings of the
5th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS'99),
Springer-Verlag, LNCS 1579, 360-374, 1999.

84/513

Further Reading for Chapter 5 (3)

[§ Janusz Laski, William Stanley. Software Verification and
Analysis. Springer-Verlag, 2009. (Chapter 7, What can one
tell about a Program without its Execution: Static
Analysis)

[§ Robert Morgan. Building an Optimizing Compiler. Digital
Press, 1998.

[§ Stephen S. Muchnick. Advanced Compiler Design o
Implementation. Morgan Kaufman Publishers, 1997.
(Chapter 1, Introduction to Advanced Topics; Chapter 4,
Intermediate Representations; Chapter 7, Control-Flow
Analysis; Chapter 8, Data Flow Analysis; Chapter 11,
Introduction to Optimization; Chapter 12, Early
Optimizations)

85/513

Further Reading for Chapter 5 (4)

[§ Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: A Formal Introduction. Wiley, 1992.
(Chapter 5, Static Program Analysis)

[§ Hanne Riis Nielson, Flemming Nielson. Semantics with L
Applications: An Appetizer. Springer-Verlag, 2007. =
(Chapter 7, Program Analysis; Chapter 8, More on [y
Program Analysis; Appendix B, Implementation of o
Program Analysis)

[§ Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition,
Springer-Verlag, 2005. (Chapter 1, Introduction; Chapter
2, Data Flow Analysis; Chapter 6, Algorithms)

86/513

Chapter 6

Partial Redundancy Elimination

87/513

Partial Redundancy Elimination (PRE)

What's it all about?

...avoiding multiple (re-) computations of the same value!

, Chap. 6

T 6.1

1 p hi=a+b® o5

l (’//:" l L///‘ 6.5

X = a+b\ e i X :=h \ ® h:=a+b o
6.7.1
674

y :=a+b y :=h

,“//,//, ////v

88/513

Chapter 6.1

Motivation

89/513

PRE — Particularly Striking for Loops

6.1

90/513

A Program w/out Redundancies at all

h:=a+b

91/513

Often there is more than one!

92/513

Which one shall PRE deliver?

@hL:=a+b o1

93/513

The (Optimization) Goals make the Difference!

94/513

The first Transformation

...no redundancies but maximum register pressure!

The second Transformation

...no redundancies, too, but minimum register pressure!

The third Transformation

...no redundancies, moderate register pressure, no code replication!

The (Optimization) Goals make the Difference!

In our running example:

» Performance: Avoiding unnecessary (re-) computations
~+ Computational quality, computational optimality 61

» Register pressure: Avoiding unnecessary code motion
~ Liftime quality, lifetime optimality

» Space: Avoiding unnecessary code replication
~~ Code size quality, code size optimality

98/513

The Result of Busy Code Motion

...placing computations as early as possible!

6.1

...yields computationally optimal programs.
99/513

Note: As Early as Possible

...means earliest indeed but not earlier as earliest.

6.1

Incorrect!

100/513

The Result of Lazy Code Motion

...placing computations as late as possible!

6.1

...yields computationally and lifetime optimal programs.
101/513

The Result of Sparse Code Motion

...placing computations as late as possible but as early as
necessary!

6.1

@ h:=a+b

...yields comp. and lifetime best code-size optimal programs.
102/513

A More Complex Example (1)

.
©

103/513

A More Complex Example (2)

'wo Code-size Optimal Programs

104/513

A More Complex Example (3)

SQ > CQ>LQ SQ >LQ>CO

105/513

A More Complex Example (4)

Note: The below transformation is not desired!

6.1

106/513

Summing up

The previous examples demonstrate that in general we can not
achieve

» computational, lifetime, and space optimality
at the same time.

6.1

But think about the following (homework):
» Let P be a program containing partially redundant
computations.

Is it always possible to transform P into a program P’
such that P and P’ have the same semantics and that P’
is free of any partially redundant computation?

107/513

Chapter 6.2
The PRE Algorithm of Morel&Renvoise

108/513

The Groundbreaking PRE Algorithm of Morel

and Renvoise

PRE is intrinsically tied to Etienne Morel und Claude Renvoise.
The PRE algorithm they presented in 1979 can be considered
the prime father of all code motion (CM) algorithms and was
until the early 1990s the “state of the art” PRE algorithm.

6.2

Technically, the PRE algorithm of Morel and Renvoise is
composed of:
» 3 uni-directional bitvector analyses (AV, ANT, PAV)

» 1 bi-directional bitvector analysis (PP)

109/513

The PRE Algorithm of Morel&Renvoise (1)

» Availability:
false ifn=s o2
AVIN(n) = [T AVOUT(m) otherwise
m € pred(n)

AVOUT(n) = TRANSP(n) * (COMP(n) + AVIN(n))

110/513

The PRE Algorithm of Morel&Renvoise (2)

» Very Busyness (Anticipability):
ANTIN(n) = COMP(n)+ TRANSP(n)« ANTOUT(n) ¢

false fn=e
ANTOUT(n) =

[I ANTIN(m) otherwise

m € succ(n)

111/513

The PRE Algorithm of Morel&Renvoise (3)

» Partial Availability:

false ifn=s 62
PAVIN(n) =

> PAVOUT(m) otherwise

m € pred(n)

PAVOUT(n) = TRANSP(n) % (COMP(n) + PAVIN(n))

112/513

The PRE Algorithm of Morel&Renvoise (4)

» Placement Possible:

((false ifn=s

CONST(n)x
PPIN(n) = (meprr[ed(n)(PPOUT(m) + AVOUT (m))*
(COMP(n) + TRANSP(n) * PPOUT(n))

otherwise

false ifn=e
PPOUT(n) = I[I PPIN(m) otherwise

m € succ(n)

where

CONST(n)=gr ANTIN(n)«(PAVIN(n)+-COMP(n)«TRANSP(n))

113/513

The PRE Algorithm of Morel&Renvoise (5)

» Initializing temporaries where:

INSIN(n) =4 false

6.2

INSOUT(n) =4 PPOUT(n)*-AVOUT(n) *
(=PPIN(n) + ~TRANSP(n))

» Replacing original computations where:

REPLACE(n) =4 COMP(n)* PPIN(n)

114/513

Summing up (1)

Achievements and merits of Morel&Renvoise’s PRE algorithm:

6.2

» First systematic algorithm for PRE
» State-of-the-art PRE algorithm for about 15 years

115/513

Summing up (2)

Short-comings of Morel&Renvoise’'s PRE algorithm:

» Conceptually
» Fails computational optimality
~ only, however, because of not splitting critical edges
» Fails lifetime optimality
~ Register pressure is heuristically dealt with
» Fails code-size optimality
~+ Not considered at all (in the early days of PRE)

» Technically

» Bi-directional
~ conceptually and computationally thus more complex

...the transformation result lies (unpredictably) between those
of the BCM transformation and the LCM transformation.

6.2

116/513

Critical Edges

An edge is called critical, if it connects a branching node with
a join node.

[llustration:

a)
62

Lx:=a+h| 2] \

...by introducing the synthetic node S, 3, the critical edge from
node 2 to node 3 is split.

117/513

Instructive

...optimizing the following two programs using the PRE
algorithm of Morel&Renvoise:

G,
1
] \“\ \
==
| ?| \
*| \“’\x:=a+$ o]

| J |
T

118/513

Chapter 6.3

Formalizing Code Motion

119/513

Partial Redundancy Elimination (PRE)

The very idea:

...avoiding multiple (re-) computations of the same value!

e 55

¢ ; h:=a+b® o

| R :

X = a+b\ i ’ X :=h 0\ ® h:=a+b -
6.7.1
674

y :=a+b y :=h

///:,' ,////,

120/513

Notations (1)

Let G=(N, E,s,e) be a flow graph. Then:

» pred(n)=q4 {m|(m,n) € E}: The set of all predecessors
» succ(n)=q4r {m|(n,m) € E}: The set of all successors
» source(e), dest(e): Start node and end node of an edge

» Finite Path: A sequence of edges (e, ..., ex) such that
dest(e;) = source(e;y1) for all 1 < < k

6.3

» Instead of edge sequences we also consider node sequen-
ces as paths, where reasonable.

121/513

Notations (2)

v

p = (er,...,e) path from m to n, if source(e;) = m and
dest(ex) = n

» P[m, n]: The set of all paths from m to n

» Ap: The length of p, i.e., the number of edges of p

» ¢: The path of length 0 b

» N, C N: The set of join nodes, i.e., the set of nodes w/
more than one predecessor

» Ng C N: The set of branch nodes, i.e. the set of nodes
w/ more than one successor

122/513

Convention

W /out losing generality we assume:

» Each node of a flow graph lies on a path from s to e

Intuition: There are no unreachable parts within a flow o
graph.

...this is a typical and usual assumption for analysis and
optimization!

123/513

Reminder: Critical Edges

An edge is called critical, if it connects a branching node with
a join node.

lllustration: ...by introducing the synthetic node S, 3, the
critical edge from node 2 to node 3 is split.

6.3

a) b)

Lx:=a+h| 2 \ 1

124/513

A PRE specific Convention

W /out losing generality we consider in the following flow
graphs that are given

» as node labelled S| graphs,

» where all edges ending in a join node are split by inserting :

a so-called synthetic node,

...this is a PRE specific assumption.

125/513

Background

...of this convention:

» The PRE process becomes simpler.

6.3
~~ computationally optimal results can be achieved by

initializing temporaries exclusively at node entries.

126/513

Remark

Computationally optimal results can also be achieved, if only
critical edges are split.

This, however, requires that a PRE algorithm is able to per-
form initializations both at node entries (N-initializations) and
at node exits (X-Initializations).

6.3

Note that this is not a problem at all. Agreeing, however, on
the above assumption simplifies the presentation of the PRE
algorithm even more.

127/513

Work Plan

In the following we will define:

» The set of PRE transformations
» The set of admissible PRE transformations
» The set of computationally optimal PRE transformations 63

» The BCM transformation as a specific computationally
optimal PRE transformation

» The LCM transformation as the one and only computatio-
nally and lifetime optimal PRE transformation

128/513

The Set of PRE Transformations

The generic (transformation) pattern for a term t:

» Introduce a fresh temporary h for t in G

» Insert at some nodes of G the assignment statement
h:=t

» Replace some of the original occurrences of t in G by h

6.3

Remark: t is often called a candidate expression.

129/513

Observation

Two predicates (defined on nodes)

> Insertcpy
> Replcm

suffice to specify a PRE (resp. CM) transformation completely
(note: the step of declaring the temporary h is the same for
each CM transformation and thus does not need to be con-
sidered explicitly).

130/513

CM Transformations

...let CM; denote the set of all CM transformations (for the
candidate expression t).

6.3
In the following we will consider a fixed candidate expression t
and thus drop the index t.

131/513

Observation

Obviously, some transformations in CM do not preserve the
semantics and are thus not acceptable.

6.3

This leads us to the notion of admissible CM transformations.

132/513

Admissible CM Transformations

Let CM € CM.

CM is called admissible, if CM is safe and correct.

Intuitively:

» Safe: ...there is no path, on which by inserting an initiali-
zation a new value is computed.

» Correct: ...whereever the temporary is used, it stores the
“right” value, i.e., it stores the same value that a recom-
putation of t at the use site yields.

6.3

133/513

Formalising this

...requires two (local) predicates:

» Comp,(n): the candidate expression t is computed at n.

» Transp,(n): nis transparent for t, i.e., n does not modify
any operand of t.

Note: In the following we will drop the index t. ‘s

Moreover, it is useful to introduce a third (local) predicate:

» Comp cp(n)=aqr Insertcp(n)V Comp (n)A—Replcp(n):
The candidate expression t is computed after the appli-
cation of CM.

134/513

Extending Predicates to Paths

Let p be a path and let p; denote the ith node of p.

Then we define:
» Predicate”(p) <= V1< i<\, Predicate(p;)
» Predicate’(p) <= 31 < i< \,. Predicate(p;)

6.3

135/513

Safety and Correctness

Definition (6.3.1, Safety and Correctness)
Let n € N. We define:

1. Safe(n) <qr
V{(n,...,nx) € P[s,e] Vi. (nj=n) = 62
i) 3j < i. Comp(n;) A Transp™({(nj,....ni_1)) V :
i) 3j > i. Comp(n;) A Transp”({n;,...,n;_1))
2. Let CM € CM. Then:
Correctepm(n) <=ar V(m,...,ng) € P[s, n]
3i. Insertem(n;) A Transp({n;, ..., nc_1))

136/513

Up-Safety and Down-Safety

Constraining the definition of safety to condition (i) resp. (ii)
leads to the notions of

» up-safety (availability) 2

» down-safety (anticipability, very busyness)

137/513

Intuition

A computation of t at program point n is

» up-safe, if t is computed on all paths p from s to n and
the last computation of t on p is not followed by a

modification of (an operand of) t. o2

» down-safe, if t is computed on all paths p from n to e
and the first computation of t on p is not preceded by a
modification of (an operand of) t.

138/513

Up-Safety and Down-Safety

Definition (6.3.2, Up-Safety and Down-Safety)

1. Vne N. U-Safe(n) <=4

Vp € P[s,n] 3i < \,. Comp(pi) A Transp”(p[i, \p[) 63
2. Vne N. D-Safe(n) <=4

Vp € Pln el 3i < \,. Comp(p;)A Transp”(p[L,i[)

139/513

Admissible CM-Transformations

This allows us to define:

Definition (6.3.3, Admissible CM-Transformation)

A CM-transformation CM € CM is admissible iff for every
node n € N holds: 63

1. Insertcp(n) = Safe(n)
2. Replcy(n) = Correctep(n)

The set of all admissible CM-transformations is denoted by
CM adm.

140/513

First Results (1)

Lemma (6.3.4, Correctness)

YV CM € CMagm ¥ n € N. Correctcpy(n) = Safe(n) e

141/513

First Results (2)

Lemma (6.3.5, Safety)

V' n € N. Safe(n) <= D-Safe(n)V U-Safe(n)

142/513

Computationally Better

Definition (6.3.6, Computationally Better)

A CM-transformation CM € CM a4 is computationally
better as a CM-transformation CM’ € CM ag, iff

V peP[s,e]. | {i|Compcy(pi)}| < | {i|Compcp(pi)}]

Note: The relation “computationally better” is a quasi-order,
i.e., a reflexive and transitive relation.

143/513

Computational Optimality

Definition (6.3.7, Computationally Optimal
CM-Transformation)

An admissible CM-transformation CM € CM a4 is computa-
tionally optimal iff CM is computationally better than any
other admissible CM-transformation.

We denote the set of all computationally optimal CM-trans-
formations by CM cmpopt.

144/513

Conceptually

...PRE can be considered a two-stage process consisting of:

1. Hoisting expressions
...hoisting expressions to “earlier” safe computation points

2. Eliminating totally redundant expressions
...elimination computations that became totally redun-
dant by hoisting expressions

6.3

145/513

Chapter 6.4
Busy Code Motion

146/513

The Earliestness Principle

...induces an extreme placing strategy:

Placing computations as early as possible...

» Theorem (Computational Optimality)
...hoisting computations to their earliest safe computation
points yields computationally optimal programs.

~> ...known as the Busy Code Motion

147/513

Earliestness Principle

Placing computations as early as possible...
yields computationally optimal programs.

6.4

148/513

Note

...earliest means indeed as early as possible, but not earlier!

Incorrect!

6.4

149/513

Busy Code Motion

Intuitively:

Place computations as early as possible in a program w/out
violating safety and correctness!

6.4

Note: Following this principle computations are moved as far
as possible in the opposite direction of the control flow

~~ ...motivates the choice of the term busy.

150/513

Earliestness

Definition (6.4.1, Earliestness)
Vn e N. Earliest(n)=g4

true if n=s
Safe(n) A

\/ —Transp(m)V —Safe(m) otherwise
méepred(n)

151/513

The BCM Transformation

The BCM Transformation:

» Insertgcy(n)=q4r Earliest(n)

> Replgcm(n) =ar Comp(n)

6.4

152/513

The BCM-Theorem

Theorem (6.4.2, BCM-Theorem)

The BCM-Transformation is computationally optimal, i.e.,
BCM € CM cmpopt-

6.4

The proof of the BCM-Theorem 6.4.2 relies on the Earliest-
ness Lemma 6.4.3 and the BCM-Lemma 6.4.4.

153/513

The Earliestness Lemma

Lemma (6.4.3, Earliestness Lemma)
Let n € N. Then we have:
1. Safe(n) = Vp e P[s,n] 3i < A,.
Earliest(p;) A Transp”(p[i, \o[)

2. Earliest(n) <—
D-Safe(n)A N\ (—Transp(m)\V —Safe(m))

méepred(n)
3. Earliest(n) <=
Safe(n) A ¥ CM € CM agm. Correctcp(n) = Insertcep(n)

6.4

154/513

The BCM-Lemma

Lemma (6.4.4, BCM-Lemma)

Let p € P[s,e]. Then we have:
1. Vi <\, Insertgem(pi) <=
3j > i. pli,j] € FU-LtRg(BCM)
2.V CM € CMpgm Vi, j < Ap. pli.j] € LtRg(BCM) =
ComPHCIVI(p[’?./])
3. VCM € CM cmpopt ¥i < Ap. Comp cpy(pi) =
3j < i< 1. plj, 1] € FU-LtRg(BCM)

6.4

155/513

The BCM-Transformation

...computationally optimal, but maximum register pressure.

Chapter 6.5
Lazy Code Motion

157/513

The Latestness Principle

...induces a dual extreme placing strategy:

Placing computations as late as possible...

» Theorem (Lifetime Optimality)
...hoisting computations as little as possible, but as far as
necessary (to achieve computational optimality), yields o
computationally optimal programs w/ minimum register
pressure.

~> ...known as the Lazy Code Motion

158/513

The LCM-Transformation

...computationally optimal w/ minimum register pressure!

Lazy Code Motion

Intuitively:
Place computations as late as possible in a program w/out
violating safety, correctness and computational optimality!

Note: Following this principle computations are moved as little s
as possible in the opposite direction of the control flow

~> ...motivates the choice of the term lazy.

160/513

Work Plan

Next we will define:

» The set of lifetime optimal PRE transformations

» The LCM transformation as the unique determined sole s
lifetime optimal PRE transformation

161/513

Central for the Formalization

...is the notion of lifetime ranges.

Definition (6.5.1, Lifetime Ranges)
Let CM € CM.

» Lifetime range

LtRg (CM)=q

{p|Insertcm(pr) A Replem(ps,) A —lnsertZy,(p]1, X))}
» First-use lifetime range

FU-LtRg (CM)=y

{p € LtRg(CM) |V q € LtRg(CM). (¢ C p) = (9=p)}

162/513

First Results

Lemma (6.5.2, First-Use Lifetime-Range Lemma)
Let CM € CM, p € P[s, €|, and let ir, fp, j1, j» indexes such
that pli, 1] € FU-LtRg(CM) and plir, jo] € FU-LtRg(CM).
Then we have:
» either pli,j1] and pli, j2] coincide, ie., iy =i, and 56
h=J, or
» pli, 1] and plir, jo] are disjoint, i.e., j1 < ip or jo < Iy.

163/513

Lifetime Better

Definition (6.5.3, Lifetime Better)

A CM-transformation CM & CM s lifetime better than a
CM-transformation CM’' € CM iff

Vpe LtRg(CM) 3q € LtRg(CM'). p C g o5

Note: The relation “lifetime better” is a partial order, i.e., a
reflexive, transitive, and antisymmetric relation.

164/513

Lifetime Optimality

Definition (6.5.4, Lifetime Optimal CM-Transforma-
tion)

A computationally optimal CM-transformation

CM € CM cimpopr is lifetime optimal iff CM is lifetime better

than every other computationally optimal CM-transfor- 65
mation.

We denote the set of all lifetime optimal CM-transformations
by CMLtOpt-

165/513

Reminder: Sets and Relations

Let M be a set and R be a relation on M, i.e., RC M x M.
Then R is called

>

>

>

reflexive iff Vme M. mRm

transitive iff Vm,n.pe M. mRn AN nRp = mRp
anti-symmetric iff Vmne M. mRn AN nRm = m=n *
quasi order iff R is reflexive and transitive

partial order iff R is reflexive, transitive and anti-symme-
tric

166/513

Uniqueness of Lifetime Optimal PRE

Obviously we have:

CM iopt € CM cmpopt € CM agm C CM

6.2
Even more we have:)

Theorem (6.5.5, Uniqueness of Lifetime Optimal
CM-Transformations) :

|CM eopr | <1

167/513

Towards the LCM Transformation

We have:

Lemma (6.5.6)
V' CM € CM cmpopt V p € LtRg(CM) 3 q € LtRg(BCM). pC g

Intuitively: o

» No computationally optimal CM-transformation places
computations earlier as the BCM transformation

» The BCM transformation is that computationally optimal
CM-transformation w/ maximum register pressure

168/513

Delayability

Definition (6.5.7, Delayability)

V' n € N. Delayed (n) <=4
¥p € P[s,n] 3i < \,. Earliest(p;) A ~Comp(p[i, \,[)

169/513

The Delayability Lemma

Lemma (6.5.8, Delayability Lemma)
1. Vn e N. Delayed(n) = D-Safe(n)
2. Vp e Pls,e] Vi < \,. Delayed(p;)=3 j<i<I.
pli, 1] € FU-LtRg(BCM)
3. VCM € CM cmpopt ¥ n € N. Comp ¢,(n) = Delayed (n)

170/513

Latestness

Definition (6.5.9, Latestness)

Vne N. Latest(n)=g4f
Delayed (n) A (Comp(n)V \/ —Delayed(m))

méesucc(n)

171/513

The Latestness Lemma

Lemma (6.5.10, Latestness Lemma)
1. Vp e LtRg(BCM) 3i < X,. Latest(p;)

2. Vp e LtRg(BCM) Vi < \,. Latest(p;) =
—Delayed>(pli, \p])

172/513

The ALCM Transformation

The “Almost Lazy Code Motion” Transformation:

» Inserta;cm(n)=qr Latest (n)

> Replarcm(n)=dr Comp(n) 65

173/513

Almost Lifetime Optimal

Definition (6.5.11, Almost Lifetime Optimal
CM-Transformation)

A computationally optimal CM-transformation
CM € CM cmpopt is almost lifetime optimal iff
VpeLtRg(CM). N\, > 2 = o5
VCM' € CM cmpopr 3q € LtRg(CM'). pC g

We denote the set of all almost lifetime optimal CM-transfor-
mations by CM atopt-

174/513

The ALCM-Theorem

Theorem (6.5.12, ALCM-Theorem)

The ALCM transformation is almost lifetime optimal, i.e.,
ALCM E CMALtOpt- 6.5

175/513

Isolated Computations

Definition (6.5.13, CM-Isolation)

VCM € CM ¥ n € N. Isolatedcy(n) <= qr
VpeP[ne]lV1<i<\,. Replcm(pi) = InsertZ,,(p]1,1]) 65

176/513

The Isolation Lemma

Lemma (6.5.14, Isolation Lemma)

1. VCM € CM ¥ n € N. Isolatedcy(n) <~
VpeltRg(CM). () T p= A, =1

2. YCM € CM cmpopt ¥ n € N. Latest(n) = o
(Isolatedcp(n) <= Isolatedgcm(n))

177/513

The LCM Transformation

The LCM Transformation:

» Insert; cp(n)=q4r Latest (n) A —lsolatedgcp(n)
» Replicm(n)=4r Comp(n) A —(Latest(n) A Isolatedgcni(n))

6.5

178/513

The LCM-Theorem

Theorem (6.5.15, LCM-Theorem)

The LCM transformation is lifetime optimal, i.e., 3
LCM € CM :0p:.

179/513

Chapter 6.6
An Extended Example

180/513

An Extended Example for lllustration (1)

The original program:

6.6

181/513

An Extended Example for lllustration (2)
The result of the BCM transformation:

6.6

182/513

An Extended Example for lllustration (3)

Delayed and latest computation points:

10[y =a+b] 11]

14

183/513

An Extended Example for lllustration (4)
The result of the ALCM transformation:

6.6

184/513

An Extended Example for Illustration (5)

Latest and isolated computation points...

10‘y:=a+b‘ 11‘

14

185/513

An Extended Example for lllustration (6)
The result of the LCM transformation:

6.6

186/513

Chapter 6.7
Implementing Busy and Lazy Code Motion

187/513

Chapter 6.7.1
Implementing BCM on SI-Graphs

188/513

Implementing the BCM, Transformation

...on the level of single-instructions, here for node-labelled
Sl-graphs.

Note: For the following we assume that only critical edges are
split. Therefore, the algorithm requires insertions at both node
entries and node exits (N-insertions and X-insertions). 671

189/513

Busy Code Motion: BCM, (1)

1. Analyses for Up-Safety and Down-Safety

Local Predicates:

» COMP,(t): ¢ computes t.
» TRANSP,(t): ¢ does not modify an operand of t. S

190/513

Busy Code Motion: BCM, (2)

The Equation System for Up-Safety:

N-USAFE, = [T X-USAFE; otherwise

tepred(L)

{ false if L=s

X-USAFE, = (N-USAFE, + COMP,) - TRANSP, 671

191/513

Busy Code Motion: BCM, (3)

The Equation System for Down-Safety:

N-DSAFE, = COMP, + X-DSAFE, - TRANSP,

X-DSAFE, = IT N-DSAFE; otherwise

tesucc(t) 6.7.1

{ false if t=e

192/513

Busy Code Motion: BCM, (4)

2. The Transformation: Insertion and Replacement Points

Local Predicates:

» N-USAFE*, X-USAFE*, N-DSAFE*, X-DSAFE*:
...denote the greatest solutions of the equation systems
for up-safety and down-safety of step 1. 671

193/513

Busy Code Motion: BCM, (5)

The BCM, Transformation:

N-INSERTBM — - N-DSAFE} - H(x-USAFE;er-DSAFE;)
tepred(L)

X-INSERTBCM — . X-DSAFE* - TRANSP,
L L
6.7.1

REPLACEBCM —,. COMP,

194/513

Chapter 6.7.2
Implementing BCM on BB-Graphs

195/513

Implementing the BCM s Transformation

...on the level of basic blocks, here for node-labelled
BB-graphs.

Note: For the following we assume that (1) only critical edges

are split. Therefore, the algorithm requires insertions at both

node entries and node exits (N-insertions and X-insertions),

and that (2) all redundancies within a basic block have been 672
removed by a preprocess.

196/513

t-Refined Flow Graphs

Given a computation t, a basic block n can be divided into
two parts:

» an entry part which consists of all statements up to and
including the last modification of t

» an exit part which consists of the remaining statements of
n.

Note: a non-empty basic block has also a non-empty entry 672
part; in distinction to that the exit part can be empty (for
illustration consider the following figure).

197/513

Entry and Exit Parts of a Basic Block

[llustrating the entry and exit part of a basic block:

a)

D)
— p¥
Yy sz\'
|y - !
ya =c¢c !
:y = a+b:
\b = !
—= ~o.ooot
u o= a+b":
--- Entry Part
----- Exit Part

x = b¥c’
d:=>b
a = a+b,
W Zard:

c)

Entry (Exit) Computation

—= Entry (Exit) Point

198/513

Busy Code Motion: BCMj (1)

1. Analyses for Up-Safety and Down-Safety

Local Predicates:

» BB-NCOMPg4(t): [contains a statement ¢ that
computes t, and that is not preceded by a statement that
modifies an operand of t.

» BB-XCOMPg(t): B contains a statement ¢ that
computes t and neither ¢ nor any other statement of 3 22
after + modifies an operand of t.

» BB-TRANSP4(t): S contains no statement that
modifies an operand of t.

199/513

Busy Code Motion: BCM; (2)

The Equation System for Up-Safety:

{ false if B=s

BB-N-USAFEz = I (BB—XCOMPB + BB—X—USAFEB) otherwise

Bepred(B)

BB-X-USAFE; = (BB-N-USAFE; + BB-NCOMP;) - BB-TRANSPj

6.7.2

200/513

Busy Code Motion: BCM; (3)

The Equation System for Down-Safety:

BB-N-DSAFEz = BB-NCOMPg + BB-X-DSAFEg - BB-TRANSP3

BB-X-DSAFE; = BB-XCOMP; +

false if B=e
A II BB—N—DSAFEB otherwise
B€succ(B)

201/513

Busy Code Motion: BCMj (4)

2. The Transformation: Insertion and Replacement Points

Local Predicates:

» BB-N-USAFE*, BB-X-USAFE*, BB-N-DSAFE*,
BB-X-DSAFE*: ...denote the greatest solutions of the
equation systems for up-safety and down-safety of step 1.

6.7.2

202/513

Busy Code Motion: BCM; (5)

The BCM g Transformation:

N—INSERT%C'\’I

X-INSERTSCM

N—REPLACEEC'\’|
X—REPLACEEC'\/I

—df

=df

—df

—df

BB-N-DSAFE} -

IT ¢ BB-X-USAFE} + BB-X-DSAFE})
Bepred(5)
BB-X-DSAFE} - BB-TRANSP

BB-NCOMP;
BB-XCOMPj

6.7.2

203/513

Chapter 6.7.3
Implementing LCM

204/513

The Equation Systems for LCM

Quite similar! Homework!

205/513

Chapter 6.7.4
An Extended Example

206/513

An Extended BB-Example for lllustration (1)

The original program:

y:=a+b
a:=c
x:=a+b

6.7.4

207/513

An Extended BB-Example for lllustration (2)

The original program after splitting of critical edges:

afy:

6.7.4

208/513

An Extended BB-Example for lllustration (3)

Earliest computation points:

e U-Safé

@ D-Safé
QO Earliest
209/513

An Extended BB-Example for Illustration (4)

The result of the BCMj transformation:

-

[8]
FERCE
2
S

=S 0 o

¥
=

6.7.4

210/513

An Extended BB-Example for Illustration (5)

Latest computation points:

e Earliest
® Delayed

O Latest 211/513

An Extended BB-Example for Illustration (6)

The result of the ALCM g-transformation:

7.3
6.7.4

e Earliest
® Delayed
O Latest 212/513

An Extended BB-Example for lllustration (7)

Isolated program points:

O Latest
[) Isolated
213/513

An Extended BB-Example for Illustration (8)

The result of the LCMg transformation:

6.7.4

214/513

Chapter 6.8
Sparse Code Motion

215/513

These days

...Lazy Code Motion is the

» de-facto standard algorithm for PRE that is used in
current state-of-the-art compilers

» Gnu compiler family
» Sun Sparc compiler family

> e

6.8

216/513

In the following

...we consider a (modular) extension of LCM in order to take
user priorities into account!

Code-Size Quality

Computational Quality

...Run-Time Performance

Lifetime Quality

...Register Pressur;

217/513

In the following (cont’d)

...to also render the below transformation possible:

There is more than speed!

219/513

There is more than speed!

...for instance space!

6.1

6.3

6.6

6.7
6.7.1
6.7.2

6.8

219/513

There is more than speed!

...for instance space!

The World Market for Microprocessors in 1999

Chip Category Sold Processors
Embedded 4-bit 2000 Millions

Embedded 8-bit 4700 Millions

Embedded 16-bit | 700 Millions

Embedded 32-bit | 400 Millions

DSP 600 Millions

Desktop 32/64-bit | 150 Milliones

...David Tennenhouse (Intel Director of Research), key note lecture at the 68

20th IEEE Real-Time Systems Symposium (RTSS'99), Phoenix, Arizona,
December 1999.

220/513

The World Market for Microprocessors in 1999

Chip Category Sold Processors
Embedded 4-bit 2000 Millions
Embedded 8-bit 4700 Millions
Embedded 16-bit | 700 Millions
Embedded 32-bit | 400 Millions
DSP 600 Millions
Desktop 32/64-bit | 150 Milliones ~ 2%
...David Tennenhouse (Intel Director of Research), key note lecture at the 68

20th IEEE Real-Time Systems Symposium (RTSS'99), Phoenix, Arizona,
December 1999.

221/513

Think about

...domain-specific processors used in embedded systems:

» Telecommunication
» Cellular phones, pagers,...
» Consumer electronics

» MP3-players, cameras, game consoles, ...
» Automative field

» GPS navigation, airbags,...

6.8

222/513

Code for Embedded Systems

Demands:

» Performance (often real-time demands)
» Code size (system-on-chip, on-chip RAM/ROM)

> ...

For embedded systems:

» Code size is often more critical than speed! oo

223/513

Code for Embedded Systems (Cont'd)

Demands (and how they are often addressed):

» Assembler programming

» Manual post-optimization

Shortcomings:
» Error prone
» Delayed time-to-market

...problems which become greater with increasing complexity.

6.8
Generally, we observe:

» a trend towards high-level languages programming
(C/C++)

224/513

In Face of this Trend

...how do traditional compiler and optimizer technologies
support the specific demands of code for embedded systems?

\ Code Size

6.8

Run-Time Performance

225/513

In Face of this Trend

...how do traditional compiler and optimizer technologies
support the specific demands of code for embedded systems?

\ Code Size

6.8

Run-Time Performance

Unfortunately, only little.

225/513

W /out Doubt

Traditional Optimizations

» are almost exclusively tuned towards performance
optimization

» are not code-size sensitive and in general do not provide
any control on their impact on the code size

6.8

226/513

This holds especially

...for code motion based optimizations.

In particular, this includes:

v

Partial redundancy elimination

Partial dead-code elimination (cf. Lecture Course 185.A05
Analysis and Verification)

v

v

Partial redundant-assignment elimination (cf. Lecture
Course 185.A05 Analysis and Verification)

Strength reduction

6.8

v

227/513

Reminder using PRE as an Example

PRE can conceptually be considered a two-stage process:

1. Expression Hoisting
...hoisting computations to “earlier” safe computation
points

2. Totally Redundant Expression Elimination
...eliminating computations, which become totally

redundant by expression hoisting
6.8

228/513

Reminder using LCM as an Example

LCM can conceptually be considered the result of a two-stage
process:

1. Hoisting Expressions
...to their “earliest” safe computation points

2. Sinking Expressions
...to their “latest” safe and still computationally optimal
computation points

6.8

229/513

Towards Code-size Sensitive PRE

» Background: Classical PRE
~» Busy Code Motion (BCM) / Lazy Code Motion (LCM)
(Knoop, Riithing, Steffen, PLDI'92)

» Distinguished w/ the ACM SIGPLAN Most Influential
PLDI Paper Award 2002 (for 1992)

» Selected for the “20 Years of the ACM SIGPLAN PLDI:
A Selection” (60 articles out of about 600 articles)

» Code-size Sensitive PRE

~+ Sparse Code Motion (SpCM)
(Knoop, Riithing, Steffen, POPL'00)

» ...modular extension of BCM/LCM

6.8

~+ Modelling and solving the problem:
...based on graph-theoretic means
~» Main Results:
...Correctness, Optimality
230/513

The Running Example (1)

231/513

The Running Example (2)

Two Code-size Optimal Programs

232/513

The Running Example (3)

SQ > CQ>LQ SQ >LQ>CaQ

233/513

The Running Example (4)

Note: The below transformation is not desired!

6.8

234/513

Code-size Sensitive PRE

~> The Problem
...how do we get code-size minimal placement of the
computations, i.e., a placement that is
» admissible (semantics & performance preserving)
» code-size minimal?
~> The Solution: A new View to PRE
...consider PRE as a trade-off problem: Exchange original
computations for newly inserted ones!

~~ The Clou: Use Graph Theory!
...reduce the trade-off problem to the computation of
tight sets in bipartite graphs based on maximum
matchings!

6.8

235/513

We postpone but keep in mind that

...we have to answer:

» Where are computations to be inserted and where original
computations to be replaced?

...and to prove:

» Why is this correct (i.e., semantics preserving)?
» What is the impact on the code size?

» Why is this “optimal” wrt a given prioritization of goals?

6.8

For each of these questions we will provide a specific theorem
that yields the corresponding answer!

236/513

Bipartite Graphs
T

S

Tight Set
...of a bipartite graph (SU T, E): Subset S;s C S w/

VS CS. [Si| —T(Ss)| > |S|—|F(S)]

r(s,)
T e
S ‘ ;

S

ts

Two Variants: (1) Largest Tight Sets (2) Smallest Tight Sets

237/513

Bipartite Graphs
T

S

Tight Set
...of a bipartite graph (SU T, E): Subset S;s C S w/

VS CS. [Si| —T(Ss)| > |S|—|F(S)]

r'(s,)
T e
S ‘ ;

S

ts

Two Variants: (1) Largest Tight Sets (2) Smallest Tight Sets

238/513

Obviously

...we can make use of off-the-shelve algorithms from graph
theory in order to compute

» Maximum matchings and
» Tight sets

This way the PRE problem boils down to
» constructing the bipartite graph that models the problem!

6.8

239/513

Computing Largest/Smallest Tight Sets

...based on maximum matchings:
T s D T

VLN = LN

6.3

S S 6.4

6.5

T T :

6.7

(?7)

) =) o1
S . J s

7.8)

240/513

Algorithm LTS (Largest Tight Sets)

Input: A bipartite graph (SUT, E), a maximum matching M.
Output: The largest tight set 7.,7S) C S.

Sm:=S; D:={t € T|tis unmatched};
WHILE D # () DO
choose some x € D; D:= D\ {x};
IFxeS
THEN Sy := Swm \ {x};
D:=D U {y[{xy} €M}
ELSED:=D U (I'(x) N'Sm)
FI
0D;
TLaTs(S) = Swm

6.8

241/513

Algorithmus STS (Smallest Tight Sets)

Input: A bipartite graph (SUT, E), a maximum matching M.
Output: The smallest tight set 7s,74S) C S.

Sm:=0; A:={s €S| s is unmatched};
WHILE A # () DO
choose some x € A; A:= A\ {x};
IFxeS
THEN SM = SM U {X};
A=A U (I'(x)\ Sm)
ELSEA:=A U {y|{x,y} € M}
FI o8
0D;
Toms(S) = Su

242/513

Modelling the Trade-off Problem

The Set of Nodes
TsUSes © ®© ®© O O O O ®@ ® ©®
Insert, ., Comp/UpSafe

DownSafe/
(CompUUpSafe)

The Set of Edges...

6.8

243/513

The Set of Nodes

CRCRCHRERERCE -]

244/513

Modelling the Trade-off Problem
The Set of Nodes

TosUSes © ® ®© O O O O ®@ ® ©®
Insert, ., Comp/UpSafe

DownSafe/
(CompUUpSafe)

The Bipartite Graph

The Set of Edges ..Vn € Sps Vm € Tps.
{n, m} € Eps <=4 m € Closure(pred(n))

6.8

245/513

Down-Safety Closures

Definition (6.8.1, Down-Safety Closure)
Let n € DownSafe/Upsafe. Then the Down-Safety Closure
Closure(n) is the smallest set of nodes such that

1. n € Closure(n)

2. ¥Y'm € Closure(n) \ Comp. succ(m) C Closure(n)

3. V'm € Closure(n). pred(m) N Closure(n) # 0 =
pred(m) \ UpSafe C Closure(n)

6.8

246/513

DownSafety Closures — The Central Idea (1)

247/513

DownSafety Closures — The Central Idea (2)

248/513

DownSafety Closures — The Central Idea (3)

249/513

DownSafety Closures — The Central Idea (4)

250/513

Reminder: Down-Safety Closures

Definition (6.8.1, Down-Safety Closure)
Let n € DownSafe/Upsafe. Then the Down-Safety Closure
Closure(n) is the smallest set of nodes such that

1. n € Closure(n)

2. ¥Y'm € Closure(n) \ Comp. succ(m) C Closure(n)

3. V'm € Closure(n). pred(m) N Closure(n) # 0 =
pred(m) \ UpSafe C Closure(n)

6.8

251/513

Down-Safety Regions

Some subsets of nodes are distinguished. We call these subsets
Down-Safety Regions.

Definition (6.8.2, Down-Safety Region)
A set RC N of nodes is a down-safety region iff

1. Comp\UpSafe C R C DownSafe\ UpSafe
2. Closure(R) = R

6.8

252/513

Fundamental

Theorem (6.8.3, Initialization Theorem)

Initializations of admissible PRE transformationen are always
at the earliestness frontiers of down-safety regions.

- UpSafev ~Transp
0) (@)

@ EarliestF rontigr

DownSafe/UpSafe

6.8
e Comp

...characterizes exactly the set of semantics preserving PRE

transformations.
253/513

The Key Questions

...regarding correctness and optimality:

1. Where to insert computations, why is it correct?
2. What is the impact on the code size?
3. Why is the result optimal, i.e., code-size minimal?

...three theorems will answer one of these questions each.
6.8

254/513

Main Results / Question 1

1. Where to insert computations, why is it correct?

Intuitively: At the earliestness frontier of the DS-region
induced by the tight set...

Theorem (6.8.4, Tight Sets: Insertion Points)

Let TS C Sps be a tight set.

Then Rys=q4r [(TS) U (Comp\UpSafe)

is a down-safety region w/ Bodyp_ =TS

Correctness -

» An immediate corollary of Theorem 6.8.4 and the
Initialization Theorem 6.8.3

255/513

Main Results / Question 2

2. What is the impact on the code size?

Intuitively: The difference between the number of inserted and
replaced computations...

Theorem (6.8.5, Down-Safety Regions: Space Gain)

Let R be a down-safety region w/
Bodyr=q4r R\ EarliestFrontierr

Then

» Space Gain by Inserting at EarliestFrontierr : 68
| Comp\ UpSafe| — |EarliestFrontierg| =
|Bodyg| — |T(Bodygy)| af = defic(Bodyz)

256/513

Main Results / Question 3

3. Why is the result optimal, i.e., code-size minimal?

Intuitively: Due to a property inherent to tight sets
(non-negative deficiency!)...

Theorem (Optimality Theorem / Transformation)
Let TS C Sps be a tight set.

» Insertion Points:
Inserts,cm=ar EarliestFrontierg,,=Rys\ TS

. 6.8
» Space Gain:

defic(TS)=q4r | TS| — |T(TS)| > 0 max.

257/513

Largest vs. Smallest Tight Sets: The Impact

) EarliestFrontii{
'LaTS

Largesttight sets favor
Computational Quality

= Earliestness Principle

® FEarliestF rontig
SmTS

Smallesttight sets favor
Lifetime Quality

@ Latestness Principle

® Comp

258/513

The Impact illustrated on the Running Exam.

Largest Tight Set Smallest Tight Set
(8SQ>CQ) (SQ>LQ)
Earliestness Principle Latestness Principle

259/513

Code-size Sensitive PRE at a Glance (1)

Preprocess
o Optional:PerformL.CM (3 GEN/KILL-DFAs

® Compute Predicates ¢fCV
for G resp. LCM(G) (2 GEN/KILL-DFAs

\

Main Process

Reduction Phase

o Construct Bipartite Graph
o Compute Maximum Matching

)

Optimization Phase

o Compute Largest/Smallest Tight Set|
e Determine Insertion Points

260/513

Code-size Sensitive PRE at a Glance (2)

-

~

Choi £ Auxiliary
olce o Apply To Using Yields Information
Priority Required
£Q Not meaningful: The identity, i.e., G itself is optimal !
SQ Subsumed by SQ > CQ and S§Q > LQ!
co BCM G UpSafe(G), DownSafe(G)
Q> L9 LCM G LCM(G) UpSafe(G), DovnSafe(G), Delay(G)
se>ce || spem d e | SPCMLrs(G) UpSate(G), Downsafe(G)
50> L0 SpCM el f.:::“:: UpSafe(G), DownSafe(C)
N . Largest UpSafe(G), DownSafe(G), Delay(G)
cQ>sQ SpCM LCM(G) tight set UpSafe(LCM(G)), DownSafe(LCM(G))
. o . . Smallest UpSafe(G), DownSafe(G), Delay(G)
€Q>38Q>LQ || SpCM LCM(G) tight set UpSate(LCM(G)), DownSafe(LCM(G))
UpSafe(G), DownSafe(G),
o Smallest Delay(SpCM_15(G)),
§Q>C€Q>£Q || SpCM | DL(SpCMyrs(G)) | fiopt set UpSate(DL(SpCM,75(G))),

DownSafe(DL(SpCM_75(G)))

36

6.8

261/513

Flexibility (1)

The original program:

Contents
Chap. 1
Chap. 2
Chap. 3
Chap. 4

Chap. 5

Flexibility (2)

BCM: A computationally optimal program (CQ)

Contents
Chap. 1
Chap. 2
Chap. 3
Chap. 4

Chap. 5

Flexibility (3)

LCM: A computationally & lifetime opt. program (CQ > LQ)

Chap. 1
L';‘ Chap. 2
m
Chap. 3
Chap. 4

Chap. 5

Chap. 7
Chap. 8
Chap. 9

Chap. 10

Chap. 11
V] .264/513

Flexibility (4)
SpCM: A code-size & lifetime opt. program (SQ > LQ)

Contents
Chap. 1
Chap. 2
Chap. 3
Chap. 4

Chap. 5

Flexibility (5)

SpCM: A computationally & lifetime best code-size optimal Contents
program (SQ > CQ > LQ) ehap-1

Chap. 2

Chap. 3
Chap. 4

Chap. 5

Chap. 7
Chap. 8
Chap. 9

Chap. 10

Chap. 11
.266/513

Flexibility (6)

SpCM: A code-size and lifetime best computationally optimal Contents
program (CQ > SQ > LQ) ehap-1

Chap. 2

Chap. 3
Chap. 4

Chap. 5

Chap. 7
Chap. 8
Chap. 9

Chap. 10

Chap. 11
4 .267/513

The History and Progress of PRE (1)

v

1958: A first glimpse of PRE
~> Ershov’'s work on “On Programming of Arithmetic
Operations.”
< 1979: Special techniques

~> Total redundancy elimination, loop invariant code
motion

1979: The origin of modern PRE

~~ Morel /Renvoise’s seminal work on PRE

v

v

v

< ca. 1992: Heuristic improvements of the PRE algo-
rithm of Morel and Renvoise
~» Dhamdhere [1988, 1991]; Drechsler, Stadel [1988];
Sorkin [1989]; Dhamdhere, Rosen, Zadeck [1992],
Briggs, Cooper [1994],...

6.8

268/513

The History and Progress of PRE (2)

» 1992: BCM and LCM [Knoop Riithing, Steffen (PLDI'92)]

~» BCM first to achieve computational optimality based on
the earliestness principle

~ LCM first to achieve computational optimality with
minimum register pressure based on the latestness
principle

~> first to rigorously be proven correct and optimal

» 2000: SpCM: The origin of code-size sensitive PRE
[Knoop, Riithing, Steffen (POPL 2000)]

~ first to allow prioritization of goals

~> rigorously be proven correct and optimal

~ first to bridge the gap between traditional compilation
and compilation for embedded systems

6.8

269/513

The History and Progress of PRE (3)

» Since ca. 1997: A new strand of research on PRE
~ Speculative PRE: Gupta, Horspool, Soffa, Xue, Scholz,
Knoop,...
» 2005: Another fresh look at PRE (as maximum flow
problem)

~> Unifying PRE and Speculative PRE [Xue, Knoop (CC
2006)]

6.8

270/513

Why is it rewarding to consider PRE? (1)

It is...

Relevant: Widely used in practice

General: A family of optimizations rather than a single
optimization

Well understood: Proven correct and optimal

Challenging: Conceptually simple but exhibits a variety of
thought provoking phenomenons

v

v

v

v

6.8

271/513

Why is it rewarding to consider PRE (2)

Last but not least, PRE is...

» Truly classical: Looks back to a long history beginning
with
» Etienne Morel, Claude Renvoise. Global Optimization by
Suppression of Partial Redundancies. Communications
of the ACM 22(2):96-103, 1979.
» Andrei P. Ershov. On Programming of Arithmetic Ope-
rations. Communications of the ACM 1(8):3-6, 1958.

6.8

272/513

Further Reading for Chapter 6 (1)

B

B

Andrei P. Ershov. On Programming of Arithmetic Opera-
tions. Communications of the ACM 1(8):3-6, 1958.

Jens Knoop, Oliver Rithing, Bernhard Steffen. Lazy Code
Motion. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation

(PLDI'92), ACM SIGPLAN Notices 27(7):224-234, 1992.

Jens Knoop, Oliver Ruthing, Bernhard Steffen. Optimal
Code Motion: Theory and Practice. ACM Transactions on
Programming Languages and Systems 16(4):1117-1155,
1994,

273/513

Further Reading for Chapter 6 (2)

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Retrospec-
tive: Lazy Code Motion. In “20 Years of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (1979 - 1999): A Selection”, ACM
SIGPLAN Notices 39(4):460-461&462-472, 2004.

[§ Etienne Morel, Claude Renvoise. Global Optimization by éj
Suppression of Partial Redundancies. Communications of -
the ACM 22(2):96-103, 1979. o

[@ Oliver Riithing, Jens Knoop, Bernhard Steffen. Sparse o
Code Motion. In Conference Record of the 27th Annual °

ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2000), 170-183, 2000.

274/513

Chapter 7

More on Code Motion

Chap. 7

275/513

Code Motion Reconsidered

Traditionally:

» Code (C) means expressions

» Motion (M) means hoisting Chap. 7

But:
» CM is more than hoisting of expressions and PR(E)E!

276/513

Obviously

...assignments are code, too.

f X = a+l‘/
X = a+19\ o] x>a<|— ® x :=a+b
/ » K / Chap. 7
o
X = a+j %bi :

o7
-7
e

277/513

Obviously

...assignments are code, too.

/

f X = a+lf
X :=a+ o3 X 34+ Jo/x:=a+b
X = aﬁi %bi

¥ A

» Here, CM means eliminating partially redundant assign-
ments (PRAE)

Chap. 7

277/513

Differently from expressions...

...assignments can also be sunk.

X =y+z » X:=at i%

out(x)

out(x)

-y

Chap. 7

278/513

Differently from expressions...

...assignments can also be sunk.

-7

X :=a+b

X =y+z » X:=at i%

out(x) out(x)

out(x)« out(x)

Y T/

» Here, CM means eliminating partially dead code (PDCE)

Chap. 7

278/513

Design Space of CM-Algorithms (1)

This results in the following design space of CM-algorithms:

Generally:

» Code means expressions/assignments

» Motion means hoisting/sinking

| Code / Motion || Hoisting | Sinking |

Expressions

EH

./.

Assignments

AH

A

Chap. 7

279/513

Design Space of CM-Algorithms (2)

Adding further dimensions to the design space of

CM-algorithms:

EH
AH, AS

Syntactic
Paradigm Semantic
— Intraprocedural
— Interprocedural
— Parallelism

— Predicated co

X :=a+b

\
c@ a |

b et

e
z:=cHb

sem. red.

Introducing semantics... !

Chap. 7

7.2

~ ~

280/513

Semantic Code Motion

...enables more powerful optimizations!

(x,y.z) := (a,ba+ (a,b,c) := (X,y,y+2)

h:= a+t1 h:=x+y
= (x.y.2) = (a.b) lQO (@b.c) = (x.31)

(Example from B. Steffen, TAPSOFT'87)

Chap. 7

281/513

What is the Impact on Optimality?

Optimality statements are quite sensitive towards setting
changes!

Three examples shall provide evidence for this: chap- 7

» Code motion vs. code placement
» Interdependencies of elementary transformations

» Paradigm dependencies

282/513

Chapter 7.1

Code Motion vs. Code Placement

283/513

Code Motion (CM) vs. Code Placement (CP)

CM and CP are no synonyms!

c:=a o (X’y) = (a+b,c+b) ’ Motion gets stuck!
T (h1,h2) := (a+b,c+b)
cima 06y) = (h1,h2) 71
z= a+bp Lz =c+b ‘@ Motion gets stuck! hl :=a+b =
) /_,;; - 7.4
g hl = a+bﬁ h2 :=c+b ? h2:=c+b
Original Program : !
g g z:=hl'd 2:=h2 (ch2):i=(ahl) (xy) = (h1,h2)
e i ' . Placing k»+h“
Placihg a+b
After Sem. Code Motion
z:=hl o z:=h2

v Ty

After Sem. Code Placement

284/513

Even worse

Optimality is lost!

S S
£ ¥

/\ h= a+b<l>/\ h:=c+b

[

c:= a{ y :=c+b c:= a\ y :=h -
- <
7= a+b§/ O z:= c+b 7= a+b§/

o o /

g g
-7 -7
e ¥

Z =

Incomparable!

285/513

Even more worse

The performance can be impaired, when applied naively!

[e
S 2
e ¥

N AN

O h:=a+bO ? 71

L] x
¢:= a\ i c:i=a \
z:= a+b/<§/ O z:=ctb 7= a+b/<§/ O z:i=ctb
/:/; ,:,;/, ':/;/,‘ ’:/;/,‘

286/513

Chapter 7.2

Interactions of Elementary
Transformations

7.2

287/513

Assignment Hoisting (AH) plus Totally
Redundant Assignment Elimination (TRAE)

leads to Partially Redundant Assignment Elimination

(PRAE):
= ? a:= b+cL 5 7§
a:=b+c A O (lj T
l l TRAE l
= a+CT\/Q = a+ci a:=btc => .o a+c?
out(a,b)Q out(a b) out(a,b)O J

...2nd Order Effects!

288/513

Assignment Sinking (AS) plus Total
Dead-Code Elimination (TDCE)

...leads to Partial Dead-Code Elimination (PDCE):

a:= 134:055//4<\\\\ ;.i
| X :=a+b 1pcE I % o
- '
" >X:= a+b X:=2z X = a+b
out(x,a

...2nd Order Effects!

289/513

Conceptually

...we can understand PREE, PRAE, and PDCE as follows:

» PREE = AH ; TREE
> PRAE = (AH + TRAE)*
» PDCE = (AS + TDCE)*

7.2

200/513

Optimality Results for PREE

Theorem (7.2.1, Optimality)

1. The BCM transformation yields computationally optimal
results.

2. The LCM transformation yields computationally and
lifetime optimal results.

3. The SpCM transformation yields optimal results wrt a
given prioritization of the goals of redundancy avoidance,
register pressure, and code size.

7.2

201/513

Optimality Results for (Pure) PRAE/PDCE

Deriving relation ...

» PRAE... G bantrae G (ET={AH,TRAE})
» PDCE... G |_AS,TDCE G’ (ET:{AS,TDCE})

We can prove:

Theorem (7.2.2, Optimality)

For PRAE and PDCE the deriving relation g1 is confluent
and terminiating.

7.2
Universe

G
G
opt

202/513

Now

...extend and amalgate PRAE and PDCE to Assignment
Placement (AP):

» AP = (AH + TRAE + AS + TDCE)*
...AP should be more powerful than PRAE and PDCE alone!

7.2

203/513

Now

...extend and amalgate PRAE and PDCE to Assignment
Placement (AP):

» AP = (AH + TRAE + AS + TDCE)*
...AP should be more powerful than PRAE and PDCE alone!

Indeed, it is but:

7.2

L* = =a+b X = a+b
C\ / éut()?)+ X= a+|1\ éut()?)-'- H\ / out(x)
PDCE PRAE
x= a+bo/o\> T x=m ¢ - out(x)Q/O\,j

out(x) out(x) s
e t “ “y

The resulting two programs are incomparable.
203/513

Confluence

...and hence (global) optimality is lost!

Universe

CiocOpt

7.2

Fortunately, we retain local optimality!

204/513

However

...there are settings, where we end up w/ universes like the
following:

Universe

7.2

Here, even local optimality is lost!

205/513

Chapter 7.3

Paradigm Impacts

206/513

Adding Parallelism

(h1,h2,h3) := (a+b,c+b,d+b)

ParBegin arBegin
i\ /) ParBeg
X = a+@/o> [1} e g\
+

A i I
~ ParEnd _ ParEnd
o, -
Original Program After Earliestness Transformatio:

...a naive transfer of the “place computations as early as
possible” transformation strategy leads here to an essentially
sequential program!

7.3

297/513

Adding Procedures

Similar phenomena are encountered when naively applying
successful transformation strategies from the intraprocedural
to the interprocedural setting. i

208/513

Chapter 7.4

Extending Code Motion to Strength
Reduction

209/513

Objective

Developing a program optimization that

» uniformly covers

» Partial Redundancy Elimination (PRE) and
» Strength Reduction (SR)

» avoids superfluous register pressure due to unnecessary
code motion

» requires only uni-directional data flow analyses i

The Approach:

» Stepwise extending the BCM and the LCM to arrive at
the

» Busy (BSR) and Lazy Strength Reduction (LSR)

300/513

lllustration: The Original Program

L

7.4
16

301/513

The Result of Lazy Strength Reduction

T[h=ix10] 8[h:=ix10] 9[h:=h+80]

—
afi=i1] 5 | 6[T=i735]

7.4

302/513

From PRE towards LSR (1)

First, the notion of a candidate expression has to be adapted:

Candidate expressions for

» PRE: Each term t
» SR: Terms of the form v x ¢, where 74

» v is a variable
» c is a source code constant

303/513

From PRE towards LSR (2)

Second, the set of local predicates has to be extended:

» Used(n)=q4¢ v * c € SubTerms(t)
» Transp(n)=gr x £ v
» SR-Tramsp(n)=4r Transp(n) V t =v +d with d € C

Intuitively

The value of a candidate expression is

» killed at a node n, if =(Transp(n) vV SR-Transp(n))
» injured at a node n, if = Transp(n) A SR-Trarsp(n)

Important: Injured but not killed values can be

» cured by inserting an update assignment of the form
h := h+ Eff(n) where Eff(n)=ar c % d.

Note that Eff(n) can be computed at compile time since
both ¢ and d are source code constants.

304/513

Extending BCM straigthforward to SR

...leads to Simple Strength Reduction (SSR).

The SSR-Transformation:

1. Introduce a new auxiliary variable h for v xc
2. Insert at the entry of every node satisfying

2.1 Insgsg the assignment h:=vxc
2.2 InsUpdge; the assignment h:=h + Eff(n)

3. Replace every (original) occurrence of vxc in G by h

Note: If both Insgsy and InsUpdgg; hold, the initialization

statement h:= v % ¢ must precede the update assignment
h:= h + Eff(n).

7.4

305/513

The Result of SSR

h:=ix10

10[h:=ix10

7.4

16

306/513

Discussing the Effect of SSR

Shortcoming

» The multiplication-addition-deficiency

Remedy:

» Moving critical insertion points in the direction of the
control flow to “earliest” non-critical ones.

Intuitively:

» A program point is critical if there is a v x c-free program
path from this point to a modification of v

7.4

307/513

The 1st Refinement of SSR

The SSRrqger- Transformation:

1. Introduce a new auxiliary variable h for v x ¢
2. Insert at the entry of every node satisfying

2.1 Inspgrer the assignment h:=vxc
2.2 InsUpdgr,p.s the assignment h:=h + Eff(n)

7.4

3. Replace every (original) occurrence of vxc in G by h

308/513

The Result of SSR rctref

h:=ix10

T[h=ix10] 8]

L

16 7.4

309/513

Adding Laziness

T[h:=ix10] 8[h:=ix10] 9]

L

16

310/513

The Result of SSRs,qrer

T[h:=ix10] 8[h:=ix10] 9]

L

16 7.4

311/513

The Multiple-Addition Deficiency

[[lustration:

h:=h+20 h:=h+40
=042 =i+4
h:=h+30 h:=h+10
i=i+3 =it1
h:=h+20 h:=h+10
=142 i=i+1
1 a:=h

7.4

312/513

Overcoming the Multiple-Addition Deficiency

Accumulating the effect of cure assignments:

[h:i=h+50] [h:=h+50]

7.4

[h:=h+40] [h:=ix10]

2] a:=h

313/513

Refined Accumulation of Cure Assignments

7.4

\ | [h=h+90] [h:=ix10]

2]

314/513

The 3rd Refinement of SSR: LSR

0

2
4[i=i+1] 5] |
T[h=ix10] 8[h:=ix10] 9[h:=h+80]

16

7.4

315/513

Homework

Assignment 4:

1. Specify the data flow analyses and transformations for
» SSR
» SSREstrer (overcoming the multiplication-addition
deficiency)
» SSRsnarer (overcoming the register-pressure deficiency)
» SSRThdrer = LSR (overcoming the multiple-addition
deficiency)

2. implement them in PAG, and

3. validate them on the running example of this chapter (or
an example coming close to it).

316/513

Critical Edges

Like for BCM and LCM critical edges need to be split in order
to get the full power of

» Lazy Strength Reduction (LSR)

— 7] 777777 7.4

317/513

Summary of Predicate Values

..of the analyses of the LSR transformation:

Jooolcoolcoojlooooloooo
KA
N~ o olHoolore o= Hi-Ho|lH oo o
S~ HlocorHoHoOolocoo o
Sloocoolooolwoolocorooloocooo
KlooolrHoolHoolocorooloooo
Nlooolopoolwoolococooroloooo
Yocoolopoolwooloco-ooloocoo
Y0ocoolHoo|lHoolococo~oloooo
J|~oolHooclorolococo-o|lHoo~

.

I}

2
EQ~oo|vooclorolocooro|HoO~
S

=

2o~ olroolHmoolocoo~oloooo
<}

2
OdlvoolHooclorolococoroloocoo
Qo~o|r--|lHHolocorHooloooo
o~ -H|lHoolococolococo~o|l~o~o
wlHoo|loolococol-H~o~H|l+HOO
~NHEH A AH OO O A H|H H O A H|[H - OO
vlorolHoolHooloooroloooo
wHoo|lHoolooolHorooloocoo
tjlo-o|lHoolHHolcorooloocoo
MmHoo|lwoolocoolHo~ooloooo
NjHoo|HoolocoolHo~ooloooo
el L e R R o R B Ry Y I e

80

b s |5

= o » b
el S4 Sg-55 v iiEsag
® n O n ng O O nafd J 3.0
Slzob|lpop|ol £ [PLorELrT 0
.ICirSiritrV.SatrmrPt
Tlo- O|lo— 0| © 0 Q4 & O 05 o
SlsHAls BADS Ao 8B ESEETS
AN MEmHWMMHODOHASHD H|HHA

318/513

lllustrating Down-Safety and Earliestness

s=1 Earliestey

Earliestcy 3 Earliestcy 4

v:=v/w |Earliestcy

D-Safecy

Earliestcen

D-Safecy

Earliestcey

D-Safecy

D-Safecy

Earliestey

Earliestcey

D-Safecy

Earliestcy

7.4

319/513

Further Reading for Chapter 7 (1)

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Partial
Dead Code Elimination. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI'94), ACM SIGPLAN Notices
29(6):147-158, 1994.

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. The Power
of Assignment Motion. In Proceedings of the ACM 72
SIGPLAN Conference on Programming Language Design u
and Implementation (PLDI'95), ACM SIGPLAN Notices
30(6):233-245, 1995.

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Code
Motion and Code Placement: Just Synonyms? In Procee-
dings of the 7th European Symposium on Programming
(ESOP’98), Springer-Verlag, LNCS 1381, 154-169, 1998.

320/513

Further Reading for Chapter 7 (2)

[@ Jens Knoop. Optimal Interprocedural Program Optimiza-
tion: A New Framework and Its Application. Springer-Ver-
lag, LNCS 1428, 1998. (Chapter xxx)

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen. Expansion-
based Removal of Semantic Partial Redundancies. In Pro-

7.1

ceedings of the 8th International Conference on Compiler o
Construction (CC'99), Springer-Verlag, LNCS 1575, b
91-106, 1999.

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Lazy

Strength Reduction. Journal of Programming Languages
1(1):71-91, 1993.

321/513

Further Reading for Chapter 7 (3)

[§ Jens Knoop, Bernhard Steffen. Code Motion for Explicitly
Parallel Programs. In Proceedings of the 7th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP'99), ACM SIGPLAN
Notices 34(8):13-24, 1999.

[@ Bernhard Steffen. Optimal Run Time Optimization — 71
Proved by a New Look at Abstract Interpretation. In Pro- 3
ceedings of the 2nd Joint Conference on Theory and Prac-
tice of Software Development (TAPSOFT'87), Springer-
Verlag, LNCS 249, 52-68, 1987.

[@ Bernhard Steffen. Property-Oriented Expansion. In Pro-
ceedings of the 3rd Static Analysis Symposium (SAS'96),
Springer-Verlag, LNCS 1145, 22-41, 1996.

322/513

Further Reading for Chapter 7 (4)

[§ Bernhard Steffen, Jens Knoop, Oliver Riithing. The Value
Flow Graph: A Program Representation for Optimal Pro-
gram Transformations. In Proceedings of the 3rd European
Symposium on Programming (ESOP’'90), Springer-Verlag,
LNCS 432, 389-405, 1990.

[@ Bernhard Steffen, Jens Knoop, Oliver Riithing. Efficient 5
Code Motion and an Adaption to Strength Reduction. In
Proceedings of the 4th International Joint Conference on
Theory and Practice of Software Development
(TAPSOFT'91), Springer-Verlag, LNCS 494, 394-415,

1991.

323/513

Part |lI

Interprocedural Data Flow Analysis

7.4

324/513

Outline

We consider:

» The Functional Approach (cf. Chapter 8)
» The Base Setting
Adding Procedures but no parameters and local variables
» The General Setting
Adding value parameters and local variables 74
» Extensions
Adding reference parameters and procedural parameters

» The Call String Approach (cf. Chapter 9)

325/513

Chapter 8
IDFA — The Functional Approach Cip e

326/513

Chapter 8.1
The Base Setting

327/513

Representing Programs

Programs w/ procedures will be represented in terms of

» Flow graph systems

» Interprocedural flow graphs et

328/513

Flow Graph Systems

Definition (8.1.1, Flow Graph System)

A flow graph system S=4 (Go, ..., Gk) is a system of
(intraprocedural) flow graphs in the sense of Chapter 4, where

each flow graph G; represents a procedure of the underlying 81
program [1; in particular, Gg represents the main procedure or

the main program of 1.

329/513

lllustration: Flow Graph System

Ty a.b.x,y nl;c,d
1

®
I

7

v call | (a+b)
2

O
1o

330/513

Unnecessary nodes and edges may be removed

main procedure 7t

O
L X :=a+b

331/513

Notations and Conventions

» Gy represents the main procedure.

» The start node sy of Gg is often abbreviated by s.

» The sets of nodes and edges N; und E;, 0 </ < k, are
assumed to be pairwise disjoint.

» N=g U{N;|i€{0,...,k}} and
E=4 \U{Ei|i €{0,...,k}} denote the set of all nodes
and edges of a flow graph system.

8.1

» E.,; C E denotes the set of edges, which represent a
procedure call, for short, the set of call edges.

332/513

Interprocedural Flow Graphs

Definition (8.1.2, Interprocedural Flow Graph)

A flow graph system S induces an interprocedural flow graph,
where the flow graphs of S are melted to a single flow graph
G*=(N* E* s* e*).

G* evolves from S by replacing each call edge e of a procedure

7 by two new edges e. and e,. 81

The edge e. connects the source node of e w/ the start node
of the called procedure.

The edge e, connects the end node of the called procedure w/
the final node of e.

333/513

[llustration: Interprocedural Flow Graph

Tpiabx,y P micd /,—’/ f;=(;;y)
1

1 .
'f = (at+b)

&-O—8. 050 ¢

334/513

Unnecessary nodes and edges may be removed

335/513

Notations and Conventions (Cont'd)

» The set of new edges in an interprocedural flow graph are
called the call edges and return edges of G*, and are
denoted by Ef und E;.

» EX,=ar EZ UE; denotes the set of call and return edges

call—

of G*.

8.1

336/513

Towards Interprocedural DFA (1)

Lifting the analysis level from elements to functions leads to
the “functional” MaxFP approach. It relies on:

The “functional” MaxFP equation system:

| de if n=s
[1= { [H{[(n,m)]Jo[[m]l| m€ pred(n)} otherwise

By
Il :N—=(C—C)

we denote the greatest solution of the above equation system.

8.1

337/513

Towards Interprocedural DFA (2)

Intuitively

The functional MaxFP approach lifts the (basic) MaxFP
approach to the level of functions, i.e.

8.1

» The MaxFP solution is not computed for a single lattice
element as start information but simultaneously for all.

338/513

Towards Interprocedural DFA (3)

(Basic) MaxFP approach vs. functional MaxFP approach:
The Equivalence Theorem 8.1.3 characterizes the relationship
of the basic MaxFP approach and the functional MaxFP
approach:

Theorem (8.1.3, Equivalence)
Vne NVe eC. MaxFPgpp(n)(c)=Inl"(c)

8.1

In the following we will overload the symbol [[]| and use it to
also denote the greatest fixed point [[n]]* of the functional
MaxFP equation system.

339/513

Outlook

The functional perspective of the MaxFP approach is the key
to

» interprocedural (i.e., of programs w/ procedures)

8.1

» parallel (i.e., of programs w/ parallelism)

data flow analysis.

340/513

Chapter 8.1.1

Local Abstract Semantics

341/513

(Local) Abstract Semantics

Two components:
» Data flow analysis lattice C= (C,muU,C,1L,T)

» Data flow analysis functional [] : E* = (C —C)

Note: In the parameterless base setting call edges and return
edges of E* are given the identity function on C as their
semantics.

342/513

Chapter 8.1.2
The IMOP Approach

343/513

Interprocedurally Valid Paths (1)

Observations:

» The notion of finite paths for intraprocedural flow graphs
extends naturally to interprocedural flow graphs.

» Unlike, however, as in intraprocedural flow graphs, where
each path connecting two nodes represents (up to
non-determinism) a possible execution of the program,
this does not hold for interprocedural flow graphs.

» In interprocedural DFA this is taken care of by focusing
on interprocedurally valid paths.

344/513

Interprocedurally Valid Paths (2)

Intuitively:
Interprocedurally valid paths respect the call/return behaviour
of procedures.

Definition (8.1.2.1, Interprocedurally Valid Path)

Identifying call and return edges of G* with opening and

closing brackets “(" and “)", the set of interprocedurally valid

paths is given by the set of prefix-closed expressions of the o1s
language of balanced bracket expressions.

Notation:

In the following we denote the set of interprocedurally valid
paths (for short: interprocedural paths) from a node m to a
node n by IP[m, n].

345/513

Interprocedurally Valid Paths (3)

Observation:

If we consider the sequences of edge labelings (we suppose
that each edge is uniquely labeled by some mark) of a path as
word of a formal language, then the set of intraprocedurally
valid paths is given by a regular language, the one of inter-
procedurally valid paths by a context-free language.

Note:

» Sharir and Pnueli gave an algorithmic definition of inter-
procedurally valid paths in 1981.

8.1.2

» An immediate definition of interprocedurally valid paths in
terms of a context-free language is possible, too.

» The definition of interprocedurally valid paths as in Defini-
tion 8.1.2.1 is due to Reps, Horwitz, and Sagiv, POPL'95.

346/513

The IMOP Approach

The IMOP Solution:

Ve eCVneN. IMOP (n)=u4 I 1{[p]'(c)|p €IP[s,n]}

8.1.2
where IP[s, n] denotes the set of interprocedurally valid paths
from s to n.

347/513

Chapter 8.1.3
The IMaxFP Approach

348/513

The IMaxFP Approach (1)

The IMaxFP approach is a two-stage approach.

Stage 1: Preprocess — The Semantics of Procedures

The 2nd Order IMaxFP Equation System 8.1.3.1

1=
/dc ifnG{SO,...,Sk} 613
|—|{[[(m,n)JoIm]l|m € predhowcrapn(n)(n)} otherwise

and
[1el if e € E\E.ay
[el= { [end(caller(e))]] otherwise

349/513

The IMaxFP Approach (2)

Stage 2: Main Process — The “Actual” Interprocedural DFA

The 1st Order IMaxFP Equation System 8.1.3.2
inf (n)=

¢ ifn=s
[1{inf (src(e))|e € caller(flowGraph(n))} if n € {s1,... sp}s
[1{ L (m, n) [(inf (m))|m € prediowcrapn(n)(n) } otherwise

350/513

The IMaxFP Approach (3)

The IMaxFP Solution:

Ve €CVne N IMaxFP (n)=g inf ((n)

8.1.3
8.1.4

8.1.6

351/513

Notations

We introduce the following mappings on a flow graph system

S:

» flowGraph : N U E — S maps the nodes and edges of S to
the flow graph containing them.

» callee : E.,; — S maps every call edge to the flow graph
of the called procedure.

» caller : S — P(E..y) maps every flow graph to the set of 813
call edges calling it.
» start : S — {sg,...,Sk} and end : S —{eo,...,ex} map

every flow graph of S to its start node and stop node.

352/513

Chapter 8.1.4

Main Results

353/513

Main Results — 1st Stage

Safety&coincidence results of the 2nd-order 1st-stage analysis:

Theorem (8.1.4.1, 2nd Order)
For all e € E,; hold:

1. [elSTH[p] | p € CIP[src(e), dst(e)]}, if the data
flow analysis functional [| is monotonic.

2. [el=THIp] | p € CIP[src(e), dst(e)]}, if the data 814
flow analysis functional [] is distributive.

where the mappings src and dst yield the start and final node
of an edge.

354/513

Complete Interprocedural Paths

Definition (8.1.4.2, Complete Interprocedural Path)

An interprocedural path p from the start node s; of a proce-

dure G;, i € {0,..., k}, to a node n within G; is complete, if
every procedure call, i.e., call edge, along p is completed by a
corresponding procedure return, i.e., a return edge.

We denote the set of all complete interprocedural paths from
s; to n with CIP[s;, n.

Note: S
» Intuitively, the completeness requirement states that the
occurrences of s; and n belong to the same incarnation of
the procedure.
» We have that the subpaths of a complete interprocedural
path that belong to a procedure call, are either disjoint or
properly nested.

355/513

Main Results — 2nd Stage

Safety&coincidence results of the 1st-order 2nd-stage analysis:

Theorem (8.1.4.3, Interprocedural Safety)

The IMaxFP solution is a safe, i.e., a lower approximation of
the IMOP solution, i.e.

Ve € CVne N IMaxFP.(n) T IMOP(n)

if the data flow analysis functional [| is monotonic.

Theorem (8.1.4.4, Interprocedural Coincidence)
The IMaxFP solution coincides with the IMOP solution, i.e.

Ve €CVne N. IMaxFP . (n)=IMOP_(n)

if the data flow analysis functional | |’ is distributive. 256/513

Chapter 8.1.5
Algorithms

357/513

The 2nd Order IMaxFP-Alg. 8.1.5.1 -

Preprocess

Input: (1) A flow-graph system S, and (2) an abstract semantics
consisting of a data-flow lattice C, and a data-flow functional
[1:E"—(C—0).

Output: Under the assumption of termination (cf. Theorem
8.1.5.4), an annotation of S with functions [[n]] : C — C (stored in
gtr , which stands for global transformation), and [e] : C—C
(stored in [tr , which stands for local transformation) representing
the greatest solution of the 2nd order Equation System 8.1.3.1.

Remark: The variable workset controls the iterative process. Its 15
elements are nodes of the flow-graph system S. Note that due to

the mutual interdependence of the definitions of [[]| and [] the

iterative approximation of [[]| is superposed by an interprocedural

iteration step, which updates the current approximation of the

effect [] of call edges. The temporary meet stores the result of

the most recent meet operation. EREE

The 2nd Order IMaxFP-Alg. 8.1.5.1 -

Preprocess

(Prologue: Initializing the annotation arrays gtr and /tr and the
variable workset)
FORALL ne N DO

IF ne {So, . .,Sk} THEN gtr [n] = lde

ELSE gtr [n]:= T{¢c— ¢ FI OD;

FORALL e € E DO

IF e € Ecoy THEN Jtr [e] := T¢ — ¢] ELSE ftr [e] := [e] FI o1s
OD;
workset = {sg,...,sk};

359/513

The 2nd Order IMaxFP-Alg. 8.1.5.1 -

Preprocess

(Main process: lterative fixed point computation)
WHILE workset # () DO
CHOOSE m € workset ;
workset := workset\{m};
(Update the successor-environment of node m)
IF me {el,...,ek}
THEN
FORALL e € caller(flowGraph(m)) DO
Itr[e] := gtr[m];
meet := ltr[e] o gtr[src(e)] M gtr[dst(e)];
IF gtr[dst(e)] O meet
THEN
gtr[dst(e)] := meet;
workset := workset U {dst(e)}
FI
oD

360/513

The 2nd Order IMaxFP-Alg. 8.1.5.1 -

Preprocess

ELSE (i.e., m € {el, ey ek})
FORALL n e SuccflowGraph(m)(m) DO
meet := Itr[(m, n)] o gtr[m] M gtr[n];
IF gtr[n] O meet
THEN
gtr[n] := meet;
workset := workset U {n}
FI
oD
FI
ESOOHC
OD.

361/513

The 1st Order IMaxFP-Alg. 8.1.5.2 — Main
Process

Input: (1) A flow-graph system S, (2) an abstract semantics con-
sisting of a data-flow lattice C, and a data-flow functional [] com-
puted by Algorithm 8.1.5.1, and (3) a context information ¢s € C.

Output: Under the assumption of termination (cf. Theorem
8.5.1.4), the IMaxFP-solution. Depending on the properties of the
data-flow functional, this has the following interpretation:

(1) [1 is distributive: variable inf stores for every node the
strongest component information valid there wrt the context
information cs.

(2) [] is monotonic: variable inf stores for every node a valid
component information wrt the context information ¢, i.e., a lower
bound of the strongest component information valid there.

Remark: The variable workset controls the iterative process. Its
elements are nodes of the flow-graph system S. The temporary
meet stores the result of the most recent meet operation.

362/513

The 1st Order IMaxFP-Alg. 8.1.5.2 — Main
Process

(Prologue: Initialization of the annotation array inf and the
variable workset)

FORALL n € N\{so} DO inf[n]:= T OD;

inf[so] := ¢s;

workset := {'sg };

363/513

The 1st Order IMaxFP-Alg. 8.1.5.2 — Main

Process

(Main process: lterative fixed point computation)
WHILE workset # () DO
CHOOSE m € workset;
workset := workset\{ m };
(Update the successor-environment of node m)
FORALL n € succhowGraph(m)(m) DO
meet := [(m, n) [(inf[m]) M inf[n];
IF inf[n] O meet
THEN
inf[n] := meet;
workset := workset U {n}
Fl;

364/513

The 1st Order IMaxFP-Alg. 8.1.5.2 — Main

Process

IF (mv n) € Ecall
THEN
meet := inf[m] M inf[start(callee((m, n)))];
IF inf[start(callee((m, n)))] 3 meet
THEN
inf [start(callee((m, n)))] := meet;
workset := workset U { start(callee((m, n))) }
FI
FI
oD
ESOOHC
OD.

365/513

A 1st Variant of the IMaxFP-Algorithm

» Algorithm 8.1.5.3 uses the semantics functions computed
by Algorithm 8.1.5.1 more efficiently.

» Algorithm 8.1.5.1 and 8.1.5.3 constitute a pair of
algorithms computing the /IMaxFP solution, too.

» Replacing Algorithm 8.5.1.2 by Algorithm 8.1.5.3 has no
impact on Algorithm 8.1.5.1.

» Unlike Algorithm 8.1.5.2, Algorithm 8.1.5.3 does not
iterate over all nodes but only over procedure start nodes.
After stabilization of the solution for the start nodes, a
single run over all other nodes in the epilogue suffices to
compute the IMaxFP solution at every node.

366/513

The 1st Order IMaxFP-Alg. 8.1.5.3 — The

“Functional” Main Process

Input: (1) A flow-graph system S, (2) an abstract semantics
consisting of a data-flow lattice C, and the data-flow functionals
[NI=qr gtr and []|=qr Itr with respect to C (computed by
Algorithm 8.1.5.1), and (4) a context information ¢ € C.

Output: Under the assumption of termination (cf. Theorem
8.1.5.4), the IMaxFP-solution. Depending on the properties of the
data-flow functional, this has the following interpretation:

(1) [] is distributive: variable inf stores for every node the
strongest component information valid there wrt the context
information c;.

(2) [1 is monotonic: variable inf stores for every node a valid
component information wrt the context information ¢, i.e., a lower
bound of the strongest component information valid there.

Remark: The variable workset controls the iterative process, and
the temporary meet stores the most recent approximation.

367/513

The 1st Order IMaxFP-Alg. 8.1.5.3 — The
“Functional” Main Process

(Prologue: Initialization of the annotation array inf, and the
variable workset)

FORALL s € {s;|i € {1,...,k}} DO inf[s]:= T OD;
inf[so] := ¢s;

workset := {s;|i € {1,2,...,k}};

368/513

The 1st Order IMaxFP-Alg. 8.1.5.3 — The

“Functional” Main Process

(Main process: Iterative fixed point computation)
WHILE workset # () DO
CHOOSE s € workset;
workset := workset\{s};
meet := inf[s] N[1{[src(e) J(inf[start(flowGraph(e))]) |
ec
caller(flowGraph(s)) };
IF inf[s] O meet
THEN
inf[s] := meet;
workset := workset U {start(callee(e))| e € Ecay.
flowGraph(e) = flowGraph(s) }
FI
ESOOHC
OD;

369/513

The 1st Order IMaxFP-Alg. 8.1.5.3 — The

“Functional” Main Process

(Epilogue)
FORALL ne N\{s;|i € {0,..., k}} DO
inf[n]:= [[n[|(inf[start(flowGraph(n))]) OD.

370/513

Termination

Theorem (8.1.5.4, Termination)

The sequential composition of Algorithm 8.1.5.1 and
Algorithm 8.1.5.2 resp. Algorithm 8.1.5.3 terminates with the
IMaxFP solution, if the data flow analysis functional [| is
monotonic and the function lattice [C — C| satisfies the
descending chain condition.

Note: The descending chain condition on [C — C] implies the
descending chain condition on C.

371/513

A 2nd Variant of the IMaxFP-Algorithm (1)

Partial instead of total computation of the semantics of the
procedures:

» Unlike to the previous two algorithm variants, the new
variant allows an interleaving of preprocess and main
process.

» The computation starts with the main process algorithm.

» If a procedure call is encountered during the iterative
process, the preprocess algorithm is started for this
procedure and the current data flow fact.

» After completion of the computation of the effect of the
procedure for this data flow fact, the main process algo-
rithm is continued with the computed result.

372/513

A 2nd Variant of the IMaxFP-Algorithm (2)

Note:

» The computation of the semantics of the procedures is
performed demand-drivenly.

» The semantics of procedures are only computed as as far
as necessary.

» Overall, this results in some efficiency gain in practice,
which, however, is difficult to quantify.

373/513

Chapter 8.1.6
Applications

374/513

Applications

» For the parameterless base setting the specifications of
intraprocedural DFA problems can be reused unmodified.

» In order to be effective, the descending chain condition
must hold both for the data flow analysis lattice and its
corresponding function lattice.

» This condition holds in particular for all bitvector
problems (availability of expressions, lifeness of variables,
reaching definitions, etc.) but not for simple constants.
Therefore, weaker and simpler classes of constants are
used interprocedurally, e.g., the set of linear constants.

8.1.6

375/513

Chapter 8.2
The General Setting

376/513

Outline

We extend our setting by adding

» Value parameters

» Local variables

This requires to adjust our program representations towards

» Flow graph systems (FGS) w/ value parameters and local
variables

» Interprocedural flow graphs (IFG) w/ value parameters
and local variables

8.2

377/513

FGS w/ Value Parameters and Local Variables

main; VAR a,b,x,z procedure T (f,g); VAR y

X :=a+b

O

call Tt (x,a+b)

a:=a+b

call T (y,x+y)

378/513

IFG w/ Value Parameters and Local Variables

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.2

@ o o ™
o
w N e

SRR

o

8.3

8.5

379/513

New Phenomena

...related to procedures, value parameters, and local variables.

Conceptually most important:

» Existence of an unlimited number of copies (incarnations)
of local variables and value parameters at run-time due to
recursive procedures.

» After termination of a recursive procedure call the local
variables and value parameters of the proceding not yet
finished procedure call become valid again.

» The run-time system handles this phenomena by means of
of a run-time stack which stores the activation records of
the various procedure incarnations.

8.2

For program analysis, we have to take these phenomena into

account and to model them properly.
380/513

Data Flow Analysis Stacks

Intuitively:

» DFA stacks are a compile-time equivalent of run-time
stacks.

» Entries in DFA stacks are data flow facts of an underlying
DFA lattics C.

» We denote the set of all non-empty DFA stacks by
STACK.

8.2

381/513

Manipulating DFA Stacks

DFA stacks can be manipulated by:

1. newstack : C — STACK
newstack(c) generates a new DFA stack with entry c.

2. push: STACK x C— STACK
push stores a new entry on top of a DFA stack.

3. pop: STACK — STACK
pop removes the top-most entry of a DFA stack.

4. top: STACK —C
top yields the contents of the top-most entry of a DFA
stack w/out modifying the stack.

8.2

382/513

Remarks (1)

» The usual stack function emptystack : — STACK is
replaced by newstack. Empty DFA stacks are not

considered since they do not occur in interprocedural
DFA.

» push and pop allow to manipulate the top-most entries of
a DFA stack. This is different to and less flexible as for
run-time stacks but suffices for interprocedural DFA.

» In fact, DFA stacks are only conceptually relevant, i.e.,
for the specifying, i.e., for the specifying IMOP approach 82
but not for the algorithmic IMaxFP approach.

383/513

Remarks (2)

» Like run-time stacks DFA stacks store that part of the
history of a program path that is relevant after finishing a
procedure call.

» DFA stack entries can be considered abstractions of the
activation records of procedure calls.

» The top-most entry of a DFA stack represents always the
currently valid activation record (therefore, DFA stacks
are never empty).

» Other than the top-most DFA stack entries represent the 62
activation records of already started but not yet finished
procedure calls.

384/513

Chapter 8.2.1

Local Abstract Semantics

385/513

Basic Local Abstract Semantics

Basic Local Abstract Semantics on DFA Lattice

1. DFA lattics C=(C,n,U,C, L, T)
2. DFA functional [J': E*— (C —=C)
3. Return functional R : E.oy — (C x C —C)

8.2.1

386/513

Induced Local Abstract Semantics

Induced Local Abstract Semantics on DFA Stacks

» DFA functional [|* : E* — (STACK — STACK) on DFA
stacks induced by a basic local abstract semantics that is

defined by
Vee E* Vstk € STACK. [e]"(stk)=ur

push(pop(stk), [e] (top(stk))) if e € E*\ES,
push(stk, [e] (top(stk))) ifec E;

push(pop(pop(stk)), R(top(pop(stk)), [e]'(top(stk))).)

ifeeE;

8.2.1

387/513

Notations related to DFA Stacks

» STACK>; (STACK <, etc.), i € N denotes the set of all
DFA Stacks w/ at last (at most, etc.) i entries (hence
STACK equals STACK ».

» STACK;, i € N, denotes the set of all DFA Stacks w/
exactly / entries.

» .y denotes the number of entries of the DFA stack stk.

» stk;, 1 < i < ¥y, denotes the ith entry of the DFA stack
stk.

8.2.1

388/513

Properties

Lemma (8.2.1.1)
Let e € E* and stk € STK. Then we have:
STKy,, ife € E*\E},
L. [el'(stkye s STKy_, 41 ife€E;
STKy ife€ Ef Ns > 2

stk—1

ﬂe]]*(k)) pop(stk) ifeekE” \ call
3. pop([e]"(stk)) =stk, ife € E}
[e = (stk)) = pop(pop(stk)), if e € Ef Nsp > 2

8.2.1

389/513

Structure of the Semantic Functions

All semantic functions occurring in interprocedural DFA are an
element of the following subsets of the set of all functions
F=q4r [STACK — STACK | on DFA stacks:

> ord

> psh

> Fpop

These functions are characterized by:

Fora=dar { f € F|Vstk € STACK. pop(f(stk))= pop(stk) }
Fpsh=ar { f € F |V stk € STACK. pop(f(stk)) = stk } 021

Fpop=df { f € F|Vstk € STACK >5. pop(f(stk)) = pop(pop(stk)) }

390/513

Properties

Lemma (8.2.1.2)

V fop € Fpop Vo, fy € Fora YV hon €
ersh- foOfo/: fppofoofph e‘Ford

Lemma (8.2.1.3)
1. Vee EX\EX,. [e]" € Fou
2. VeeE: [e]" € Fush
3.VecEr. [el € Foop

8.2.1

391/513

Significant Part of DFA Functions

Only the two top-most entries of DFA stacks are modified by
DFA functions. This gives rise to the following definition:
Definition (8.2.1.4, Significant Part)

> f € FordU Fpsn: Then f5: C —C is defined by:
fs(c)=ar top(f(newstack(c)))

» f € Fpop: Then f5:C x C—C is defined by:
fs(c1, c2)=ar top(f (push(newstack(cy), c2))) (Note that
C x C is a lattice, if C is a lattice.)

We have:

8.2.1

Lemma (8.2.1.5)
1. Vee EN\E;. [el:=[e]
2.Ve€EVa,elCxC. [e]i=Rea,[e] ()

392/513

Properties

Lemma (8.2.1.6)
1. Ve € EX\E., Vstk € STK. [e]"(stk) = stk’ with sppr = Vst and

) ,_ Stki lfl< ﬂstk
V1<i< s Stki —df { [[e H:(Stkﬂsrk) if I =gk

2. Ve € E Vstk € STK. [e]"(stk) = stk’ with Osyr = stk + 1 and

. ' stk; if i <O +1
TS0 Dt { Stk i 11

3. Ve € Ef Vstk € STK>a. [e]"(stk) = stk” with Osyr = Isek — 1 and

stk; ifi<Osy — 1

V1= 1< Yeio. sthi=ar { [el:(stho 1 5tho,,) if i=deu — 1

8.2.1

393/513

S-Monotonicity, S-Distributivity

Definition (8.2.1.7, S-Monotonicity, S-Distributivity)
A DFA function f € FoqU FpsplU Fpop IS
1. s-monotonic iff £ is monotonic

2. s-distributive iff £ is distributive o

304/513

Properties

Lemma (8.2.1.8)

For all e € E* the function [e]* is s-monotonic
(s-distributive), if
e € EX\E*: [e] is monotonic (distributive)

ecE': [e] and R. are monotonic (distributive)

8.2.1

305/513

Conventions

In the following medskip

» we consider s-monotonicity and s-distributivity as
generalizations of the usual monotonicity and
distributivity.

To this end, we
» identify lattice elements with their representation as a
DFA stack with just a single entry.

» extend the meet and join operation M and LI in the
following fashion to (the top most entries of) DFA stacks:
8.2.1

[1STK =4 newstack(l 1{top(stk)|stk € STK})

LISTK =4 newstack(LI{top(stk)|stk € STK})

306/513

Chapter 8.2.2
The IMOPs Approach

397/513

The IMOPs;, Approach

The IMOPs, Solution:

VCS ceCVneN. II\/IOPgtkCS(n):df
[T{[p] (newstack(c))| p € IP[s, n] }

308/513

Chapter 8.2.3
The IMaxFPs; Approach

399/513

Preliminaries

Let
» ldstack denote the identity on STACK, and
» [1 the pointwise meet-operation on F,,4

Note:
> VI € Fog. F M =g " € Forg with V stk €

STACK. topl(f"(stk))=top(f(stk)) M top(f'(stk)).
» “M" induces an inclusion relation “C " on F,4 by:

fCf gdw. fr1f' =f.

8.2.3

400/513

The IMaxFPs, Approach (1)

The effects of procedures (2nd Order):

The 2nd Order Equation System 8.2.3.1

|_|{|I (m, n)]] o I][m]]] | me predf/owGraph(n)(n)}
otherwise

ldstack if n € start(S)
[=

and

_J el if e € E\Ecyy 525
[el= { [e] ol end(callee(e))Jo[e.]" otherwise

401/513

The IMaxFPs, Approach (2)

The 1st Order IMaxFPs;, Equation System 8.2.3.2:

newstack(cs) if n=sg
[T{[e.]"(inf (src(e)))|e € caller(flowGraph(n)) }
inf (n)= falls n € start(S)\{so}

P (m, n) 1(inf (m)) | n;] € predsioncraph(n) (1) }
otherwise

The IMaxFPs Solution:
Ve € CVne N. IMaxFPsc (n)=gr inf? (n) 623

402/513

Chapter 8.2.4

Main Results

403/513

Main Results (1)

Important:

Lemma (8.2.4.1)

For all n € N we have that the semantic functions [e]",
eckE”,

1. s-monotonic: [n]] C imop,,
2. s-distributive: [n]| = imop,,
where imop,, : N — (STACK — STACK) denotes a functional

that is defined by

Vne N. imop,=q

ldstack ifne start(S)
[H[p]" | p € CIP[start(flowGraph(n)), n]} otherwise

8.2.4

404/513

Main Results (2)

Theorem (8.2.4.2, 2nd-Order)
For all e € E_,;; we have:

L [elSTH[p]" |p € CIP[src(e), dst(e)]}, if [1" is

s-monotonic.
2. [e]l=TH[pr]"|pec CIP[src(e), dst(e)]}, if[] is

s-distributive.

8.2.4

405/513

Main Results (3)
Theorem (8.2.4.3, Interprocedural Safety)

The IMaxFPsy solution is a lower (i.e., safe) approximation of
the IMOPs, solution, i.e.

Ve,elCVneNlN. IMaxFPgtsz(n) C /MOPstkcs(n)
if[T° is s-monotonic.

Theorem (8.2.4.4, Interprocedural Coincidence)

The IMaxFPs, solution coincides with the IMOPs. solution,
ie.

Ve € CVne N. IMaxFPsyc (n) = IMOPsy (n)

if [17 is s-distributive.

406/513

Chapter 8.2.5
Algorithms

407/513

Algorithms

» The algorithms of chapter xx can straightforwardly be
extended to stack-based functions.

» This way we receive
» The standard variant of pre- and post-process
» The more efficient variant of pre- and functional main
process
» a demand-driven “by-need” variant

» In the following we present another stackless variant. The

clou of this variant is that stacks have at most 2 entries
during analysis time.

Therefore, a single temporary storing the temporarily
existing stack entry during procedure calls is sufficient for
the implementation.

8.2.5

408/513

Stackless IMaxFPsy Alg. 8.2.5.1 / Preprocess
(2nd Order)

Input: (1) A flow-graph system S, and (2) an abstract semantics
consisting of a data-flow lattice C, and a data-flow functional
[1:E"—(C—0).

Output: Under the assumption of termination (cf. Theorem
8.2.5.4), an annotation of S with functions [n]] : C — C (stored in
gtr, which stands for global transformation), and [e] : C—C
(stored in [tr, which stands for local transformation) representing
the greatest solution of Equation System 8.2.3.1.

Remark: The variable workset controls the iterative process. Its
elements are nodes of the flow-graph system S. Note that due to
the mutual interdependence of the definitions of [[]| and [] the
iterative approximation of [[]| is superposed by an interprocedural
iteration step, which updates the current approximation of the
effect [] of call edges. The temporary meet stores the result of
the most recent meet operation. G

Stackless IMaxFPsy Alg. 8.2.5.1 / Preprocess
(2nd Order)

(Prologue: Initialization of the annotation arrays gtr and /tr and
the variable workset)
FORALL ne N DO

IF ne {So, ey Sk} THEN gtr[n] = lde

ELSE gtr[n]:= T{¢c — ¢ FI OD;

FORALL e € E DO

IF e € E.oy THEN Jtr[e]:=[e] o Tie—cyolec ¥

ELSE /trle]:=[e] FI OD; (x)

workset := {sg, ..., Sk};

8.2.5

410/513

Stackless IMaxFPsy Alg. 8.2.5.1 / Preprocess

(2nd Order)

(Main process: lterative fixed point computation)
WHILE workset # () DO
CHOOSE m € workset;
workset := workset\{ m };
(Update the successor-environment of node m)
IF me {el,...,ek}
THEN
FORALL e € caller(flowGraph(m)) DO
Itr[e] := Re o (Idc, [e-] o gtr[m] o[ec]');
meet := ltr[e] o gtr[src(e)] M gtr[dst(e)];
IF gtr[dst(e)] O meet
THEN
gtr[dst(e)] := meet;
workset := workset U {dst(e)}
FI
oD

8.2.5

411/513

Stackless IMaxFPsy Alg. 8.2.5.1 / Preprocess
(2nd Order)

ELSE (i.e., m g {el, ey ek})
FORALL n e SuccflowGraph(m)(m) DO
meet := Itr[(m, n)] o gtr[m] M gtr[n];
IF gtr[n] O meet
THEN
gtr[n] := meet;
workset := workset U {n}
FI
oD
FI
ESOOHC
OD.

8.2.5

412/513

Stackless IMaxFPsy Alg. 8.5.2.2 / Main
Process (1st Order)

Input: (1) A flow-graph system S, (2) an abstract semantics consisting of
a data-flow lattice C, and a data-flow functional [] computed by
Algorithm 8.5.2.1, and (3) a context information ¢ € C.

Output: Under the assumption of termination (cf. Theorem 8.5.2.4), the
IMaxFPsy; ss-solution. Depending on the properties of the data-flow
functional, this has the following interpretation:

(1) [1 is distributive: variable inf stores for every node the strongest
component information valid there with respect to the context
information c;.

(2) [1is monotonic: variable inf stores for every node a valid
component information with respect to the context information ¢, i.e., a
lower bound of the strongest component information valid there.

Remark: The variable workset controls the iterative process. Its elements
are nodes of the flow-graph system S. The temporary meet stores the
result of the most recent meet operation.

8.2.5

413/513

Stackless IMaxFPsy-Alg. 8.2.5.2 / Main
Process (1st Order)

(Prologue: Initialization of the annotation array inf and the
variable workset)
FORALL n € N\{so} DO inf[n]:= T OD;
inf[so] := ¢s;
workset := { sg };
(Main process: lterative fixed point computation)
WHILE workset # () DO
CHOOSE m € workset;
workset := workset\{ m },
(Update the successor-environment of node m)
FORALL n € succfiowGraph(m)(m) DO
meet := [(m, n) [(inf[m]) M inf[n];
IF inf[n] O meet oo
THEN
inf[n] := meet;
workset :== workset U {n} FI, I

Stackless IMaxFPsy Alg. 8.2.5.2 / Main
Process (1st Order)

IF (m, n) S Eca/l
THEN

meet := [(m, n) ' (inf[m])1
inf [start(callee((m, n)))]; (x)
IF (m, n) € Eqy
THEN
meet := [(m, n).] (inf[m])1
inf [start(callee((m, n)))]; (%)
IF inf[start(callee((m, n)))] 3 meet
THEN

inf [start(callee((m, n)))] := meet;
workset := workset U { start(callee((m, n))) }
FI
Fi
oD

ESOOHC OD. 415/513

Stackless IMaxFPsy Alg. 8.2.5.3 /

“Functional” Main Process

Input: (1) A flow-graph system S, (2) an abstract semantics consisting of
a data-flow lattice C, and the data-flow functionals [[J|=q4r gtr and

[1=ar ltr with respect to C (computed by Algorithm 8.5.2.1), and (4) a
context information ¢ € C.

Output: Under the assumption of termination (cf. Theorem 8.5.2.4), the
IMaxFPsy ss-solution. Depending on the properties of the data-flow
functional, this has the following interpretation:

(1) [] is distributive: variable inf stores for every node the strongest
component information valid there with respect to the context
information c;.

(2) [1 is monotonic: variable inf stores for every node a valid
component information with respect to the context information ¢, i.e., a
lower bound of the strongest component information valid there.

Remark: The variable workset controls the iterative process, and the
temporary meet stores the most recent approximation.

8.2.5

416/513

Stackless IMaxFPsy-Alg. 8.2.5.3 /

“Functional” Main Process

(Prologue: Initialization of the annotation array inf, and the
variable workset)

FORALL s € {s;|i €{1,...,k}} DO inf[s]:= T OD;

inf[so] := ¢s;

workset := {s;|i € {1,2,...,k}};

Cowo oo
o [T T
oo s w

8.2.5

417/513

Stackless IMaxFPsy-Alg. 8.2.5.3 /

“Functional” Main Process

(Main process: lterative fixed point computation)
WHILE workset # () DO
CHOOSE s € workset;
workset := workset\{s};
meet := inf[s]M
[Y[ec] o[src(e) [(inf[start(flowGraph(e))]) |
e € caller(flowGraph(s)) };
IF inf[s] O meet
THEN
inf[s] := meet;
workset := workset U
{start(callee(e)) | e € Ecay-
flowGraph(e) = flowGraph(s) }
Fl
ESOOHC
OD:;

(%)

8.2.5

418/513

Stackless IMaxFPsy-Alg. 8.2.5.3 /

“Functional” Main Process

(Epilogue)

FORALL n € N\{s;|i € {0,...,k}} DO
inf[n] := [[n[|(inf[start(flowGraph(n))])

OD.

8.2.4
8.2.5

419/513

Termination

Theorem (8.5.2.4, Termination)

The sequential composition of Algorithm 8.5.2.1 and
Algorithmus 8.5.2.2 resp. Algorithm 8.5.2.3 terminates with
the IMaxFPsy. solution, if the DFA functional [| and the
return functional R are monotonic and the lattice of functions
[C — C] satisfies the descending chain condition.

Note: If [C — C] satisfies the descending chain condition, then
C does so as well.

8.2.5

420/513

Chapter 8.3

Extensions

421/513

Extensions

» Further parameter transfer mechanisms

» Reference parameters
» Procedural parameters, for short: procedure parameters

» Static nesting of procedures

8.3

422/513

Reference Parameters

Intuitively:

» The effect of reference parameters is encoded in the local
semantic functionals of the application problems.

» Reference parameters can thus be handled and computed
by suitable preprocess computing may and must aliases of
variables and parameters.

» The computed alias information is then fed into the
definitions of the local semantics functions of the
application problems (cf. Chapter 8.4)

8.3

423/513

Procedure Parameter

Intuitively:

» A formal procedure call is replaced by the set of all
ordinary procedure calls that it may call.

» This set of procedures can be computed by a suitable
preprocess; dependingy on the program or programming
language class this can be either a safe approximation or
an exact solution.

» The computed calling information for formal procedure
call reduces then the analysis of programs w/ formal
procedure calls to the analysis of programs w/out formal
procedure calls.

8.3

424/513

Static Procedure Nesting

Various variants are possible.

» De-nesting of procedures by a suitable preprocess; this
way the analysis of programs w/ static procedure nesting
is reduced to analysing programs w/out static procedure
nesting.

» Taking into account the effect of relatively global
variables in the definition of the local semantics functions
of the application problems.

8.3

425/513

Chapter 8.4
Applications

8.4

426/513

Preliminaries
In the following we assume:

» No static procedure nesting, no procedure parameters.

» MstAliases g(v) und MayAliases o(v) denote the sets of
must-Aliases and may-Aliases different from v.

These notions can straightforward be extended to terms t:

» A term t’ is a must-alias (may-alias) of t, if t’ results
from t by replacing of variables by variables that are
must-aliases (may-aliases) of each other.

This allows us to feed alias information in a parameterized

fashion into the definitions of DFA functionals and return
functionals and to take their effects during the analysis into 84
account.

427/513

Notations (1)

» GlobVar(S): the set of global variables of S, i.e., the set
of variables which are declared in the main program of S.
They are accessible in each procedure of S.

» Var(t): the set of variables occurring in t.

» LhsVar(e): the left hand side variable of the assignment
of edge e.

» Globld(t) and Locld(t): abbreviations of
GlobVar(S) N Var(t) and Var(t)\ GlobVar(S).

428/513

Notations (2)

» NoGlobalChanges : E* — B: indicates that if a variable
v € Var(t) is modified by e, then this modification will
not be visible after finishing the call as the relevant
memory location of v is local for the currently active call.

» PotAccessible : S — B: indicates that the memory
locations of all variables v € Var(t), which are accessible
immediately before entering G remain accessible after
entering it, either by referring to v itself or by referring to
one of its must-aliases.

429/513

Local Predicates

The definition of the preceding functions relies on the
predicates Transp .4 and Transp ¢4 that are defined as
follows:

Transp Locld(e):df
Locld(t) N MayAliases fourapn(e)(LhsVar(e)) = 0

Transp copiq(€)=ar Globld(t) N
(LhsVar(e) U MayAliases go,crapn(e)(LhsVar(e))) = 0

This allows us to define:

Ve € E*. NoGlobalChanges(e)
B true ifec EXUE;
9\ Transp ,gq(n) A Transp gipa(n) otherwise

430/513

Alias-Information Parameterized Local
Predicates (1)

Vee E*. A-Comp =4 Comp, V Compg/’StAl
" = true if e ELy
Veec E*. A-Transp ;=4 Transp, N\ { Transp ™A1 otherwise

8.4

431/513

Alias-Information Parameterized Local
Predicates (2)

Intuitively:

» A-Comp, is true for t, if t itself (i.e., Comp,) or one of
its must-aliases is computed at edge e (i.e., Comp M),

» A-Transp,, e € E*\E},,, is true, if neither an operand of
t (i.e., Transp,.) nor one of its may-aliases is modified by
the statement at edge e (i.e., Transp V).

» For call and return edges e € E};, A-Transp, is true, if
no operand of t is modified (i.e., Transp,). This makes
the difference between ordinary assignments and reference
parameters and parameter transfers to reference
parameters; the latter are updates of pointers leaving the

memory except of that invariant. 84

432/513

Finally

» Bx=qr {false, true, failure}

Note: The element failure is introduced as an artifical
T-element in B in order to be prepared for reverse data flow
analysis as required for demand-driven data flow analysis

(cf. LVA 185.276 Analysis and Verification).

433/513

Interprocedural Availability (1)

Local Abstract Semantics:

1. Data flow lattice:
(C,M U E, L, T)=u (B%, A, V, <
, (false, false), (failure, failure))

2. Data flow functional: [[, : E* — (B% — B%) defined by
Ve e E V(b by) € Bx. [el,, (b1, bo)=ar (by, by)

where

by=gr A-Transp, A (A-Comp, V by)

b by A NoGlobalChanges, if e € E*\E}
274 Y true otherwise .

434/513

Interprocedural Availability (2)

3. Return functional: R,, : E.y— (Bx x By — B%)
defined by VeceE. V((bl, bg), (b3, b4)) € Bi X Bg(
Rav(e)((b1, b2), (b3, ba))=ar (bs, bs) where

b bs if PotAccessible (callee(e))
79 (by V A-Comp_) A b, otherwise

be=qr bo N\ by

435/513

Interprocedural Availability (3)

Lemma (8.4.1)

1. The lattice By and the induced lattice of functions satisfy
the descending chain condition.

2. The functionals |]];v and R,, are distributive.

~> Hence, the preconditions of the Interprocedural Coinci-
dence Theorem and the Termination Theorem are satisfied.

436/513

Interprocedural Simple Constants

Local Abstract Semantics:
1. Data flow lattice:
(Ca I—]7 |—|7 Ea J—; T):df (ZX7 I—]7 |—|7 Ea 01, O failure)
2. Data flow functional: []];C : E— (Xx — Xx) defined by
VeeE. ﬂe]];czdfﬁe
3. Return functional: R @ Ecap — (Xx X £x — Xx)
defined by

Vec Eca// V(O'l,O'g)) S ZX X Zx. Rsc(e)(O'l,O'g):df o3

where

oa2(x) if x € GlobVar(S)

Vx € Var. o3(x)=qf { o1(x) otherwise

437/513

Problems and Solutions/Work-Arounds

In practice

» the preceding analysis specification for simple
interprocedural constants does not induce a terminating
analysis since the lattice of functions does not satisfy the
descending chain condition

» thus simpler constant propagation problems are
considered like copy constants and linear constants

8.4

438/513

Copy Constants and Linear Constants

A term is a

» copy constant at a program point, if it is a source-code
constant or an operator-less term that is itself a copy
constant

» linear constant at a program point, if it is a source-code
constant or of the form ax x + b w/ a, b source-code
constants and x a linear constant.

439/513

Interprocedural Copy Constants (1)

The specification of copy constants is based on the following
simpler evaluation function of terms:

Eee ' T— (XEx — D)

& is undefined for the failure state opjje; Otherwise it is
defined as follows:

o(x) ift=xeV
VteTVoeX. E(t)(o)=ar § b(c) ift=ceC
1 otherwise

Note that X x is analogously to Bx extended by an artificial
top-element.

440/513

Interprocedural Copy Constants (2)

» Replacing 6, in & by & yields the data flow analysis
functional []..

» Replacing of |]]ISC by |]]/CC yields the definition of the
local abstract semantics of interprocedural copy
constants.

441/513

Interprocedural Copy Constants (3)

Note:

» The number of source-code constants is finite.

» Hence, the lattice of functions that belongs to the
relevant sublattice >, of X x satisfies the descending
chain condition.

» Thus, the IMaxFP algorithm terminates.

» Unlike as interprocedural simple constants are copy con-
stants distributive; thus, the IMaxFPs. solution and the
IMOPs, solution coincide.

442/513

Interprocedural Copy Constants (4)

Lemma (8.4.2)

1. The lattice ., and the induced lattice of functions
satisfy the descending chain condition.

2. The functionals |]]ICC and R are distributive.

Therefore, the preconditions of the Interprocedural Coinci-
dence Theorem 8.2.4.4 and the Termination Theorem are
satisfied.

443/513

Chapter 8.5

Interprocedural DFA: Framework and Toolkit

444/513

Interprocedural DFA: The Framework View

The interprocedural DFA Framework at a glance:

Step 2

V

@B C 11RO g

Theory : Practice

Computation Tool 2
(Preprocess)

Computed Solutior

[[E— -

Interprocedural
Carrecmex’s Lemma

Procedure Call Effects Step 3
(]
[Computation Tool |
(Main Process)
<
Interprocedural

Correctness Lemma

Computed Solutio

Interprocedural
Coines

IMOP-Solution

Step 1

Theorem
IMFP—Solution

8.5

445/513

Interprocedural DFA: The Toolkit View

The Toolkit View of the interprocedural DFA Framework:

C
Interprocedural_ - 1
e L)
ification R
@
Interprocedural : %" Theory || Practic
DFA
Framework s
‘Tool Ki

In

In
Corre

corem
IMFP-Solution

P Equivalence
S
9

8.5

446/513

Further Reading for Chapter 8 (1)

[§ Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey
D. Ullman. Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 2nd edition, 2007. (Chapter 12, Inter-
procedural Analysis)

[§ Randy Allen, Ken Kennedy. Optimizing Compilers for
Modern Architectures. Morgan Kaufman Publishers, 2002.
(Chapter 11, Interprocedural Analysis and Optimization) -

[{ Jens Knoop. Optimal Interprocedural Program Optimiza-
tion: A New Framework and Its Application. Springer-Ver-
lag, LNCS 1428, 1998. (Chapter 10, Interprocedural Code
Motion: The Transformations, Chapter 11, Interprocedural
Code Motion: The IDFA-Algorithms)

I
oo s wN

8.5

447/513

Further Reading for Chapter 8 (2)

[§ Jens Knoop. Formal Callability and its Relevance and
Application to Interprocedural Data Flow Analysis. In
Proceedings of the 6th IEEE International Conference on
Computer Languages (ICCL'98), 252-261, 1998.

[@ Jens Knoop. From DFA-Frameworks to DFA-Generators:
A Unifying Multiparadigm Approach. In Proceedings of the

5th International Conference on Tools and Algorithms for .
the Construction and Analysis of Systems (TACAS’99), o2
Springer-Verlag, LNCS 1579, 360-374, 1999.
[@ Jens Knoop, Bernhard Steffen. The Interprocedural {{T
Coincidence Theorem. In Proceedings of the 4th j“
International Conference on Compiler Construction o

(CC'92), Springer-Verlag, LNCS 641, 125-140, 1992. o4

8.5

448/513

Chapter 9
IDFA — The Call String Approach

Chap. 9

449/513

See Separate Slide Package.

Chap. 9

450/513

Part |V

Extensions, Other Settings

Chap. 9

451/513

Chapter 10
Aliasing

Chap. 10

452/513

See Separate Slide Package.

Chap. 10

453/513

Chapter 11

Optimizations for Object-Oriented Languages

Chap. 11

454/513

See Separate Slide Package.

Chap. 11

455/513

Chapter 12
Slicing

Chap. 12

456/513

See Separate Slide Package.

Chap. 12

457/513

Part V

Conclusions and Prospectives

Chap. 12

458/513

Chapter 13

Summary and Outlook

Chap. 13

459/513

Ein Fazit bzw...

Die Frage nach dem Sinn des Lebens, was haben wir alles
erreicht bzw...

» Was haben wir alles betrachtet?
Das wenigste!

Oder umgekehrt...

» Was haben wir alles nicht betrachtet?

Das meiste!
Chap. 13

460/513

Insbesondere nicht (oder nicht im Detail) (1)

» Erweiterungen syntaktischer PRE neben PDCE/PRAE
» Lazy Strength Reduction

> e

» Semantische Erweiterungen

» Semantic Code Motion/Code Placement
» Semantic Strength Reduction

> e

» Sprachausweitungen

» Interprozeduralitat Chap. 13
» Parallelitat

> e

461/513

Insbesondere nicht (oder nicht im Detail) (1)

» Dynamische, profilgestiitzte Erweiterungen

» Spekulative PRE

> ...

Chap. 13

462/513

Literaturhinweise (1)

» Syntaktische PRE

» Knoop, J., Rithing, O., and Steffen, B. Retrospective:
Lazy Code Motion. In "20 Years of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (1979 - 1999): A Selection”, ACM
SIGPLAN Notices 39, 4 (2004), 460 - 461 & 462-472.

» Knoop, J., Riithing, O., and Steffen, B. Optimal code
motion: Theory and practice. ACM Transactions on
Programming Languages and Systems 16, 4 (1994),
1117 - 1155.

» Riithing, O., Knoop, J., and Steffen, B. Sparse code
motion. In Conference Record of the 27th Annual ACM Chap. 13
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2000) (Boston, MA,
Jan. 19 - 21, 2000), ACM New York, (2000), 170 - 183.

463/513

Literaturhinweise (2)

» FElimination partiell toten Codes

» Knoop, J., Riithing, O., and Steffen, B. Partial dead
code elimination. In Proceedings of the ACM
SIGPLAN’'94 Conference on Programming Language
Design and Implementation (PLDI'94) (Orlando, FL,
USA, June 20 - 24, 1994), ACM SIGPLAN Notices 29, 6
(1994), 147 - 158.

» Elimination partiell redundanter Anweisungen

» Knoop, J., Riithing, O., and Steffen, B. The power of
assignment motion. In Proceedings of the ACM
SIGPLAN'95 Conference on Programming Language Chap. 13
Design and Implementation (PLDI'95) (La Jolla, CA,
USA, June 18 - 21, 1995), ACM SIGPLAN Notices 30, 6
(1995), 233 - 245.

464/513

Literaturhinweise (3)

» BB- vs. EA-Graphen

» Knoop, J., Koschiitzki, D., and Steffen, B. Basic-block
graphs: Living dinosaurs? In Proceedings of the 7th
International Conference on Compiler Construction
(CC'98) (Lisbon, Portugal, March 30 - April 3, 1998),
Springer-Verlag, Heidelberg, LNCS 1383 (1998), 65 - 79.

» Schieben vs. Platzieren

» Knoop, J., Rithing, O., and Steffen, B. Code motion
and code placement: Just synonyms? In Proceedings of
the 7th European Symposium On Programming
(ESOP’98) (Lisbon, Portugal, March 30 - April 3, 1998),
Springer-Verlag, Heidelberg, LNCS 1381 (1998), 154 -
169.

Chap. 13

465/513

Literaturhinweise (4)

> Spekulative vs. klassische PRE

» Scholz, B., Horspool, N. and Knoop, J. Optimizing for
space and time usage with speculative partial
redundancy elimination. In Proceedings of the ACM
SIGPLAN/SIGBED 2004 Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES
2004) (Washington, DC, June 11 - 13, 2004), ACM
SIGPLAN Notices 39, 7 (2004), 221 -230.

» Xue, J., Knoop, J. A fresh look at PRE as a maximum
flow problem. In Proceedings of the 15th International
Conference on Compiler Construction (CC 2006)
(Vienna, Austria, March 25 - April 2, 2006),
Springer-Verlag, Heidelberg, LNCS 3923 (2006), 139 -
154,

Chap. 13

466/513

Literaturhinweise (5)

» Weitere Techniken und spezielle Verfahren

» Geser, A., Knoop, J., Littgen, G., Riithing, O., and

> ..

Steffen, B. Non-monotone fixpoint iterations to resolve
second order effects. In Proceedings of the 6th
International Conference on Compiler Construction
(CC'96) (Linkoping, Sweden, April 24 - 26, 1996),
Springer-Verlag, Heidelberg, LNCS 1060 (1996), 106 -
120.

Knoop, J., and Mehofer, E. Optimal distribution
assignment placement. In Proceedings of the 3rd
European Conference on Parallel Processing
(Euro-Par'97) (Passau, Germany, August 26 - 29, 1997),
Springer-V., Heidelberg, LNCS 1300 (1997), 364 - 373. S
Knoop, J., Riithing, O., and Steffen, B. Lazy strength
reduction. Journal of Programming Languages 1, 1
(1993), 71 - 91.

.. siehe auch www.complang.tuwien.ac.at/knoop ey

Further Reading for Chapter 13

[@ Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition, Springer-
Verlag, 2005. (Chapter 1, Introduction; Chapter 2, Data
Flow Analysis; Chapter 6, Algorithms)

Chap. 13

468/513

Bibliography

Bibliograj

469/513

Recommended Reading

...for deepened and independent studies.

» | Textbooks

» |l Monographs
» Il Volumes

» |l Articles

Bibliograj

470/513

| Textbooks (1)

B

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey
D. Ullman. Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 2nd edition, 2007.

Randy Allen, Ken Kennedy. Optimizing Compilers for
Modern Architectures. Morgan Kaufman Publishers, 2002.

Keith D. Cooper, Linda Torczon. Engineering a Compiler.
Morgan Kaufman Publishers, 2004.

Matthew S. Hecht. Flow Analysis of Computer Programs.
Elsevier, North-Holland, 1977.

Janusz Laski, William Stanley. Software Verification and Bibliogray
Analysis. Springer-Verlag, 2009.

471/513

| Textbooks (2)

[4 Robert Morgan. Building an Optimizing Compiler. Digital
Press, 1998.

[Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: A Formal Introduction. Wiley, 1992.

[§ Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: An Appetizer. Springer-Verlag, 2007.

[§ Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition, Springer-
Verlag, 2005.

[4 Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung: Sprachdesign und Programmiertechnik. Springer-
Verlag, 2006.

Bibliograj

472/513

Il Monographs

[4 Jens Knoop. Optimal Interprocedural Program Optimiza-
tion: A New Framework and Its Application. Springer-Ver-
lag, LNCS 1428, 1998.

[4 Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997.

Bibliograj

473/513

11 Volumes

[4 Y. N. Srikant, Priti Shankar. The Compiler Design Hand-
book: Optimizations and Machine Code Generation. 1st
edition, CRC Press, 2002.

[4 Y. N. Srikant, Priti Shankar. The Compiler Design Hand-

book: Optimizations and Machine Code Generation. 2nd
edition, CRC Press, 2008.

Bibliograj

474/513

Il Articles (1)

B

B

Andrei P. Ershov. On Programming of Arithmetic Opera-
tions. Communications of the ACM 1(8):3-6, 1958.

John B. Kam, Jeffrey D. Ullman. Monotone Data Flow
Analysis Frameworks. Acta Informatica 7:305-317, 1977.

Gary A. Kildall. A Unified Approach to Global Program
Optimization. In Conference Record of the 1st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL'73), 194-206, 1973.

Jens Knoop. Formal Callability and its Relevance and
Application to Interprocedural Data Flow Analysis. In
Proceedings of the 6th IEEE International Conference on
Computer Languages (ICCL'98), 252-261, 1998.

Bibliograj

475/513

11l Articles (2)

[4 Jens Knoop. From DFA-Frameworks to DFA-Generators:
A Unifying Multiparadigm Approach. In Proceedings of the
5th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS'99),
Springer-Verlag, LNCS 1579, 360-374, 1999.

[@ Jens Knoop, Dirk Koschiitzki, Bernhard Steffen.
Basic-block Graphs: Living Dinosaurs?. In Proceedings of
the 7th International Conference on Compiler Construction
(CC'98), Springer-Verlag, LNCS 1383, 65-79, 1998).

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Lazy Code
Motion. In Proceedings of the ACM SIGPLAN Conf-
erence on Programming Language Design and Implemen- Biblicgra
tation (PLDI'92), ACM SIGPLAN Notices 27(7):224-234,
1992.

476/513

Il Articles (3)

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Optimal
Code Motion: Theory and Practice. ACM Transactions on
Programming Languages and Systems 16(4):1117-1155,
1994,

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen. Code
Motion and Code Placement: Just Synonyms? In Pro-
ceedings of the 7th European Symposium on Program-
ming (ESOP'98), Springer-Verlag, LNCS 1381, 154-169,
1998.

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen. Expansion-
based Removal of Semantic Partial Redundancies. In Pro-
ceedings of the 8th International Conference on Compiler Bibliogray
Construction (CC'99), Springer-Verlag, LNCS 1575,
91-106, 1999.

477/513

Il Articles (4)

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Partial
Dead Code Elimination. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI'94), ACM SIGPLAN Notices
29(6):147-158, 1994.

[@ Jens Knoop, Oliver Riithing, Bernhard Steffen. The Power
of Assignment Motion. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI'95), ACM SIGPLAN Notices
30(6):233-245, 1995.

[§ Jens Knoop, Oliver Riithing, Bernhard Steffen. Retrospec-
tive: Lazy Code Motion. In “20 Years of the ACM Bibliogray
SIGPLAN Conference on Programming Language Design
and Implementation (1979 - 1999): A Selection”, ACM
SIGPLAN Notices 39(4):460-461&462-472, 2004.

478/513

Il Articles (5)

[4 Jens Knoop, Bernhard Steffen. The Interprocedural
Coincidence Theorem. In Proceedings of the 4th
International Conference on Compiler Construction

(CC'92), Springer-Verlag, LNCS 641, 125-140, 1992.

[4 Jens Knoop, Bernhard Steffen. Code Motion for Explicitly
Parallel Programs. In Proceedings of the 7th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP'99), ACM SIGPLAN
Notices 34(8):13-24, 1999.

[4 Etienne Morel, Claude Renvoise. Global Optimization by
Suppression of Partial Redundancies. Communications of Bibliogray
the ACM 22(2):96-103, 1979.

479/513

Il Articles (6)

[@ Oliver Riithing, Jens Knoop, Bernhard Steffen. Sparse
Code Motion. In Conference Record of the 27th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2000), 170-183, 2000.

[4 Bernhard Steffen. Optimal Run Time Optimization —
Proved by a New Look at Abstract Interpretation. In Pro-
ceedings of the 2nd Joint Conference on Theory and Prac-
tice of Software Development (TAPSOFT'87), Springer-
Verlag, LNCS 249, 52-68, 1987.

[4 Bernhard Steffen. Property-Oriented Expansion. In Pro-
ceedings of the 3rd Static Analysis Symposium (SAS'96), Bibliogra
Springer-Verlag, LNCS 1145, 22-41, 1996.

480/513

Il Articles (7)

[§ Bernhard Steffen, Jens Knoop, Oliver Riithing. The Value
Flow Graph: A Program Representation for Optimal Pro-
gram Transformations. In Proceedings of the 3rd European
Symposium on Programming (ESOP’90), Springer-Verlag,
LNCS 432, 389-405, 1990.

[d Jens Knoop, Oliver Riithing, Bernhard Steffen. Lazy
Strength Reduction. Journal of Programming Languages
1(1):71-91, 1993.

[§ Bernhard Steffen, Jens Knoop, Oliver Riithing. Efficient
Code Motion and an Adaption to Strength Reduction. In
Proceedings of the 4th International Joint Conference on
Theory and Practice of Software Development
(TAPSOFT'91), Springer-Verlag, LNCS 494, 394-415,
1991.

Bibliograj

481/513

Appendix

Appendix

482/513

A

Mathematical Foundations

A

483/513

A.l

Sets and Relations

Al

484/513

Sets and Relations

Let M be a set and R a relationon M, i.e. RC M x M.
Then R is called

> reflexive iff Yme M. mRm
» transitive iff Ym.npe M. mRn N nRp = mRp
» anti-symmetric iff Vm,ne M. mRn AN nRm = m=n

Related notions (though less important for us here)...
» symmetric iff Vmne M. mRn <= nRm
> total iff Ymne M. mRn V nRm

Al

485/513

A.2
Partially Ordered Sets

A2

486/513

Partially Ordered Sets

A relation R on M is called a

» quasi-order iff R is reflexive and transitive

» partial order iff R is reflexive, transitive, and
anti-symmetric

For the sake of completeness we recall

» equivalence relation iff R is reflexive, transitive, and
symmetric

...i.e., a partial order is an anti-symmetric quasi-order, an
equivalence relation a symmetric quasi-order.

Note: We here use terms like “partial order” as a short hand
for the more accurate term “partially ordered set.”

A2

487/513

Bounds, least and greatest Elements

Let (Q,C) be a quasi-order, let g € Q and Q' C Q.

Then q is called

» upper (lower) bound of @', insigns: Q' C q (¢ C Q'), if
forall ¢ € @ holds: ¢ C q (g C ¢')

» least upper (greatest lower) bound of Q', if g is an upper
(lower) bound of Q" and for every other upper (lower)
bound § of @ holds: ¢ C § (§ C q)

» greatest (least) element of Q, if holds: Q C g (¢ C Q)

A2

488/513

Uniqueness of Bounds

» Given a partial order, least upper and greatest lower
bounds are uniquely determined, if they exist.

» Given existence (and thus uniqueness), the least upper
(greatest lower) bound of a set P’ C P of the basic set of
a partial order (P, C) is denoted by LIP’ (['1P’). These
elements are also called supremum and infimum of P’.

» Analogously this holds for least and greatest elements.
Given existence, these elements are usually denoted by |
and T.

A2

489/513

A3

Lattices

A3
490/513

Lattices and Complete Lattices

Let (P,C) be a partial order.

Then (P,C) is called a
» lattice, if each finite subset P’ of P contains a least upper
and a greatest lower bound in P
» complete lattice, if each subset P’ of P contains a least
upper and a greatest lower bound in P

...(complete) lattices are special partial orders.

A3
491/513

A.4
Complete Partially Ordered Sets

A492/513

Complete Partial Orders

...a slightly weaker notion that in computer science, however,
is often sufficient and thus often a more adequate notion:

Let (P,C) be a partial order.

Then (P,C) is called

» complete, or shorter a CPO (complete partial order), if
each ascending chain C C P has a least upper bound in
P.

We have:

» A CPO (C,C) (more accurate would be: “chain-complete
partially ordered set (CCPO)") has always a least element.
This element is uniquely determined as supremum of the
empty chain and usually denoted by 1: 1 =4 L.

493/513

Chains

Let (P,C) be a partial order.

A subset C C P is called

» chain of P, if the elements of C are totally ordered. For
C:{Co ECl ECQ E} ({Cog Clg C2; }) we also

speak more precisely of an ascending (descending) chain
of P.

A chain C is called

» finite, if C is finite; infinite otherwise.

A494/513

Finite Chains, finite Elements

A partial order (P,C) is called

» chain-finite (German: kettenendlich) iff P is free of
infinite chains

An element p € P is called

» finite iff the set Q=4 {q € P|q C p} is free of infinite
chains

» finite relative to r € P iff the set
Q=4r{qg € P|r C g C p} is free of infinite chains

495/513

(Standard) CPO Constructions 1(4)

Flat CPOs:
Let (C,C) be a CPO. Then (C,C) is called
» flat, if forall c,d € Cholds: cCd< c=1 V c=d

Cy

1

496/513

(Standard) CPO Constructions 2(4)

Product construction.

Let (P1,C1), (P2, C2),...,(Ps,C,) be CPOs. Then...
» the non-strict (direct) product (X P;, C) with
» (XP,E)=(P1 x Py X ...x P, C) with
V(p1.p2,- -5 Pn)s
(g1,92,---,9n) € XPi. (p1,p2,---,Pn) E
(91,92,...,qn) © Vie{l,....,n}. pi C; q;
» and the strict (direct) product (smash product) with
» (QPLE)=(PL®Pr®...® P,,C), where C is defined
as above under the additional constraint:

(Pl,P27-~aPn):J-<=>E|I'€{1,...,n}. p,':J_I-

are CPOs, too.

497/513

(Standard) CPO Constructions 3(4)

Sum construction.
Let (P1,C4), (P2, 52), ..., (P, E,) CPOs. Then
» the direct sum (€ P;, C) with...

» (P P,C)= (PLUP, U ... U P, C) disjoint union of P;,
ie{l,....n}andVp,ge PP,. pCgeIic
{1,...,n}. p,ge Pi AN pCiq

is a CPO.
Note: The least elements of (P;,C;), i € {1,...,n} are
usually identified, i.e., L=4¢ L;, i € {1,...,n}

A498/513

(Standard) CPO Constructions 4(4)

Function space.

Let (C,Cc¢) and (D,Cp) be two CPOs and [C — D]=4f
{f : C — D | f continuous} the set of continuous functions
from C to D.

Then
» the continuous function space ([C — D],C) is a CPO
where
» Vi,ge[C—D]l.fCg<=VceC. f(c)Cp g(c)

A499/513

Functions on CPOs / Properties

Let (C,C¢) and (D,Cp) be two CPOs and let f : C — D be
a function from C to D.
Then f is called

» monotone iff V¢, ¢’ € C. c Cc ¢ = f(c) Cp f(c')
(Preservation of the ordering of elements)

» continuous iff YV C' C C. f(LUcC") =p LUpf(C)
(Preservation of least upper bounds)

Let (C,C) be a CPO and let f : C — C be a function on C.
Then f is called

» inflationary (increasing) iff Vc € C. ¢ C f(c)

®Q0/513

Functions on CPOs / Results

Using the notations introduced before

Lemma
f is monotone iff ¥ C' C C. f(LdcC") Tp LUpf(C)

Corollary

A continuous function is always monotone, i.e. f continuous
= f monotone.

RQ1/513

A.5

Fixed Point Theorem

502/513

Least and greatest Fixed Points 1(2)

Let (C,C) be a CPO, f : C — C be a function on C and let ¢
be an element of C, i.e., c € C.

Then c is called

» fixed point of f iff f(c) = ¢

A fixed point ¢ of f is called
» least fixed point of f iff Vd € C. f(d)=d =cCd
» greatest fixed point of f iff Vd € C. f(d)=d=dCc

503/513

Least and greatest Fixed Points 2(2)

Let d,cy € C. Then ¢y is called

» conditional (German: bedingter) least fixed point of f wrt
d iff ¢y is the least fixed point of C with d C ¢y, i.e. for
all other fixed points x of f with d C x holds: ¢, C x.

Notations:
The least resp. greatest fixed point of a function f is usually
denoted by uf resp. vf.

504/513

Fixed Point Theorem

Theorem (Knaster/Tarski, Kleene)

Let (C,C) be a CPO and let f : C — C be a continuous
function on C.

Then f has a least fixed point uf, which equals the least
upper bound of the chain (so-called Kleene-Chain)
{1, f(L), f2(L),...}, ie

pf =Ujen, F1(L) = LI{ L, F(L), F2(L),...}

505/513

Proof of the Fixed Point Theorem 1(4)

We have to prove: uf
1. exists
2. is a fixed point

3. is the least fixed point

506/513

Proof of the Fixed Point Theorem 2(4)

1. Existence

» It holds f© L =1 and L C ¢ forall c € C.

» By means of (natural) induction we can show:
f71L C f"¢ for all c € C.

» Thus we have "1 C f™_L for all n, m with n < m.
Hence, {f"L | n > 0} is a (non-finite) chain of C.

» The existence of |_|,-€|N0 fi(L) is thus an immediate
consequence of the CPO properties of (C,C).

507/513

Proof of the Fixed Point Theorem 3(4)

2. Fixed point property

f(Wieno (L))
(f continuous) = Llien F(F'L)
= Uen,f'L
(K chain = LUK=10UK) = (UWen,f L) U L

(fOL:L) = I—IieNofil

508/513

Proof of the Fixed Point Theorem 4(4)

3. Least fixed point

» Let ¢ be an arbitrarily chosen fixed point of f. Then we
have | C ¢, and hence also "1 C f"c for all n > 0.

» Thus, we have f"1 C ¢ because of our choice of ¢ as
fixed point of f.

> Th.us, we also have that ¢ is an upper bound of
{f'(L) | i € No}.

» Since |_|,-€|N0 fi(L) is the least upper bound of this chain
by definition, we obtain as desired Ll;jcp, f(L) C c.

509/513

Conditional Fixed Points

Theorem (Conditional Fixed Points)

Let (C,C) be a CPO, let f : C — C be a continuous,
inflationary function on C, and let d € C.

Then f has a unique conditional fixed point ufy. This fixed
point equals the least upper bound of the chain

{d,f(d), f*(d),.. .}, ie
pfy=Uieno £(d) = LI{d, £(d), 3(d),...}

510/513

Finite Fixed Points

Theorem (Finite Fixed Points)

Let (C,C) be a CPO and let f : C — C be a continuous
function on C.

Then we have: If two elements in a row occurring in the
Kleene-chain of f are equal, e.g. f'(L)=f"*1(L), then we
have: puf =fi(L1).

511/513

Existence of Finite Fixed Points

Sufficient conditions for the existence of finite fixed points
e.g. are

» Finiteness of domain and range of f

» f is of the form f(c)=c Ll g(c) for monotone g on some
chain-complete domain

512/513

Appendix A: Further Reading

[§ Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: A Formal Introduction. Wiley, 1992.
(Chapter 4, Denotational Semantics)

[§ Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: An Appetizer. Springer-Verlag, 2007.
(Chapter 5, Denotational Semantics)

[§ Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. 2nd edition, Springer-
Verlag, 2005. (Appendix A, Partially Ordered Sets)

[§ Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung: Sprachdesign und Programmiertechnik. Springer-
Verlag, 2006. (Chapter 10, Beispiel: Berechnung von
Fixpunkten)

Al
A2

A3
513/513

	Table of Contents
	1 Motivation
	2 Program Analysis
	3 First Examples
	3.1 Forward Analyses
	3.2 Backward Analyses
	3.3 Framework

	4 Program Representation
	5 The Intraprocedural DFA Framework
	5.1: The MOP Approach
	5.2: The MaxFP Approach
	5.3: Coincidence and Safety Theorem
	5.4: Two Examples: Available Expressions and Simple Constants

	6 Partielle Redundanzelimination
	6.1 Motivation
	6.2 The PRE Algorithm of Morel&Renvoise
	6.3 Formalizing Code Motion
	6.4 Busy Code Motion
	6.5 Lazy Code Motion
	6.6 An Extended Example
	6.7 Implementing Busy and Lazy Code Motion
	6.8 Sparse Code Motion

	7 More on Code Motion
	7.1 Code Motion vs. Code Placement
	7.2 Interactions of Elementary Transformations
	7.3 Paradigm Impacts
	7.4 Extending Code Motion to Strength Reduction

	8 IDFA – The Functional Approach
	8.1 The Base Setting
	8.2 The General Setting
	8.3: Extensions
	8.4: Applications
	8.5: Interprocedural DFA: Framework and Toolkit

	9 IDFA – The Call String Approach
	10 Aliasing
	11 Optimizations for Object-Oriented Languages
	12 Slicing
	13 Summary and Outlook
	Bibliography
	Appendix
	A: Mathematical Foundations
	A.1: Sets and Relations
	A.2: Partially Ordered Sets
	A.3: Lattices
	A.4: Complete Partially Ordered Sets
	A.5: Fixed Point Theorems

