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Towards a General Framework

® The analyses operate over a property space representing the
analysis informnation

— for bit vector frameworks: P (D) for finite set D
— more generally: complete latfice (L,C)

¢ The analyses of programs are defined in tferms of transfer functions
— for bit vector frameworks: f,(X) = (X \kill,) U gen,
— more generally: monotone functions f, : L — L
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Property Space

The property space, L, is used to represent the data flow information,
and the combination operator, | | : P(L) — L, is used fo combine
information from different paths.

e [ is a complete laftice
meaning that it is a partially ordered set, (L, C), such that each
subset, Y, has a least upper bound, | | Y.
¢ [ safisfies the Ascending Chain Condition

meaning that each ascending chain eventually stabilizes: if (1,,).,
issuch thatly C I C I3 C ..., then there exists n such that

ln:ln_|_1:...
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Complete Lafttice

Let Y be a subset of L. Then

e [isanupperboundof Yifvl’ eY : I’ C [l and
e [isalowerboundofYifvileY :[C .

e [is aleast upper bound of Y if it is an upper bound of Y that
safisfies [ C [, whenever [, is another upper bound of Y.

e [is a greatest lower bound of Y if it is a lower bound of Y that
saftisfies o T | whenever [y is another lower bound of Y.

A completfe laftice L = (L, C) is a parfially ordered set (L, C) such that
all subsets have least upper bounds as well as greatest lower bounds.

Notation: T =[]0 =||L is the greatest element of L
1={|0=T[]Listhe least element of L
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lattice | (P({a,b,c}),<) | (P({a,b,c}), D)

L] U A
1 0 {a,b,c}
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Chain

A subset Y C L of a parfially ordered set L = (L,C) is a chain if

Vii,lo €Y : (ll L lg) V (ZQ L ll)

It is a finite chain if it is a finite subset of L.
A sequence (), = (I,)nen Of €lementsin L is an

e ascendingchainifn<m—1, Cl,,

e descending chainifn<m —1,, C1,

We shall say that a sequence (I,,),, evenfually stabilizes if and only if

dng € N:VneN:n>nyg—l, =,
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Ascending and Descending Chain Conditions

A partially ordered set L = (L, E) has finite height if and only if all
chains are finite.
The partially ordered set L safisfies the

¢ Ascending Chain Condition if and only if all ascending chains
eventuadlly stabilize.

¢ Descending Chain Condifion if and only if all descending chains
eventually stabilize.

Lemma: A partially ordered set L = (L, C) has finite height if and only if
it safisfies both the Ascending and Descending Chain Conditfions.

A lattice L = (L, ) safisfies the ascending chain condifion if all
ascending chains eventually stabilize; it satisfies the descending chain
condition if all descending chains eventually stabilize.
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Iransfer Functions

The set of transfer functions, F, is a set of monotone functions over
L = (L,C), meaning that

LTV — foll) C foll)

forall l,!” € L and furthermore they fulfill the following conditions

e F contains all the fransfer functions f, : L — L in question (for
¢ € Laby)

e F contains the identity function

e Fis closed under composition of functions
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Frameworks

A Monotone Framework consists of:

e g complete lattice, L, that satisfies the Ascending Chain
Condition; we write | | for the least upper bound operator

¢ O set F of monotone functions from L to L that contains the
idenftity function and that is closed under function composition

A Distributive Framework is a monofone framework where additionally
all functions f of F are required o be distributive:

fliUly) = f(l1) U f(l2)

A Bit Vector Framework is a Monotone Framework where additionally L
Is a powerset of a finite set and all functions f of F have the form

f(l) = (I\kill) U gen
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Instances of a Framework

An instance of a Framework consists of

e the complete lattice, L, of the framework

¢ the space of functions, F, of the framework

e afinite flow, F (typically flow(S,) or flow’(S,))

¢ A finite set of extremal labels, £ (typically {init(S,)} or final(Sy))
* an extremal value, . € L, for the extremal labels

* a mapping, f., from the labels Lab,to tfransfer functions in F.
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Equations of the Instance

Analysiso(£) = | [{Analysise(£)|(¢',£) € F} U5,
fle k&
where /£, =
f¢¢ E
Analysise(f) = fo(Analysis,(f))
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On Bit Vector Frameworks (1)

A Bit Vector Framework is a Monotone Framework

e P(D)is a complete lattice satisfying the Ascending Chain
Condition (because D is finite)

e the fransfer functions f,(1) = (I\kill,) U gen,
— are monotone: I; Cly, —  I[1\Kill, C I5\Kill
—  (I3\kill,) U gen, C (Ix\kill,)) U gen,
— fo(l1) C fell2)
— contain the identity function: id(1) = (I\0) U (
— are closed under function composition:

fao fi= (1) = (((\Kill;) Ugen})\Kill) U gen?
= (I\(kill; UKill})) U ((gen}\kill?) U gen?)
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On Bit Vector Frameworks (2)

A Bit Vector Framework is a Distributive Framework

e QO Bit Vector Framework is a Monotone Framework

¢ the transfer functions of a Bit Vector Framework are distributive

flliuly) = f(li U o)
((I1 U I2)\kill;) U gen,
— ((L\Kill) U (I5\Kill)) U gen,
(I\Kill,) Ugen,) U ((Ix\kill,) U gen,)
= f(lh) U f(l2) = fe(l) U fe(l2)

Analogous for the case with LI being N.

Note, a Bif Vector Framework is (a special case of) a Distributive Frame-
work. And a Distributive Framework is (a special case of) a Monofone
Framework.
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Minimal Fixed Point Algorithm (MFP)

Input: aninstance (L, F, F, E, ., f.) of d Monofone Framework

Output: the MFP Solufion: MFP,, MFP,
MFP, (¢) := A(/)
MFP, (¢) := f,(A(4))

Data Structures: to represent a work list and the analysis result
e The result A: the current analysis result for block enftries

e The worklist W: a list of pairs (¢, ¢") indicating that the current
analysis result has changed at the entry to the block ¢ and
hence the information must be recomputed for ¢,

Lemma: The worklist algorithm always terminates and computes the
least (or MFP ©) solution to the instance given as input.

Ifor historical reasons MFP is also called maximal fixed point in the literature
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Generic Worklist Algorithm

W:=nil;
foreach ({,¢') € ' do W := cons(({,¢'),W); od;
foreach £ € EU{(, 0 | (¢,¢) € F} do

if £ € E then

All] ==
else

All]l = 1L
fi

od
while W # nil do
(£,¢") := head(W);
W := tail(W);
if fo(A[¢]) [Z A[¢] then
AllT] 2= AlE'] T fe(AlL]);
foreach ¢ with (¢,¢") in F do
W := cons((¢,0¢"),W);
od
fi
od
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Complexity

Assume that

e [ and F contain at most b > 1 distinct labels
e F'contfains at most e > b pairs, and

¢ [ has finite height of at most A > 1.

Count as basic operations the application of f,, applications of LI, or
updates of A.

Then there will be af most O(e - h) basic operatfions.
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Meet Over All Paths Solufion (MOP)

ldeq: Propagate analysis information along paths to determine the
iInformation available at the different program points.

* The paths up to but not including ¢:
patho(0) ={[l1,... . bn_1] | n>1AVi<n:({l)e FNly e ENC, =1}

¢ The paths up to and including #:
pathe(£) = {[l1,....Ln] | n>1AVi<n:({,l)e FANl; € ENC, =1}

With each path ¢/ = /1, ..., ¢,] we associate a transfer function:

fe—»:feno...ofeloid
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MOP Solution

¢ The solution up to but not including ¢:
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MOP vs MFP Solution

The MFP solution safely approximates the MOP solution:

MFP J MOP

(“because” f(zUy) 3 f(z) U f(y) when fis monotone

For Distributive Frameworks the MFP and MOP solutions are equal:

MFP = MOP

("because” f(zUy) = f(z) U f(y) when f is distributive).
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Decidability of MOP and MFP solution

The MFP solufion is always computable (meaning that it is decidable):

e pecause of the Ascending Chain Condition

The MOP solution is often uncomputable (meaning that it is
undecidable):

* the existence of a general algorithm for the MOP solution would
imply the decidability of the Modified Post Correspondence
Problem, which is known to be undecidable.

— See "Principles of Program Analysis” for more details.
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