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• Common perception that high level languages/abstraction gives

low level of performance.

• Translation (straight forward) preserves semantics but does not

exploit specific opportunities of lower level language with respect

to performance.

• Optimization improves performance (misnomer: usually we do not

achieve an “optimal” solution - but it is the ideal case)
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Optimizing Compiler
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Goal of code optimization. Discover, at compile-time, information

about the run-time behavior of the program and use that

information to improve the code generated by the compiler
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Optimizing Compiler(s)
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• Decouple Front End from Back End

– without IR: m source languages, n targets→ m × n compilers

– with IR: m Front Ends, n Back Ends

– Problem: level of IR (possible solution: multiple levels of IR)
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Intermediate Representation (IR)

• High level

– quite close to source language

– e.g. abstract syntax tree

– code generation issues are quite clumsy at high-level

– adequate for high-level optimizations (cache, loops)

• Medium level

– represent source variables, temporaries, (and registers)

– reduce control flow to conditional and unconditional branches

– adequate to perform machine independent optimizations

• Low level

– correspond to target-machine instructions

– adequate to perform machine dependent optimizations
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Different Kinds of Optimizations

• Speeding up execution of compiled code

• Size of compiled code

– when committed to read-only memory where size is an

economic constraint

– or code transmitted over a limited-bandwidth communications

channel

• Energy consumption

• Response to real-time events

• etc.
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Considerations for Optimization

• Safety

– correctness: generated code must have the same meaning as

the input code

– meaning: is the observable behavior of the program

• Profitability

– improvement of code

– trade offs between different kinds of optimizations

• Problems

– reading past array bounds, pointer arithmetics, etc.
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Scope of Optimization (1)

• Local

– basic blocks

– statements are executed sequentially

– if any statement is executed the entire block is executed

– limited to improvements that involve operations that all occur in

the same block

• Intra-procedural (global)

– entire procedure

– procedure provides a natural boundary for both analysis and

transformation

– procedures are abstractions encapsulating and insulating

run-time environments

– opportunities for improvements that local optimizations do not

have
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Scope of Optimization (2)

• Inter-procedural (whole program)

– entire program

– exposes new opportunities but also new challenges

* name-scoping

* parameter binding

* virtual methods

* recursive methods (number of variables?)

– scalability to program size
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Optimization Taxonomy

Optimizations are categorized by the effect they have on the code.

• Machine independent

– largely ignore the details of the target machine

– in many cases profitability of a transformation depends on

detailed machine-dependent issues, but those are ignored

• Machine dependent

– explicitly consider details of the target machine

– many of these transformations fall into the realm of code

generation

– some are within the scope of the optimizer (some cache

optimizations, some expose instruction level parallelism)
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Machine Independent Optimizations (1)

• Dead code elimination

– eliminate useless or unreachable code

– algebraic identities

• Code motion

– move operation to place where it executes less frequently

– loop invariant code motion, hoisting, constant propagation

• Specialize

– to specific context in which an operation will execute

– operator strength reduction, constant propagation, peephole

optimization
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Machine Independent Optimizations (2)

• Eliminate redundancy

– replace redundant computation with a reference to previously

computed value

– e.g. common subexpression elimination, value numbering

• Enable other transformations

– rearrange code to expose more opportunities for other

transformations

– e.g. inlining, cloning
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Machine Dependent Optimizations

• Take advantage of special hardware features

– Instruction Selection

• Manage or hide latency

– Arrange final code in a way that hides the latency of some

operations

– Instruction Scheduling

• Manage bounded machine resources

– Registers, functional units, cache memory, main memory
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Example: C++STL Code Optimization

• Different programming styles for iterating on a container and

performing operation on each element

• Use different levels of abstractions for iteration, container, and

operation on elements

• Optimization levels O1-3 compared with GNU 4.0 compiler

Concrete example: We iterate on container ’mycontainer’ and

perform an operation on each element

• Container is a vector

• Elements are of type numeric_type (double)

• Operation of adding 1 is applied to each element

• Evaluation Cases EC 1-6

Acknowledgement: Joint work of Markus Schordan and Rene Heinzl
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Programming Styles - 1,2

EC1: Imperative Programming

f o r (unsigned i n t i = 0 ; i < mycontainer . s i ze ( ) ; ++ i ) {

mycontainer [ i ] += 1 . 0 ;

}

EC2: Weakly Generic Programming

f o r ( vector<numeric type> : : i t e ra to r i t = mycontainer . be

i t != mycontainer .end ( ) ;

++ i t ) {

∗ i t += 1 . 0 ;

}
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Programming Style - 3

EC3: Generic Programming

for each (mycontainer . begin ( ) ,

mycontainer .end( ) ,

plus n<numeric type>(1.0) ) ;

Functor

template<class datatype>

s t r uc t plus n

{

plus n (datatype member) :member(member) {}

void operator ( ) ( datatype& value ) { value += member; }

private :

datatype member;

} ;
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Programming Style - 4

EC4: Functional Programming with STL

transform (mycontainer . begin ( ) ,

mycontainer .end( ) ,

mycontainer . begin ( ) ,

bind2nd( std : : plus<numeric type>() , 1 . 0 ) ) ;

• plus: binary function object that returns the result of adding its first

and second arguments

• bind2nd: Templatized utility for binding values to function objects
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Programming Styles - 5,6

Functional Programming with Boost::lambda

std : : for each (mycontainer . begin ( ) ,

mycontainer .end( ) ,

boost : : lambda : : 1 +=1.0 ) ;

Functional Programming with Boost::phoenix

std : : for each (mycontainer . begin ( ) ,

mycontainer .end( ) ,

phoenix : : arg1 += 1.0 ) ;

• Use of unnamed function object.
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Evaluation (EC1-6 without optimization)
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• Compiler: GNU g++ 4.0

• Evaluation Cases 1-6

• Time measured in milliseconds, container size: 1000
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Evaluation: Optimization Levels O1-3
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• Compiler: GNU g++ 4.0

• The actual run-time with different optimization levels -O1, -O2, -O3

for each programming style (EC 1-6)

• An almost identical run-time is achieved at level -O3.
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SATIrE: Static Analysis and Tool Integration Engine
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SATIrE: Concrete Architecture (Oct’07)
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SATIrE: Components (1)

• C/C++ Front End (Edison Design Group)

• Annotation Mapper (maps source-code annotations to an

accessible representation in the ROSE-AST)

• Program Annotator (annotates programs with analysis results;

combined with the Annotation Mapper this allows to make analysis

results persistent in source-code for subsequent analysis and

optimization)

• C/C++ Back End (generates C++ code from ROSE-AST)
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SATIrE Components (2)

• Integration 1 (Loop Optimizer)

– Loop Optimizer: ported from the Fortran D compiler and

integrated in LLNL-ROSE

• Integration 2 (PAG)

– ICFG Builder: Interprocedural Control Flow Graph Generator

addresses full C++

– PAG Analyzer: a program analyzer, generated with AbsInt’

Program Analysis Generator (PAG) from a user-specified

program analysis

– Analysis Results Mapper: Maps Analysis Results from ICFG

to ROSE-AST, makes them available as AST-Attributes
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SATIrE Components (3)

• Integration 3 (Termite)

– Term Builder: generates an external textual term representation

of the ROSE-AST (Term is in Prolog syntax)

– Term-AST Mapper: parses the external textual program

representation and translates it into a ROSE-AST
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Optimization

Analysis
IR+Results

Transformation
IR IR

• Analysis

– determine properties of program

– safe, pessimistic assumptions

• Transformation

– based on analysis results
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The Essence of Program Analysis

Program analysis offers techniques for predicting statically at

compile-time safe and efficient approximations to the set of

configurations or behaviors arising dynamically at run-time.

Safe : faithful to the semantics

Efficient : implementation with

• good time performance

• low space consumption
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Typical Optimization Aspects

• Avoid redundant computations

– reuse available results

– move loop invariant computations outside loops

• Avoid superfluous computations

– results known not to be needed

– results known already at compile time

to be demonstrated in some examples ...
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Lowering / IR / Address Computation

int a[m][n], b[m][n], c[m][n];

...

for(int i=0; i<m; ++i) {

for(int j=0; j<n; ++j) {

a[i][j]=b[i][j]+c[i][j];

}

}

i=0;

while(i<m) {

j=0;

while(j<n) {

temp=Base(a)+i*n+j;

*(temp)=*(Base(b)+i*n+j)+*(Base(c)+i*n+j);

j=j+1;

}

i=i+1;

}

Remark: in C: a[i] == Base(a)+i*n (size of element type implicit)
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Available Expressions Analysis

i=0;

while(i<m) {

j=0;

while(j<n) {

temp = (Base(a)+i*n+j);

*temp = *(Base(b)+ i*n+j ) + *(Base(c)+ i*n+j );

j=j+1;

}

i=i+1;

}

• Determines for each program point, which expressionmust hav

already been computed, and not later modified, on all paths

the program point.
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Common Subexpression Elimination

i=0;

while(i<m) {

j=0;

while(j<n) {

temp = (Base(a)+ i*n+j );

*temp = *(Base(b)+ i*n+j )

+ *(Base(c)+ i*n+j );

j=j+1;

}

i=i+1;

}

i=0;

while(i<m) {

j=0;

while(j<n) {

t1=i*n+j ;

temp = (Base(a)+ t1 );

*temp = *(Base(b)+ t1 )

+ *(Base(c)+ t1 );

j=j+1;

}

i=i+1;

}

• Analysis: Available Expressions Analysis

• Transformation: Eliminate recomputations of i*n+j

– Introduce t1=i*n+j

– Use t1 instead of i*n+j
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Detection of Loop Invariants

i=0;

while(i<m) {

j=0;

while(j<n) {

t1= i*n +j;

temp = (Base(a)+t1);

*temp = *(Base(b)+t1) + *(Base(c)+t1);

j=j+1;

}

i=i+1;

}

Loop Invariant: Expression that is always computed to the same value

each iteration of the loop.
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Loop Invariant Code Motion

i=0;

while(i<m) {

j=0;

while(j<n) {

t1= i*n +j;

temp = (Base(a)+t1);

*temp = *(Base(b)+t1)

+ *(Base(c)+t1);

j=j+1;

}

i=i+1;

}

i=0;

while(i<m) {

j=0;

t2=i*n ;

while(j<n) {

t1= t2 +j;

temp = (Base(a)+t1);

*temp = *(Base(b)+t1)

+ *(Base(c)+t1);

j=j+1;

}

i=i+1;

}

• Analysis: loop invariant detection

• Transformation: move loop invariant outside loop

– introduce t2=i*n and replace i*n by t2

– move t2=i*n outside loop

Jens Knoop, Markus Schordan, Gergö Barany October 21, 2009

Detection of Induction Variables

i=0 ;

while(i<m) {

j=0;

t2=i*n ;

while(j<n) {

t1=t2+j;

temp = (Base(a)+t1);

*temp = *(Base(b)+t1)

+ *(Base(c)+t1);

j=j+1;

}

i=i+1 ;

}

Basic Induction Variables. Variables i whose only definitions within a

loop is of the form i = i + c or i = i − c and c is a loop invariant.

Derived Induction Variables. Variables j defined only once in a loop

whose value is a linear function of some basic induction variable.
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Strength Reduction (1)

A transformation that replaces a repeated series of expensive

(“strong”) operations with a series of inexpensive (“weak”) operations

that compute the same values.

Classic example: replaces integer multiplications based on a loop

index with equivalent additions.

• This particular case arises routinely from expansion of array and

structure addresses in loops.
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Strength Reduction (2)

i=0 ;

while(i<m) {

j=0;

t2=i*n ;

while(j<n) {

t1=t2+j;

temp = (Base(a)+t1);

*temp = *(Base(b)+t1)

+ *(Base(c)+t1);

j=j+1;

}

i=i+1 ;

}

i=0;

t3=0 ;

while(i<m) {

j=0;

t2= t3 ;

while(j<n) {

t1=t2+j;

temp = (Base(a)+t1);

*temp = *(Base(b)+t1)

+ *(Base(c)+t1);

j=j+1;

}

i=i+1;

t3=t3+n ;

}

The multiplication i*n is replaced by successive additions.
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Copy Analysis

i=0;

t3=0;

while(i<m) {

j=0;

t2=t3 ;

while(j<n) {

t1= t2 +j;

temp = (Base(a)+t1);

*temp = *(Base(b)+t1)

+ *(Base(c)+t1);

j=j+1;

}

i=i+1;

t3=t3+n;

}

Determines for each program point, which copy statements x = y that

still are relevant (i.e. neither x nor y have been redefined) when

control reaches that point.
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Copy Propagation

i=0;

t3=0;

while(i<m) {

j=0;

t2=t3 ;

while(j<n) {

t1= t2 +j;

temp = (Base(a)+t1);

*temp = *(Base(b)+t1)

+ *(Base(c)+t1);

j=j+1;

}

i=i+1;

t3=t3+n;

}

i=0;

t3=0;

while(i<m) {

j=0;

t2=t3;

while(j<n) {

t1= t3 +j;

temp = (Base(a)+t1);

*temp = *(Base(b)+t1)

+ *(Base(c)+t1);

j=j+1;

}

i=i+1;

t3=t3+n;

}

• Analysis: Copy Analysis and def-use chains (ensure only one

definition reaches the use of x)

• Transformation: Replace the use of x by y.
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Live Variables Analysis

• A variable is live at a program point if there is a path from this

program point to a use of the variable that does not re-define

variable.

• Determines for each program point, which variable may be

the exit from that point.

• If a variable is not live, it is dead.
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Live Variables Analysis

i=0;

t3=0;

while(i<m) {

j=0;

t2 =t3;

while(j<n) {

t1=t3+j;

temp = (Base(a)+t1);

*temp = *(Base(b)+t1)

+ *(Base(c)+t1);

j=j+1;

}

i=i+1;

t3=t3+n;

}

• Only dead variables are marked.

Jens Knoop, Markus Schordan, Gergö Barany October 21, 2009 40

Dead Code Elimination

i=0;

t3=0;

while(i<m) {

j=0;

t2=t3 ;

while(j<n) {

t1=t3+j;

temp = (Base(a)+t1);

*temp = *(Base(b)+t1)

+ *(Base(c)+t1);

j=j+1;

}

i=i+1;

t3=t3+n;

}

i=0;

t3=0;

while(i<m) {

j=0;

while(j<n) {

t1=t3+j;

temp = (Base(a)+t1);

*temp = *(Base(b)+t1)

+ *(Base(c)+t1);

j=j+1;

}

i=i+1;

t3=t3+n;

}
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Example: Optimizations Summary

Analysis Transformation

Available expr. analysis Common subexpr. elim.

Loop invariant detection Invariant code motion

Induction variable detection Strength reduction

Copy analysis Copy propagation

Live variables analysis Dead code elimination

Further optimizations?
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Pointer/Alias/Shape Analysis

• Ambiguous memory references interfere with an optimizer’s ability

to improve code.

• One major source of ambiguity is the use of pointer-based values.

Goal: determine for each pointer the set of memory locations to

which it may refer.

Without such analysis the compiler must assume that each pointer can

refer to any addressable value, including

• any space allocated in the run-time heap

• any variable whose address is explicitly taken

• any variable passed as a call-by-reference parameter

Forms of pointer analysis: points-to sets, alias pairs, shape analysis.
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Optimizations for Object-Oriented Languages (1)

Invoking a method in an object-oriented language requires looking up

the address of the block of code which implements that method and

passing control to it.

Opportunities for optimization

• Look-up may be performed at compile time

• Only one implementation of the method in the class and in its

subclasses

• Language provides a declaration which forces the call to be

non-virtual

• Compiler performs static analysis which can determine that a

unique implementation is always called at a particular call-site.
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Optimizations for Object-Oriented Languages

Optimizations:

• Dispatch Table Compression

• Devirtualization

• Inlining

• Escape Analysis for allocating objects on the run-time stack

(instead of heap)

Jens Knoop, Markus Schordan, Gergö Barany October 21, 2009
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References (2)

• Book

Flemming Nielson, Hanne Riis Nielson, Chris Hankin:

Principles of Program Analysis.

Springer, (2nd edition, 452 pages, ISBN 3-540-65410-0), 2005.

– Chapter 1 (Introduction)

Jens Knoop, Markus Schordan, Gergö Barany October 21, 2009 47
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