Programmanalyse

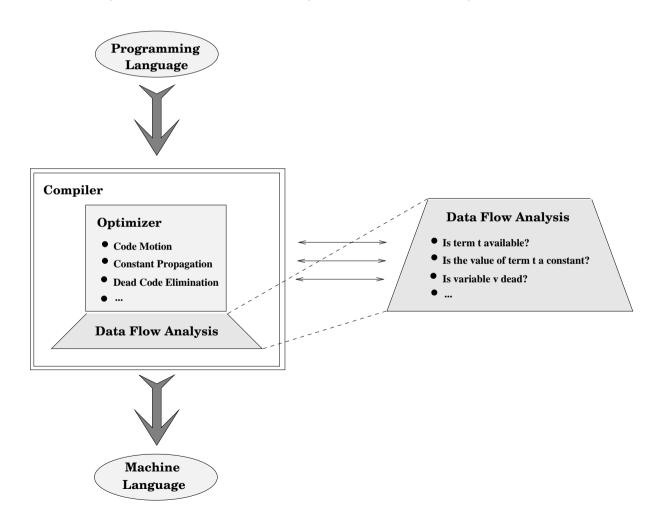
...speziell Datenflussanalyse

Typische Fragen sind...

- Welchen Wert hat eine Variable an einer Programmstelle?
 - → Konstantenausbreitung und Faltung
- Steht der Wert eines Ausdrucks an einer Programmstelle verfügbar?
 - → (Partielle) Redundanzelimination
- Ist eine Variable tot an einer Programmstelle?
 - → Elimination (partiell) toten Codes

Hintergrund

...(Programm-) Analyse zur (Programm-) Optimierung



In der Folge

Zentrale Fragen...

Grundlegendes ebenso...

Was heißt Optimalität...in Analyse und in Optimierung?

...wie (scheinbar) Nebensächliches:

• Was ist eine angemessene Programmrepräsentation?

Ausblick

Genauer werden wir unterscheiden...

- Intraprozedurale,
- interprozedurale,
- parallele,
- konditionale,
- ...

Datenflussanalyse.

Ausblick

Ingredienzien intraprozeduraler Datenflussanalyse:

- (Lokale) abstrakte Semantik
 - 1. Ein Datenflussanalyseverband $\widehat{\mathcal{C}} = (\mathcal{C}, \sqcap, \sqcup, \sqsubseteq, \perp, \top)$
 - 2. Ein Datenflussanalysefunktional $[\![\]\!]:E\to(\mathcal{C}\to\mathcal{C})$
 - 3. Anfangsinformation/-zusicherung $c_{\mathbf{s}} \in \mathcal{C}$
- Globalisierungsstrategien
 - 1. "Meet over all Paths" Ansatz (MOP)
 - 2. Maximaler Fixpunktansatz (MaxFP)
- Generischer Fixpunktalgorithmus

Ausblick

Hauptresultate:

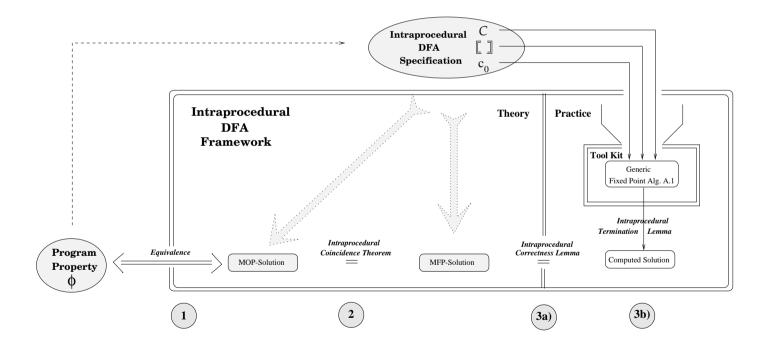
- Sicherheits- (Korrektheits-) Theorem
- Koinzidenz- (Vollständigkeits-) Theorem

Sowie:

• Effektivitäts- (Terminierungs-) Theorem

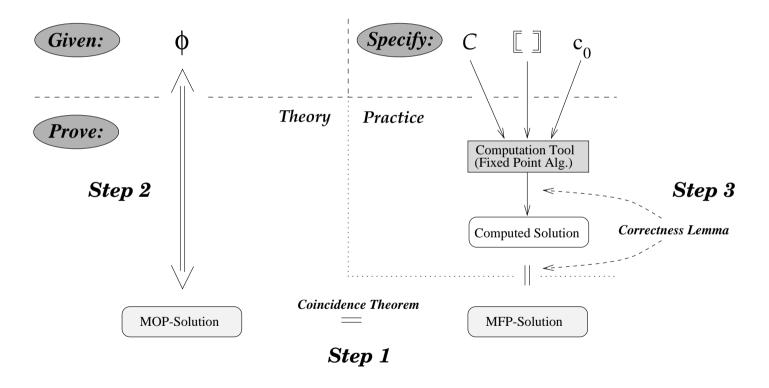
Ausblick: Intraprozedurale Datenflussanalyse (1)

...die (detaillierte) Werkzeugkistensicht:



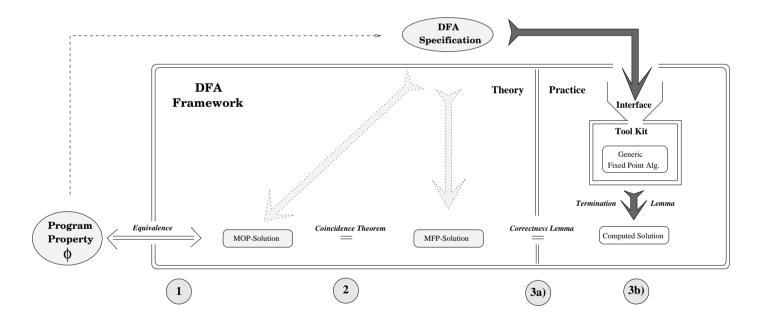
Ausblick: Intraprozedurale Datenflussanalyse (2)

...bei genauerem Hineinsehen:



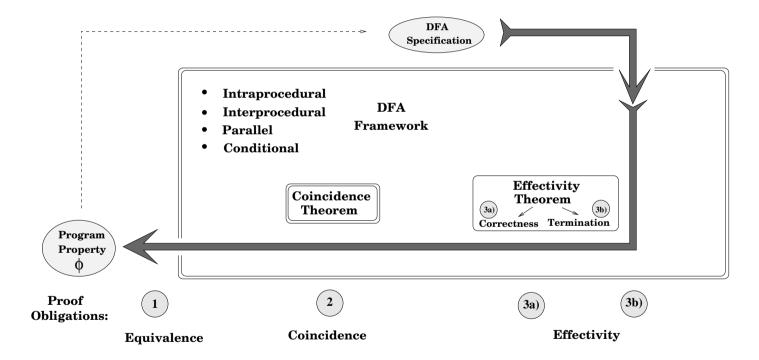
Ausblick: DFA-Frameworks / DFA-Toolkits (1)

...aus größerer Ferne und Konzentration auf das Wesentliche:



Ausblick: DFA-Frameworks / DFA-Toolkits (2)

...das generelle Muster, die Werkzeugkistensicht:



Ziel

Optimale Programmoptimierung...

...weiße Schimmel in der Informatik?

Ohne Fleiß kein Preis!

In der Sprechweise der optimierenden Übersetzung...

...ohne Analyse keine Optimierung!

Zurück zum Anfang: Zur Programmanalyse

...speziell Datenflussanalyse

Üblich ist...

• die Repräsentation von Programmen durch (nichtdeterministische) Flussgraphen

Flussgraph

Ein (nichtdeterministischer) Flussgraph ist ein Quadrupel G = (N, E, s, e) mit

- \bullet Knotenmenge (engl. *Nodes*) N
- Kantenmenge (engl. *Edges*) $E \subseteq N \times N$
- ullet ausgezeichnetem Startknoten s ohne Vorgänger und
- ullet ausgezeichnetem Endknoten e ohne Nachfolger

Knoten repräsentieren Programmpunkte, Kanten repräsentieren die Verzweigungsstruktur. Elementare Programmanweisungen (Zuweisungen, Tests) können wahlweise durch Knoten oder Kanten repräsentiert werden.

→ Darstellungsvarianten: Knoten- vs. kantenbenannte Flussgraphen

Veranschaulichung

Knoten- vs. kantenbenannte Flussgraphen (hier mit Einzelanweisungsbenennung)

b)

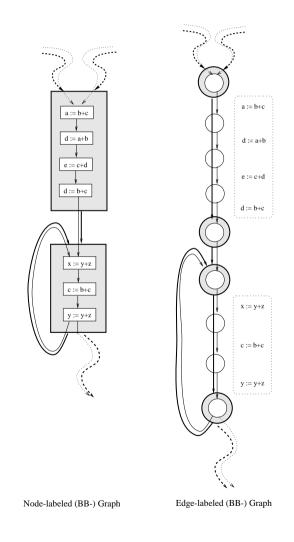
Flussgraphen

Darstellungsvarianten...

- Knotenbenannte Graphen
 - Einzelanweisungsgraphen (SI-Graphen)
 - Basisblockgraphen (BB-Graphen)
- Kantenbenannte Graphen
 - Einzelanweisungsgraphen (SI-Graphen)
 - Basisblockgraphen (BB-Graphen)

In der Folge werden wir bevorzugt kantenbenannte SI-Graphen betrachten.

Knoten- vs. kantenbenannte Flussgraphen



Bezeichnungen

Sei G = (N, E, s, e) ein Flussgraph, seien m, n zwei Knoten aus N. Dann bezeichne:

- $P_G[m,n]$: ...die Menge aller Pfade von m nach n
- ullet $\mathbf{P}_G[m,n[:]$...die Menge aller Pfade von m zu einem Vorgänger von n
- ullet $\mathbf{P}_G[m,n]$: ...die Menge aller Pfade von einem Nachfolger von m nach n
- ullet $\mathbf{P}_G]m,n[:$...die Menge aller Pfade von einem Nachfolger von m zu einem Vorgänger von n

Bem.: Wenn G aus dem Kontext eindeutig hervorgeht, schreiben wir einfacher auch \mathbf{P} statt \mathbf{P}_G .

Datenflussanalysespezifikation

- (Lokale) abstrakte Semantik
 - 1. Ein Datenflussanalyseverband $\widehat{\mathcal{C}} = (\mathcal{C}, \sqcap, \sqcup, \sqsubseteq, \perp, \top)$
 - 2. Ein Datenflussanalysefunktional $[\![]\!]: E \to (\mathcal{C} \to \mathcal{C})$
- Eine Anfangsinformation/-zusicherung: $c_{\mathrm{s}} \in \mathcal{C}$

Globalisierung einer lokalen abstrakten Semantik

Zwei Strategien:

- "Meet over all Paths"-Ansatz (MOP)
 - → spezifizierende Lösung
- Maximaler Fixpunktansatz (*MaxFP*)
 - → berechenbare Lösung

Der MOP - Ansatz

Zentral: Ausdehnung der lokalen abstrakten Semantik auf Pfade

Die MOP-Lösung

$$\forall c_{\mathbf{s}} \in \mathcal{C} \ \forall n \in \mathbb{N}. \ MOP_{c_{\mathbf{s}}}(n) = \prod \{ \llbracket p \rrbracket(c_{\mathbf{s}}) \mid p \in \mathbf{P}[\mathbf{s}, n] \}$$

Der MaxFP -Ansatz

Zentral: Das MaxFP -Gleichungssystem:

$$\inf (n) = \begin{cases} c_{\mathbf{S}} & \text{falls } n = \mathbf{S} \\ \bigcap \{ [(m, n)] (\inf (m)) \mid m \in pred(n) \} \text{ sonst} \end{cases}$$

Die MaxFP -Lösung

$$\forall c_{s} \in \mathcal{C} \ \forall n \in \mathbb{N}. \ \mathit{MaxFP}_{(\llbracket \ \rrbracket, c_{s})}(n) =_{\mathit{df}} \inf_{c_{s}}^{*}(n)$$

wobei $\inf_{c_{\mathbf{S}}}^*$ die größte Lösung des MaxFP -Gleichungssystems bezeichnet.

Generischer Fixpunktalgorithmus 1(2)

Eingabe: (1) Ein Flussgraph G = (N, E, s, e), (2) eine (lo-kale) abstrakte Semantik bestehend aus einem Datenflussanalyseverband C, einem Datenflussanalysefunktional $[] : E \rightarrow (C \rightarrow C)$, und (3) einer Anfangsinformation $c_s \in C$.

Ausgabe: Unter den Voraussetzungen des Effektivitätstheorems (später!) die MaxFP-solution. Abhängig von den Eigenschaften des Datenflussanalysefunktionals gilt dann:

- (1) $[\![\,]\!]$ ist distributiv: Variable inf enthält für jeden Knoten die stärkste Nachbedingung bezüglich der Anfangsinformation $c_{\rm s}$.
- (2) [] ist *monoton*: Variable *inf* enthält für jeden Knoten eine sichere (d.h. untere) Approximation der stärksten Nachbedingung bezüglich der Anfangsinformation c_s .

Bemerkung: Die Variable *workset* steuert den iterativen Process. Ihre Elemente sind Knoten aus G, deren Annotation jüngst aktualisiert worden ist.

Generischer Fixpunktalgorithmus 2(2)

```
(Prolog: Initialisierung von inf and workset)
FORALL n \in N \setminus \{s\} DO inf[n] := \top OD;
inf[s] := c_s;
workset := \{ s \};
(Hauptprozess: Iterative Fixpunktberechnung)
WHILE workset \neq \emptyset DO
  CHOOSE m \in workset;
    workset := workset \setminus \{ m \};
    (Aktualisiere die Nachfolgerumgebung von Knoten m)
    FORALL n \in succ(m) DO
     meet := \llbracket (m, n) \rrbracket (inf[m]) \sqcap inf[n];
     IF inf[n] \supset meet
       THEN
        inf[n] := meet;
         workset := workset \cup \{n\}
     FI
    OD
  ESOOHC
OD.
```

Hauptresultate

Zusammenhang von...

- MOP und MaxFP Lösung
 - Korrektheit
 - Vollständigkeit
- MaxFP -Lösung und generischem Algorithmus
 - Terminierung mit MaxFP -Lösung

Korrektheit: Sicherheitstheorem

Theorem [Sicherheit (Safety)]

Die MaxFP-Lösung ist eine sichere (konservative). d.h. untere Approximation der MOP-Lösung, d.h.,

$$\forall c_{\mathbf{S}} \in \mathcal{C} \ \forall n \in \mathbb{N}. \ \mathit{MaxFP}_{c_{\mathbf{S}}}(n) \sqsubseteq \mathit{MOP}_{c_{\mathbf{S}}}(n)$$

falls das Datenflussanalysefunktional [] monoton ist.

Vollständigkeit (und Korrektheit): Koinzidenztheorem

Theorem [Koinzidenz (Coincidence)]

Die MaxFP-solution stimmt mit der MOP-Lösung überein, d.h.,

$$\forall c_{\mathbf{S}} \in \mathcal{C} \ \forall n \in \mathbb{N}. \ \mathit{MaxFP}_{c_{\mathbf{S}}}(n) = \mathit{MOP}_{c_{\mathbf{S}}}(n)$$

falls das Datenflussanalysefunktional [] distributiv ist.

Terminierung: Effektivitätstheorem

Theorem [Effektivität]

Der generische Fixpunktalgorithmus terminiert mit der MaxFP-Lösung, falls das Datenflussanalysefunktional monoton ist und der Verband die absteigende Kettenbedingung erfüllt.

Nachzutragende Definitionen

...sind:

- Absteigende (aufsteigende) Kettenbedingung
- Monotonie und Distributivität von Datenflussanalysefunktionalen

Auf-/absteigende Kettenbedingung

Definition [Ab-/aufsteigende Kettenbedingung]

Ein Verband $\widehat{C} = (C, \sqcap, \sqcup, \sqsubseteq, \bot, \top)$ erfüllt

- 1. die *absteigende Kettenbedingung*, falls jede absteigende Kette stationär wird, d.h. für jede Kette $p_1 \supseteq p_2 \supseteq \ldots \supseteq p_n \supseteq \ldots$ gibt es einen Index $m \geq 1$ so dass $x_m = x_{m+j}$ für alle $j \in \mathbb{I}\mathbb{N}$ gilt
- 2. die *aufsteigende Kettenbedingung*, falls jede aufsteigende Kette stationär wird, d.h. für jede Kette $p_1 \sqsubseteq p_2 \sqsubseteq \ldots \sqsubseteq p_n \sqsubseteq \ldots$ gibt es einen Index $m \geq 1$ so dass $x_m = x_{m+j}$ für alle $j \in \mathbb{N}$ gilt

Monotonie, Distributivität, Additivität

...von Funktionen auf (Datenflussanalyse-) Verbänden.

Definition [Monotonie, Distributivität, Additivität] Sei $\widehat{\mathcal{C}} = (\mathcal{C}, \sqcap, \sqcup, \sqsubseteq, \bot, \top)$ ein vollständiger Verband und $f: \mathcal{C} \to \mathcal{C}$ eine Funktion auf \mathcal{C} . Dann heißt f

- 1. monoton gdw $\forall c, c' \in \mathcal{C}$. $c \sqsubseteq c' \Rightarrow f(c) \sqsubseteq f(c')$ (Erhalt der Ordnung der Elemente)
- 2. distributiv gdw $\forall C' \subseteq C$. $f(\Box C') = \Box \{f(c) | c \in C'\}$ (Erhalt der größten unteren Schranken)
- 3. additiv gdw $\forall C' \subseteq C$. $f(\Box C') = \Box \{f(c) | c \in C'\}$ (Erhalt der kleinsten oberen Schranken)

Zur Erinnerung: Oft nützlich

...ist folgende äquivalente Charakterisierung der Monotonie:

Lemma

Sei $\widehat{\mathcal{C}} = (\mathcal{C}, \sqcap, \sqcup, \sqsubseteq, \perp, \top)$ ein vollständiger Verband und $f : \mathcal{C} \to \mathcal{C}$ eine Funktion auf \mathcal{C} . Dann gilt:

$$f$$
 ist monoton $\iff \forall C' \subseteq \mathcal{C}. \ f(\Box C') \sqsubseteq \Box \{f(c) \mid c \in C'\}$

Monotonie und Distributivität

...von Datenflussanalysefunktionalen.

Definition

Ein Datenflussanalysefunktional $[\![\]\!]:E\to(\mathcal{C}\to\mathcal{C})$ heißt monoton (distributiv) gdw $\forall\,e\in E.$ $[\![\ e\]\!]$ ist monoton (distributiv).

Beispiel: Verfügbare Ausdrücke

...ein typisches distributives DFA-Problem.

- Abstrakte Semantik für verfügbare Ausdrücke:
 - 1. Datenflussanalyseverband:

$$(\mathcal{C}, \sqcap, \sqcup, \sqsubseteq, \perp, \top) =_{df} (\mathcal{B}, \wedge, \vee, \leq, false, true)$$

2. Datenflussanalysefunktional: $[\![\]\!]_{av}: E \to (\mathcal{B} \to \mathcal{B})$ definiert durch

$$\forall \, e \in E. \, \llbracket \, e \, \rrbracket_{av} =_{d\!f} \left\{ \begin{array}{ll} \mathit{Cst}_{true} & \mathsf{falls} \, \mathit{Comp}_{\,e} \wedge \mathit{Transp}_{\,e} \\ \mathit{Id}_{\mathcal{B}} & \mathsf{falls} \neg \mathit{Comp}_{\,e} \wedge \mathit{Transp}_{\,e} \\ \mathit{Cst}_{false} & \mathsf{sonst} \end{array} \right.$$

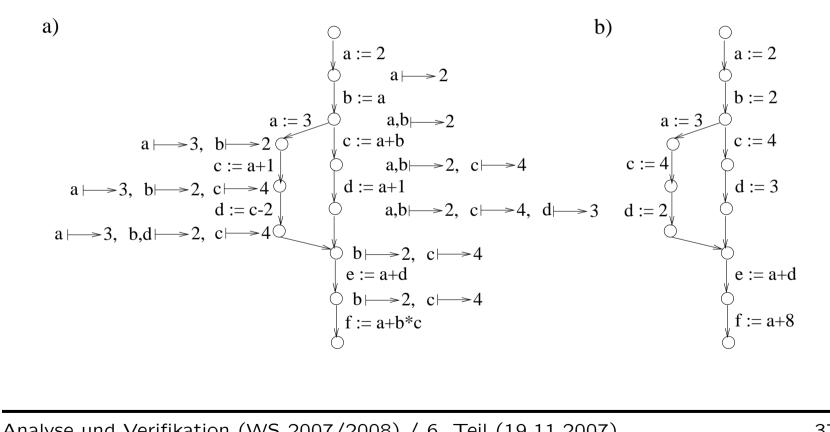
wobei

$$\widehat{\mathcal{B}} =_{df} (\mathcal{B}, \wedge, \vee, \leq, false, true)$$

den Verband der Wahrheitswerte bezeichnet mit $false \leq true$ und dem logischen "und" und "oder" als Schnitt- bzw. Vereinigungsoperation \sqcap and \sqcup .

Beispiel: Einfache Konstanten

Ein typisches monotones (nicht distributives) DFA-Problem...



Abstrakte Semantik für einfache Konstanten

- Abstrakte Semantik für einfache Konstanten:
 - 1. Datenflussanalyseverband:

$$(\mathcal{C}, \sqcap, \sqcup, \sqsubseteq, \bot, \top) =_{df} (\Sigma, \sqcap, \sqcup, \sqsubseteq, \sigma_{\bot}, \sigma_{\top})$$

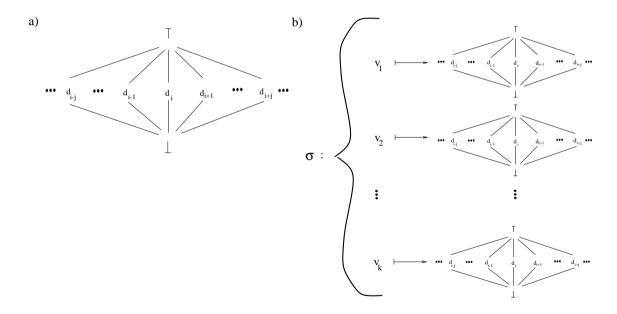
2. Datenflussanalysefunktional:

$$[\![]\!]_{sc}: E \to (\Sigma \to \Sigma)$$
 definiert durch

$$\forall e \in E. \ \llbracket e \rrbracket_{sc} =_{df} \theta_e$$

Datenflussanalyseverband für einfache Konstanten

Der "kanonische" Verband für Konstantenausbreitung/-faltung:



Die Semantik von Termen

Die Semantik von Termen $t \in \mathbf{T}$ ist gegeben durch die Evaluationsfunktion

$$\mathcal{E}: \mathrm{T} o (\Sigma o \mathrm{D})$$

die induktiv definiert ist durch:

$$\forall t \in \mathbf{T} \ \forall \sigma \in \mathbf{\Sigma}. \ \mathcal{E}(t)(\sigma) = df \begin{cases} \sigma(x) & \text{falls } t = x \in \mathbf{V} \\ I_0(c) & \text{falls } t = c \in \mathbf{C} \\ I_0(op)(\mathcal{E}(t_1)(\sigma), \dots, \mathcal{E}(t_r)(\sigma)) \\ & \text{falls } t = op(t_1, \dots, t_r) \end{cases}$$

Nachzutragende Begriffe und Definitionen

...um die Definition der Termsemantik abzuschließen:

- Termsyntax
- Interpretation
- Zustand

Die Syntax von Termen (1)

Sei

- V eine Menge von Variablen und
- Op eine Menge von n-stelligen Operatoren, $n \geq 0$, sowie $\mathbf{C} \subseteq \mathbf{Op}$ die Menge der 0-stelligen Operatoren, der sog. Konstanten in \mathbf{Op} .

Die Syntax von Termen (2)

Dann legen wir fest:

- 1. Jede Variable $v \in \mathbf{V}$ und jede Konstante $c \in \mathbf{C}$ ist ein Term.
- 2. Ist $op \in \mathbf{Op}$ ein n-stelliger Operator, $n \geq 1$, und sind t_1, \ldots, t_n Terme, dann ist auch $op(t_1, \ldots, t_n)$ ein Term.
- 3. Es gibt keine weiteren Terme außer den nach den obigen beiden Regeln konstruierbaren.

Die Menge aller Terme bezeichnen wir mit T.

Interpretation

Sei \mathbf{D}' ein geeigneter Datenbereich (z.B. die Menge der ganzen Zahlen), seien \bot und \top zwei ausgezeichnete Elemente mit $\bot, \top \not\in \mathbf{D}'$ und sei $\mathbf{D} =_{df} \mathbf{D}' \cup \{\bot, \top\}$.

Eine Interpretation über ${\bf T}$ und ${\bf D}$ ist ein Paar $I\equiv ({\bf D},I_0)$, wobei

• I_0 eine Funktion ist, die mit jedem 0-stelligen Operator $c \in \mathbf{Op}$ ein Datum $I_0(c) \in \mathbf{D}'$ und mit jedem nstelligen Operator $op \in \mathbf{Op}, n \geq 1$, eine totale Funktion $I_0(op) : \mathbf{D}^n \to \mathbf{D}$ assoziiert, die als strikt angenommen wird (d.h. $I_0(op)(d_1, \ldots, d_n) = \bot$, wann immer es ein $j \in \{1, \ldots, n\}$ gibt mit $d_j = \bot$)

Menge der Zustände

$$\Sigma =_{df} \{ \sigma \mid \sigma : \mathbf{V} \to \mathbf{D} \}$$

...bezeichnet die Menge der *Zustände*, d.h. die Menge der Abbildungen σ von der Menge der Programmvariablen \mathbf{V} auf einen geeigneten (hier nicht näher spezifizierten) Datenbereich \mathbf{D} .

Insbesondere

• σ_{\perp} : ...bezeichnet den wie folgt definierten *total undefinier*ten Zustand aus Σ : $\forall v \in \mathbf{V}$. $\sigma_{\perp}(v) = \bot$

Zustandstransformationsfunktion

Die Zustandstransformationsfunktion

$$\theta_{\iota}: \Sigma \to \Sigma, \quad \iota \equiv x := t$$

ist definiert durch:

$$\forall \sigma \in \Sigma \ \forall y \in V. \ \theta_{\iota}(\sigma)(y) =_{df} \begin{cases} \mathcal{E}(t)(\sigma) & \text{falls } y = x \\ \sigma(y) & \text{sonst} \end{cases}$$

Der funktionale *MaxFP* - **Ansatz**

Zentral: Das "funktionale" MaxFP - Gleichungssystem:

In der Folge bezeichne das Funktional

die größte Lösung des obigen Gleichungssytems.

Zusammenhang von MaxFP - und funktionalem MaxFP - Ansatz

Theorem [Äquivalenz]

$$\forall n \in N \ \forall c_{\mathbf{S}} \in \mathcal{C}. \ \mathit{MaxFP}_{(G, \llbracket \ \rrbracket)}(n)(c_{s}) = \llbracket \ n \ \rrbracket (c_{\mathbf{S}})$$

Ausblick

Die funktionale Perspektive auf den MaxFP -Ansatz liefert den Schlüssel zu

- interprozeduraler (d.h. von Programmen mit Prozeduren)
- paralleler (d.h. von Programmen mit Parallelität)

Datenflussanalyse.

Vorschau auf die weiteren Vorlesungstermine...

- Mo, 26.11.2007: Vorlesung von 16:15 Uhr bis 17:45 Uhr im Hörsaal 14, TU-Hauptgebäude
- Mo, 03.12.2007: Vorlesung von 16:15 Uhr bis 17:45 Uhr im Hörsaal 14, TU-Hauptgebäude
- Mo, 10.12.2007: Vorlesung von 16:15 Uhr bis 17:45 Uhr im Hörsaal 14, TU-Hauptgebäude
- Mo, 17.12./24.12./31.12.2007: Keine Vorlesung(en)! (Ferialzeit)