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Why Standard Data-Flow Analysis Fails


Availability of terms...


AVAIL(n) =

















false if n = s
∏


m∈ pred(n)


[[ (m,n) ]](AVAIL(n)) otherwise


where


[[ (m,n) ]](b) = (COMP(m,n) + b) ∗ TRANSP(m,n)
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Availability at a Single Program Point
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Outline of the Talk


Standard vs. Reverse Data-Flow Analysis...


• Background


• Essentials


• The Connecting Link


• The Clou: Why does it work?


• Applications


• Conclusions
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Background


Demand-Driven Data-Flow Analysis...


• Agrawal (2000)


• Horwitz, Reps, Sagiv (1994+)


• Duesterwald, Gupta, Soffa (1995+)


• ...


• Knoop (Euro-Par 1999, KPS 2007)
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Reverse Data-Flow Analysis: The Basics


(Standard) Data-Flow Analysis...


• Data-Flow Lattice Ĉ =(C,⊓,⊔,⊑,⊥,⊤)


• Data-Flow Functional [[ ]] : E → (C→C)


Reverse Data-Flow Analysis...


• Reverse Data-Flow Functional (Hughes, Launchbury 1992+)


[[ ]]R : E → (C→C) defined by


∀ e ∈ E ∀ c ∈ C. [[ e ]]R(c)=df ⊓{ c′ | [[ e ]](c′) ⊒ c }
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Availability of Terms


• Abstract semantics for availability of terms


1. Data-Flow Lattice:


(C,⊓,⊔,⊑,⊥,⊤)=df (B, ∧ , ∨ ,≤, false, true)


2. Data-Flow Functional : [[ ]]av : E → (B→B ) defined by


∀ e ∈ E. [[ e ]]av=df























Cst true if Comp e ∧ Transp e


IdB if ¬Comp e ∧ Transp e


Cst false otherwise
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On the Relationship of [[ ]] and [[ ]]
R


Lemma


1. [[ e ]]R is well-defined and monotonic.


2. [[ e ]]R is additive, if [[ e ]] is distributive.
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Monotonicity, Distributivity, and Additivity


...of data-flow functions.


Definition [Monotonicity, Distributivity, Additivity]


Let Ĉ =(C,⊓,⊔,⊑,⊥,⊤) be a complete lattice and f : C→C a


function on C. Then: f is


1. monotonic iff ∀ c, c′ ∈ C. c ⊑ c′ ⇒ f(c) ⊑ f(c′)


(Preserving the order of elements)


2. distributive iff ∀C ′ ⊆ C. f(⊓C ′) = ⊓ {f(c) | c ∈ C ′}


(Preserving greatest lower bounds)


3. additive iff ∀C ′ ⊆ C. f(⊔C ′) = ⊔ {f(c) | c ∈ C ′}


(Preserving least upper bounds)
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Often useful


...the following equivalent characterization of monotonicity:


Lemma


Let Ĉ =(C,⊓,⊔,⊑,⊥,⊤) be a complete lattice and f : C→C a


function on C. Then:


f is monotonic ⇐⇒ ∀C ′ ⊆ C. f(⊓C ′) ⊑ ⊓ {f(c) | c ∈ C ′}


( ⇐⇒∀C ′ ⊆ C. f(⊔C ′) ⊒ ⊔ {f(c) | c ∈ C ′} )
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On the Relationship of [[ ]] and [[ ]]
R


(Cont’d)


Lemma


1. [[ e ]]R ◦ [[ e ]] ⊑ IdC , if [[ e ]] is monotonic.


2. [[ e ]] ◦ [[ e ]]R ⊒ IdC , if [[ e ]] is distributive.


In terms of the theory of “abstract interpretation”:


• [[ e ]] and [[ e ]]R form a Galois-connection.
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Reverse DFA: The R-MinFP -Approach


The R-MinFP -Equation System:


reqInf (n)=























cq if n=q


⊔ { [[ (n,m) ]]R(reqInf (m)) |m ∈ succ(n) }


otherwise


The R-MinFP -Solution:


∀ cq ∈ C ∀n ∈ N. R-MinFPcq
(n)=df reqInf ∗


cq
(n)


where reqInf∗cq
denotes the least solution of the


R-MinFP -equation system wrt cq ∈ C.


17







Standard DFA: The MaxFP -Approach


The MaxFP -Equation System:


inf (n) =























cs if n= s


⊓ { [[ (m,n) ]](inf (m)) |m ∈ pred(n) }


otherwise


The MaxFP -Solution:


∀ cs ∈ C ∀n ∈ N. MaxFP ([[ ]],cs)(n)=df inf ∗
cs


(n)


where inf ∗
cs


denotes the greatest solution of the MaxFP -equation


system wrt cs ∈ C.
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The Connecting Link


Link Theorem


For distributive data-flow functionals [[ ]], q ∈ N , and cs, cq ∈ C,


we have:


R-MinFP cq
(s) ⊑ cs ⇐⇒ MaxFP cs(q) ⊒ cq
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Continuing the Analogy


...of Standard and Reverse Data-Flow Analysis regarding


• Soundness & Completeness (in terms of program verification) /


Safety & Coincidence (Precision) (in terms of data-flow analysis)
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Essential


...the extensibility of data-flow functionals to paths


[[ p ]]=df











IdC if q < 1


[[ 〈e2, . . . , eq〉 ]] ◦ [[ e1 ]] otherwise
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The MOP -Approach


∀ cs ∈ C ∀n ∈ N. MOP cs(n)=⊓ { [[ p ]](cs) | p ∈ P[s, n] }
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Standard DFA: Main Results


Theorem [Soundness / Safety]


∀ cs ∈ C ∀n ∈ N. MaxFP cs(n) ⊑ MOP cs(n)


if the data-flow functional [[ ]] is monotonic.


Theorem [Completeness / Coincidence (Precision)]


∀ cs ∈ C ∀n ∈ N. MaxFP cs(n)= MOP cs(n)


if the data-flow functional [[ ]] is distributive.
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Standard DFA: The Tool Kit View


...at a glance:


MOP-Solution MFP-Solution Computed Solution


1 3a) 3b)2


Fixed Point Alg. A.1


Generic


c
0


C


Specification


DFA


Intraprocedural


Program


Property


φ


DFA
Framework


Intraprocedural


Correctness Lemma 


Theory Practice


Coincidence Theorem 
Intraprocedural Intraprocedural


Termination Lemma
Intraprocedural


Tool Kit


Equivalence
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Of course...


Reverse data-flow functionals can be extended to paths, too:


[[ p ]]R=df











IdC if q < 1


[[ 〈e1, . . . , eq−1〉 ]]R ◦ [[ eq ]]R otherwise
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The R-JOP -Approach


The R-JOP -Solution:


∀cq ∈ C ∀n ∈ N. R-JOPcq
(n)=df ⊔ { [[ p ]]R(cq) | p ∈ P[n,q]}
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Reverse DFA: Main Results


Theorem [Soundness / Reverse Safety]


∀ cq ∈ C ∀n ∈ N. R-MinFP cq
(n) ⊒ R-JOP cq


(n)


Theorem [Completeness / Reverse Coincidence (Precision)]


∀ cq ∈ C ∀n ∈ N. R-MinFP cq
(n)= R-JOP cq


(n)


if [[ ]] is distributive.
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Putting it together...
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Are We Done?


Recall the motivating example...
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Mastering the Road to Success


...requires more. It requires us to conclude from “weakest


pre-conditions” on “strongest post-conditions”.


...essentially, this means to replace the analysis problem by a


verification problem.
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Changing the Perspective
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Changing the Perspective: The Standard Taxonomy


Exhaustive Demand-Driven
DFA DFA


Classification of DFA Techniques
Conventional


32







Changing the Perspective: Conclusions Derived


{?}


... the domain of exhaustive DFA


demand-driven DFA... the domain of


The verification


The specification


problem:


implementationThe problem:


problem:


{q}π


{p} π {q} ?


{p} π {?}
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(R)DFA-Frameworks / (R)DFA-Tool Kits


( ) ( )


Fo
rm


al
ly


 a
ns


w
er


s


Fo
rm


al
ly


 a
ns


w
er


s
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Program Analysis
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(By-need +


BN-MaxFP R-MinFPR-JOP DD-R-MinFPMOPMaxFP


Exhaustive ExhaustivePartial Partial


The Standard View The Dual View


Strongest Post-condition Problem
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Gen/Kill-Problems


...allow us to master the road to success: The SPC-analysis


problem boils down to a WPC-verification problem.


This is important because...


• Redundant Expression/Assignment Elimination


• Dead-Code Elimination


• Strength Reduction


• ...


are based on Gen-Kill-problems.
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Concluding the Example: Availability


Abstract semantics for availability


1. Data-flow lattice:


(C,⊓,⊔,⊑,⊥,⊤)=df (BX , ∧ , ∨ ,≤, false, failure)


with ⊥= false < true < failure =⊤


2. Data-flow functional : [[ ]]av : E → (BX →BX ) defined by


∀ e ∈ E. [[ e ]]av=df























CstX
true if Comp e ∧ Transp e


IdBX
if ¬Comp e ∧ Transp e


CstX
false otherwise
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Reverse Availability


Reverse abstract semantics for availability


1. Data-flow lattice:


(C,⊓,⊔,⊑,⊥,⊤)=df (BX , ∧ , ∨ ,≤, false, failure)


2. Reverse data-flow functional : [[ ]]avR
: E → (BX →BX )


defined by


∀ e ∈ E. [[ e ]]avR
=df























R-CstX
true if [[ e ]]av =CstX


true


R-IdBX
if [[ e ]]av = IdBX


R-CstX
false if [[ e ]]av =CstX


false
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Supporting Functions


∀ b ∈ BX . R-CstX
true(b) =df























false if b ∈ B


failure otherwise


(i.e., if b= failure)


∀ b ∈ BX . R-CstX
false(b) =df











false if b= false


failure otherwise


R-IdBX
=df IdBX
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Summing Up / Extensions


In this talk...


• The intraprocedural basic setting of (R)DFA (Knoop, KPS 2007)


Extensions are possible...


• Interprocedural setting (Knoop, CC 1992, LNCS 1428 (1998))


• Parallel setting (Knoop, Euro-Par 1999)


• ...
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(R)DFA-Frameworks / (R)DFA-Tool Kits (Cont’d)


...the general pattern:


MOP-Solution
Coincidence Theorem 


MFP-Solution Computed Solution


DFA
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(R)DFA-Frameworks / (R)DFA-Tool Kits


...the general pattern more abstract:


DFA


Specification


Program


Property


φ


1 3b)2


Coincidence
Theorem 3b)


Intraprocedural


Interprocedural


Conditional


Equivalence Effectivity


DFA


Framework
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3a)Proof


Obligations:


Parallel
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Applications


read(a,b)read(a,b)
b)a)


x := a+b


y := a+b


c := a+b


a := ...


x := a+b


z := a+b


b := ...


z := a+b


x := a+b


Debugger


write(c)


x := a+b


x := a+b


y := a+b


c := a+b


a := ...


x := a+b


b := ...


z := a+b


Program point
satisfies availability,


does not!while


"Hot Spot" Optimizer


z := a+b x
write(c)


Variable c is not initialized


program point


z := a+b


x := a+b


z := a+b


x := a+b


along some paths reaching


e e


g


f f


42







From Applications towards Conclusions


Reverse Data-Flow Analysis especially well-suited for...


• Hot-Spot Optimization


• Debugging


• Just-in-time Compilation


based on answering data-flow queries.


Hence...


• Data-Flow Analysis for Debugging


• Data-Flow Analysis for Just-in-time Compilation


were titles considered optionally.
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Conclusions (Cont’d)


As an appealing add-on...


• RDFA is tailored for parallelization!


44







Recall again...
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Conclusions and Perspectives


Data-Flow Analysis for Multi-Core Architectures
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