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Overview

• Object layout and method invocation

– Single inheritance

– Multiple Inheritance

• Devirtualization

– Class hierarchy analysis

– Rapid type analysis

– Inlining

• Escape Analysis

– Connection graphs

– Intra-procedural

– Inter-procedural
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Object Layout and Method Invocation

The memory layout of an object and how the layout supports

dynamic dispatch are crucial factors for performance.

• Single Inheritance

– with and without virtual dispatch table (i.e., direct calling

guarded by a type test)

• Multiple Inheritance

...various techniques with different compromises

– embedding superclasses

– trampolines

– table compression
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Single Inheritance Layout

class Point {

int x, y;

}

class ColorPnt extends Point {

int color;

}

Point -

x

y

ColorPnt -

x

y

color

• Memory layout of an object of a superclass is a prefix of the

memory layout of an object of the subclass

• Instance variables access requires just one load or store

instruction
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Single Inheritance Layout with vtbl

class Point {

int x, y;

void move(int x, int y) {...}

void draw() {...}

}

class ColorPnt extends Point {

int color;

void draw() {...}

void setcolor(int c) {...}

}

ColorPnt -

vtblptr

x

y

color

Point -

vtblptr

x

y

-

-

moveptr

drawptr

setcolorptr

moveptr

drawptr

-

-

-

-

draw

setcolor

move

draw
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Invocation of Virtual Methods with vtbl

• Dynamic dispatching using a vtbl has the advantage of

being fast and executing in constant time.

• It is possible to add new methods and to override methods

• Each method is assigned a fixed offset in the virtual method

table (vtbl)

• Method invocation is just three machine code instructions

LDQ vtblptr,(obj) ; load vtbl pointer

LDQ mptr,method(vtblptr) ; load method pointer

JSR (mptr) ; call method

• One extra word of memory is needed in each object for the

pointer to the virtual method table (vtbl)
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Dispatch Without Virtual Method Tables

Despite the use of branch target caches, indirect branches are

expensive on modern architectures.

The pointer to the class information and virtual method table is

replaced by a type identifier:

• A type identifier is an integer representing the type of the object

• It is used in a dispatch function which searches for the type of the

receiver

• Example: SmallEiffel (binary search)

• Dispatch functions are shared between calls with the same

statically determined set of concrete types

• In the dispatch function a direct branch to the dispatched

method is used (or it is inlined)
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Example

Let type identifiers TA, TB , TC ,

and TD be sorted by increas-

ing number. The dispatch

code for calling x.f is:

if idx ≤ TB then

if idx ≤ TA then fA(x)

else fB(x)

else if idx ≤ TC then fC(x)

else fD(x)

Comparison with dispatching using a virtual method table

• Empirical study showed that for a method invocation with

three concrete types, dispatching with binary search is

between 10% and 48% faster

• For a megamorphic call with 50 concrete types, the

performance is about the same
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Multiple Inheritance

• Extending the superclasses as in single inheritance does not

work anymore

• Fields of superclass are embedded as contiguous block

• Embedding allows fast access to instance variables exactly

as in single inheritance

• Garbage collection becomes more complex because

pointers also point into the middle of objects
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Object Memory Layout (without vtbl)

class Point {

int x, y;

}

class Colored {

int color;

}

class ColorPnt extends Point, Colored {

}

Point -

x

y

Colored -

color
ColorPnt

Point

Colored

-

-

x

y

color
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Dynamic Dispatching for Embedding

• Allows fast access to instance variables exactly as with single

inheritance

• For every superclass

– virtual method tables have to be created

– multiple vtbl pointers are included in the object

• The object pointer is adjusted to the embedded object

whenever explicit or implicit pointer casting occurs

(assignments, type casts, parameter and result passing)
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Multiple Inheritance with vtbl

class Point {

int x, y;

void move(int x, int y) {...}

void draw() {...}

}

class Colored {

int color;

void setcolor(int c) {...}

}

class ColorPnt extends Point, Colored {

void draw() {...}

}
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Multiple Inheritance with vtbl

ColorPnt -

Point

Colored -

vtblptr

x

y

vtblptr

color

Colored -

vtblptr

color

Point -

vtblptr

x

y

-

-

-

-

0

0

3

0

0

0

0

moveptr

drawptr

setcolorptr

setcolorptr

setcolorptr

moveptr

drawptr

-

-

-

-

draw

setcolor

move

draw
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Pointer Adjustment and Adjustment Offset

Pointer adjustment has to be suppressed for casts of null pointers:

Colored col; ColorPnt cp; ...;

col = cp; // if (cp!=null)col=(Colored)((int*)cp+3)

Problem with implicit casts from actual receiver to formal

receiver

• Caller has no type info of formal receiver in the callee

• Callee has no type info of actual receiver of the caller

• Therefore this type info has to be stored as an adjustment

offset in the vtbl
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Method Invocation with vtbl

Method invocation now takes 4 to 5 machine instructions

(depending on the architecture).

LD vtblptr,(obj) ; load vtbl pointer

LD mptr,method_ptr(vtblptr) ; load method pointer

LD off,method_off(vtblptr) ; load adjustment offset

ADD obj,off,obj ; adjust receiver

JSR (mptr) ; call method

This overhead in table space and program code is even

necessary when multiple inheritance is not used (in the code).

Furthermore, adjustments to the remaining parameters and the

result are not possible.
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Trampoline

To eliminate much of the overhead a small piece of code,

called trampolin is inserted that performs the pointer

adjustments and the jumps to the original code.

The advantages are

• smaller table size (no storing of an offset)

• fast method invocation when multiple inheritance is not used

– the same dispatch code as in single inheritance

The method pointer setcolorptr in the virtual method table of

Colorpoint would (instead) point to code which adds 3 to the

receiver before jumping to the code of method setcolor:

ADD obj,3,obj ; adjust receiver

BR setcolor ; call method
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Lookup at Compile-Time

Invoking a method requires looking up the address of the

method and passing control to it.

In some cases, the lookup may be performed at compile-time:

• There is only one implementation of the method in the class

and its subclasses

• The language provides a declaration that forces the call to

be non-virtual

• The compiler has performed static analysis that can

determine that a unique implementation is always called at

a particular call site.

In other cases, a runtime lookup is required.
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Dispatch Table

In principle the lookup can be implemented as indexing a

two-dimensional table. A number is given to

• each method in the program

• each class in the program

The method call

result = obj.m(a1,a2);

can be implemented by following three actions:

1. Fetch a pointer to the appropriate row of the dispatch table

from the object obj.

2. Index the dispatch table row with the method number.

3. Transfer control to the address obtained.
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Dispatch Table Compression (1)

• Virtual Tables

– effective method for statically typed languages

– methods can be numbered compactly for each class hierarchy

to leave no unused entries in each vtbl

• Row Displacement Compression

– idea: combine all rows into a single very large vector

– it is possible to have rows overlapping as long as an entry in one

row corresponds to empty entries in the other rows

– greedy algorithm: place first row; for all subsequent rows: place

on top and shift right if conflicts exist.

– unchanged: implementation of method invocation

– penalty: verify class of current object at the beginning of any

method that can be accessed via more than one row
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Dispatch Table Compression (2)

• Selector Coloring Compression

– graph coloring: two rows can be merged if no column contains

different method addresses for the two classes

– graph: one node per class; an edge connects two nodes if the

corresponding classes provide different implementations for the

same method name

– coloring: each color corresponds to the index for a row in the

compressed table

– each object contains a reference to a possibly shared row

– unchanged: implementation of method invocation code

– penalty: if classes C1 and C2 share the same row and C1

implements method m whereas C2 does not, then the code for

m should begin with a check that control was reached via

dispatching on an object of type C1.
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Devirtualization

Devirtualization is a technique to reduce the overhead of virtual

method invocation.

The aim of this techique is to statically determine which methods

can be invoked by virtual method calls.

• If exactly one method is resolved for a method call, the

method can be inlined or the virtual method call can be

replaced by a static method call.

The analyses necessary for devirtualization also improve the

accuracy of the call graph and the accuracy of subsequent

interprocedural analyses.
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Class Hierarchy Analysis

The simplest devirtualization technique is class hierarchy analysis

(CHA), which determines the class hierarchy used in a program.

The information about all referenced classes is used to create a

conservative approximation of the class hierarchy.

• The transitive closure of all classes referenced by the class

containing the main method is computed.

• The declared types of the receiver of a virtual method call

are used for determining all possible receivers
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Example: Class Hierarchy Analysis

class A extends Object {

void m1() {...}

void m2() {...}

}

class B extends A {

void m1() {...}

}

class C extends A {

void m1() {...}

public static void main(...) {

A a = new A();

B b = new B();

...

a.m1(); b.m1(); b.m2();

}

}
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Example: Class Hierarchy and Call Graph

"!
# 
"!
# "!
# 
"!
# 

m1()
B

m1()
C

m2()
m1()
A

Object

�
�

@
@

A.m1 B.m1 C.m1 A.m2

C.main
a.m1() b.m1() b.m2()

�
�	

@
@R

PPPPPPq
�

�	
@
@R
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CHA Algorithm
main // the main method in a program

x() // call of static method x

type(x) // the declared type of the expression x

x.y() // call of virtual method y in expression x

subtype(x) // x and all classes which are a subtype of class x

method(x, y) // the method y which is defined for class x

callgraph := main

hierarchy := {}

for each m ∈ callgraph do

for each mstat() occuring in m do

if mstat 6∈ callgraph then

add mstat to callgraph

for each e.mvir() occuring in m do

for each c ∈ subtype(type(e)) do

mdef := method(c,mvir)

if mdef 6∈ callgraph then

add mdef to callgraph

add c to hierarchy
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Rapid Type Analysis (1)

Rapid type analysis uses the fact that a method m of a class c

can be invoked only if an object of type c is created during the

execution of the program.

• It refines the class hierarchy (compared to CHA) by only

including classes for which objects can be created at

runtime.

1. The pessimistic algorithm includes all classes in the class hier-

archy for which instantiations occur in methods of the call graph

from CHA.
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Rapid Type Analysis (2)

2. The optimistic algorithm

• Initially assumes that no methods besides main are called

and that no objects are instantiated.

• It traverses the call graph initially ignoring virtual calls

(marking them in a mapping as potential calls only) following

static calls only.

• When an instantiation of an object is found during analysis,

all virtual methods of the corresponding objects that were

left out previously are then traversed as well.

• The live part of the call graph and the set of instantiated

classes grow interleaved as the algorithm proceeds.
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Escape Analysis

The goal of escape analysis is to determine which objects have

lifetimes which do not stretch outside the lifetime of their immediately

enclosing scopes.

• The storage for such objects can be safely allocated as part of the

current stack frame – that is, their storage can be allocated on the

run-time stack.

• At method return, deallocation of the memory space used by

non-escaping objects is automatic. No garbage collection

required.

• The transformation also improves the data locality of the program

and, depending on the computer’s cache, can significantly

reduce execution time. Objects not escaping a thread can be

allocated in the processor where that thread is scheduled.
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Escape Analysis (Cont’d)

Objects whose lifetimes are confined to within a single scope cannot

be shared between two threads.

• Synchronization actions for these objects can be eliminated.
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Escape Analysis by Abstract Interpretation

A prototype implementation of escape analysis was included in

the IBM High Performance Compiler for Java.

The approach of Choi et al. (OOPSLA’99) attempts to determine

whether the object

• escapes from a method (i.e. from the scope where it is

allocated)

• escapes from the thread that created it

– the object can escape a method but does not escape

from the thread

Note: The converse is not possible (if it does not escape

the method then it cannot escape the thread)
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Essence of Choi et al.’s Approach

• Introducing of a simple program abstraction called

connection graph:

Intuitively, a connection graph captures the connectivity

relationship between heap allocated objects and object

references

• Demonstrating that escape analysis boils down to a

reachability problem within connections graphs:

If an object is reachable from an object that might escape,

it might escape as well.
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Experimental Results Reported by Choi et al.

...based on 10 benchmark programs:

• Percentage of objects that may be allocated on the stack:

Up to 70 +%, with a median of

• Percentage of all lock operations eliminated:

From 11% to 92%, with a median of 51%

• Overall execution time reduction:

From 2% to 23%, with a median of 7%

These results make escape analysis and the optimizations based

theron whorthwhile.
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Escape States

The analysis uses a simple lattice to represent different escape

states:

NoEscape (⊤)

ArgEscape

GlobalEscape (⊥)

State escapes the method escapes the thread

NoEscape no no

ArgEscape may (via args) no

GlobalEscape may may
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After the Analysis

All objects which are marked

• NoEscape: are stack-allocatable in the method where they

are created.

• NoEscape or ArgEscape: are local to the thread in which

they are created; hence synchronization statements in

accessing these objects can be eliminated.
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Connection Graphs

We are interested only in

• following the object O from its point of allocation

• knowing which variables reference O

• and which other objects are referenced by O fields.

We “abstract out” the referencing information, using a graph

structure where

• a circle node represents a variable

• a square node represents objects in the heap

• an edge from circle to square represents a reference

• an edge from square to circle represents ownership of fields
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Example: Connection graphs

A a = new A(); // line L1

a.b1 = new B(); // line L2

a.b2 = a.b1; // line L3

��
��
a - L1

�
�	

@
@R

��
��
b1

@
@R

��
��
b2

�
�	

L2

Simple Version

��
��
a - L1

�
�	

@
@R

��
��
b1

@
@R

��
��
b2�

L2

Using Deferred Edges

An edge drawn as a dotted arrow is called a deferred edge

and shows the effect of an assignment from one variable to

another (example: created by the assignment in line 3) ;

improves efficiency of the approach.
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Intraprocedural Abstract Interpretation

Actions for assignments involve an update of the connection

graph.

• An assignment to a variable p kills any value the variable

previously had. The kill function is called byPass(p):

��
��
a

��
��
b

��
��
p

L1

��
��
c

R

�

�
��

R

Before

��
��
a

��
��
b

��
��
p

L1

��
��
c

-

�
�
�
�
�
������:

-z

After
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Analyzing Statements (1)

p = new C(); // line L The operation byPass(p) is applied. An

object node labeled L is added to the graph - and nodes for

the fields of C that have nonintrinsic types are also created

and connected by edges pointing from the object node.

p = q; The operation byPass(p) is applied. A new deferred edge

from p to q is created.

p.f = q; The operation byPass is not applied for f (no strong

update!). If p does not point to any node in the graph a new

(phantom) node is created. Then, for each object node

connected to p by an edge, an assignment to the field f of

that object is performed.
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Analyzing Statements (2)

p = q.f; If q does not point at any object node then a phantom

node is created and an edge from q to the new node is

added. Then byPass(p) is applied and deferred edges are

added from p to all the f nodes that q is connected to by

field edges.

For each statement one graph represents the state of the

program at the statement.

At a point where two or more control paths converge, the con-

nection graphs from each predecessor statements are merged.
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Example: Connection Graphs (1)

Suppose that the code inside some method is as follows. The

declarations of classes A, B1 and B2 are omitted.

A a = new A(); // line L1

if (i > 0)

a.f1 = new B1(); // line L3

else

a.f1 = new B2(); // Line L5

a.f2 = a.f1; // Line L6

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 40



Example: Connection Graphs (2)

1. ��
��
a - L1

��	 @@R

��
��
f1 ��
��
f2

2. ��
��
a - L1

��	 @@R

��
��
f1

?
L3

��
��
f2

3. ��
��
a - L1

��	 @@R

��
��
f1

?
L5

��
��
f2

4. ��
��
a - L1

��	 @@R

��
��
f1

?

HHHHj

L3

��
��
f2

L5

5. ��
��
a - L1

��	 @@R

��
��
f1

?

HHHHj

L3

��
��
f2

L5

�

G1: out: A a = new A(); // line L1

G2: out: a.f1 = new B1(); // line L3

G3: out: a.f1 = new B2(); // Line L5

G4: out: G2 ∪G3

G5: out: a.f2 = a.f1; // Line L6
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Interprocedural Abstract Interpretation (1)

Analyzing methods:

• It is necessary to analyze each method in the reverse order implied

by the call graph.

• If method A may call methods B and C, then B and C should be

analyzed before A.

• Recursive edges in the call graph are ignored when determining

the order.

• Java has virtual method calls – at a method call site where it is not

known which method implementation is being invoked, the

analysis must assume that all of the possible implementations are

called, combining the effects from all the possibilities.

• The interprocedural analysis iterates over all the methods in the call

graph until the results converge (fixed point)

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 42



Interprocedural Abstract Interpretation (2)

• A call to a method M is equivalent to copying the actual

parameters (i.e. the arguments being passed in the method

call) to the formal parameters, then executing the body of

M, and finally copying any value returned by M as its result

back to the caller.

• If M has already been analyzed intraprocedurally following

the approach described above, the effect of M can be

summarized with a connection graph. That summary

information eliminates the need to re-analyze M for each

call site in the program.
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Analysis Results (1)

After the operation byPass has been used to eliminate all deferred

edges, the connection graph can be partitioned into three subgraphs:

Global escape nodes: All nodes reachable from a node whose

associated state is GlobalEscape are themselves considered to be

global escape nodes (Subgraph 1)

• the nodes initially marked as GlobalEscape are the static fields

of any classes and instances of any class that implements the

Runnable interface.

Argument escape nodes: All nodes reachable from a node whose

associated state is ArgEscape, but are not reachable from a

Global Escape node. (Subgraph 2)

• the nodes initially marked as ArgEscape are the argument

nodes a1, . . . , an.
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Analysis Results (2)

No escape nodes: All other nodes have NoEscape status.

(Subgraph 3).

The third subgraph represents the summary information for the

method because it shows which objects can be reached via

the arguments passed to the method

All objects created within a method M and that have the

NoEscape status after the three subgraphs have been deter-

mined can be safely allocated on the stack.
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Outlook

Emerging applications of (static) program analysis beyond

optimization...

Security Analysis

Program Understanding

Refactoring

...

...topics for master and PhD theses to come!

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 47


	Overview
	Object Layout and Method Invocation
	Single Inheritance Layout
	Single Inheritance Layout with vtbl
	Invocation of Virtual Methods with vtbl
	Dispatch Without Virtual Method Tables
	Example
	Multiple Inheritance
	Object Memory Layout (without vtbl)
	Dynamic Dispatching for Embedding
	Multiple Inheritance with vtbl
	Multiple Inheritance with vtbl
	Pointer Adjustment and Adjustment Offset
	Method Invocation with vtbl
	Trampoline
	Lookup at Compile-Time
	Dispatch Table
	Dispatch Table Compression (1)
	Dispatch Table Compression (2)
	Devirtualization
	Class Hierarchy Analysis
	Example: Class Hierarchy Analysis
	Example: Class Hierarchy and Call Graph
	CHA Algorithm
	Rapid Type Analysis (1)
	Rapid Type Analysis (2)
	Escape Analysis
	Escape Analysis (Cont'd)
	Escape Analysis by Abstract Interpretation
	Essence of Choi et al.'s Approach
	Experimental Results Reported by Choi et al.
	Escape States
	After the Analysis
	Connection Graphs
	Example: Connection graphs
	Intraprocedural Abstract Interpretation 
	Analyzing Statements (1)
	Analyzing Statements (2)
	Example: Connection Graphs (1)
	Example: Connection Graphs (2)
	 Interprocedural Abstract Interpretation (1)
	 Interprocedural Abstract Interpretation (2)
	Analysis Results (1)
	Analysis Results (2)
	References
	Outlook

