
Intra-Procedural Dataflow Analysis
Backward Analyses

Jens Knoop, Markus Schordan, Jakob Zwirchmayr

Institut für Computersprachen

Technische Universität Wien

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 1



Live Variable Analysis

A variable is live at the exit from a label if there is a path from the label

to a use of the variable that does not re-define the variable.

The aim of the Live Variables Analysis is to determine

For each program point, which variables may be live at the exit from

the point.

[y := 0]0; [u := a+b]1; [y := a∗u]2;while [y > u]3 do [a := a + 1]4; [u := a + b]5; [x := u]6 od

dead dead

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 2



Basic Idea

LV◦(ℓ)

[x := a]ℓ

LV•(ℓ)

6

6
[...]ℓ1

LV◦(ℓ1)

[...]ℓ2

LV◦(ℓ2)

LV•(ℓ)
[...]ℓ

J
J

JJ]








� ⋃

Analysis information: LV◦(ℓ),LV•(ℓ) : Lab⋆ → P(Var⋆)

• LV◦(ℓ): the variables that are live at entry of block ℓ.

• LV•(ℓ): the variables that are live at exit of block ℓ.

Analysis properties:

• Direction: backward

• May analysis with combination operator
⋃

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 3



Analysis of Elementary Blocks

LV◦(ℓ)

[x := a]ℓ

LV•(ℓ)

6

6

LV◦(ℓ)

[b]ℓ

LV•(ℓ)

6

6

LV◦(ℓ)

[skip]ℓ

LV•(ℓ)

6

6

killLV([x := a]ℓ) = {x}

killLV([skip]ℓ) = ∅

killLV([b]ℓ) = ∅

genLV([x := a]ℓ) = FV (a)

genLV([skip]ℓ) = ∅

genLV([b]ℓ) = FV (b)

LV◦(ℓ) = (LV•(ℓ)\killLV(Bℓ)) ∪ genLV(Bℓ) where Bℓ ∈ blocks(S⋆)

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 4



Analysis of the Program

LV◦(ℓ)

[x := a]ℓ

LV•(ℓ)

6

6
[...]ℓ1

LV◦(ℓ1)

[...]ℓ2

LV◦(ℓ2)

LV•(ℓ)
[...]ℓ

J
J

JJ]








� ⋃

LV◦(ℓ) = (LV•(ℓ)\killLV(Bℓ)) ∪ genLV(Bℓ) where Bℓ ∈ blocks(S⋆)

LV•(ℓ) =







∅ : if ℓ = final(S⋆)
⋃

{LV◦(ℓ
′)|(ℓ′, ℓ) ∈ flow

R
(S⋆)} : otherwise

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 5



Example

Program LV•(ℓ) LV◦(ℓ)

[y := 0]0; {a, b} {a, b}

[u := a+b]1; {u, a, b} {a, b}

[y := a∗u]2; {u, a, b, y} {u, a, b}

while[y > u]3do {a, b, y} {u, a, b, y}

[a := a + 1]4; {a, b, y} {a, b, y}

[u := a + b]5; {u, a, b, y} {a, b, y}

[x := u]6 od {u, a, b, y} {u, a, b, y}

[skip]7 ∅ ∅

ℓ killLV(ℓ) genLV(ℓ)

0 {y} ∅

1 {u} {a,b}

2 {y} {a,u}

3 ∅ {y,u}

4 {a} {a}

5 {u} {a,b}

6 {x} {u}

7 ∅ ∅

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 6



Dead Code Elimination (DCE)

An assignment [x := a]ℓ is dead if the value of x is not used before it is

redefined. Dead assignments can be eliminated.

Analysis: Live Variables Analysis

Transformation: For each [x := a]ℓ in S⋆ with x /∈ LV•(ℓ) (i.e. dead)

eliminate [x := a]ℓ from the program.

Example:

Before:

[y := 0]0; [u := a+b]1; [y := a∗u]2;while [y > u]3 do [a := a + 1]4; [u := a + b]5; [x := u]6 od

After:

[u := a+b]1; [y := a∗u]2;while [y > u]3 do [a := a + 1]4; [u := a + b]5; od

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 7



Example: Combining Optimizations

Example:

[x := a+b]1; [y := a∗x]2;while [y > a+b]3 do [a := a + 1]4; [x := a + b]5 od

Common Subexpression Elimination gives

[u := a+b]1
′

; [x := u]1; [y := a∗x]2;while [y > u]3 do [a := a + 1]4; [u := a + b]5
′

; [x := u]5 od

Copy Propagation gives

[u := a+b]1
′

; [y := a∗u]2;while [y > u]3 do [a := a + 1]4; [u := a + b]5
′

; [x := u]5 od

Dead Code Elimination gives

[u := a+b]1; [y := a∗u]2;while [y > u]3 do [a := a + 1]4; [u := a + b]5; od

What are the results for other optimization sequences?

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 8



Faint Variables

Consider the following program consisting of three statements:

[x := 1]1; [x := 2]2; [y := x]3;

Clearly x is dead at the exit from 1 and y is dead at the exit of 3. But x

is live at the exit of 2 although it is only used to calculate a new value

for y that turns out to be dead.

We shall say that a variable is a faint variable if it is dead or if it is only

used to calculate new values for faint variables; otherwise it is strongly

live.

Example 1:

while [z > a]1 do [x := x + 1]2 od

Example 2:

while [z > a]1 do [x := y + z]2; [y := x + z]3 od

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 9



Very Busy Expressions Analysis

An expression is very busy at the exit from a label if, no matter what

path is taken from the label, the expression is always used before any

of the variables occurring in it are redefined.

The aim of the Very Busy Expression Analysis is to determine

For each program point, which expressions must be very busy at the

exit from the point.

if [a > b]1 then ([x := b−a]2; [y := a−b]3) else ([y := b−a]4; [x := a−b]5)

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 10



Basic Idea

VB◦(ℓ)

[x := a]ℓ

VB•(ℓ)

6

6
[...]ℓ1

VB◦(ℓ1)

[...]ℓ2

VB◦(ℓ2)

VB•(ℓ)
[...]ℓ

J
J

JJ]








� ⋂

Analysis information: VB◦(ℓ),VB•(ℓ) : Lab⋆ → P(AExp⋆)

• VB◦(ℓ): the expressions that are very busy at entry of block ℓ.

• VB•(ℓ): the expressions that are very busy at exit of block ℓ.

Analysis properties:

• Direction: backward

• Must analysis with combination operator
⋂

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 11



Analysis of Elementary Blocks

VB◦(ℓ)

[x := a]ℓ

VB•(ℓ)

6

6

VB◦(ℓ)

[b]ℓ

VB•(ℓ)

6

6

VB◦(ℓ)

[skip]ℓ

VB•(ℓ)

6

6

killVB([x := a]ℓ) = {a′ ∈ AExp⋆ | x ∈ FV (a′)}

killVB([skip]ℓ) = ∅

killVB([b]ℓ) = ∅

genVB([x := a]ℓ) = AExp(a)

genVB([skip]ℓ) = ∅

genVB([b]ℓ) = AExp(b)

VB◦(ℓ) = (VB•(ℓ)\killVB(Bℓ)) ∪ genVB(Bℓ) where Bℓ ∈ blocks(S⋆)

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 12



Analysis of the Program

VB◦(ℓ)

[x := a]ℓ

VB•(ℓ)

6

6
[...]ℓ1

VB◦(ℓ1)

[...]ℓ2

VB◦(ℓ2)

VB•(ℓ)
[...]ℓ

J
J

JJ]








� ⋂

VB◦(ℓ) = (VB•(ℓ)\killVB(Bℓ)) ∪ genVB(Bℓ) where Bℓ ∈ blocks(S⋆)

VB•(ℓ) =







∅ : if ℓ = final(S⋆)
⋂

{VB◦(ℓ
′)|(ℓ′, ℓ) ∈ flow

R
(S⋆)} : otherwise

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 13



Example

if [a > b]1 then ([x := b−a]2; [y := a−b]3) else ([y := b−a]4; [x := a−b]5)

ℓ VB•(ℓ) VB◦(ℓ)

1 {a−b, b−a} {a−b, b−a}

2 {a−b} {a−b, b−a}

3 ∅ {a−b}

4 {a−b} {a−b, b−a}

5 ∅ {a−b}

ℓ killVB(ℓ) genVB(ℓ)

1 ∅ ∅

2 ∅ {b−a}

3 ∅ {a−b}

4 ∅ {b−a}

5 ∅ {a−b}

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 14



Code Hoisting

Code hoisting finds expressions that are always evaluated following

some point in the program regardless of the execution path – and

moves them to the earliest point (in execution order) beyond which

they would always be executed.

Before:

if [a > b]1 then ([x := b−a]2; [y := a−b]3) else ([y := b−a]4; [x := a−b]5)

After:

[t1 := a−b]0; [t2 := b−a]0
′

;

if [a > b]1 then ([x := t2]2; [y := t1]3) else ([y := t2]4; [x := t1]5)

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 15



Summary of Classical Analyses

Analysis may must

Forward Reaching Definitions Available Expressions

Backward Live Variables Very Busy Expressions

Analysis may must

Combination Op. ∪ ∩

Solution of equ. smallest largest

Analysis Extremal labels set Abstract flow graph

Forward {init(S⋆)} flow(S⋆)

Backward final(S⋆) flow
R
(S⋆)

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 16



Bit Vectors

The classical analyses operate over elements of P(D) where D is a

finite set (e.g., variables, expressions, statements, etc.).

The elements can be represented as bit vectors. Each element of D

can be assigned a unique bit position i (1 ≤ i ≤ n). A subset S of D is

then represented by a vector of n bits:

• if the i′th element of D is in S then the i′th bit is 1.

• if the i′th element of D is not in S then the i′th bit is 0.

Then we have efficient implementations of

• set union as logical or

• set intersection as logical and

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 17



More Bit Vector Framework Examples

• Dual available expressions determines for each program point

which expressions may not be available when execution reaches

that point (forward may analysis)

• Copy analysis determines whether there on every execution path

from a copy statement x := y to a use of x there are no

assignments to y (forward must analysis).

• Dominators determines for each program point which program

points are guaranteed to have been executed before the current

one is reached (forward must analysis).

• Upwards exposed uses determines for a program point, what uses

of a variable are reached by a particular definition (assignment)

(backward may analysis).

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 18



Non-Bit Vector Frameworks

• Constant propagation determines for each program point

whether or not a variable has a constant value whenever

execution reaches that point.

• Detection of signs analysis determines for each program point the

possible signs that the values of the variables may have whenever

execution reaches that point.

• Faint variables determines for each program point which variables

are faint: a variable is faint if it is dead or it is only used to compute

new values of faint variables.

• May be uninitialized determines for each program point which

variables have dubious values: a variable has a dubious value if

either it is not initialized or its value depends on variables with

dubious values.

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 19



References

• Material for this 3rd lecture

www.complang.tuwien.ac.at/knoop/oue185187_ws1112.html

• Book

Flemming Nielson, Hanne Riis Nielson, Chris Hankin:

Principles of Program Analysis.

Springer, (2nd edition, 452 pages, ISBN 3-540-65410-0), 2005.

– Chapter 2 (Data Flow Analysis)

Jens Knoop, Markus Schordan, Jakob Zwirchmayr November 16, 2011 20


	Live Variable Analysis
	Basic Idea
	Analysis of Elementary Blocks
	Analysis of the Program
	Example
	Dead Code Elimination (DCE)
	Example: Combining Optimizations
	Faint Variables
	Very Busy Expressions Analysis
	Basic Idea
	Analysis of Elementary Blocks
	Analysis of the Program
	Example
	Code Hoisting
	Summary of Classical Analyses
	Bit Vectors
	More Bit Vector Framework Examples
	Non-Bit Vector Frameworks
	References

