
Optimizing Compilers
Alias Analysis

Jens Knoop, Markus Schordan, Jakob Zwirchmayr

Institut für Computersprachen

Technische Universität Wien

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 1

Aliasing Everywhere

Answers to the question “What is an alias?” in different areas:

• A short, easy to remember name created for use in place of a

longer, more complicated name; commonly used in e-mail

applications. Also referred to as a ”nickname”.

• A hostname that replaces another hostname, such as an alias

which is another name for the same Internet address. For example,

www.company.com could be an alias for server03.company.com.

• A feature of UNIX shells that enables users to define program

names (and parameters) and commands with abbreviations. (e.g.

alias ls ‘ls -l‘)

• In MGI (Mouse Genome Informatics), an alternative symbol or

name for part of the sequence of a known gene that resembles

names for other anonymous DNA segments. For example,

D6Mit236 is an alias for Cftr.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 2

Aliasing in Programs

In programs aliasing occurs when there exists more than one access

path to a storage location.

An access path is the l-value of an expression that is constructed from

variables, pointer dereference operators, and structure field operation

operators.

•

Java (References)

A a,b;

a = new A();

b = a;

b.val = 0;

C++ (References)

A& a = *new A();

A& b = a;

b.val = 0;

C++ (Pointers)

A* a; A* b;

a = new A();

b = a;

b->val = 0;

C (Pointers)

A *a, *b;

a = (A*)malloc(sizeof(A));

b = a;

b->val = 0;

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 3

Examples of Different Forms of Aliasing

• Pascal, Modula 2/3, Java:

– Variable of a reference type is restricted to have either the

value nil/null or to refer to objects of a particular specified type.

– An object may be accessible through several references at

once, but it cannot both have its own variable name and be

accessible through a pointer.

• C:

– The union type specifier allows to create static aliases. A union

type may have several fields declared, all of which overlap in (=

share) storage.

– It is legal to compute the address of an object with the &

operator (statically, automatically, or dynamically allocated).

– Allows arithmetic on pointers and considers it equivalent to

array indexing

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 4

Relevance of Alias Analysis to Optimization

Alias analysis refers to the determination of storage locations that may

be accessed in two or more ways.

• Ambiguous memory references interfere with an optimizer’s ability

to improve code.

• One major source of ambiguity is the use of pointer-based values.

Goal: determine for each pointer the set of memory locations to

which it may refer.

Without alias analysis the compiler must assume that each pointer can

refer to any addressable value, including

• any space allocated in the run-time heap

• any variable whose address is explicitly taken

• any variable passed as a call-by-reference parameter

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 5

Characterization of Aliasing

Flow-insensitive information: Binary relation on the variables in a

procedure, alias ∈ Var ×Var such that x alias y if and only if x and y

• may possibly at different times refer to the same memory

location.

• must throughout the execution of the procedure refer to the

same memory location.

Flow-sensitive information: A function from program points and

variables to sets of abstract storage locations.

alias(p, v) = Loc means that at program point p variable v

• may refer to any of the locations in Loc.

• must refer to the location l ∈ Loc with |Loc| ≤ 1.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 6

Representation of Alias Information

Representation of aliasing with pairs:

q=&p; p=&a; r=&a;

complete alias pairs <*q,p>, <*p,a>, <*r,a>,<**q,*p>,

<**q,a>,<*p,*r>,<**q,*r>

compact alias pairs <*q,p>, <*p,a>, <*r,a>

points-to relations (q,p),(p,a),(r,a)

Representation of alias information and the shapes of data structures:

• graphs

• regular expressions

• 3-valued logic

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 7

Questions about Heap Contents (1)

Let execution state mean the set of cells in the heap, the connections

between them (via pointer components of heap cells) and the values

of pointer variables in the store.

NULL pointers. Does a pointer variable or a pointer component of a

heap cell contain NULL at the entry to a statement that

dereferences the pointer or component?

• Yes (for every state). Issue an error message

• No (for every state). Eliminate a check for NULL.

• Maybe. Warn about the potential NULL dereference.

Memory leak. Does a procedure or a program leave behind

unreachable heap cells when it returns?

• Yes (in some state). Issue a warning.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 8

Questions about Heap Contents (2)

Aliasing. Do two pointer expressions reference the same heap cell?

• Yes (for every state).

– trigger a prefetch to improve cache performance

– predict a cache hit to improve cache behavior prediction

– increase the sets of uses and definitions for an improved

liveness analysis

• No (for every state). Disambiguate memory references and

improve program dependence information.

Sharing. Is a heap cell shared? (within the heap)

• Yes (for some state). Warn about explicit deallocation, because

the memory manager may run into an inconsistent state.

• No (for every state). Explicitly deallocate the heap cell when

the last pointer to ceases to exist.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 9

Questions about Heap Contents (3)

Reachability. Is a heap cell reachable from a specific variable or from

any pointer variable?

• Yes (for every state). Use this information for program

verification.

• No (for every state). Insert code at compile time that collects

unreachable cells at run-time.

Disjointness. Do two data structures pointed to by two distinct pointer

variables ever have common elements?

• No (for every state). Distribute disjoint data structures and their

computations to different processors.

Cyclicity. Is a heap cell part of a cycle?

• No (for every state). Perform garbage collection of data

structures by reference counting. Process all elements in an

acyclic linked list in a doall-parallel fashion.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 10

Shape Analysis

The aim of shape analysis is to determine a finite representation of

heap allocated data structures which can grow arbitrarily large.

It can determine the possible shapes data structures may take such as:

• lists

• trees

• directed acyclic graphs

• arbitrary graphs

• properties such as whether a data structure is or may be cyclic

As example we shall discuss a precise shape analysis (from PoPA Ch

2.6) that performs strong update and uses shape graphs to represent

heap allocated data structures. It emphasises the analysis of list like

data structures.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 11

Strong Update

Here “strong” means that an update or nullification of a pointer

expression allows one to remove (kill) the existing binding before

adding a new one (gen).

We shall study a powerful analysis that achieves

• Strong nullification

• Strong update

for destructive updates that destroy (overwrite) existing values in

pointer variables and in heap allocated data structures in general.

Examples:

• [x := nil]ℓ

• [x.sel1 := y.sel2]
ℓ

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 12

Extending the WHILE Language

We extend the WHILE-language syntax with constructs that allow to

create cells in the heap.

• the cells are structured and may contain values as well as pointers

to other cells

• the data stored in cells is accessed via selectors; we assume that a

finite and non-empty set Sel of selector names is given:

sel ∈ Sel selector names

• we add a new syntactic category

p ∈ PExp pointer expressions

• opr is extended to allow for testing of equality of pointers

• unary operations opp on pointers (e.g. is-null) are added

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 13

Abstract Syntax of Pointer Language

The syntax of the while language is extended to have:

p ::= x | x.sel | null

a ::= x | n | a1 opa a2

b ::= true | false | not b | b1 opb b2 | a1 opr a2

S ::= [p:=a]ℓ | [skip]ℓ

| if [b]ℓ then S1 else S2

| while[b]ℓ do S od

| [new (p)]ℓ

| S1;S2

In the case where p contains a selector we have a destructive update

of the heap. Statement new creates a new cell pointed to by p.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 14

Shape Graphs

We shall introduce a method for combining the locations of the

semantics into a finite number of abstract locations.

The analysis operates on shape graphs (S,H, is) consisting of:

• an abstract state, S (mapping variables to abstract locations)

• an abstract heap, H (specifying links between abstract locations)

• sharing information, is, for the abstract locations.

The last component allows us to recover some of the imprecision

introduced by combining many locations into one abstract location.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 15

Example

g9 = (S,H, is) where

S = {(x, n{x})}

H = {(n{x}, next, n∅), (n∅, next, n∅)}

is = ∅

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 16

Abstract Locations

The abstract locations have the form nX where X is a subset of the

variables of Var⋆:

ALoc = {nX | X ⊆ Var⋆}

A shape graph contains a subset of the abstract locations of ALoc

The abstract location n∅ is called the abstract summary location and

represents all the locations that cannot be reached directly from the

state without consulting the heap.

Clearly nX and n∅ represent disjoint sets of locations when X 6= ∅.

Invariant 1: If two abstract locations nX and nY occur in the same

shape graph then either X = Y or X ∩ Y = ∅. (i.e. two distinct

abstract locations nX and nY always represent disjoint sets of

locations)

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 17

Abstract State

The abstract state, S, maps variables to abstract locations.

To maintain the naming convention for abstract locations we shall

ensure that:

Invariant 2: If x is mapped to nX by the abstract state then x ∈ X .

From Invariant 1 it follows that there will be at most one abstract

location in the (same) shape graph containing a given variable.

We shall only be interested in the shape of heap so we shall not

distinguish between integer values, nil-pointers, and uninitialized fields;

hence we can view the abstract state as an element of

S ∈ AState = P(Var⋆ ×ALoc)

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 18

Example: Creating Linked Data Structures

[new(x)]2 [new(y)]3

[x.next := y]4 [new(z)]5

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 19

Abstract Heap

The abstract heap, H, specifies the links between the abstract

locations.

The links will be specified by triples (nV , sel, nW) and formally we take

the abstract heap as an element of

H ∈ AHeap = P(ALoc× Sel×ALoc)

where we again not distinguish between integers, nil-pointers and

uninitialized fields.

Invariant 3: Whenever (nV , sel, nW) and (nV , sel, n
′
W) are in the abstract

heap then either V = ∅ or W = W ′.

Thus the target of a selector field will be uniquely determined by the

source unless the source is the abstract summary location n∅.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 20

Sharing Information

The idea is to specify a subset, is, of the abstract locations that

represents locations that are shared due to pointers in the heap:

• an abstract location nX will be included in is if it represents a

location that is the target of more than one pointer in the heap.

In the case of the abstract summary location, n∅, the explicit sharing

information clearly gives extra information:

• if n∅ ∈ is then there might be a location represented by n∅ that is

the target of two or more heap pointers.

• if n∅ /∈ is then all the locations of represented by n∅ will be the

target of at most one heap pointer.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 21

Maintaining Sharing Information

[y.next := z]6

[y := null]7

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 22

Maintaining Sharing Information

[y := null]7

[z := null]8

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 23

Sharing Information Invariants (1)

We shall impose two invariants to ensure that information in the sharing

component is also reflected in the abstract heap.

The first ensures that information in the sharing component is also

reflected in the abstract heap:

Invariant 4: If nX ∈ is then either

a) (n∅, sel, nX) is in the abstract heap for some sel, or

b) there exist two distinct triples (nV , sel1, nX) and (nW , sel2, nX) in

the abstract heap (that is either sel1 6= sel2 or V 6= W).

• case 4a) means that there might be several locations represented

by n∅ that point to nX

• case 4b) means that two distinct pointers (with different source or

different selectors) point to nX .

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 24

Sharing Information Invariants (2)

The second invariant ensures that sharing information present in the

abstract heap is also reflected in the sharing component:

Invariant 5: Whenever there are two distinct triples (nV , sel1, nX) and

(nW , sel2, nX) in the abstract heap and nX 6= n∅ then nX ∈ is.

This invariant takes care of the situation where nX represents a single

location being the target of two or more heap pointers.

Note that invariant 5 is the “inverse” of invariant 4(b).

We have no “inverse” of invariant 4(a) - the presence of a pointer from

n∅ to nX gives no information about sharing properties of nX that are

represented in is.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 25

Sharing Component Example 1

[y.next := z]6 [x.next := z]7
′

[y := null]8
′

[z := null]9
′

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 26

Sharing Component Example 2

[y.next := z]6 [z.next := y]7
′′

[y := null]8
′′

[z := null]9
′′

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 27

Compatible Shape Graphs

A shape graph is a triple (S,H, is):

S ∈ AState = P(Var⋆ ×ALoc)

H ∈ AHeap = P(ALoc× Sel×ALoc)

is ∈ IsShared = P(ALoc)

where ALoc = {nX | X ⊆ Var⋆}.

A shape graph is a compatible shape graph if it fulfills the five

invariants, 1-5, presented above. The set of compatible shape graphs

is denoted

SG = {(S,H, is) | (S,H, is) is compatible}

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 28

Complete Lattice of Shape Graphs

The analysis, to be called Shape, will operate over sets of compatible

shape graphs, i.e. elements of P(SG).

Since P(SG) is a power set it is trivially a complete lattice with

• ordering relation ⊑ being ⊆

• combination operator ⊔ being ∪ (may analysis)

P(SG) is finite because SG ⊆ AState×AHeap× IsShared and all of

AState, AHeap, IsShared are finite.

The analysis will be specified as an instance of a Monotone Framework

with the complete lattice of properties being P(SG), and as a forward

analysis.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 29

Analysis

Shape◦(ℓ)

[x := a]ℓ

Shape•(ℓ)

?

?

[...]ℓ1

Shape•(ℓ1)

[...]ℓ2

Shape•(ℓ2)

Shape◦(ℓ)
[...]ℓ

J
J
JĴ

�

⋃

Shape◦(ℓ) =

ι : if ℓ = init(S⋆)
⋃

{Shape•(ℓ
′)|(ℓ′, ℓ) ∈ flow(S⋆)} : otherwise

Shape•(ℓ) = fSA
ℓ (Shape◦(ℓ))

where ι ∈ P(SG) is the extremal value holding at entry to S⋆.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 30

Transfer Functions

The transfer function fSAℓ : P(SG) → P(SG) has the form

fSA
ℓ (SG) =

⋃

{φSAℓ ((S,H, is)) | (S,H, is) ∈ SG}

where φSAℓ specifies how a single shape graph (in Shape◦(ℓ)) may be

transformed into a set of shape graphs (in Shape•(ℓ).

The functions φSAℓ for the statements

x := a x := y x := y.sel

x.sel := a x.sel := y x.sel := y.sel
(illustrated by example)

transform a shape graph into a set of different shape graphs.

The transfer functions for other statements and expressions are

specified by the identity function.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 31

Example: Materialization

[z := y.next]7

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 32

Example: Reverse List

[y := null]1;

while [not isnull(x)]2 do

[t := y]3;

[y := x]4;

[x := x.next]5;

[y.next := t]6;

od

[t := null]7

The program reverses the list pointed to by x and leaves the result in y.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 33

Reverse List: Extremal Value

The extremal value ι is a set of graphs. The above graph is an element

of this set for our example analysis of the list reversal program.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 34

Shape Graphs in Shape•(ℓ)

[t := y]3 [x := x.next]5

[y := x]4 [y.next := t]6

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 35

Shape Graphs in Shape•(ℓ)

[t := null]7

[x := null]7

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 36

Reverse List: Established Properties

For the list reversal program shape analysis can detect that at the

beginning of each iteration of the loop the following properties hold:

Invariant 1: Variable x points to an unshared, acyclic, singly linked list.

Invariant 2: Variable y points to an unshared, acyclic, singly linked list,

and variable t may point to the second element of the y-list (if such

an element exists).

Invariant 3: The lists pointed to by x and y are disjoint.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 37

Drawbacks and Improvements

An improved version, on which the discussed analysis is based on, can

be found in [SRW’98]:

• Operates on a single shape graph instead of sets of shape graphs

• Merges sets of compatible shape graphs in one summary shape

graph

• Uses various mechanisms for extracting parts of individual

compatible shape graphs

• Avoids the exponential factor in the cost of the discussed analysis

The sharing component of the shape graphs is designed to detect

list-like properties:

• It can be replaced by other components detecting other shape

properties [SRW’02, CDH Ch 5]

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 38

References

• Material for this 6th lecture

www.complang.tuwien.ac.at/knoop/oue185187_ws1112.html

• Book

Flemming Nielson, Hanne Riis Nielson, Chris Hankin:

Principles of Program Analysis.

Springer, (450 pages, ISBN 3-540-65410-0), 1999.

– Chapter 2.6 (Shape Analysis)

• Book

Steven S. Muchnick:

Advanced Compiler Design and Implementation, Morgan

Kaufmann; (856 pages, ISBN: 1558603204), 1997.

– Chapter 10 (Alias Analysis)

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 39

References

• Book

Y. N. Srikant, Priti Shankar:

CDH: The Compiler Design Handbook: Optimizations & Machine

Code Generation

CRC Press; 1st edition, (928 pages, ISBN: 084931240X), 2002.

– Chapter 5 (Shape Analysis and Applications)

• Journal publication

SRW’98: Sagiv, M., Reps, T., and Wilhelm, R.

Solving shape-analysis problems in languages with destructive

updating. TOPLAS, 20:1 (January 1998), 1-50.

• Journal publication

SRW’02: Sagiv M., Reps T., Wilhelm R.

Parametric shape analysis via 3-valued logic TOPLAS, 24:3 (2002)

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 23, 2011 40

	Aliasing Everywhere
	Aliasing in Programs
	Examples of Different Forms of Aliasing
	Relevance of Alias Analysis to Optimization
	Characterization of Aliasing
	Representation of Alias Information
	Questions about Heap Contents (1)
	Questions about Heap Contents (2)
	Questions about Heap Contents (3)
	Shape Analysis
	Strong Update
	Extending the WHILE Language
	Abstract Syntax of Pointer Language
	Shape Graphs
	Example
	Abstract Locations
	Abstract State
	Example: Creating Linked Data Structures
	Abstract Heap
	Sharing Information
	Maintaining Sharing Information
	Maintaining Sharing Information
	Sharing Information Invariants (1)
	Sharing Information Invariants (2)
	Sharing Component Example 1
	Sharing Component Example 2
	Compatible Shape Graphs
	Complete Lattice of Shape Graphs
	Analysis
	Transfer Functions
	Example: Materialization
	Example: Reverse List
	Reverse List: Extremal Value
	Shape Graphs in $analysisout {Shape}{ell }$
	Shape Graphs in $analysisout {Shape}{ell }$
	Reverse List: Established Properties
	Drawbacks and Improvements
	References
	References

