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CM – What’s it all about?

...essentially, CM aims at avoiding recomputing values

h := a+b

h := a+b

y :=hy := a+b

x := a+b x := h
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Why Considering Code Motion (CM)? (1)

...because it is

• Relevant ...widely used in practice

• General ...a family of optimizations rather than a single one

• Well-understood ...manually proven correct and optimal

• Challenging ...conceptually simple, but exhibits lots of

thought-provoking phenomena
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Why Considering Code Motion (CM)? (2)

Last but not least, it is...

• Truly classical ...has a long history

– Morel, E. and Renvoise, C. Global Optimization by Suppression of

Partial Redundancies. CACM 22 (2), 96 - 103, 1979.

– Ershov, A. P. On Programming of Arithmetic Operations. CACM 1

(8), 3 - 6, 1958.
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Conceptually

...code motion can be considered a two-stage process

1. Expression hoisting

...hoisting expressions to “earlier” safe computation points

2. Total redundancy elimination

...eliminating computations which became totally redundant
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The Effect of CM applied to a More Complex Example

a) b)

h := a+b h := a+bh := a+b a := ...
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h h ha+b a+b a+b
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Correctness, Optimality

We can prove...

• Correctness

Theorem [“Essence”]

...at every use site of a temporary, recomputing the

expression yields the same value which is stored in the

temporary

• Optimality

Theorem [Earliestness principle]
...hoisting expressions to their earliest safe computation

points leads to computationally optimal programs
; ...known as Busy Code Motion (PLDI’92, Knoop et al.)
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Note

Traditionally,

• Code (C) means expressions

• Motion (M) means hoisting

But...

• CM is more than hoisting of expressions and PR(E)E!
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For example, code...

...can be assignments, too.

x := a+b

x := a+b x := a+b x := a+b

x := a+b

x := a+b

• Here, CM means partially redundant assignment elimination

(PRAE)
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In contrast to expressions, assignments...

...might also be sunk.

out(x)

x := a+b

out(x) x := y+z

out(x)

out(x)
x := a+b

x := y+z
x := a+b

• Now, CM means partially dead code elimination (PDCE)
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Towards the Design Space of CM-Algorithms...

More generally...

• Code means expressions/assignments

• Motion means hoisting/sinking

Code / Motion Hoisting Sinking

Expressions EH ·/·

Assignments AH AS
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Refining the Design Space of CM-Algorithms

Further...

− Interprocedural
− Parallelism
− Predicated code
− ...

− Intraprocedural

EH

AH, AS

sem. red.

syn. red.
Paradigm

Semantic

Syntactic

Introducing semantics... !

x := a+b

c   :=   a

y := a+b

z := c+b
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Semantic Code Motion...

allows more powerful optimizations!

(x,y,z) := (a,b,a+b) (a,b,c) := (x,y,y+z)

(a,b,c) := (x,y,

h := x+y:= a+bh

h(x,y,z) := (a,b, ) h )

(example by B. Steffen, TAPSOFT’87)
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In the following...

...we first focus on (syntactic) PRE(E), the basic variant of

CM-based program optimizations.

h := a+b

h := a+b

y :=hy := a+b

x := a+b x := h
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...while taking New Challenges of Program

Optimization into Account

...there is more than speed!
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1999 World Market for Microprocessors

Chip Category Number Sold

Embedded 4-bit 2000 million

Embedded 8-bit 4700 million

Embedded 16-bit 700 million

Embedded 32-bit 400 million

DSP 600 million

Desktop 32/64-bit 150 million

... David Tennenhouse (Intel Director of Research). Keynote Speech at the 20th IEEE

Real-Time Systems Symposium (RTSS’99), Phoenix, Arizona, December 1999.
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1999 World Market for Microprocessors

Chip Category Number Sold

Embedded 4-bit 2000 million

Embedded 8-bit 4700 million

Embedded 16-bit 700 million

Embedded 32-bit 400 million

DSP 600 million

Desktop 32/64-bit 150 million ∼ 2%

... David Tennenhouse (Intel Director of Research). Keynote Speech at the 20th IEEE

Real-Time Systems Symposium (RTSS’99), Phoenix, Arizona, December 1999.
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Think of...

... domain-specific processors as used in embedded systems

• Telecom

– Cell phones, pagers, ...

• Consumer Electronics

– MP3 player, cameras, pocket games, ...

• Automative

– GPS navigation, airbags, ...

• ...
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Code for Embedded Systems

Requirements...

• Performance (often real-time constraints)

• Code size (system-on-chip, on-chip RAM/ROM)

• ...

For embedded systems...

...code size is often more critical than speed !
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Code for Embedded Systems (Cont’d)

Requirements ...and how they are commonly addressed:

• Assembly programming

• Manual postpass optimizations

Shortcomings...

• Error-prone

• Extended time-to-market

... problems getting even worse with increasing complexity.

Hence, we observe...

...a trend towards HLL programming (C/C++)

20



Given this trend...

...how does traditional compiler and optimizer technology support

the specific requirement profile of code for embedded systems?

Code Size

Run-Time Performance

Unfortunately, little.
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As a Matter of Fact...

Traditional optimizations ...

• ...are strongly biased towards performance optimization

• ...are not code-size sensitive and usually don’t offer any control

about their impact on code size

In the following, we demonstrate this considering

• Partial Redundancy (Expression) Elimination (PR(E)E)

as example.
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Recall the Essence of PRE

...essentially, PRE aims at avoiding recomputing values

h := a+b

h := a+b

y :=hy := a+b

x := a+b x := h
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PRE – especially profitable if loops are involved...

a:= ...

z := a+b
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Of course, we would like to have...

:= a+bh

z := h

a:= ...
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What we receive using a state-of-the-art compiler...

:= a+bh:= a+bh:= a+bh

z := h

a:= ...
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As we have observed already: Conceptually...

PRE can be considered a two-stage process...

1. Expression hoisting

...hoisting expressions to “earlier” safe computation points

2. Total redundancy elimination

...eliminating computations becoming totally redundant
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Extreme Strategy – Earliestness Principle

Placing computations as early as possible...

• Theorem [Computational Optimality]

...hoisting expressions to their earliest safe computation

points yields computationally optimal programs

; ...known as Busy Code Motion (PLDI’92, Knoop et al.)

...already known to Morel and Renvoise (though no theorem or proof).
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Earliestness Principle

Placing computations as early as possible...

...yields computationally optimal programs.

:= a+bh := a+bh

z := h

a:= ...
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Note: Earliestness means in fact...

...as early as possible, but not earlier!

Incorrect!

hz :=

h := a+b

a:= x+y
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Earliestness Principle: Important Drawback
...computationally optimal, but maximum register pressure

Register Pressure!
Maximum

hz :=

h := a+bh := a+b

a:= ...
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For comparison, the previous program
...computationally optimal, too, but mininum register pressure!

Register Pressure!
Minimum

hz :=

h := a+b h := a+b h := a+b

a:= ...
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Dual Extreme Strategy – Latestness Principle

Placing computations as late as possible...

• Theorem [Optimality]

...hoisting expressions to their latest safe computation

points yields computationally optimal programs

with minimum register pressure

; ...known as Lazy Code Motion (PLDI’92, Knoop et al.)
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That’s what we have seen...
LCM: ...computationally optimal with mininum register pressure!

Register Pressure!
Minimum

hz :=

h := a+b h := a+b h := a+b

a:= ...
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These days...

Lazy Code Motion is...

• ...the de-facto standard algorithm for PRE used in contemporary

state-of-the-art compilers

– Gnu compiler family

– Sun Sparc compiler family

– ...
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This lecture...

...enhancing LCM to take a user’s priorities into account!

Computational Quality

Lifetime Quality

...Register Pressure

Code-Size Quality

...Run-Time Performance
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...rendering possible this transformation, too:

Moderate
Register Pressure!

hz :=

h := a+b

a:= ...
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Towards Code-Size Sensitive PRE...

• Background: Classical PRE

; Busy CM (BCM) / Lazy CM (LCM) (Knoop et al., PLDI’92)

– Received the ACM SIGPLAN Most Influential PLDI Paper Award 2002 (for

1992)

– Selected for “20 Years of the ACM SIGPLAN PLDI: A Selection” (60 papers

out of ca. 600 papers)

• Code-Size Sensitive PRE (Knoop et al., POPL’00)

; ...modular extension of BCM/LCM

∗ Modelling and Solving the Problem

...based on graph-theoretical means

∗ Main Results

...correctness, optimality

38



The Running Example

1

2 3 4

5 6

7 8

9 10

11 1312

14

15

a+b a+b a+b

a := ...
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The Running Example (Cont’d)

a) b)

Two Code−size Optimal Programs

h:= a+b

h:= a+b h:= a+b h:= a+b

a := ...

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h

1

2 3 4

5 6

7 8

9 10

11 1312

14

15

h h h
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The Running Example (Cont’d)
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a) b)

h:= a+b

h:= a+b h:= a+b h:= a+b
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15 a := ...

h h h
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15 a := ...

h h h
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The Running Example (Cont’d)

Note, we do not want the following transformation: It’s no option!

Impairing!h:= a+b

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h
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Code-Size Sensitive PRE

; The Problem

...how to get a code-size minimal placement of computations, i.e., a

placement which is

– admissible (semantics & performance preserving)

– code-size minimal

; Solution: A Fresh Look at PRE

...considering PRE a trade-off problem: trading the original

computations against newly inserted ones!

; The Clou: Use Graph Theory!

...reducing the trade-off problem to the computation of tight sets in

bipartite graphs based on maximum matchings!
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Bipartite Graph

T

S

Tight Set

... of a bipartite graph (S ∪ T ,E) is a subset Sts ⊆ S such that

∀S′ ⊆ S. |Sts| − |Γ(Sts)| ≥ |S′| − |Γ(S′)|

Sts
Γ )

Sts

(

S

T

{
{

Two Variants: (1) Largest Tight Sets (2) Smallest Tight Sets
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Bipartite Graph
T

S

Tight Set

... of a bipartite graph (S ∪ T ,E) is a subset Sts ⊆ S such that

∀S′ ⊆ S. |Sts| − |Γ(Sts)| ≥ |S′| − |Γ(S′)|

Sts
Γ )

Sts

(

S

T

{
{

Two Variants: (1) Largest Tight Sets (2) Smallest Tight Sets
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Apparently

Off-the-shelf algorithms of graph theory can be used to compute...

• Maximum matchings and

• Tight sets

Hence, our PRE problem boils down to...

...constructing the bipartite graph modelling the problem!
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Modelling the Trade-Off Problem

The Set of Nodes

TDS SDSU

 Insert
BCM

{
Comp/UpSafe{

U(Comp 
/DownSafe

UpSafe)

{12 133 42 5 6 7 8 11

The Set of Edges...
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The Set of Nodes

a) b)

h:= a+b h:= a+bh:= a+b a := ...

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

1

2 4

6

7 8

9 10

11 1312

14

15

h h ha+b a+b a+b

5

3
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Modelling the Trade-Off Problem

The Set of Nodes
TDS SDSU

 Insert
BCM

{
Comp/UpSafe{

U(Comp 
/DownSafe

UpSafe)

{12 133 42 5 6 7 8 11

The Bipartite Graph

SDS

TDS 3 42 6 7 8

5 8 11 136 7 12

5

The Set of Edges ... ∀n ∈ SDS ∀m ∈ TDS .

{n,m} ∈ EDS ⇐⇒df m ∈ Closure (pred(n))

49



DownSafety Closures

DownSafety Closure

For n ∈ DownSafe/Upsafe the DownSafety Closure Closure(n)

is the smallest set of nodes satisfying

1. n ∈ Closure(n)

2. ∀m ∈ Closure(n) \ Comp. succ(m) ⊆ Closure(n)

3. ∀m ∈ Closure(n). pred(m) ∩ Closure(n) 6= ∅ ⇒

pred(m) \ UpSafe ⊆ Closure(n)
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DownSafety Closures – The Very Idea 1(4)

h:= a+b

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h
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DownSafety Closures – The Very Idea 2(4)

h:= a+b

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h
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DownSafety Closures – The Very Idea 3(4)

h:= a+b

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h

No Initialization!
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DownSafety Closures – The Very Idea 4(4)

h:= a+b h:= a+b

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h
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DownSafety Closures

DownSafety Closure

For n ∈ DownSafe/Upsafe the DownSafety Closure Closure(n)

is the smallest set of nodes satisfying

1. n ∈ Closure(n)

2. ∀m ∈ Closure(n) \ Comp. succ(m) ⊆ Closure(n)

3. ∀m ∈ Closure(n). pred(m) ∩ Closure(n) 6= ∅ ⇒

pred(m) \ UpSafe ⊆ Closure(n)
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DownSafety Regions

Some subsets of nodes are distinguished. We call each of these

sets a DownSafety Region...

• A set R⊆ N of nodes is a DownSafety Region if and only if

1. Comp\UpSafe ⊆ R ⊆ DownSafe\UpSafe

2. Closure(R) = R
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Fundamental...

Insertion Theorem

Insertions of admissible PRE-Transformations are always at

“earliest-frontiers” of DownSafety regions .

}
Comp

UpSafe Transp

R
DownSafe/UpSafe

EarliestFrontier
R

...characterizes for the first time all semantics preserving PRE-transformations.
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The Key Questions

...concerning correctness and optimality:

1. Where to insert computations, why is it correct?

2. What is the impact on the code size?

3. Why is it optimal, i.e., code-size minimal?

...three theorems answering one of these questions each.
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Main Results / First Question

1. Where to insert computations, why is it correct?

Intuitively, at the earliestness frontier of the DS-region induced by

the tight set...

Theorem 1 [Tight Sets: Insertion Points]

Let TS ⊆ SDS be a tight set.

Then RTS=df Γ(TS) ∪ (Comp\UpSafe)

is a DownSafety Region with BodyRT S
=TS

Correctness

...immediate corollary of Theorem 1 and Insertion Theorem
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Main Results / Second Question

2. What is the impact on the code size?

Intuitively, the difference between computations inserted and

replaced...

Theorem 2 [DownSafety Regions: Space Gain]

Let R be a DownSafety Region

with BodyR=df R\EarliestFrontierR

Then
• Space Gain of Inserting at EarliestFrontier R:

|Comp\UpSafe| − |EarliestFrontierR|=

|BodyR| − |Γ(BodyR)| df = defic(BodyR)
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Main Results / Third Question

3. Why is it optimal, i.e., code-size minimal?

Due to an inherent property of tight sets (non-negative

deficiency!)...

Optimality Theorem [The Transformation]

Let TS ⊆ SDS be a tight set.

• Insertion Points:

InsertSpCM=df EarliestFrontierRTS
=RTS\TS

• Space Gain:

defic(TS)=df |TS| − |Γ(TS)| ≥ 0 max.
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Largest vs. Smallest Tight Sets: The Impact

tight sets favor

tight sets favor

Computational Quality

Largest

Earliestness Principle

Smallest

Latestness Principle

Lifetime Quality

SmTS

R

R
SmTS

LaTS

R

LaTS

EarliestFrontier

EarliestFrontier

Comp

R
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Recall the Running Example

( SQ > CQ )

Latestness PrincipleEarliestness Principle

( SQ > LQ )

Smallest Tight Set

b)a)

Largest Tight Set

h

:= a+b

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h

:= a+b

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h

:= a+bh

:= a+bh

h
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Code-Size Sensitive PRE at a Glance

LCM (G)

Main Process

Preprocess

PerformOptional:

(2 GEN/KILL-DFAs)

LCM

for

BCMCompute Predicates of

(3 GEN/KILL-DFAs)

G resp.

Compute Largest/Smallest Tight Set

Optimization Phase

Determine Insertion Points

Reduction Phase

Construct Bipartite Graph

Compute Maximum Matching
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Choice of
Auxiliary

Priority
Apply To Using Yields Information

Required

LQ Not meaningful: The identity, i.e., G itself is optimal !

SQ Subsumed by SQ > CQ and SQ > LQ !

CQ BCM G UpSafe(G), DownSafe(G)

CQ > LQ LCM G LCM(G) UpSafe(G), DownSafe(G), Delay(G)

SQ > CQ SpCM G
Largest

SpCMLTS(G) UpSafe(G), DownSafe(G)
tight set

SQ > LQ SpCM G
Smallest

UpSafe(G), DownSafe(G)
tight set

CQ > SQ SpCM LCM(G)
Largest UpSafe(G), DownSafe(G), Delay(G)
tight set UpSafe(LCM(G)), DownSafe(LCM(G))

CQ > SQ > LQ SpCM LCM(G)
Smallest UpSafe(G), DownSafe(G), Delay(G)
tight set UpSafe(LCM(G)), DownSafe(LCM(G))

UpSafe(G), DownSafe(G),

SQ > CQ > LQ SpCM DL(SpCMLTS(G))
Smallest Delay(SpCMLTS(G)),
tight set UpSafe(DL(SpCMLTS(G))),

DownSafe(DL(SpCMLTS(G)))
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Conclusions, Perspectives

A brief survey of PRE...

• 1958: ...first glimpse of PRE

; Ershov’s work on On Programming of Arithmetic Operations.

• 1979: ...origin of contemporary PRE

; Morel/Renvoise’s seminal work on PRE

• 1992: ...LCM [Knoop et al., PLDI’92]

; ...first to achieve comp. optimality with minimum register pressure

; ...first to rigorously be proven correct and optimal

• 2000: ...origin of code-size sensitive PRE [Knoop et al., POPL 2000]

; ...first to allow prioritization of goals

; ...rigorously be proven correct and optimal

; ...first to bridge the gap between traditional compilation and compilation for

embedded systems
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Conclusions, Perspectives (Cont’d)

• ca. since 1997: ...a new strand of research on PRE

; Speculative PRE: Gupta, Horspool, Soffa, Xue, Scholz, Knoop,...

• 2005: ...another fresh look at PRE (as maximum flow problem)

; Unifying PRE and Speculative PRE [Jingling Xue and J. Knoop]
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Another Look at the History of PRE

• < 1979 ... Special Techniques

; Total Redundancy Elimination, Loop Invariant Code Motion

• 1979 ... Partial Redundancy Elimination

; Pioneering ... Morel/Renvoise’s bidirectional algorithm [1979]

; Heuristic improvements ... Dhamdhere [1988, 1991], Drechsler/Stadel

[1988], Sorkin [1989], Dhamdhere/Rosen/Zadeck [1992], ...

• 1992 ... BCM & LCM [Knoop et al., PLDI’92]

; BCM ... first to achieve Computational Optimality: Earliestness Principle

; LCM ... first to achieve Comp. & Lifetime Optimality: Latestness Principle

... first to be purely unidirectional, however, not yet code-size sensitive.

• 2000/2004: Code-Size Sensitive PRE [Knoop et al., POPL 2000, LCTES 2004]

• 2005: Unifying PRE and Speculative PRE [Jingling Xue and Knoop]
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