

Data-Flow Analysis for Hot-Spot Program
Optimization

Jens Knoop

Technische Universit ät Wien

1

Motivation

x := a+b x := a+b u := c+b c := c+b

y := a+b v := c+b
e f

2

Motivation (Cont’d)

fe
v := c+by := a+b

x

x := a+b x := a+b u := c+b c := c+b

3

Motivation (Cont’d)

A Possibly Huge
Program Region

A Possibly Huge
Program Region

x := a+bx := a+b c := c+bu := c+b

v := c+bfe y := a+b

Hot Spot 2Hot Spot 1

s

e

4

Motivation (Cont’d)

A Possibly Huge
Program Region

A Possibly Huge
Program Region

x := a+bx := a+b c := c+bu := c+b

v := c+bfe y := a+b
x

s

e

5

Motivation (Cont’d)

fe y := a+b

x := a+b x := a+b

v := c+b

c := c+bu := c+b

x

6

Why Standard Data-Flow Analysis Fails

Availability of terms...

AVAIL(n) =

false if n = s
∏

m∈ pred(n)

[[(m,n)]](AVAIL(n)) otherwise

where

[[(m,n)]](b) = (COMP(m,n) + b) ∗ TRANSP(m,n)

7

Availability at a Single Program Point

y := a+b

b := a+b

x := a+b z := a+b

a)

y := a+b

x := a+b

a := ...

z := a+b

b := ...

z := a+b

y := a+b

b := a+b

x := a+b z := a+b

b)

y := a+b

x := a+b

a := ...

z := a+b

b := ...

z := a+b

8

Outline of the Talk

Standard vs. Reverse Data-Flow Analysis...

• Background

• Essentials

• The Connecting Link

• The Clou: Why does it work?

• Applications

• Conclusions

9

Background

Demand-Driven Data-Flow Analysis...

• Agrawal (2000)

• Horwitz, Reps, Sagiv (1994+)

• Duesterwald, Gupta, Soffa (1995+)

• ...

• Knoop (Euro-Par 1999, KPS 2007)

10

Reverse Data-Flow Analysis: The Basics

(Standard) Data-Flow Analysis...

• Data-Flow Lattice Ĉ =(C,⊓,⊔,⊑,⊥,⊤)

• Data-Flow Functional [[]] : E → (C→C)

Reverse Data-Flow Analysis...

• Reverse Data-Flow Functional (Hughes, Launchbury 1992+)

[[]]R : E → (C→C) defined by

∀ e ∈ E ∀ c ∈ C. [[e]]R(c)=df ⊓{ c′ | [[e]](c′) ⊒ c }

11

Availability of Terms

• Abstract semantics for availability of terms

1. Data-Flow Lattice:

(C,⊓,⊔,⊑,⊥,⊤)=df (B, ∧ , ∨ ,≤, false, true)

2. Data-Flow Functional : [[]]av : E → (B→B) defined by

∀ e ∈ E. [[e]]av=df

Cst true if Comp e ∧ Transp e

IdB if ¬Comp e ∧ Transp e

Cst false otherwise

12

On the Relationship of [[]] and [[]]
R

Lemma

1. [[e]]R is well-defined and monotonic.

2. [[e]]R is additive, if [[e]] is distributive.

13

Monotonicity, Distributivity, and Additivity

...of data-flow functions.

Definition [Monotonicity, Distributivity, Additivity]

Let Ĉ =(C,⊓,⊔,⊑,⊥,⊤) be a complete lattice and f : C→C a

function on C. Then: f is

1. monotonic iff ∀ c, c′ ∈ C. c ⊑ c′ ⇒ f(c) ⊑ f(c′)

(Preserving the order of elements)

2. distributive iff ∀C ′ ⊆ C. f(⊓C ′) = ⊓ {f(c) | c ∈ C ′}

(Preserving greatest lower bounds)

3. additive iff ∀C ′ ⊆ C. f(⊔C ′) = ⊔ {f(c) | c ∈ C ′}

(Preserving least upper bounds)

14

Often useful

...the following equivalent characterization of monotonicity:

Lemma

Let Ĉ =(C,⊓,⊔,⊑,⊥,⊤) be a complete lattice and f : C→C a

function on C. Then:

f is monotonic ⇐⇒ ∀C ′ ⊆ C. f(⊓C ′) ⊑ ⊓ {f(c) | c ∈ C ′}

(⇐⇒∀C ′ ⊆ C. f(⊔C ′) ⊒ ⊔ {f(c) | c ∈ C ′})

15

On the Relationship of [[]] and [[]]
R

(Cont’d)

Lemma

1. [[e]]R ◦ [[e]] ⊑ IdC , if [[e]] is monotonic.

2. [[e]] ◦ [[e]]R ⊒ IdC , if [[e]] is distributive.

In terms of the theory of “abstract interpretation”:

• [[e]] and [[e]]R form a Galois-connection.

16

Reverse DFA: The R-MinFP -Approach

The R-MinFP -Equation System:

reqInf (n)=

cq if n=q

⊔ { [[(n,m)]]R(reqInf (m)) |m ∈ succ(n) }

otherwise

The R-MinFP -Solution:

∀ cq ∈ C ∀n ∈ N. R-MinFPcq
(n)=df reqInf ∗

cq
(n)

where reqInf∗cq
denotes the least solution of the

R-MinFP -equation system wrt cq ∈ C.

17

Standard DFA: The MaxFP -Approach

The MaxFP -Equation System:

inf (n) =

cs if n= s

⊓ { [[(m,n)]](inf (m)) |m ∈ pred(n) }

otherwise

The MaxFP -Solution:

∀ cs ∈ C ∀n ∈ N. MaxFP ([[]],cs)(n)=df inf ∗
cs

(n)

where inf ∗
cs

denotes the greatest solution of the MaxFP -equation

system wrt cs ∈ C.

18

The Connecting Link

Link Theorem

For distributive data-flow functionals [[]], q ∈ N , and cs, cq ∈ C,

we have:

R-MinFP cq
(s) ⊑ cs ⇐⇒ MaxFP cs(q) ⊒ cq

19

Continuing the Analogy

...of Standard and Reverse Data-Flow Analysis regarding

• Soundness & Completeness (in terms of program verification) /

Safety & Coincidence (Precision) (in terms of data-flow analysis)

20

Essential

...the extensibility of data-flow functionals to paths

[[p]]=df

IdC if q < 1

[[〈e2, . . . , eq〉]] ◦ [[e1]] otherwise

21

The MOP -Approach

∀ cs ∈ C ∀n ∈ N. MOP cs(n)=⊓ { [[p]](cs) | p ∈ P[s, n] }

22

Standard DFA: Main Results

Theorem [Soundness / Safety]

∀ cs ∈ C ∀n ∈ N. MaxFP cs(n) ⊑ MOP cs(n)

if the data-flow functional [[]] is monotonic.

Theorem [Completeness / Coincidence (Precision)]

∀ cs ∈ C ∀n ∈ N. MaxFP cs(n)= MOP cs(n)

if the data-flow functional [[]] is distributive.

23

Standard DFA: The Tool Kit View

...at a glance:

MOP-Solution MFP-Solution Computed Solution

1 3a) 3b)2

Fixed Point Alg. A.1

Generic

c
0

C

Specification

DFA

Intraprocedural

Program

Property

φ

DFA
Framework

Intraprocedural

Correctness Lemma

Theory Practice

Coincidence Theorem
Intraprocedural Intraprocedural

Termination Lemma
Intraprocedural

Tool Kit

Equivalence

24

Of course...

Reverse data-flow functionals can be extended to paths, too:

[[p]]R=df

IdC if q < 1

[[〈e1, . . . , eq−1〉]]R ◦ [[eq]]R otherwise

25

The R-JOP -Approach

The R-JOP -Solution:

∀cq ∈ C ∀n ∈ N. R-JOPcq
(n)=df ⊔ { [[p]]R(cq) | p ∈ P[n,q]}

26

Reverse DFA: Main Results

Theorem [Soundness / Reverse Safety]

∀ cq ∈ C ∀n ∈ N. R-MinFP cq
(n) ⊒ R-JOP cq

(n)

Theorem [Completeness / Reverse Coincidence (Precision)]

∀ cq ∈ C ∀n ∈ N. R-MinFP cq
(n)= R-JOP cq

(n)

if [[]] is distributive.

27

Putting it together...

cs
cq

cq
s() cs

Theorem

Link

{?}

{?}

π {q}{p}

MaxFP

MOP

R-JOP

R-MinFP

Coincidence

Theorem

Data-flow Analysis

(q)

C C
distributive

Program Verification

π {q}

Weakest Precondition View

π{p}

Strongest Postcondition View

e
R

(c) =df (c) c}

DFA PV

e

e{c |

induces

Coincidence

Theorem

Reverse

28

Are We Done?

Recall the motivating example...

A Possibly Huge
Program Region

A Possibly Huge
Program Region

x := a+bx := a+b c := c+bu := c+b

v := c+bfe y := a+b
x

s

e

29

Mastering the Road to Success

...requires more. It requires us to conclude from “weakest

pre-conditions” on “strongest post-conditions”.

...essentially, this means to replace the analysis problem by a

verification problem.

30

Changing the Perspective

...

sci?

Given:

Sought: Strongest Component Information

...

...

...

...

...

...

...

s

e

!

?

Context Information cti

sci

cti!

...

! cpi

wci?

Given:

Sought:

...

...

...

...

...

...

...

s

e

!

?

Component Information

Weakest Context Information

cpi

wci

...

! cpi

cti!

...

...

...

...

...

...

...

s

e

Implementation Problem Specification Problem Verification Problem

Given:!

Component Information

Context Information

Sought:? cpiValidity of with respect of cti

cti

cpi

31

Changing the Perspective: The Standard Taxonomy

Exhaustive Demand-Driven
DFA DFA

Classification of DFA Techniques
Conventional

32

Changing the Perspective: Conclusions Derived

{?}

... the domain of exhaustive DFA

demand-driven DFA... the domain of

The verification

The specification

problem:

implementationThe problem:

problem:

{q}π

{p} π {q} ?

{p} π {?}

33

(R)DFA-Frameworks / (R)DFA-Tool Kits

() ()

Fo
rm

al
ly

 a
ns

w
er

s

Fo
rm

al
ly

 a
ns

w
er

s

Weakest Pre-condition Problem

Program Analysis

(Demand-driven +
Early Termination) Early Termination)

(By-need +

BN-MaxFP R-MinFPR-JOP DD-R-MinFPMOPMaxFP

Exhaustive ExhaustivePartial Partial

The Standard View The Dual View

Strongest Post-condition Problem

34

Gen/Kill-Problems

...allow us to master the road to success: The SPC-analysis

problem boils down to a WPC-verification problem.

This is important because...

• Redundant Expression/Assignment Elimination

• Dead-Code Elimination

• Strength Reduction

• ...

are based on Gen-Kill-problems.

35

Concluding the Example: Availability

Abstract semantics for availability

1. Data-flow lattice:

(C,⊓,⊔,⊑,⊥,⊤)=df (BX , ∧ , ∨ ,≤, false, failure)

with ⊥= false < true < failure =⊤

2. Data-flow functional : [[]]av : E → (BX →BX) defined by

∀ e ∈ E. [[e]]av=df

CstX
true if Comp e ∧ Transp e

IdBX
if ¬Comp e ∧ Transp e

CstX
false otherwise

36

Reverse Availability

Reverse abstract semantics for availability

1. Data-flow lattice:

(C,⊓,⊔,⊑,⊥,⊤)=df (BX , ∧ , ∨ ,≤, false, failure)

2. Reverse data-flow functional : [[]]avR
: E → (BX →BX)

defined by

∀ e ∈ E. [[e]]avR
=df

R-CstX
true if [[e]]av =CstX

true

R-IdBX
if [[e]]av = IdBX

R-CstX
false if [[e]]av =CstX

false

37

Supporting Functions

∀ b ∈ BX . R-CstX
true(b) =df

false if b ∈ B

failure otherwise

(i.e., if b= failure)

∀ b ∈ BX . R-CstX
false(b) =df

false if b= false

failure otherwise

R-IdBX
=df IdBX

38

Summing Up / Extensions

In this talk...

• The intraprocedural basic setting of (R)DFA (Knoop, KPS 2007)

Extensions are possible...

• Interprocedural setting (Knoop, CC 1992, LNCS 1428 (1998))

• Parallel setting (Knoop, Euro-Par 1999)

• ...

39

(R)DFA-Frameworks / (R)DFA-Tool Kits (Cont’d)

...the general pattern:

MOP-Solution
Coincidence Theorem

MFP-Solution Computed Solution

DFA

Specification

1 3a) 3b)2

Program

Property

φ

Correctness Lemma

Termination Lemma

Generic

Fixed Point Alg.

Tool Kit

Theory Practice
Interface

DFA

Framework

Equivalence

40

(R)DFA-Frameworks / (R)DFA-Tool Kits

...the general pattern more abstract:

DFA

Specification

Program

Property

φ

1 3b)2

Coincidence
Theorem 3b)

Intraprocedural

Interprocedural

Conditional

Equivalence Effectivity

DFA

Framework

Coincidence

Correctness Termination

Effectivity
Theorem

3a)

3a)Proof

Obligations:

Parallel

41

Applications

read(a,b)read(a,b)
b)a)

x := a+b

y := a+b

c := a+b

a := ...

x := a+b

z := a+b

b := ...

z := a+b

x := a+b

Debugger

write(c)

x := a+b

x := a+b

y := a+b

c := a+b

a := ...

x := a+b

b := ...

z := a+b

Program point
satisfies availability,

does not!while

"Hot Spot" Optimizer

z := a+b x
write(c)

Variable c is not initialized

program point

z := a+b

x := a+b

z := a+b

x := a+b

along some paths reaching

e e

g

f f

42

From Applications towards Conclusions

Reverse Data-Flow Analysis especially well-suited for...

• Hot-Spot Optimization

• Debugging

• Just-in-time Compilation

based on answering data-flow queries.

Hence...

• Data-Flow Analysis for Debugging

• Data-Flow Analysis for Just-in-time Compilation

were titles considered optionally.

43

Conclusions (Cont’d)

As an appealing add-on...

• RDFA is tailored for parallelization!

44

Recall again...

A Possibly Huge
Program Region

A Possibly Huge
Program Region

x := a+bx := a+b c := c+bu := c+b

v := c+bfe y := a+b
x

s

e

45

Conclusions and Perspectives

Data-Flow Analysis for Multi-Core Architectures

46

