185.A05 Advanced Functional Programming SS 21
Monday, 12 April 2021

Assignment 3
on Chapter 7 and Chapter 4

Topics: Functional Arrays and Functional Pearls
Submission deadline: Monday, 19 April 2021, 12am

Regarding the deadline for the second submission: Please, refer to ,, Hinweise zu Or-
ganisation und Ablauf der Ubung*“ available at the homepage of the course.

Important:

1. Carefully read and follow the instructions outlined in the complementary files
provided with assignment 0. If you have any questions regarding them, ask your
questions in the TISS forum. Following these instructions is essential to ensure
a smooth processing of your submitted file with the test system.

2. Store all functions to be written for this assignment in a top-level file named
Assignment3.hs

of your group directory. Take advantage of the template file Assignment3.hs
and extend it as required. Comment your program meaningfully, and use auxi-
liary functions and constants, where reasonable. The very same file name shall
be used for the second submission of assignment 3.

3. Do not use self-defined modules! If you want to re-use functions (written for
other assignments), copy them to Assignment3.hs. Import declarations for self-
defined modules will fail: Only Assignment3.hs will be copied for the (semi-
automatical) evaluation procedure, no other ones.

4. Your programs will be (semi-automatically) evaluated on g0 using the there
installed GHC interpreter of GHC version 8.65. If you use a different tool or
a different version of GHC for program development, please, double-check well
in time before the submission deadline that your programs behave on g0 and
the there installed GHC interpreter version as you expect.

Programming assignments:

In this assignment we explore and compare the relative merits of lists and functional
arrays considering typical matrix operations and Binoxxo puzzles as examples. Bin-
oxxo puzzles give us additionally the opportunity of exerimenting with functional
pearl programming.

1. We consider integer matrices and addition and multiplication of integer matrices
using the following notations:

e Matriz: An (integer) matrix M, m, n € INy, is a non-empty two-dimensional
scheme of integers:

a1 Q12 Q1n
M = 21 A22 A2n,
Am1 Am2 Amn

M is called rectangular of type (m,n), if m # n; it is called quadratic of
type (m,m), if m = n.

e Matrix addition: If M, N are two matrices of type (m,n), their sum S is a
matrix of the same type defined by:

aix a2 Q1n bir bi2 bin
M+ N = G21 Q22 - Qgp + bor bay oo Doy -9
Aml Am2 Amn bml bm2 bmn
with
Ci1 Ci2 Cin
IS =y Ca1 C22 Con,
Cm1 Cm2 Cmn
and
cij:dfaij—l—bij,izl,...,m,jzl,...,n

If M, N are not of the same type, adding them and their sum is undefined.

o Matriz multiplication: If M, N are two matrices of type (m,n) and (n,p),
respectively, their product P is a matrix of type (m,p) defined by:

aip; a2 Q1n bi1 b2 blp
a a a b b b
M-N — 21 22 2n 21 022 2p _p
Am1 Am2 Qmn bnl bn2 bnp
with
Ci11 Ci2 Cip
Co1 Ca22 Cop
P =dqf
Cm1 Cn2 Cmp
and
— n — _
Cqr =df Xj—104ibjr, ¢ =1,....m, r=1,...,p

If M, N are not of ‘fitting’ types, multiplying them and their product is unde-
fined.

(a)

Mofelling matrices as lists of lists:

type Natl = Int

type Row = [Int]

type Column = [Int]

type MatrixLoR = [Row] -— Matrices as lists of rows
type MatrixLoC = [Column] -— Matrices as lists of columns

Implement the following functions (only for matrices as lists of rows):

is_wellformed :: MatrixLoR —> Bool

add :: MatrixLoR -> MatrixLoR -> Maybe MatrixLoR
mult :: MatrixLoR -> MatrixLoR -> Maybe MatrixLoR
where

i. is_wellformed returns True, if its argument is a matrix of type (m,n)
for some m,n € INy; otherwise, it returns False.

ii. add returns the sum of its arguments (as Just value), if they are well-
formed matrices of the same type; otherwise, it returns Nothing.

iii. mult returns the product of its arguments (as Just value), if they are
well-formed matrices of fitting types; otherwise, it returns Nothing.

Modelling matrices as two-dimensional functional arrays:

import Data.Array

type Matrix = Array (Natl,Natl) Int

Implement the following functions:

plus :: Matrix -> Matrix -> Maybe Matrix
times :: Matrix -> Matrix -> Maybe Matrix
where

i. plus returns the sum of its arguments (as Just value), if they are
matrices of the same type; otherwise, it returns Nothing.

ii. times returns the product of its arguments (as Just value), if they are
of fitting types; otherwise, it returns Nothing.

Without submission:

i. Do you think it would make a (substantial) difference for implementing
is_wellformed, add, and mult, if matrices were modelled as lists of
columns instead of lists of rows?

ii. Why can we omit implementing a function is_wellformed for matrices
modelled as two-dimensional functional arrays?

iii. Do you consider the implementation of add and mult or of plus and
times conceptually and technically easier? Or do you think it does not
make a substantial difference?

iv. If you consider the list of list or the array implementation of matrices
as superior over the other one, can you imagine‘real world’ examples,
where your judgement would be the other round? In particular, of ex-
amples, which do not rest on the ‘unlimited growth’ ability of lists?

v. Test the correctness of the various matrix operations by matrices of your
own choice. Are their performance differences between the operations
working on list and array-modelled arrays?

Explain your reasoning and experimental observations.

2. A Binoxxo puzzle is given by a rectangular or quadratic grid with even side-
lengths that is partially filled with crosses and circles:

Bodoxxo 1 Bodoxxo 2
X X 0 X 0 0 0
(0] X X (@]
X X O O
0 0 X X 0 X
X 0 X
X X X o]
X X X o] X
OO0 O (0] (0]
X X X X X
(0] 0] (0] (0] X

Solving a Binoxxo puzzle means filling all its free entries with either a cross or
a circle such that the following three wellformedness conditions hold:

(wfl) In every row and in every column the number of crosses and circles is the
samne.
(wf2) All rows and all colums are pairwise disjoint.

(wf3) At most two crosses or circles are horizontally or vertically immediately
adjacent.

The following figure shows at the top all correctly solved Binoxxo puzzles of
size 2 x 2, and at the bottom two correctly solved puzzles of size 4 x 4 on the
left, and two incorrectly filled ones on the right.

]
x
<
]

O 0 X X X 0 X O X 0O X O X 0O X O
X 00 X O X O X O X /0| X O X 0 X
X X 00 X 00 X X O X O X X[X0
O X X O O X X O O/ X OX O X X|O

In this assignment we consider rectangular and quadratic Binoxxo puzzles of
even side-lengths in the range of 2 to 10. As for the matrix operations, we
explore on-the-fly the relative merits of modelling Binoxxo puzzles as lists of
lists and two-dimensional functional arrays, respectively.

(L) Modelling Binoxxo puzzles as lists of rows:

data Entry = B -- Blank (or empty)
| X -- Cross
| 0 -- Circle

deriving (Eq,Show)
type BRow = [Entry]

type BinoxxoL = [BRow]

is_wellformed_L :: BinoxxoL -> Bool
is_complete_L :: BinoxxoL -> Bool
solve_naively_L :: BinoxxoL -> Maybe BinoxxoL
solve_smartly_L :: BinoxxoL -> Maybe BinoxxoL

(A) Modelling Binoxxo puzzles as two-dimensional functional arrays:

type Number = One | Two | Three | Four | Five
| Six | Seven | Eight | Nine | Ten
derivng (Eq,0rd,Enum,Show)

instance Ix Number where

type BinoxxoA = Array (Number,Number) Entry

is_wellformed_A :: BinoxxoA -> Bool

is_complete_A :: BinoxxoA -> Bool

solve_naively_A :: BinoxxoA -> Maybe BinoxxoA
solve_smartly_A :: BinoxxoA -> Maybe BinoxxoA

The various functions shall have the following meaning;:

(a) is_wellformed L and is_wellformed A return True, if their arguments
model a rectangular or quadratic Bionoxxo puzzle with at most 10 rows and
10 columns enjoying additionally the Binoxxo well-formedness conditions
(wfl), (wf2), (wf3); otherwise, they return False.

(b) is_complete L and is_complete A return True, if their arguments do not
contain any empty entries; otherwise, they return False.

(c) solve naively L and solve naively A shall solve well-formed Binoxxo
puzzles straightforwardly in an obviously correct manner at the expen-
se of being possibly (very) inefficient and poorly performing. The naive
solvers play the role of the initial algorithms solving a functional pearl
problem (cf. Chapter 4 on functional pearls). If there is more than one
solution of a puzzle, it does not matter which of them the implementations
of solve naively L and solve naively_A yield. If there is no solution,
the naive solvers return Nothing.

(d) solve_smartly L and solve_smartly A shall solve wellformed Binoxxo
puzzles as fast as possible! If there is more than one solution of a puzzle, it
does not matter which of them the implementations of solve_smartly_L
and solve_smartly_A yield. If there is no solution, the smart solvers return
Nothing.

Try making your implementation a functional pearl! Try developing the
smart solvers by systematically and stepwise transforming their naive coun-
terparts. Make sure (at least by convincing yourself somehow), that every
transformation step preserves the semantics of the solver of the current
step, ensuring thus the correctness of the implementation of the final smart
solvers.

3. Without submission:

(a) Note: Wellformed and complete Binoxxo puzzles are correctly solved.

(b) For matrices we could omit implementing a well-formed test of array-
modelled matrices. Does this apply to Binoxxo puzzles, too?

(c) In case a well-formed test for array-modelled Binoxxo puzzles can not be
dropped, does the list-modelled Binoxxo puzzles provide an advantage over
the array-based ones or vice versa for implementing the well-formed test?

(d) Do you consider the list-modelled or the array-modelled of Binoxxo puzzles
advantageous for implementing Binoxxo puzzle solvers? Or do you think it
does not make a substantial difference?

(e) Test the correctness and performance of the various solvers by Binoxxo
puzzles of your own choice.

(f) If you developed your smart solvers in several steps, extend the tests to the
intermediate solvers. Which of the heuristics you added for performance
improvement had the biggest impact? Were there some that had little or

no impact? What do you think are the reasons for the success of failure of
the heuristics?

(g) Did algorithms patterns turn out to be useful for your implementations?

Explain your reasoning and experimental observations.

Tucundi acti labores.
Getane Arbeiten sind angenehm.

Cicero (106 - 43 v.Chr.)
rom. Staatsmann und Schriftsteller

