
Motivation: Von Verifikation über Analyse zur

Transformation – Optimierung am Beispiel
“code motion”-basierter Transformationen (Teil 2)

Analyse und Verifikation (WS 2006/2007) / 8. Teil (12.12.200 6)

Jens Knoop

Technische Universit ät Wien

1

Optimality Results are quite sensitive!

Three examples to give evidence...

(I) Code motion vs. code placement

(II) Interdependencies of (elementary) transformations

(III) Paradigm dependencies

2

(I) Code Motion vs. Code Placement

...not just synonyms!

z := c+b

(x,y) := (h1,h2)

h2 := c+b

z := h2

z := h1 z := h2

(x,y) := (h1,h2)

h2 := c+b

(h1,h2) := (a+b,c+b)

(x,y) := (a+b,c+b)c := a

h1 := a+b

z := h1 (c,h2) := (a,h1)

h1 := a+bz := a+b
c := a

Original Program

Placing a+b
Placing c+b

After Sem. Code Motion

After Sem. Code Placement

Motion gets stuck!

Motion gets stuck!

3

Even worse...

Optimality is lost!

y := c+bc := a

z := a+b z := c+b

y :=c := a

z := a+b z :=

h := a+b h := c+b

h

h

Incomparable!

4

Even more worse...

Performance may be lost, when naively applied!

z := c+b z := c+b

c := a

z := a+b

c := a

h := a+b

z := a+b

5

(II) Interdependencies of Transformations

x := a+b

a := b+c

x := z

out(x,a)

a := b+c

out(x,a)

x := a+b

x := z
x := a+b x := a+b

a := b+c

out(x,a)

x := z x := a+b

AS TDCE

...2nd Order Effects!

; ...Partial Dead-Code Elimination (PDCE)

6

Interdependencies of Transformations

a := b+c

out(a,b)out(a,b) out(a,b)

a := b+c

b := a+c b := a+c

a := b+c

b := a+c

a := b+c

AH
TRAE

...2nd Order Effects!

; ...Partially Redundant Assignment Elimination (PRAE)

7

Conceptually

...we can think of PREE, PRAE and PDCE in terms of

• PREE = AH ; TREE

• PRAE = (AH + TRAE)∗

• PDCE = (AS + TDCE)∗

8

PRAE/PDCE – Optimality Results

Derivation relation `...

• PRAE... G `AH,TRAE G′ (ET={AH,TRAE})

• PDCE... G `AS,TDCE G′ (ET={AS,TDCE})

We can prove...

Optimality Theorem

For both PRAE and PDCE, `ET is confluent and terminating

ET

ET

ETET

ET

G
G

opt

Universe

9

Consider now...

• Assignment Placement AP

AP = (AH + TRAE + AS + TDCE)∗

...should be even more powerful!

Indeed, but...

x := a+b
out(x)x := a+b

x := a+b
out(x)

x := a+b
out(x)x := a+b

out(x)

x := a+b
out(x)

x := a+b
out(x)

PRAEPDCE

10

Confluence...

...and hence (global) optimality are lost!

ET

ET

ETET

ET
G

locOpt
G

Universe

11

Even worse...

...there are scenarios, where we can end up with universes like

G

Universe

ET

ET

ETET

ET

?

12

(III) Paradigm Dependencies

x := a+b

z := d+b
y := c+b z := h3

y := h2

(h1,h2,h3) := (a+b,c+b,d+b)

x := h1

Original Program

ParBegin

ParEnd

ParBegin

ParEnd

After Earliestness Transformation

...a naive transfer of the transformation strategy results here in

essentially a sequential program!

13

Back to PR(E)E

Recall: Code-size sensitive PRE at a glance...

LCM (G)

Main Process

Preprocess

PerformOptional:

(2 GEN/KILL-DFAs)

LCM

for

BCMCompute Predicates of

(3 GEN/KILL-DFAs)

G resp.

Compute Largest/Smallest Tight Set

Optimization Phase

Determine Insertion Points

Reduction Phase

Construct Bipartite Graph

Compute Maximum Matching

14

The Preprocess in more Detail

This means to consider the transformations of

• Busy Code Motion (BCM)

• Lazy Code Motion (LCM)

in more detail!

Fundamental are...

...the principles of

• Earliestness and

• Latestness

...for placing computations.

15

Busy Code Motion (PLDI’92)

• Computationally optimal results can be obtained by

– ... placing computations as early as possible ,

while maintaining admissibility

(i.e., semantics & performance)

Earliestness Principle

16

Earliestness Principle
...yields computationally optimal programs.

:= a+bh := a+bh

z := h

a:= ...

17

Lazy Code Motion (PLDI’92)

• Computationally & lifetime optimal results can be obtained by

– ... placing computations as late as possible ,

while maintaining computational optimality

Latestness Principle

18

Latestness Principle

...yields computationally & lifetime optimal programs

:= a+bh:= a+bh:= a+bh

z := h

a:= ...

19

BCM and LCM Algorithmically

• BCM relies on only two GEN/KILL-Analyses

– UpSafety (also known as Availability)

– DownSafety (also known as Very Busyness)

• LCM relies on the two analyses of BCM plus one additional

GEN/KILL-Analysis

– Delayability

20

How to automatically compute...

...properties such as

• UpSafety, DownSafety, and Delayability?

This will be (one of) the topics of the forthcoming lecture(s).

21

