
Motivation: Von Verifikation über Analyse zur

Transformation – Optimierung am Beispiel
“code motion”-basierter Transformationen (Teil 1)

Analyse und Verifikation (WS 2006/2007) / 7. Teil (05.12.200 6)

Jens Knoop

Technische Universit ät Wien

1

CM – What’s it all about?

...essentially, CM aims at avoiding recomputing values

h := a+b

h := a+b

y :=hy := a+b

x := a+b x := h

2

Why Considering Code Motion (CM)? (1)

...because it is

• Relevant ...widely used in practice

• General ...a family of optimizations rather than a single one

• Well-understood ...manually proven correct and optimal

• Challenging ...conceptually simple, but exhibits lots of

thought-provoking phenomena

3

Why Considering Code Motion (CM)? (2)

Last but not least, it is...

• Truly classical ...has a long history

– Morel, E. and Renvoise, C. Global Optimization by Suppression of

Partial Redundancies. CACM 22 (2), 96 - 103, 1979.

– Ershov, A. P. On Programming of Arithmetic Operations. CACM 1

(8), 3 - 6, 1958.

4

Conceptually

...code motion can be considered a two-stage process

1. Expression hoisting

...hoisting expressions to “earlier” safe computation points

2. Total redundancy elimination

...eliminating computations which became totally redundant

5

The Effect of CM applied to a More Complex Example

a) b)

h := a+b h := a+bh := a+b a := ...

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

1

2 4

6

7 8

9 10

11 1312

14

15

h h ha+b a+b a+b

5

3

6

Correctness, Optimality

We can prove...

• Correctness

Theorem [“Essence”]

...at every use site of a temporary, recomputing the

expression yields the same value which is stored in the

temporary

• Optimality

Theorem [Earliestness principle]
...hoisting expressions to their earliest safe computation

points leads to computationally optimal programs
; ...known as Busy Code Motion (PLDI’92, Knoop et al.)

7

Note

Traditionally,

• Code (C) means expressions

• Motion (M) means hoisting

But...

• CM is more than hoisting of expressions and PR(E)E!

8

For example, code...

...can be assignments, too.

x := a+b

x := a+b x := a+b x := a+b

x := a+b

x := a+b

• Here, CM means partially redundant assignment elimination

(PRAE)

9

In contrast to expressions, assignments...

...might also be sunk.

out(x)

x := a+b

out(x) x := y+z

out(x)

out(x)
x := a+b

x := y+z
x := a+b

• Now, CM means partially dead code elimination (PDCE)

10

Towards the Design Space of CM-Algorithms...

More generally...

• Code means expressions/assignments

• Motion means hoisting/sinking

Code / Motion Hoisting Sinking

Expressions EH ·/·

Assignments AH AS

11

Refining the Design Space of CM-Algorithms

Further...

− Interprocedural
− Parallelism
− Predicated code
− ...

− Intraprocedural

EH

AH, AS

sem. red.

syn. red.
Paradigm

Semantic

Syntactic

Introducing semantics... !

x := a+b

c := a

y := a+b

z := c+b

12

Semantic Code Motion...

allows more powerful optimizations!

(x,y,z) := (a,b,a+b) (a,b,c) := (x,y,y+z)

(a,b,c) := (x,y,

h := x+y:= a+bh

h(x,y,z) := (a,b,) h)

(example by B. Steffen, TAPSOFT’87)

13

In the following...

...we first focus on (syntactic) PRE(E), the basic variant of

CM-based program optimizations.

h := a+b

h := a+b

y :=hy := a+b

x := a+b x := h

14

...while taking New Challenges of Program

Optimization into Account

...there is more than speed!

15

1999 World Market for Microprocessors

Chip Category Number Sold

Embedded 4-bit 2000 million

Embedded 8-bit 4700 million

Embedded 16-bit 700 million

Embedded 32-bit 400 million

DSP 600 million

Desktop 32/64-bit 150 million

... David Tennenhouse (Intel Director of Research). Keynote Speech at the 20th IEEE

Real-Time Systems Symposium (RTSS’99), Phoenix, Arizona, December 1999.

16

1999 World Market for Microprocessors

Chip Category Number Sold

Embedded 4-bit 2000 million

Embedded 8-bit 4700 million

Embedded 16-bit 700 million

Embedded 32-bit 400 million

DSP 600 million

Desktop 32/64-bit 150 million ∼ 2%

... David Tennenhouse (Intel Director of Research). Keynote Speech at the 20th IEEE

Real-Time Systems Symposium (RTSS’99), Phoenix, Arizona, December 1999.

17

Think of...

... domain-specific processors as used in embedded systems

• Telecom

– Cell phones, pagers, ...

• Consumer Electronics

– MP3 player, cameras, pocket games, ...

• Automative

– GPS navigation, airbags, ...

• ...

18

Code for Embedded Systems

Requirements...

• Performance (often real-time constraints)

• Code size (system-on-chip, on-chip RAM/ROM)

• ...

For embedded systems...

...code size is often more critical than speed !

19

Code for Embedded Systems (Cont’d)

Requirements ...and how they are commonly addressed:

• Assembly programming

• Manual postpass optimizations

Shortcomings...

• Error-prone

• Extended time-to-market

... problems getting even worse with increasing complexity.

Hence, we observe...

...a trend towards HLL programming (C/C++)

20

Given this trend...

...how does traditional compiler and optimizer technology support

the specific requirement profile of code for embedded systems?

Code Size

Run-Time Performance

Unfortunately, little.

21

As a Matter of Fact...

Traditional optimizations ...

• ...are strongly biased towards performance optimization

• ...are not code-size sensitive and usually don’t offer any control

about their impact on code size

In the following, we demonstrate this considering

• Partial Redundancy (Expression) Elimination (PR(E)E)

as example.

22

Recall the Essence of PRE

...essentially, PRE aims at avoiding recomputing values

h := a+b

h := a+b

y :=hy := a+b

x := a+b x := h

23

PRE – especially profitable if loops are involved...

a:= ...

z := a+b

24

Of course, we would like to have...

:= a+bh

z := h

a:= ...

25

What we receive using a state-of-the-art compiler...

:= a+bh:= a+bh:= a+bh

z := h

a:= ...

26

As we have observed already: Conceptually...

PRE can be considered a two-stage process...

1. Expression hoisting

...hoisting expressions to “earlier” safe computation points

2. Total redundancy elimination

...eliminating computations becoming totally redundant

27

Extreme Strategy – Earliestness Principle

Placing computations as early as possible...

• Theorem [Computational Optimality]

...hoisting expressions to their earliest safe computation

points yields computationally optimal programs

; ...known as Busy Code Motion (PLDI’92, Knoop et al.)

...already known to Morel and Renvoise (though no theorem or proof).

28

Earliestness Principle

Placing computations as early as possible...

...yields computationally optimal programs.

:= a+bh := a+bh

z := h

a:= ...

29

Note: Earliestness means in fact...

...as early as possible, but not earlier!

Incorrect!

hz :=

h := a+b

a:= x+y

30

Earliestness Principle: Important Drawback
...computationally optimal, but maximum register pressure

Register Pressure!
Maximum

hz :=

h := a+bh := a+b

a:= ...

31

For comparison, the previous program
...computationally optimal, too, but mininum register pressure!

Register Pressure!
Minimum

hz :=

h := a+b h := a+b h := a+b

a:= ...

32

Dual Extreme Strategy – Latestness Principle

Placing computations as late as possible...

• Theorem [Optimality]

...hoisting expressions to their latest safe computation

points yields computationally optimal programs

with minimum register pressure

; ...known as Lazy Code Motion (PLDI’92, Knoop et al.)

33

That’s what we have seen...
LCM: ...computationally optimal with mininum register pressure!

Register Pressure!
Minimum

hz :=

h := a+b h := a+b h := a+b

a:= ...

34

These days...

Lazy Code Motion is...

• ...the de-facto standard algorithm for PRE used in contemporary

state-of-the-art compilers

– Gnu compiler family

– Sun Sparc compiler family

– ...

35

This lecture...

...enhancing LCM to take a user’s priorities into account!

Computational Quality

Lifetime Quality

...Register Pressure

Code-Size Quality

...Run-Time Performance

36

...rendering possible this transformation, too:

Moderate
Register Pressure!

hz :=

h := a+b

a:= ...

37

Towards Code-Size Sensitive PRE...

• Background: Classical PRE

; Busy CM (BCM) / Lazy CM (LCM) (Knoop et al., PLDI’92)

– Received the ACM SIGPLAN Most Influential PLDI Paper Award 2002 (for

1992)

– Selected for “20 Years of the ACM SIGPLAN PLDI: A Selection” (60 papers

out of ca. 600 papers)

• Code-Size Sensitive PRE (Knoop et al., POPL’00)

; ...modular extension of BCM/LCM

∗ Modelling and Solving the Problem

...based on graph-theoretical means

∗ Main Results

...correctness, optimality

38

The Running Example

1

2 3 4

5 6

7 8

9 10

11 1312

14

15

a+b a+b a+b

a := ...

39

The Running Example (Cont’d)

a) b)

Two Code−size Optimal Programs

h:= a+b

h:= a+b h:= a+b h:= a+b

a := ...

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h

1

2 3 4

5 6

7 8

9 10

11 1312

14

15

h h h

40

The Running Example (Cont’d)
� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

SQ > LQ> CQ> CQ> LQSQ

a) b)

h:= a+b

h:= a+b h:= a+b h:= a+b

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h

41

The Running Example (Cont’d)

Note, we do not want the following transformation: It’s no option!

Impairing!h:= a+b

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h

42

Code-Size Sensitive PRE

; The Problem

...how to get a code-size minimal placement of computations, i.e., a

placement which is

– admissible (semantics & performance preserving)

– code-size minimal

; Solution: A Fresh Look at PRE

...considering PRE a trade-off problem: trading the original

computations against newly inserted ones!

; The Clou: Use Graph Theory!

...reducing the trade-off problem to the computation of tight sets in

bipartite graphs based on maximum matchings!

43

Bipartite Graph

T

S

Tight Set

... of a bipartite graph (S ∪ T ,E) is a subset Sts ⊆ S such that

∀S′ ⊆ S. |Sts| − |Γ(Sts)| ≥ |S′| − |Γ(S′)|

Sts
Γ)

Sts

(

S

T

{
{

Two Variants: (1) Largest Tight Sets (2) Smallest Tight Sets

44

Bipartite Graph
T

S

Tight Set

... of a bipartite graph (S ∪ T ,E) is a subset Sts ⊆ S such that

∀S′ ⊆ S. |Sts| − |Γ(Sts)| ≥ |S′| − |Γ(S′)|

Sts
Γ)

Sts

(

S

T

{
{

Two Variants: (1) Largest Tight Sets (2) Smallest Tight Sets

45

Apparently

Off-the-shelf algorithms of graph theory can be used to compute...

• Maximum matchings and

• Tight sets

Hence, our PRE problem boils down to...

...constructing the bipartite graph modelling the problem!

46

Modelling the Trade-Off Problem

The Set of Nodes

TDS SDSU

 Insert
BCM

{
Comp/UpSafe{

U(Comp
/DownSafe

UpSafe)

{12 133 42 5 6 7 8 11

The Set of Edges...

47

The Set of Nodes

a) b)

h:= a+b h:= a+bh:= a+b a := ...

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

1

2 4

6

7 8

9 10

11 1312

14

15

h h ha+b a+b a+b

5

3

48

Modelling the Trade-Off Problem

The Set of Nodes
TDS SDSU

 Insert
BCM

{
Comp/UpSafe{

U(Comp
/DownSafe

UpSafe)

{12 133 42 5 6 7 8 11

The Bipartite Graph

SDS

TDS 3 42 6 7 8

5 8 11 136 7 12

5

The Set of Edges ... ∀n ∈ SDS ∀m ∈ TDS .

{n,m} ∈ EDS ⇐⇒df m ∈ Closure (pred(n))

49

DownSafety Closures

DownSafety Closure

For n ∈ DownSafe/Upsafe the DownSafety Closure Closure(n)

is the smallest set of nodes satisfying

1. n ∈ Closure(n)

2. ∀m ∈ Closure(n) \ Comp. succ(m) ⊆ Closure(n)

3. ∀m ∈ Closure(n). pred(m) ∩ Closure(n) 6= ∅ ⇒

pred(m) \ UpSafe ⊆ Closure(n)

50

DownSafety Closures – The Very Idea 1(4)

h:= a+b

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h

51

DownSafety Closures – The Very Idea 2(4)

h:= a+b

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h

52

DownSafety Closures – The Very Idea 3(4)

h:= a+b

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h

No Initialization!

53

DownSafety Closures – The Very Idea 4(4)

h:= a+b h:= a+b

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h

54

DownSafety Closures

DownSafety Closure

For n ∈ DownSafe/Upsafe the DownSafety Closure Closure(n)

is the smallest set of nodes satisfying

1. n ∈ Closure(n)

2. ∀m ∈ Closure(n) \ Comp. succ(m) ⊆ Closure(n)

3. ∀m ∈ Closure(n). pred(m) ∩ Closure(n) 6= ∅ ⇒

pred(m) \ UpSafe ⊆ Closure(n)

55

DownSafety Regions

Some subsets of nodes are distinguished. We call each of these

sets a DownSafety Region...

• A set R⊆ N of nodes is a DownSafety Region if and only if

1. Comp\UpSafe ⊆ R ⊆ DownSafe\UpSafe

2. Closure(R) = R

56

Fundamental...

Insertion Theorem

Insertions of admissible PRE-Transformations are always at

“earliest-frontiers” of DownSafety regions .

}
Comp

UpSafe Transp

R
DownSafe/UpSafe

EarliestFrontier
R

...characterizes for the first time all semantics preserving PRE-transformations.

57

The Key Questions

...concerning correctness and optimality:

1. Where to insert computations, why is it correct?

2. What is the impact on the code size?

3. Why is it optimal, i.e., code-size minimal?

...three theorems answering one of these questions each.

58

Main Results / First Question

1. Where to insert computations, why is it correct?

Intuitively, at the earliestness frontier of the DS-region induced by

the tight set...

Theorem 1 [Tight Sets: Insertion Points]

Let TS ⊆ SDS be a tight set.

Then RTS=df Γ(TS) ∪ (Comp\UpSafe)

is a DownSafety Region with BodyRT S
=TS

Correctness

...immediate corollary of Theorem 1 and Insertion Theorem

59

Main Results / Second Question

2. What is the impact on the code size?

Intuitively, the difference between computations inserted and

replaced...

Theorem 2 [DownSafety Regions: Space Gain]

Let R be a DownSafety Region

with BodyR=df R\EarliestFrontierR

Then
• Space Gain of Inserting at EarliestFrontier R:

|Comp\UpSafe| − |EarliestFrontierR|=

|BodyR| − |Γ(BodyR)| df = defic(BodyR)

60

Main Results / Third Question

3. Why is it optimal, i.e., code-size minimal?

Due to an inherent property of tight sets (non-negative

deficiency!)...

Optimality Theorem [The Transformation]

Let TS ⊆ SDS be a tight set.

• Insertion Points:

InsertSpCM=df EarliestFrontierRTS
=RTS\TS

• Space Gain:

defic(TS)=df |TS| − |Γ(TS)| ≥ 0 max.

61

Largest vs. Smallest Tight Sets: The Impact

tight sets favor

tight sets favor

Computational Quality

Largest

Earliestness Principle

Smallest

Latestness Principle

Lifetime Quality

SmTS

R

R
SmTS

LaTS

R

LaTS

EarliestFrontier

EarliestFrontier

Comp

R

62

Recall the Running Example

(SQ > CQ)

Latestness PrincipleEarliestness Principle

(SQ > LQ)

Smallest Tight Set

b)a)

Largest Tight Set

h

:= a+b

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h

:= a+b

1

2 3 4

5 6

7 8

9 10

11 1312

14

15 a := ...

h h h

:= a+bh

:= a+bh

h

63

Code-Size Sensitive PRE at a Glance

LCM (G)

Main Process

Preprocess

PerformOptional:

(2 GEN/KILL-DFAs)

LCM

for

BCMCompute Predicates of

(3 GEN/KILL-DFAs)

G resp.

Compute Largest/Smallest Tight Set

Optimization Phase

Determine Insertion Points

Reduction Phase

Construct Bipartite Graph

Compute Maximum Matching

64

65

Choice of
Auxiliary

Priority
Apply To Using Yields Information

Required

LQ Not meaningful: The identity, i.e., G itself is optimal !

SQ Subsumed by SQ > CQ and SQ > LQ !

CQ BCM G UpSafe(G), DownSafe(G)

CQ > LQ LCM G LCM(G) UpSafe(G), DownSafe(G), Delay(G)

SQ > CQ SpCM G
Largest

SpCMLTS(G) UpSafe(G), DownSafe(G)
tight set

SQ > LQ SpCM G
Smallest

UpSafe(G), DownSafe(G)
tight set

CQ > SQ SpCM LCM(G)
Largest UpSafe(G), DownSafe(G), Delay(G)
tight set UpSafe(LCM(G)), DownSafe(LCM(G))

CQ > SQ > LQ SpCM LCM(G)
Smallest UpSafe(G), DownSafe(G), Delay(G)
tight set UpSafe(LCM(G)), DownSafe(LCM(G))

UpSafe(G), DownSafe(G),

SQ > CQ > LQ SpCM DL(SpCMLTS(G))
Smallest Delay(SpCMLTS(G)),
tight set UpSafe(DL(SpCMLTS(G))),

DownSafe(DL(SpCMLTS(G)))

66

Conclusions, Perspectives

A brief survey of PRE...

• 1958: ...first glimpse of PRE

; Ershov’s work on On Programming of Arithmetic Operations.

• 1979: ...origin of contemporary PRE

; Morel/Renvoise’s seminal work on PRE

• 1992: ...LCM [Knoop et al., PLDI’92]

; ...first to achieve comp. optimality with minimum register pressure

; ...first to rigorously be proven correct and optimal

• 2000: ...origin of code-size sensitive PRE [Knoop et al., POPL 2000]

; ...first to allow prioritization of goals

; ...rigorously be proven correct and optimal

; ...first to bridge the gap between traditional compilation and compilation for

embedded systems

67

Conclusions, Perspectives (Cont’d)

• ca. since 1997: ...a new strand of research on PRE

; Speculative PRE: Gupta, Horspool, Soffa, Xue, Scholz, Knoop,...

• 2005: ...another fresh look at PRE (as maximum flow problem)

; Unifying PRE and Speculative PRE [Jingling Xue and J. Knoop]

68

Another Look at the History of PRE

• < 1979 ... Special Techniques

; Total Redundancy Elimination, Loop Invariant Code Motion

• 1979 ... Partial Redundancy Elimination

; Pioneering ... Morel/Renvoise’s bidirectional algorithm [1979]

; Heuristic improvements ... Dhamdhere [1988, 1991], Drechsler/Stadel

[1988], Sorkin [1989], Dhamdhere/Rosen/Zadeck [1992], ...

• 1992 ... BCM & LCM [Knoop et al., PLDI’92]

; BCM ... first to achieve Computational Optimality: Earliestness Principle

; LCM ... first to achieve Comp. & Lifetime Optimality: Latestness Principle

... first to be purely unidirectional, however, not yet code-size sensitive.

• 2000/2004: Code-Size Sensitive PRE [Knoop et al., POPL 2000, LCTES 2004]

• 2005: Unifying PRE and Speculative PRE [Jingling Xue and Knoop]

69

