Semantikdefinitionsstile (1)

Es gibt unterschiedliche Stile, die Semantik einer Programmiersprache festzulegen. Sie richten sich an unterschiedliche Adressaten und deren spezifische Sicht auf die Semantik...

Insbesondere unterscheiden wir den...

- denotationellen
- operationellen
- axiomatischen

Stil.

Semantikdefinitionsstile (2)

- Sprachentwicklersicht
 - Denotationelle Semantik
- Sprach- und Anwendungsimplementierersicht
 - Operationelle Semantik
 - * Strukturell operationelle Semantik (small steps semantics)
 - * Natürliche Semantik (big steps semantics)
- Programmierer- und Verifizierersicht
 - Axiomatische Semantik

Strukturell operationelle Semantik (1)

...noch einmal wiederholt für das Beispiel von WHILE:

$$[\mathsf{skip}_{sos}] \quad \overline{\langle skip, \sigma \rangle} \Rightarrow \sigma$$

[abort_{sos}]
$$\frac{-}{\langle abort, \sigma \rangle \Rightarrow error}$$

[ass_{sos}]
$$\frac{-}{\langle x := t, \sigma \rangle \Rightarrow \sigma[\llbracket t \rrbracket_A(\sigma)/x]}$$

[comp_{sos}]
$$\frac{\langle \pi_1, \sigma \rangle \Rightarrow \langle \pi'_1, \sigma' \rangle}{\langle \pi_1; \pi_2, \sigma \rangle \Rightarrow \langle \pi'_1; \pi_2, \sigma' \rangle}$$

[comp_{sos}]
$$\frac{\langle \pi_1, \sigma \rangle \Rightarrow \sigma'}{\langle \pi_1; \pi_2, \sigma \rangle \Rightarrow \langle \pi_2, \sigma' \rangle}$$

Strukturell operationelle Semantik (2)

$$[if_{sos}^{tt}] \quad \frac{-}{\langle if \ b \ then \ \pi_1 \ else \ \pi_2 \ fi,\sigma\rangle \Rightarrow \langle \pi_1,\sigma\rangle} \qquad [[b]]_B(\sigma) = tt$$

$$[\mathsf{if}_{sos}^{ff}] \quad \frac{-}{\langle \mathsf{if} \ b \ \mathsf{then} \ \pi_1 \ \mathsf{else} \ \pi_2 \ \mathsf{fi}, \sigma \rangle \Rightarrow \langle \pi_2, \sigma \rangle} \qquad [\![b]\!]_B(\sigma) = \mathsf{ff}$$

[while
$$sos$$
] $\frac{}{\langle \text{while } b \text{ do } \pi \text{ od}, \sigma \rangle \Rightarrow \langle \text{if } b \text{ then } \pi; \text{ while } b \text{ do } \pi \text{ od else } skip \text{ fi}, \sigma \rangle}$

Strukturell operationelle Semantik (3)

Der Fokus liegt auf...

• individuellen Schritten einer Berechnungsfolge, d.h. auf der Ausführung von Zuweisungen und Tests

Intuitive Bedeutung der Transitionsrelation...

$$\langle \pi, \sigma \rangle \Rightarrow \gamma$$

...mit γ von der Form $\langle \pi', \sigma' \rangle$ oder σ' oder error beschreibt den ersten Schritt der Berechnungsfolge von π angesetzt auf σ . Folgende Übergänge sind möglich:

- γ von der Form $\langle \pi', \sigma' \rangle$: Abarbeitung von π nicht vollständig; das Restprogramm π' ist auf σ' anzusetzen
- γ von der Form σ' : Abarbeitung von π vollständig; π angesetzt auf σ terminiert in einem Schritt in σ'
- γ von der Form error: Abarbeitung von π terminiert irregulär

Natürliche Semantik (1)

...ebenfalls für das Beispiel von WHILE:

$$\begin{array}{ccc} [\mathsf{skip}_{ns}] & \frac{-}{\langle skip,\sigma\rangle \to \sigma} \\ \\ [\mathsf{abort}_{ns}] & \frac{-}{\langle abort,\sigma\rangle \to error} \\ \\ [\mathsf{ass}_{ns}] & \frac{-}{\langle x := t,\sigma\rangle \to \sigma[\llbracket t \rrbracket_A(\sigma)/x \rrbracket} \end{array}$$

[comp_{ns}] $\frac{\langle \pi_1, \sigma \rangle \rightarrow \sigma', \langle \pi_2, \sigma' \rangle \rightarrow \sigma''}{\langle \pi_1; \pi_2, \sigma \rangle \rightarrow \sigma''}$

Natürliche Semantik (2)

$$[\mathsf{if}_{ns}^{tt}] \quad \frac{\langle \pi_1, \sigma \rangle \to \sigma'}{\langle \mathsf{if} \; b \; \mathsf{then} \; \pi_1 \; \mathsf{else} \; \pi_2 \; \mathsf{fi}, \sigma \rangle \to \sigma'} \qquad \qquad [\![b]\!]_B(\sigma) = \mathsf{tt}$$

$$[\mathsf{if}_{ns}^{ff}] \quad \frac{\langle \pi_2, \sigma \rangle \to \sigma'}{\langle \mathsf{if} \ b \ \mathsf{then} \ \pi_1 \ \mathsf{else} \ \pi_2 \ \mathsf{fi}, \sigma \rangle \to \sigma'} \qquad \qquad [\![b]\!]_B(\sigma) = \mathsf{ff}$$

$$[\text{while}_{ns}^{tt}] \quad \frac{\langle \pi, \sigma \rangle \to \sigma', \langle \text{while } b \text{ do } \pi \text{ od}, \sigma' \rangle \to \sigma''}{\langle \text{while } b \text{ do } \pi \text{ od}, \sigma \rangle \to \sigma''} \quad [\![b]\!]_B(\sigma) = \mathsf{tt}$$

$$[\text{while}_{ns}^{ff}] \quad \frac{--}{\langle \text{while } b \text{ do } \pi \text{ od}, \sigma \rangle \to \sigma} \qquad \qquad [\![b]\!]_B(\sigma) = \text{ff}$$

Natürliche Semantik (3)

Der Fokus liegt auf...

 Zusammenhang von initialem und finalem Zustand einer Berechnungsfolge

Intuitive Bedeutung von...

$$\langle \pi, \sigma \rangle \to \gamma$$

...mit γ von der Form σ' oder error ist: π angesetzt auf initialen Zustand σ terminiert schließlich im finalen Zustand σ' bzw. terminiert irregulär.

Determinismus der NS-Regeln

Lemma 2.1

$$\forall \pi \in \mathbf{Prg}, \ \sigma \in \Sigma, \ \gamma, \gamma' \in \Gamma. \ \langle \pi, \sigma \rangle \to \gamma \ \land \langle \pi, \sigma \rangle \to \gamma' \ \Rightarrow \ \gamma = \gamma'$$

Korollar 2.2

Die von den NS-Regeln für eine Konfiguration induzierte finale Konfiguration ist (sofern definiert) eindeutig bestimmt, d.h. deterministisch.

Salopper, wenn auch weniger präzise:

Die (N-) Semantik von WHILE ist deterministisch!

Das Semantikfunktional $[\![\]\!]_{ns}$

Korollar 2.2 erlaubt uns festzulegen:

 Die natürliche Semantik von WHILE ist gegeben durch das Funktional

$$\llbracket . \rrbracket_{ns} : \mathsf{Prg} \! o \! (\Sigma \! o \! \Sigma_{arepsilon})$$

welches definiert wird durch:

$$\forall \pi \in \mathbf{Prg}, \ \sigma \in \Sigma. \ \llbracket \pi \rrbracket_{ns}(\sigma) =_{df} \begin{cases} \sigma' & \text{falls } \langle \pi, \sigma \rangle \to \sigma' \\ error & \text{falls } \langle \pi, \sigma \rangle \to error \\ undef & \text{sonst} \end{cases}$$

Variante induktiver Beweisführung

Induktion über die Form von Ableitungsbäumen:

- Induktionsanfang
 - Beweise, dass A für die Axiome des Transitionssystems gilt (und somit für alle nichtzusammengesetzte Ableitungsbäume).
- Induktionsschritt
 - Beweise für jede echte Regel des Transitionssystems unter der Annahme, dass A für jede Prämisse dieser Regel gilt (Induktionshypothese!), A auch für die Konklusion dieser Regel gilt, sofern die (ggf. vorhandenen) Randbedingungen der Regel erfüllt sind.

Anwendung

• Induktive Beweisführung über die Form von Ableitungsbäumen ist typisch zum Nachweis von Aussagen über Eigenschaften natürlicher Semantik.

Ein Beispiel dafür ist der Beweis von Lemma 2.1!

Denotationelle Semantik (1)

...auch für das Beispiel von WHILE:

Denotationelle Semantik (2)

Es bezeichnen:

• $Id: \Sigma_{\varepsilon} \to \Sigma_{\varepsilon}$ die identische Zustandstransformation:

$$\forall \sigma \in \Sigma_{\varepsilon}. \ Id(\sigma) =_{df} \sigma$$

• $Error: \Sigma_{\varepsilon} \to \Sigma_{\varepsilon}$ die konstante Zustandstransformation mit:

$$\forall \sigma \in \Sigma_{\varepsilon}. \ Error(\sigma) =_{df} error$$

Denotationelle Semantik (3)

Zur Hilfsfunktion cond...

Funktionalität...

$$cond: (\Sigma \to \mathbb{B}) \times (\Sigma \to \Sigma) \times (\Sigma \to \Sigma) \to (\Sigma \to \Sigma)$$

Definiert durch...

$$cond(p, g_1, g_2)$$
 $\sigma =_{df} \left\{ \begin{array}{ll} g_1 \ \sigma & \text{falls } p \ \sigma = \text{tt} \\ g_2 \ \sigma & \text{falls } p \ \sigma = \text{ff} \end{array} \right.$

Zu den Argumenten und zum Resultat von cond...

- 1. Argument: Prädikat (in unserem Szenario total definiert; siehe Vorlesungsteil 1)
- 2.&3. Argument: Je eine partiell definierte Zustandstransformation
- Resultat: Wieder eine partiell definierte Zustandstransformation

Denotationelle Semantik (4)

Zur Hilfsfunktion FIX...

Funktionalität...

$$FIX: ((\Sigma \rightarrow \Sigma) \rightarrow (\Sigma \rightarrow \Sigma)) \rightarrow (\Sigma \rightarrow \Sigma)$$

Definiert durch...

$$F g = cond(\llbracket b \rrbracket_{\mathcal{B}}, g \circ \llbracket \pi \rrbracket_{ds}, Id)$$

Daraus ergibt sich...

- ullet FIX ist ein Funktional ("Zustandstransformationsfunktional")
- Die denotationelle Semantik der while-Schleife ist ein Fixpunkt des Funktionals F (und zwar der kleinste!)

Mehr Details zu FIX und Co. später!

Denotationelle Semantik (5)

- Operationelle Semantik
 ...der Fokus liegt darauf, wie ein Programm ausgeführt
- Denotationelle Semantik

wird

...der Fokus liegt auf dem *Effekt*, den die Ausführung eines Programms hat: Für jedes *syntaktische* Konstrukt gibt es eine *semantische* Funktion, die ersterem ein *mathematisches Objekt* zuweist, i.a. eine Funktion, die den Effekt der Ausführung des Konstrukts beschreibt (jedoch nicht, wie dieser Effekt erreicht wird).

Denotationelle Semantik (6)

Zentral für denotationelle Semantiken: Kompositionalität!

Intuitiv:

- Für jedes Element der elementaren syntaktischen Konstrukte/Kategorien gibt es eine zugehörige semantische Funktion
- Für jedes Element eines zusammengesetzten syntaktischen Konstrukts/Kategorie gibt es eine semantische Funktion, die über die semantischen Funktionen der Komponenten des zusammengesetzten Konstrukts definiert ist.

Denotationelle Semantik (7)

Lemma 2.2

Für alle $\pi \in \mathbf{Prg}$ ist durch die Gleichungen von Folie "Denotationelle Semantik (1)" eine (partielle) Funktion $[\![\pi]\!]_{ds}$ definiert, die denotationelle Semantik von π .

Hauptergebnisse

Theorem

$$\forall \ \pi \in \mathbf{Prg}. \ [\![\pi]\!]_{sos} = [\![\pi]\!]_{ns} = [\![\pi]\!]_{ds}$$

Die Äquivalenz der strukturell operationellen, natürlichen und denotationellen Semantik von WHILE legt es nahe, den semantikangebenden Index in der Folge fortzulassen und vereinfachend von [] als der Semantik der Sprache WHILE zu sprechen:

$$\llbracket \ \rrbracket : \mathsf{Prg} o (\Sigma o \Sigma_{arepsilon})$$

definiert durch

$$\llbracket \ \rrbracket =_{df} \llbracket \ \rrbracket_{sos}$$

WHILE - Denotationelle Semantik (1)

Prg ...bezeichne die Menge aller Programme der Sprache
 WHILE

Denotationelle Semantik

$$\llbracket \ \rrbracket_{ds} : \mathsf{Prg} o (\Sigma o \Sigma_{arepsilon})$$

Somit...

• Die denotationelle Semantik eines **WHILE**-Programms ist eine (partiell definierte) Zustandstransformation, wobei die Menge der Zustände gegeben ist durch

$$\Sigma =_{df} \{ \sigma \mid \sigma : V \to D \}$$

Beachte...

• Auch die operationelle (die strukturell operationelle wie auch die natürliche) Semantik eines **WHILE**-Programms ist eine (partiell definierte) *Zustandstransformation* auf Σ , nicht aber die axiomatische Semantik.

WHILE – Denotationelle Semantik (2)

Erinnerung:

```
 [\![ skip ]\!]_{ds} = Id 
 [\![ abort ]\!]_{ds} = Error 
 [\![ x := t ]\!]_{ds}(\sigma) = \sigma[[\![ t ]\!]_{A}(\sigma)/x] 
 [\![ \pi_1; \ \pi_2 ]\!]_{ds} = [\![ \pi_2 ]\!]_{ds} \circ [\![ \pi_1 ]\!]_{ds} 
 [\![ if \ b \ then \ \pi_1 \ else \ \pi_2 \ fi ]\!]_{ds} = cond([\![ b ]\!]_{\mathcal{B}}, [\![ \pi_1 ]\!]_{ds}, [\![ \pi_2 ]\!]_{ds}) 
 [\![ while \ b \ do \ \pi \ od ]\!]_{ds} = FIX \ F 
 where \ F \ g = cond([\![ b ]\!]_{\mathcal{B}}, g \circ [\![ \pi ]\!]_{ds}, Id)
```

WHILE – Denotationelle Semantik (3)

Noch offen...

- Die Bedeutung von...
 - cond und
 - -FIXF

Diese Bedeutung wollen wir in der Folge aufklären...

Zur Bedeutung von cond

Hilfsfunktion cond...

Funktionalität...

$$cond: (\Sigma \to \mathbb{B}) \times (\Sigma \to \Sigma) \times (\Sigma \to \Sigma) \to (\Sigma \to \Sigma)$$

Definiert durch...

$$cond(p, g_1, g_2) \ \sigma =_{df} \begin{cases} g_1 \ \sigma & \text{if } p \ \sigma = \text{tt} \\ g_2 \ \sigma & \text{if } p \ \sigma = \text{ff} \end{cases}$$

Zu den Argumenten und zum Resultat von cond...

- 1. Argument: Prädikat (in unserem Szenario total definiert; siehe Vorlesungsteil 1)
- 2.&3. Argument: Je eine partiell definierte Zustandstransformation
- Resultat: Wieder eine partiell definierte Zustandstransformation

Damit erhalten wir

...für die Bedeutung der Fallunterscheidung

Erinnerung:

• $[\![b]\!]_{\mathcal{B}}$ ist in unserem Szenario total definiert; $[\![b]\!]_{\mathcal{B}}$ σ ist daher stets von undef verschieden.

Zur Bedeutung von FIX F

Funktionalität...

$$FIX: ((\Sigma \rightarrow \Sigma) \rightarrow (\Sigma \rightarrow \Sigma)) \rightarrow (\Sigma \rightarrow \Sigma)$$

Definiert durch...

$$F g = cond(\llbracket b \rrbracket_{\mathcal{B}}, g \circ \llbracket \pi \rrbracket_{ds}, Id)$$

Daraus ergibt sich...

- ullet FIX ist ein Funktional ("Zustandstransformationsfunktional")
- Die denotationelle Semantik der while-Schleife ist ein Fixpunkt des Funktionals F (und zwar der kleinste!)

Schrittweise zur denotationellen Semantik der while-Schleife

Dazu folgende Beobachtung...

• while b do π od muss dieselbe Bedeutung haben wie... if b then (π) ; while b do π od) else skip fi

Daraus folgt...

• [while b do π od]]_{ds} = $cond([[b]]_{\mathcal{B}}, [[while b do \pi od]]_{ds} \circ [[\pi]]_{ds}, Id)$

Und daraus schließlich...

• $[\![\mathbf{while} \ b \ \mathbf{do} \ \pi \ \mathbf{od} \,]\!]_{ds}$ muss Fixpunkt des Funktionals F sein, dass definiert ist durch

$$F g = cond(\llbracket b \rrbracket_{\mathcal{B}}, g \circ \llbracket \pi \rrbracket_{ds}, Id)$$

Oder anders ausgedrückt, es muss gelten:

[while
$$b \operatorname{do} \pi \operatorname{od}]_{ds} = F([while b \operatorname{do} \pi \operatorname{od}]]_{ds})$$

...was uns wie gewünscht zu einer *kompositionellen* Definition von $[\![\mathbf{while} \ b \ \mathbf{do} \ \pi \ \mathbf{od} \,]\!]_{ds}$ und damit von $[\![\]\!]_{ds}$ insgesamt führen wird.

Etwas formaler: Unser Arbeitsplan

Erforderlich...

• Einige Resultate aus der Fixpunkttheorie

Beim nächsten Mal wird nachgeholt...

Der mathematische Hintergrund (Ordnungen, CPOs, Stetigkeit von Funktionen) und die benötigten Resultate (Fixpunktsatz)

 \sim ...siehe Vorlesungsteil 6 vom 28.11.2006

Somit bleibt an dieser Stelle zu tun...

 Nachzuweisen, dass diese Resultate auf unsere Situation anwendbar sind.

Folgende drei Argumente...

...werden dafür entscheidend sein

- 1. $[\Sigma \to \Sigma]$ kann vollständig partiell geordnet werden.
- 2. F im Anwendungskontext ist stetig
- 3. Fixpunktbildung im Anwendungskontext wird ausschließlich auf stetige Funktionen angewendet.

Insgesamt ergibt sich dann daraus die Wohldefiniertheit von

$$\llbracket \ \rrbracket_{ds} : \mathsf{Prg} o (\Sigma o \Sigma_{arepsilon})$$

Ordnung auf Zustandstransformationen

Bezeichne...

ullet [$\Sigma \to \Sigma$] die Menge der partiell definierten Zustandstransformationen.

Wir definieren...

$$g_1 \sqsubseteq g_2 \iff \forall \sigma \in \Sigma. \ g_1 \ \sigma \ definiert = \sigma' \Rightarrow g_2 \ \sigma \ definiert = \sigma'$$

$$\mathsf{mit} \ g_1, g_2 \in [\Sigma \to \Sigma_{\varepsilon}]$$

Lemma 1

- 1. $([\Sigma \to \Sigma], \sqsubseteq)$ ist eine partielle Ordnung.
- 2. Die *total undefinierte* (d.h. nirgends definierte) Funktion $\bot: \Sigma \to \Sigma$ mit $\bot \sigma = undef$ für alle $\sigma \in \Sigma$ ist *kleinstes* Element in $([\Sigma \to \Sigma], \sqsubseteq)$

Ordnung auf Zustandstransformationen

Sogar...

Lemma 2

Das Paar ($[\Sigma \to \Sigma], \sqsubseteq$) ist eine vollständige partielle Ordnung (CPO) mit kleinstem Element \bot .

Weiter gilt: Die kleinste obere Schranke $\sqcup Y$ einer Kette Y ist gegeben durch

$$graph(\Box Y) = \bigcup \{graph(g) \mid g \in Y\}$$

Das heißt: $(\Box Y) \sigma = \sigma' \iff \exists g \in Y. \ g \ \sigma = \sigma'$

Einschub: Graph einer Funktion

Der *Graph* einer totalen Funktion $f: M \rightarrow N$ ist definiert durch

$$graph(f) =_{df} \{ \langle m, n \rangle \in M \times N \mid f \mid m = n \}$$

Es gilt:

- $\langle m, n \rangle \in graph(f) \land \langle m, n' \rangle \in graph(f) \Rightarrow n = n' \text{ (rechtseindeutig)}$
- $\forall m \in M$. $\exists n \in N$. $\langle m, n \rangle \in graph(f)$ (linkstotal)

Der Graph einer partiellen Funktion $f:M\to N$ mit Definitionsbereich $M_f\subseteq M$ ist definiert durch

$$graph(f) =_{df} \{ \langle m, n \rangle \in M \times N \mid f \mid m = n \land m \in M_f \}$$

Vereinbarung...

Für $f:M\to N$ partiell definierte Funktion auf $M_f\subseteq M$ schreiben wir

- f m = n, falls $\langle m, n \rangle \in graph(f)$
- f m = undef, falls $m \notin M_f$

Stetigkeitkeitsresultate (1)

Lemma 3

Sei $g_0 \in [\Sigma \to \Sigma]$, sei $p \in [\Sigma \to \mathbb{B}]$ und sei F definiert durch F $g = cond(p, q, q_0)$

Dann gilt: F ist stetig.

Zur Erinnerung: Seien (C, \sqsubseteq_C) und (D, \sqsubseteq_D) zwei CPOs und sei $f: C \to D$ eine Funktion von C nach D.

Dann heißt f...

- monoton gdw. $\forall c, c' \in C$. $c \sqsubseteq_C c' \Rightarrow f(c) \sqsubseteq_D f(c')$ (Erhalt der Ordnung der Elemente)
- stetig gdw. $\forall C' \subseteq C$. $f(\bigsqcup_C C') = \bigcup_D f(C')$ (Erhalt der kleinsten oberen Schranken)

Stetigkeitkeitsresultate (2)

Lemma 4

Sei $g_0 \in [\Sigma \to \Sigma]$ und sei F definiert durch

$$F g = g \circ g_0$$

Dann gilt: F ist stetig.

Zusammen mit...

Lemma 5

Die Gleichungen zur Festlegung der denotationellen Semantik von WHILE (vgl. Folie 13 von heute) definieren eine totale Funktion

$$\llbracket \ \rrbracket_{ds} \in [\mathsf{Prg} \mathop{
ightarrow} (\Sigma \mathop{
ightarrow} \Sigma_{arepsilon})]$$

...sind wir durch! Wir können beweisen:

$$\llbracket \ \rrbracket_{ds} : \mathsf{Prg} o (\Sigma o \Sigma_{arepsilon})$$

ist wohldefiniert!

Und somit wie anfangs angedeutet...

Aus...

- 1. Die Menge $[\Sigma \to \Sigma]$ der partiell definierten Zustandstransformationen bildet zusammen mit der Ordnung \sqsubseteq eine CPO.
- 2. Funktional F mit " $F g = cond(p, g, g_0)$ " und " $g \circ g_0$ " ist stetig
- 3. In der Definition von $[\![\]\!]_{ds}$ wird die Fixpunktbildung ausschließlich auf stetige Funktionen angewendet.

...ergibt sich wie gewünscht:

$$\llbracket \ \rrbracket_{ds} : \mathsf{Prg} o (\Sigma o \Sigma_{arepsilon})$$

...ist wohldefiniert!

Vorschau auf die nächsten Vorlesungstermine...

- Di, 28.11.2006, Vorlesung von 17:45 Uhr bis 19:15 Uhr, Bibliothek E185/1
- Di, 05.12.2006, Vorlesung von 17:45 Uhr bis 19:15 Uhr, Bibliothek E185/1
- Di, 12.12.2006, Vorlesung von 17:45 Uhr bis 19:15 Uhr, Bibliothek E185/1
- Di, 19.12.2006: Keine Vorlesung! (Ferialzeit)
- Di, 26.12.2006: Keine Vorlesung! (Ferialzeit)

Vorschau auf die weiteren Vorlesungstermine...

- Di, 02.01.2007: Keine Vorlesung! (Ferialzeit)
- Di, 09.01.2007, Vorlesung von 17:45 Uhr bis 19:15 Uhr, Bibliothek E185/1
- Di, 16.01.2007, Vorlesung von 17:45 Uhr bis 19:15 Uhr, Bibliothek E185/1
- Di, 23.01.2007, Vorlesung von 17:45 Uhr bis 19:15 Uhr, Bibliothek E185/1
- Di, 30.01.2007, Vorlesung von 17:45 Uhr bis 19:15 Uhr, Bibliothek E185/1