
Optimizing Compilers
Data Flow Analysis

Frameworks and Algorithms

Jens Knoop, Markus Schordan, Jakob Zwirchmayr

Institut für Computersprachen

Technische Universität Wien

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 1



Towards a General Framework

• The analyses operate over a property space representing the

analysis information

– for bit vector frameworks: P(D) for finite set D

– more generally: complete lattice (L,⊑)

• The analyses of programs are defined in terms of transfer functions

– for bit vector frameworks:fℓ(X) = (X\killℓ) ∪ gen
ℓ

– more generally: monotone functions fℓ : L → L

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 2



Property Space

The property space, L, is used to represent the data flow information,

and the combination operator,
⊔

: P(L) → L, is used to combine

information from different paths.

• L is a complete lattice

meaning that it is a partially ordered set, (L,⊑), such that each

subset, Y , has a least upper bound,
⊔

Y .

• L satisfies the Ascending Chain Condition

meaning that each ascending chain eventually stabilizes: if (ln)n

is such that l1 ⊑ l2 ⊑ l3 ⊑ . . ., then there exists n such that

ln = ln+1 = . . .

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 3



Complete Lattice

Let Y be a subset of L. Then

• l is an upper bound of Y if ∀l′ ∈ Y : l′ ⊑ l and

• l is a lower bound of Y if ∀l′ ∈ Y : l ⊑ l′.

• l is a least upper bound of Y if it is an upper bound of Y that

satisfies l ⊑ l0 whenever l0 is another upper bound of Y .

• l is a greatest lower bound of Y if it is a lower bound of Y that

satisfies l0 ⊑ l whenever l0 is another lower bound of Y .

A complete lattice L = (L,⊑) is a partially ordered set (L,⊑) such that

all subsets have least upper bounds as well as greatest lower bounds.

Notation: ⊤ =
d
∅ =

⊔

L is the greatest element of L

⊥=
⊔

∅ =
d

L is the least element of L

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 4



Example

H
H

H
H

H

�
�

�
�

�
H

H
H

H
H

�
�

�
�

��
�

�
�

�

H
H

H
H

H

�
�

�
�

�

H
H

H
H

H

s ∅

s {b}

s {a, c}

s {a, b, c}

s {a}

s {a, b}

s {c}

s {b, c}

H
H

H
H

H

�
�

�
�

�
H

H
H

H
H

�
�

�
�

��
�

�
�

�

H
H

H
H

H

�
�

�
�

�

H
H

H
H

H

s {a, b, c}

s {a, c}

s {b}

s ∅

s {a, b}

s {a}

s {b, c}

s {c}

lattice (P({a, b, c}),⊆) (P({a, b, c}),⊇)
⊔ ⋃ ⋂

⊥ ∅ {a, b, c}

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 5



Chain

A subset Y ⊆ L of a partially ordered set L = (L,⊑) is a chain if

∀l1, l2 ∈ Y : (l1 ⊑ l2) ∨ (l2 ⊑ l1)

It is a finite chain if it is a finite subset of L.

A sequence (ln)n = (ln)n∈N of elements in L is an

• ascending chain if n ≤ m → ln ⊑ lm

• descending chain if n ≤ m → lm ⊑ ln

We shall say that a sequence (ln)n eventually stabilizes if and only if

∃n0 ∈ N : ∀n ∈ N : n ≥ n0 → ln = ln0

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 6



Ascending and Descending Chain Conditions

A partially ordered set L = (L,⊑) has finite height if and only if all

chains are finite.

The partially ordered set L satisfies the

• Ascending Chain Condition if and only if all ascending chains

eventually stabilize.

• Descending Chain Condition if and only if all descending chains

eventually stabilize.

Lemma: A partially ordered set L = (L,⊑) has finite height if and only if

it satisfies both the Ascending and Descending Chain Conditions.

A lattice L = (L,⊑) satisfies the ascending chain condition if all

ascending chains eventually stabilize; it satisfies the descending chain

condition if all descending chains eventually stabilize.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 7



Transfer Functions

The set of transfer functions, F , is a set of monotone functions over

L = (L,⊑), meaning that

l ⊑ l′ → fℓ(l) ⊑ fℓ(l
′)

for all l, l′ ∈ L and furthermore they fulfill the following conditions

• F contains all the transfer functions fℓ : L → L in question (for

ℓ ∈ Lab⋆)

• F contains the identity function

• F is closed under composition of functions

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 8



Frameworks

A Monotone Framework consists of:

• a complete lattice, L, that satisfies the Ascending Chain

Condition; we write
⊔

for the least upper bound operator

• a set F of monotone functions from L to L that contains the

identity function and that is closed under function composition

A Distributive Framework is a monotone framework where additionally

all functions f of F are required to be distributive:

f(l1 ⊔ l2) = f(l1) ⊔ f(l2)

A Bit Vector Framework is a Monotone Framework where additionally L

is a powerset of a finite set and all functions f of F have the form

f(l) = (l\kill) ∪ gen

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 9



Instances of a Framework

An instance of a Framework consists of

• the complete lattice, L, of the framework

• the space of functions, F , of the framework

• a finite flow, F (typically flow(S⋆) or flow
R
(S⋆))

• a finite set of extremal labels, E (typically {init(S⋆)} or final(S⋆))

• an extremal value, ι ∈ L, for the extremal labels

• a mapping, f., from the labels Lab⋆to transfer functions in F .

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 10



Equations of the Instance

Analysis◦(ℓ) =
⊔

{Analysis•(ℓ
′)|(ℓ′, ℓ) ∈ F} ⊔ ιℓ

E

where ιℓ
E

=







ι : if ℓ ∈ E

⊥ : if ℓ /∈ E

Analysis•(ℓ) = fℓ(Analysis◦(ℓ))

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 11



On Bit Vector Frameworks (1)

A Bit Vector Framework is a Monotone Framework

• P(D) is a complete lattice satisfying the Ascending Chain

Condition (because D is finite)

• the transfer functions fℓ(l) = (l\killℓ) ∪ gen
ℓ

– are monotone: l1 ⊆ l2 → l1\killℓ ⊆ l2\killℓ

→ (l1\killℓ) ∪ gen
ℓ
⊆ (l2\killℓ) ∪ gen

ℓ

→ fℓ(l1) ⊆ fℓ(l2)

– contain the identity function: id(l) = (l\∅) ∪ ∅

– are closed under function composition:

f2 ◦ f1 = f2(f1(l)) = (((l\kill1l ) ∪ gen1
l
)\kill2l ) ∪ gen2

l

= (l\(kill1l ∪ kill
2

l )) ∪ ((gen1
l
\kill2l ) ∪ gen2

l
)

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 12



On Bit Vector Frameworks (2)

A Bit Vector Framework is a Distributive Framework

• a Bit Vector Framework is a Monotone Framework

• the transfer functions of a Bit Vector Framework are distributive

f(l1 ⊔ l2) = f(l1 ∪ l2)

= ((l1 ∪ l2)\killl) ∪ gen
l

= ((l1\killl) ∪ (l2\killl)) ∪ gen
l

= ((l1\killl) ∪ gen
l
) ∪ ((l2\killl) ∪ gen

l
)

= f(l1) ∪ f(l2) = fℓ(l1) ⊔ fℓ(l2)

Analogous for the case with ⊔ being ∩.

Note, a Bit Vector Framework is (a special case of) a Distributive Frame-

work. And a Distributive Framework is (a special case of) a Monotone

Framework.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 13



Minimal Fixed Point Algorithm (MFP)

Input: an instance (L,F , F, E, ι, f.) of a Monotone Framework

Output: the MFP Solution: MFP◦, MFP•

MFP◦(ℓ) := A[ℓ]

MFP•(ℓ) := fℓ(A[ℓ])

Data Structures: to represent a work list and the analysis result

• The result A: the current analysis result for block entries

• The worklist W : a list of pairs (ℓ, ℓ′) indicating that the current

analysis result has changed at the entry to the block ℓ and

hence the information must be recomputed for ℓ′.

Lemma: The worklist algorithm always terminates and computes the

least (or MFP a) solution to the instance given as input.

afor historical reasons MFP is also called maximal fixed point in the literature

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 14



Generic Worklist Algorithm

W:=nil;

foreach (ℓ, ℓ′) ∈ F do W := cons((ℓ, ℓ′),W); od;

foreach ℓ ∈ E ∪ {ℓ, ℓ′ | (ℓ, ℓ′) ∈ F} do

if ℓ ∈ E then

A[ℓ] := ι

else

A[ℓ] := ⊥L

fi

od

while W 6= nil do

(ℓ, ℓ′) := head(W);

W := tail(W);

if fℓ(A[ℓ]) 6⊑ A[ℓ′] then

A[ℓ′] := A[ℓ′] ⊔ fℓ(A[ℓ]);

foreach ℓ′′ with (ℓ′, ℓ′′) in F do

W := cons((ℓ′, ℓ′′),W);

od

fi

od

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 15



Complexity

Assume that

• E and F contain at most b ≥ 1 distinct labels

• F contains at most e ≥ b pairs, and

• L has finite height of at most h ≥ 1.

Count as basic operations the application of fℓ, applications of ⊔, or

updates of A.

Then there will be at most O(e · h) basic operations.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 16



Meet Over All Paths Solution (MOP)

Idea: Propagate analysis information along paths to determine the

information available at the different program points.

• The paths up to but not including ℓ:

path◦(ℓ) = {[ℓ1, . . . , ℓn−1] | n ≥ 1 ∧ ∀i < n : (ℓ, ℓ′) ∈ F ∧ ℓ1 ∈ E ∧ ℓn = ℓ}

• The paths up to and including ℓ:

path•(ℓ) = {[ℓ1, . . . , ℓn] | n ≥ 1 ∧ ∀i < n : (ℓ, ℓ′) ∈ F ∧ ℓ1 ∈ E ∧ ℓn = ℓ}

With each path ~ℓ = [ℓ1, . . . , ℓn] we associate a transfer function:

f~ℓ
= fℓn

◦ · · · ◦ fℓ1 ◦ id

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 17



MOP Solution

• The solution up to but not including ℓ:

MOP◦(ℓ) =
⊔

{f~ℓ
(ι)|~ℓ ∈ path

◦
(ℓ)}

• The solution up to and including ℓ:

MOP•(ℓ) =
⊔

{f~ℓ
(ι)|~ℓ ∈ path

•
(ℓ)}

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 18



MOP vs MFP Solution

The MFP solution safely approximates the MOP solution:

MFP ⊒ MOP

(“because” f(x ⊔ y) ⊒ f(x) ⊔ f(y) when f is monotone

For Distributive Frameworks the MFP and MOP solutions are equal:

MFP = MOP

(“because” f(x ⊔ y) = f(x) ⊔ f(y) when f is distributive).

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 19



Decidability of MOP and MFP solution

The MFP solution is always computable (meaning that it is decidable):

• because of the Ascending Chain Condition

The MOP solution is often uncomputable (meaning that it is

undecidable):

• the existence of a general algorithm for the MOP solution would

imply the decidability of the Modified Post Correspondence

Problem, which is known to be undecidable.

– See “Principles of Program Analysis” for more details.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 20



References

• Material for this 4th lecture

www.complang.tuwien.ac.at/knoop/oue185187_ws1112.html

• Book

Flemming Nielson, Hanne Riis Nielson, Chris Hankin:

Principles of Program Analysis.

Springer, (450 pages, ISBN 3-540-65410-0), 1999.

– Chapter 2 (Data Flow Analysis)

– and transparencies available at

www.imm.dtu.dk/~riis/ppa.htm

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 21


	Towards a General Framework
	Property Space
	Complete Lattice
	Example
	Chain
	Ascending and Descending Chain Conditions
	Transfer Functions
	Frameworks
	Instances of a Framework
	Equations of the Instance
	On Bit Vector Frameworks (1)
	On Bit Vector Frameworks (2)
	Minimal Fixed Point Algorithm (MFP)
	Generic Worklist Algorithm
	Complexity
	Meet Over All Paths Solution (MOP)
	MOP Solution
	MOP vs MFP Solution
	Decidability of MOP and MFP solution
	References

