Heutiges Thema

Von Verifikation zu Analyse...

- Worst-Case Execution Time-Analyse als erstes Beispiel
- Nachträge zu mathematischen Grundlagen

...nach

Hanne Riis Nielson, Flemming Nielson. Semantics with Applications – A Formal Introduction, Wiley, 1992.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

Worst-Case Execution Time (WCET)-Analyse

Motivation:

- In vielen Anwendungsbereichen sind Aussagen über die Ausführungszeit erforderlich.
- Der Nachweis totaler Korrektheit garantiert zwar Terminierung, sagt aber nichts über den Ressourcen-, speziell den Zeitbedarf aus.

In der Folge:

• Erweiterung und Adaptierung des Beweissystems für totale Korrektheit, um solche Aussagen zu ermöglichen.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

_

Die grundlegende Idee (1)

...zur Zuordnung von Ausführungszeiten:

- Leere Anweisung
 - ...Ausführungszeit in $\mathcal{O}(1)$, d.h. Ausführungszeit ist beschränkt durch eine Konstante.
- Zuweisung
 - ...Ausführungszeit in $\mathcal{O}(1)$.
- (Sequentielle) Komposition
 - ...Ausführungszeit entspricht, bis auf einen konstanten Faktor, der Summe der Ausführungszeiten der Komponenten.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

3

Die grundlegende Idee (2)

- Fallunterscheidung
- ...Ausführungszeit entspricht, bis auf einen konstanten Faktor, der gößeren der Ausführungszeiten der beiden Zweige.
- (while)-Schleife
 - ...Ausführungszeit der Schleife entspricht, bis auf einen konstanten Faktor, der Summe der wiederholten Ausführungszeiten des Rumpfes der Schleife.

Bemerkung: Verfeinerungen sind offenbar möglich.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

__

Formalisierung

 $... dieser \ grundlegenden \ Idee \ in \ 3 \ Schritten:$

- Angabe einer Semantik, die die Auswertungszeit arithmetischer und Boolescher Ausdrücke beschreibt.
- Erweiterung und Adaption der natürlichen Semantik von WHILE zur Bestimmung der Ausführungszeit eines Programms.
- Erweiterung und Adaption des Beweissystems für totale Korrektheit zum Nachweis über die Größenordnung der Ausführungszeit von Programmen.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

Erster Schritt

Festlegung von Semantikfunktionen

ullet [] $_{TA}$: $\mathbf{Aexpr} \! o \! \mathbf{Z}\!\!\!\mathbf{Z}$ und

ullet $[\![\ . \]\!]_{TB}$: $\mathbf{Bexpr} \! o \! \mathbb{Z}$

zur Beschreibung der Auswertungszeit arithmetischer und Boolescher Ausdrücke (in Zeiteinheiten einer abstrakten Maschine).

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

6

Semantik zur Ausführungszeit der Auswertung arithmetischer Ausdrücke

 $\llbracket \, . \, \rrbracket_{TA} : \mathbf{Aexpr} \! \to \! \mathbb{Z}$ induktiv definiert durch

- $[n]_{TA} =_{df} \mathbf{1}$
- $[\![x]\!]_{TA} =_{df} \mathbf{1}$
- $[a_1 + a_2]_{TA} =_{df} [a_1]_{TA} + [a_2]_{TA} + 1$
- $\bullet \ \llbracket \ a_1 * a_2 \ \rrbracket_{TA} =_{df} \llbracket \ a_1 \ \rrbracket_{TA} + \llbracket \ a_2 \ \rrbracket_{TA} + \mathbf{1}$
- $\bullet \hspace{0.1cm} \llbracket \hspace{0.1cm} a_{1} a_{2} \hspace{0.1cm} \rrbracket_{TA} \hspace{-0.1cm} =_{\mathit{df}} \hspace{0.1cm} \llbracket \hspace{0.1cm} a_{1} \hspace{0.1cm} \rrbracket_{TA} + \hspace{0.1cm} \llbracket \hspace{0.1cm} a_{2} \hspace{0.1cm} \rrbracket_{TA} + \mathbf{1}$
- $[a_1/a_2]_{TA} =_{df} [a_1]_{TA} + [a_2]_{TA} + 1$
- ... (andere Operatoren analog, ggf. auch mit operationsspezifischen Kosten)

Anmerkungen zu $[\![\,.\,]\!]_{TA}$ und $[\![\,.\,]\!]_{TB}$

Die Semantikfunktionen

ullet [] $_{TA}$ und [] $_{TB}$

...beschreiben intuitiv die Anzahl der Zeiteinheiten, die eine (hier nicht spezifizierte) abstrakte Maschine zur Auswertung arithmetischer und Boolescher Ausdrücke benötigt.

Semantik zur Ausführungszeit der Auswertung Boolescher Ausdrücke

 $[\![\,.\,]\!]_{TB}: \mathbf{Bexpr} \,{\to}\, \mathbb{Z} \text{ induktiv definiert durch}$

- [[true]]_{TB}=_{df} 1
- $[false]_{TB} =_{df} \mathbf{1}$
- $\bullet \ \llbracket \ a_1 = a_2 \ \rrbracket_{TB} =_{d\!f} \llbracket \ a_1 \ \rrbracket_{TA} + \llbracket \ a_2 \ \rrbracket_{TA} + \mathbf{1}$
- $[a_1 < a_2]_{TB} =_{df} [a_1]_{TA} + [a_2]_{TA} + 1$
- ... (andere Relatoren (z.B. ≤, ...) analog)
- $\bullet \ \llbracket \neg b \rrbracket_{TB} =_{df} \llbracket b \rrbracket_{TB} + \mathbf{1}$
- $\llbracket b_1 \wedge b_2 \rrbracket_{TB} =_{df} \llbracket b_1 \rrbracket_{TB} + \llbracket b_2 \rrbracket_{TB} + \mathbf{1}$
- $\llbracket b_1 \lor b_2 \rrbracket_{TB} =_{df} \llbracket b_1 \rrbracket_{TB} + \llbracket b_2 \rrbracket_{TB} + \mathbf{1}$

Zweiter Schritt

Erweiterung und Adaption der

• natürlichen Semantik von WHILE

zur Bestimmung der Ausführungszeit von Programmen.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

10

Idee

Übergang zu Transitionen der Form

$$\langle \pi, \sigma \rangle \rightarrow^t \sigma'$$

mit der Bedeutung, dass π angesetzt auf σ nach t Zeiteinheiten in σ' terminiert.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

11

Natürliche Semantik erweitert um den Ausführungszeitaspekt (1)

...für das Beispiel von WHILE:

[skip
$$_{tns}$$
] $\frac{-}{\langle skip,\sigma \rangle \ o^1 \ \sigma}$

[abort
$$_{tns}$$
] $\frac{--}{\langle abort,\sigma \rangle \ \rightarrow^1 \ error}$

$$[\mathsf{ass}_{tns}] \quad \frac{-}{\langle x := t, \sigma \rangle \ \rightarrow^{\llbracket t \rrbracket} TA^{+1} \ \sigma[\llbracket t \rrbracket_A(\sigma)/x]}$$

$$[\mathsf{comp}_{tns}] \quad \frac{\langle \pi_1, \sigma \rangle \ \rightarrow^{t_1} \ \sigma', \langle \pi_2, \sigma' \rangle \ \rightarrow^{t_2} \ \sigma''}{\langle \pi_1; \pi_2, \sigma \rangle \ \rightarrow^{t_1+t_2} \ \sigma''}$$

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

12

Natürliche Semantik erweitert um den Ausführungszeitaspekt (2)

$$[\text{if}_{tns}^{tt}] \quad \frac{\langle \pi_1, \sigma \rangle \to^t \sigma'}{\langle \text{if } b \text{ then } \pi_1 \text{ else } \pi_2 \text{ fi}, \sigma \rangle \to^{ \mathbb{D} b} \mathbb{I}_{TB} + t + 1 \ \sigma'} \qquad \quad [\![b]\!]_B(\sigma) = \text{tt}$$

$$[\inf_{tns}^{ff}] \ \frac{\langle \pi_2, \sigma \rangle \to^t \sigma'}{\langle \text{if } b \text{ then } \pi_1 \text{ else } \pi_2 \text{ fi}, \sigma \rangle \to \llbracket b \rrbracket_{TB} + t + 1 \text{ } \sigma'} \qquad \llbracket b \rrbracket_B(\sigma) = \text{ff}$$

$$[\text{while}_{tns}^{tt}] \quad \frac{\langle \pi, \sigma \rangle \to^t \sigma', \langle \text{while } b \text{ do } \pi \text{ od}, \sigma' \rangle \to^{t'} \sigma''}{\langle \text{while } b \text{ do } \pi \text{ od}, \sigma \rangle \to^{\mathbb{D}} \mathbb{I}_{TB} + t + t' + 2 \sigma''} \quad \llbracket b \rrbracket_B(\sigma) = \text{tt}$$

$$[\mathrm{while}_{tns}^{ff}] \quad \frac{-}{\langle \mathrm{while} \ b \ \mathrm{do} \ \pi \ \mathrm{od}, \sigma \rangle \ \neg^{[\![b]\!]}_{TB} + 3 \ \sigma} \qquad \qquad [\![b]\!]_B(\sigma) = \mathrm{ff}$$

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

13

15

Dritter Schritt

Erweiterung und Adaption der

• des Beweiskalküls für totale Korrektheit

um den Ausführungszeitaspekt von Programmen.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

14

Idee (1)

Übergang zu Korrektheitsformeln der Form

$$\{p\} \pi \{e \downarrow q\}$$

wobei

- \bullet p und q Prädikate (wie bisher!) und
- ullet $e \in \mathbf{Aexp}$ ein arithmetischer Ausdruck ist.

Idee (2)

Die Korrektheitsformel

$$\{p\}\ \pi\ \{e \Downarrow q\}$$

ist gültig gdw. für jeden Anfangszustand σ gilt: ist die Vorbedingung p in σ erfüllt, dann terminiert die zugehörige Berechnung von π angesetzt auf σ regulär mit einem Endzustand σ' und die Nachbedingung q ist in σ' erfüllt, und die benötigte Ausführungszeit ist in $\mathcal{O}(e)$.

Axiomatische Semantik zum Ausführungszeitaspekt (1)

[skip $_e$] $\frac{-}{\{p\}\ skip\ \{1 \Downarrow p\}}$ [ass_e] $\frac{-}{\{p[t \setminus x]\}} \frac{-}{x := t \{1 \Downarrow p\}}$

 $\{p \wedge e_2' = u\} \ \pi_1 \ \{e_1 \!\!\! \downarrow \!\!\! r \wedge e_2 \!\! \le \!\! u\}, \ \{r\} \ \pi_2 \ \{e_2 \!\!\! \downarrow \!\!\! q\}$ [comp_e] $\{p\}\ \pi_1;\pi_2\ \{e_1+e_2'\!\!\downarrow\!\!q\}$

wobei u frische logische Variable ist

 $\frac{\{p \wedge b\} \ \pi_1 \ \{e \!\!\downarrow\!\! q\}, \ \{p \wedge \neg b\} \ \pi_2 \ \{e \!\!\downarrow\!\! q\}}{\{p\} \ \text{if} \ b \ \text{then} \ \pi_1 \ \text{else} \ \pi_2 \ \text{fi} \ \{e \!\!\downarrow\!\! q\}}$ $[\mathsf{ite}_e]$

 $\frac{\{p'\} \ \pi \ \{e' \psi q'\}}{\{p\} \ \pi \ \{e \psi q\}}$ $[cons_e]$

wobei (für eine natürliche Zahl k) $p \Rightarrow p' \land e' \le k * e$

und $q' \Rightarrow q$

Analyse und Verifikation (WS 2006/2007) / 6, Teil (28.11.2006)

Axiomatische Semantik zum Ausführungszeitaspekt (2)

 $[\text{while}_e] \quad \frac{\{p(z+1) \wedge e' = u\} \ \pi \ \{e_1 \Downarrow p(z) \wedge e \leq u\}}{\{\exists z. \ p(z)\} \ \text{while} \ b \ \text{do} \ \pi \ \text{od} \ \{e \Downarrow p(0)\}}$

wobei $p(z+1)\Rightarrow b \land e \geq e_1 + e', \ p(0) \Rightarrow \neg b \land 1 \leq e$ u eine frische logische Variable ist und

z Werte aus den natürlichen Zahlen annimmt (d.h. $z \geq \mathbf{0})$

Analyse und Verifikation (WS 2006/2007) / 6, Teil (28.11.2006)

Beispiele (1)

Die Korrektheitsformel

11 ${x=3} y:=1; while x/=1 do y:=y*x; x:=x-1 od {1 \/ True}$

beschreibt, dass die Ausführungszeit des Fakultätsprogramms angesetzt auf einen Zustand, in dem x den Wert 3 hat, von der Grössenordnung von 1 ist, also durch eine Konstante beschränkt ist.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

19

Beispiele (2)

Die Korrektheitsformel

 Π $\{x>0\}$ y:=1; while x/=1 do y:=y*x; x:=x-1 od $\{x \ / \ True\}$

beschreibt, dass die Ausführungszeit des Fakultätsprogramms angesetzt auf einen Zustand, in dem x einen Wert größer als 0 hat, von der Grössenordnung von x ist, also linear beschränkt

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

20

Nachträge

Mathematische Grundlagen im Zusammenhang mit der...

- 1. Definition abstrakter Semantiken für Programmanalysen
- 2. Definition der denotationellen Semantik von \mathbf{WHILE} im Detail

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

Wichtig insbesondere...

- Mengen, Relationen, Verbände
- Partielle und vollständige partielle Ordnungen
- Schranken, Fixpunkte und Fixpunkttheoreme

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

Mengen und Relationen 1(2)

Sei M eine Menge und R eine Relation auf M, d.h. $R \subseteq M \times M$. Dann heißt R...

- reflexiv gdw. $\forall m \in M. \ m \ R \ m$
- transitiv gdw. $\forall m, n, p \in M$. $mRn \land nRp \Rightarrow mRp$
- ullet antisymmetrisch gdw. $\forall\, m,n\in M.\ m\,R\,n\,\wedge\,n\,R\,m\ \Rightarrow\ m=n$

Darüberhinaus... (in der Folge allerdings weniger wichtig)

- $\bullet \ \ \textit{symmetrisch} \ \ \mathsf{gdw}. \ \forall \, m,n \in M. \ m \, R \, n \ \Longleftrightarrow \ n \, R \, m$
- ullet total gdw. $\forall m, n \in M. \ m \ R \ n \ \lor \ n \ R \ m$

Mengen und Relationen 2(2)

Eine Relation R auf M heißt

- ullet Quasiordnung gdw. R ist reflexiv und transitiv
- ullet partielle Ordnung gdw. R ist reflexiv, transitiv und anti-

Zur Vollständigkeit sei ergänzt...

- Äquivalenzrelation gdw. R ist reflexiv, transitiv und symmetrisch
- ...eine partielle Ordnung ist also eine antisymmetrische Quasiordnung, eine Äquivalenzrelation eine symmetrische Quasiordnung.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

23

Schranken, kleinste, größte Elemente

Sei (Q,\sqsubseteq) eine Quasiordnung, sei $q\in Q$ und $Q'\subseteq Q.$

Dann heißt q...

- obere (untere) Schranke von Q', in Zeichen: $Q' \sqsubseteq q$ ($q \sqsubseteq Q'$), wenn für alle $q' \in Q'$ gilt: $q' \sqsubseteq q$ ($q \sqsubseteq q'$)
- kleinste obere (größte untere) Schranke von Q', wenn q obere (untere) Schranke von Q' ist und für jede andere obere (untere) Schranke \widehat{q} von Q' gilt: $q \sqsubseteq \widehat{q}$ ($\widehat{q} \sqsubseteq q$)
- $gr\ddot{o}Btes$ (kleinstes) Element von Q, wenn gilt: $Q \sqsubseteq q$ ($q \sqsubseteq Q$)

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

25

Eindeutigkeit von Schranken

- In partiellen Ordnungen sind kleinste obere und größte untere Schranken eindeutig bestimmt, wenn sie existieren.
- Existenz (und damit Eindeutigkeit) vorausgesetzt, wird die kleinste obere (größte untere) Schranke einer Menge $P'\subseteq P$ der Grundmenge einer partiellen Ordnung (P,\sqsubseteq) mit $\bigsqcup P'$ ($\bigcap P'$) bezeichnet. Man spricht dann auch vom Supremum und Infimum von P'.
- Analog für kleinste und größte Elemente. Existenz vorausgesetzt, werden sie üblicherweise mit ⊥ und ⊤ bezeichnet.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

26

Verbände und vollständige Verbände

Sei (P, \sqsubseteq) eine partielle Ordnung.

Dann heißt $(P,\sqsubseteq)...$

- Verband, wenn jede endliche Teilmenge P' von P eine kleinste obere und eine größte untere Schranke in P besitzt
- ullet vollständiger Verband, wenn jede Teilmenge P' von P eine kleinste obere und eine größte untere Schranke in P besitzt

...(vollständige) Verbände sind also spezielle partielle Ordnungen.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

27

Vollständige partielle Ordnungen

...ein etwas schwächerer, aber in der Informatik oft ausreichender und daher angemessenerer Begriff.

Sei (P, \sqsubseteq) eine partielle Ordnung.

Dann heißt $(P,\sqsubseteq)...$

• vollständig, kurz CPO (von engl. complete partial order), wenn jede aufsteigende Kette $K\subseteq P$ eine kleinste obere Schranke in P besitzt.

Es gilt:

• Eine CPO (C,\sqsubseteq) (genauer wäre: "kettenvollständige partielle Ordnung (engl. chain complete partial order (CCPO)") besitzt stets ein kleinstes Element, eindeutig bestimmt als Supremum der leeren Kette und üblicherweise mit \bot bezeichnet: \bot = $_{df}$ \bigsqcup $_{df}$

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

2

Ketten

Sei (P, \square) eine partielle Ordnung.

Eine Teilmenge $K \subseteq P$ heißt...

• Kette in P, wenn die Elemente in K total geordnet sind. Für $K = \{k_0 \sqsubseteq k_1 \sqsubseteq k_2 \sqsubseteq \ldots\}$ ($\{k_0 \sqsupseteq k_1 \sqsupseteq k_2 \sqsupseteq \ldots\}$) spricht man auch genauer von einer aufsteigenden (absteigenden) Kette in P.

Eine Kette K heißt...

ullet endlich, wenn K endlich ist, sonst unendlich.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

Kettenendlichkeit, endliche Elemente

Eine partielle Ordnung (P,\sqsubseteq) heißt

ullet kettenendlich gdw. P enthält keine unendlichen Ketten

 $\hbox{\rm Ein Element } p \in P \hbox{ heißt}$

- \bullet endlich gdw. die Menge $Q{=}_{d\!f}\,\{q\in P\,|\, q\sqsubseteq p\}$ keine unendliche Kette enthält
- endlich relativ zu $r\in P$ gdw. die Menge $Q=_{d\!f}\{q\in P\,|\,r\sqsubseteq q\sqsubseteq p\}$ keine unendliche Kette enthält

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

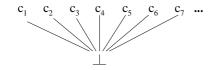
3

(Standard-) CPO-Konstruktionen 1(4)

Flache CPOs...

Sei (C,\sqsubseteq) eine CPO. Dann heißt $(C,\sqsubseteq)...$

 $\bullet \ \textit{flach}, \ \text{wenn für alle} \ c,d \in C \ \text{gilt:} \ c \sqsubseteq d \Leftrightarrow c = \bot \ \lor \ c = d$



(Standard-) CPO-Konstruktionen 2(4)

Produktkonstruktionen...

Seien $(P_1, \sqsubseteq_1), (P_2, \sqsubseteq_2), \dots, (P_n, \sqsubseteq_n)$ CPOs. Dann sind auch...

- ullet das nichtstrikte (direkte) Produkt ($igt X P_i, \sqsubseteq$) mit
 - $\begin{array}{l} -\ (\times P_i,\sqsubseteq) = (P_1 \times P_2 \times \ldots \times P_n,\sqsubseteq) \ \operatorname{mit} \ \forall \, (p_1,p_2,\ldots,p_n), \\ (q_1,q_2,\ldots,q_n) \in \times P_i. \ (p_1,p_2,\ldots,p_n) \ \sqsubseteq \ (q_1,q_2,\ldots,q_n) \Rightarrow \\ \forall \, i \in \{1,\ldots,n\}. \ p_i \sqsubseteq_i q_i \end{array}$
- und das strikte (direkte) Produkt (smash Produkt) mit
 - $(\otimes P_i, \sqsubseteq) = (P_1 \otimes P_2 \otimes \ldots \otimes P_n, \sqsubseteq)$, wobei \sqsubseteq wie oben definiert ist, jedoch zusätzlich gesetzt wird:

 $(p_1, p_2, \ldots, p_n) = \bot \Rightarrow \exists i \in \{1, \ldots, n\}. \ p_i = \bot_i$

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

CPOs.

(Standard-) CPO-Konstruktionen 3(4)

Summenkonstruktion...

Seien $(P_1, \sqsubseteq_1), (P_2, \sqsubseteq_2), \dots, (P_n, \sqsubseteq_n)$ CPOs. Dann ist auch...

- die direkte Summe $(\bigoplus P_i, \sqsubseteq)$ mit...
 - $\begin{array}{ll} \; (\bigoplus P_i, \sqsubseteq) = \; (P_1 \dot \cup P_2 \; \dot \cup \; \dots \; \dot \cup \; P_n, \sqsubseteq) \; \text{disjunkte Vereinigung der} \; P_i, \; i \in \{1,\dots,n\} \; \text{ und } \; \forall p,q \in \bigoplus P_i. \; p \sqsubseteq q \Rightarrow \\ \exists \; i \in \{1,\dots,n\}. \; p,q \in P_i \; \land \; p \sqsubseteq_i \; q \; \text{ und der Identifikation der kleinsten Elemente der} \; (P_i,\sqsubseteq_i), \; i \in \{1,\dots,n\}, \\ \text{d.h.} \; \; \bot =_{d\!f} \bot_i, \; i \in \{1,\dots,n\} \end{array}$

eine CPO.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

(Standard-) CPO-Konstruktionen 4(4)

Funktionenraum...

Seien (C,\sqsubseteq_C) und (D,\sqsubseteq_D) zwei CPOs und $[C\to D]=_{df}$ $\{f:C\to D\mid f \text{ stetig}\}$ die Menge der stetigen Funktionen von C nach D.

Dann ist auch...

• der stetige Funktionenraum ($[C \to D], \sqsubseteq$) eine CPO mit $- \ \forall \, f,g \in [C \to D]. \ f \sqsubseteq g \Longleftrightarrow \forall \, c \in C. \ f(c) \sqsubseteq_D g(c)$

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

34

Funktionen auf CPOs / Eigenschaften

Seien (C,\sqsubseteq_C) und (D,\sqsubseteq_D) zwei CPOs und sei $f:C\to D$ eine Funktion von C nach D.

Dann heißt f...

- $\bullet \ \, \textit{monoton gdw.} \,\, \forall \, c, c' \in C. \,\, c \sqsubseteq_C c' \Rightarrow f(c) \sqsubseteq_D f(c') \\ \qquad \qquad \qquad (\textit{Erhalt der Ordnung der Elemente})$
- stetig gdw. $\forall C' \subseteq C$. $f(\bigsqcup_C C') = \bigcup_D f(C')$ (Erhalt der kleinsten oberen Schranken)

Sei (C,\sqsubseteq) eine CPO und sei $f:C\to C$ eine Funktion auf C. Dann heißt f...

• inflationär (vergrößernd) gdw. $\forall c \in C. \ c \sqsubseteq f(c)$

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

35

Funktionen auf CPOs / Resultate

Mit den vorigen Bezeichnungen gilt...

Lemma

f ist monoton gdw. $\forall C' \subseteq C$. $f(\bigsqcup_C C') \supseteq_D \bigsqcup_D f(C')$

Korollar

Eine stetige Funktion ist stets monoton, d.h. f stetig $\Rightarrow f$ monoton.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

36

(Kleinste und größte) Fixpunkte 1(2)

Sei (C, \sqsubseteq) eine CPO, $f: C \to C$ eine Funktion auf C und sei c ein Element von C, also $c \in C$.

Dann heißt $c\,\dots$

• Fixpunkt von f gdw. f(c) = c

 $\hbox{\rm Ein Fixpunkt } c \hbox{ von } f \hbox{ heißt...}$

- kleinster Fixpunkt von f gdw. $\forall d \in C$. $f(d) = d \Rightarrow c \sqsubseteq d$
- $\bullet \ \textit{gr\"{o}Bter Fixpunkt} \ \text{von} \ f \ \text{gdw.} \ \forall \, d \in C. \ f(d) = d \Rightarrow d \sqsubseteq c$

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

37

(Kleinste und größte) Fixpunkte 2(2)

Seien $d, c_d \in C$. Dann heißt c_d ...

• bedingter kleinster Fixpunkt von f bezüglich d gdw. c_d ist der kleinste Fixpunkt von C mit $d \sqsubseteq c_d$, d.h. für alle anderen Fixpunkte x von f mit $d \sqsubseteq x$ gilt: $c_d \sqsubseteq x$.

Bezeichnungen:

Der kleinste bzw. größte Fixpunkt einer Funktion f wird oft mit μf bzw. νf bezeichnet.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

38

Fixpunktsatz

Theorem (Knaster/Tarski, Kleene)

Sei (C,\sqsubseteq) eine CPO und sei $f:C\to C$ eine stetige Funktion auf C.

Dann hat f einen kleinsten Fixpunkt μf und dieser Fixpunkt ergibt sich als kleinste obere Schranke der Kette (sog. *Kleene*-Kette) $\{\bot, f(\bot), f^2(\bot), \ldots\}$, d.h.

$$\mu f = \bigsqcup_{i \in \mathbb{IN}_0} f^i(\bot) = \bigsqcup \{\bot, f(\bot), f^2(\bot), \ldots\}$$

Beweis des Fixpunktsatzes 1(4)

Zu zeigen: $\mu f...$

- 1 existiert
- 2. ist Fixpunkt
- 3. ist kleinster Fixpunkt

Beweis des Fixpunktsatzes 2(4)

1. Existenz

- Es gilt $f^0 \perp = \perp$ und $\perp \sqsubseteq c$ für alle $c \in C$.
- \bullet Durch vollständige Induktion lässt sich damit zeigen: $f^n\bot\sqsubseteq f^nc \text{ für alle }c\in C.$
- Somit gilt $f^n\bot\sqsubseteq f^m\bot$ für alle n,m mit $n\le m$. Somit ist $\{f^n\bot\mid n\ge 0\}$ eine (nichtleere) Kette in C.
- Damit folgt die Existenz von $\bigsqcup_{i\in\mathbb{N}_0}f^i(\bot)$ aus der CPO-Eigenschaft von (C,\sqsubseteq) .

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

41

Beweis des Fixpunktsatzes 3(4)

2. Fixpunkteigenschaft

$$\begin{array}{rcl} & & f(\bigsqcup_{i\in\mathbb{IN}_0}f^i(\bot))\\ & (f \ \mathrm{stetig}) & = & \bigsqcup_{i\in\mathbb{IN}_0}f(f^n\bot)\\ & = & \bigsqcup_{i\in\mathbb{IN}_1}f^n\bot\\ & (K \ \mathrm{Kette} \Rightarrow \bigsqcup K = \bot \sqcup \sqcup K) & = & \bigsqcup_{i\in\mathbb{IN}_1}f^n\bot \sqcup \bot\\ & (f^0 = \bot) & = & \bigsqcup_{i\in\mathbb{IN}_0}f^n\bot\\ & = & \bigsqcup_{i\in\mathbb{IN}_0}f^i(\bot) \end{array}$$

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

42

Beweis des Fixpunktsatzes 4(4)

3. Kleinster Fixpunkt

- Sei c beliebig gewählter Fixpunkt von f. Dann gilt $\bot \sqsubseteq c$ und somit auch $f^n\bot \sqsubseteq f^nc$ für alle $n\ge 0$.
- Folglich gilt $f^n\bot\sqsubseteq c$ wg. der Wahl von c als Fixpunkt von f.
- Somit gilt auch, dass c eine obere Schranke von $\{f^i(\bot)\mid i\in\mathbb{N}_0\}$ ist.
- Da $\bigsqcup_{i\in\mathbb{IN}_0}f^i(\bot)$ nach Definition die kleinste obere Schranke dieser Kette ist, gilt wie gewünscht $\bigsqcup_{i\in\mathbb{IN}_0}f^i(\bot)\sqsubseteq c.$

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

43

Bedingte Fixpunkte

Theorem (Endliche Fixpunkte)

Sei (C,\sqsubseteq) eine CPO, sei $f:C\to C$ eine stetige, inflationäre Funktion auf C und sei $d\in C$.

Dann hat f einen kleinsten bedingten Fixpunkt μf_d und dieser Fixpunkt ergibt sich als kleinste obere Schranke der Kette $\{d,f(d),f^2(d),\ldots\}$, d.h.

$$\mu f_d = \bigsqcup_{i \in \mathbb{IN}_0} f^i(d) = \bigsqcup \{d, f(d), f^2(d), \ldots\}$$

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

Endliche Fixpunkte

Theorem (Endliche Fixpunkte)

Sei (C,\sqsubseteq) eine CPO und sei $f:C\to C$ eine stetige Funktion auf C.

Dann gilt: Sind in der Kleene-Kette von f zwei aufeinanderfolgende Glieder gleich, etwa $f^i(\bot)=f^{i+1}(\bot)$, so gilt $\mu f=f^i(\bot)$.

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

45

Existenz endlicher Fixpunkte

Hinreichende Bedingungen für die Existenz endlicher Fixpunkte $\operatorname{sind}\dots$

- \bullet Endlichkeit von Definitions- und Wertebereich von f
- f ist von der Form $f(c) = c \sqcup g(c)$ für monotones g über kettenendlichem Wertebereich

Analyse und Verifikation (WS 2006/2007) / 6. Teil (28.11.2006)

46

Vorschau auf die nächsten Vorlesungstermine...

- Di, 05.12.2006, Vorlesung von 17:45 Uhr bis 19:15 Uhr, Bibliothek E185/1
- Di, 12.12.2006, Vorlesung von 17:45 Uhr bis 19:15 Uhr, Bibliothek E185/1
- Di, 19.12.2006: Keine Vorlesung! (Ferialzeit)
- Di, 26.12.2006: Keine Vorlesung! (Ferialzeit)

Vorschau auf die weiteren Vorlesungstermine...

- Di, 02.01.2007: Keine Vorlesung! (Ferialzeit)
- Di, 09.01.2007, Vorlesung von 17:45 Uhr bis 19:15 Uhr, Bibliothek E185/1
- Di, 16.01.2007, Vorlesung von 17:45 Uhr bis 19:15 Uhr, Bibliothek E185/1
- Di, 23.01.2007, Vorlesung von 17:45 Uhr bis 19:15 Uhr, Bibliothek E185/1
- Di, 30.01.2007, Vorlesung von 17:45 Uhr bis 19:15 Uhr, Bibliothek E185/1