
185.A05 Advanced Functional Programming SS 21

Monday, 22 March 2021

Assignment 2
on Chapter 3 and Chapter 8

Topics: Algorithm Patterns (Backtracking, Greedy Search, Dynamic
Programming), Abstract Data Types (Stacks, Priority Queues, Tables)

Submission deadline: Monday, 12 April 2021, 12am

Regarding the deadline for the second submission: Please, refer to
”
Hinweise zu Or-

ganisation und Ablauf der Übung“ available at the homepage of the course.

Important:

1. Carefully read and follow the instructions outlined in the complementary files
provided with assignment 0. If you have any questions regarding them, ask your
questions in the TISS forum. Following these instructions is essential to ensure
a smooth processing of your submitted file with the test system.

2. Store all functions to be written for this assignment in a top-level file named

Assignment2.hs

of your group directory. Take advantage of the template file Assignment2.hs

and extend it as required. Comment your program meaningfully, and use auxi-
liary functions and constants, where reasonable. The very same file name shall
be used for the second submission of assignment 2.

3. Do not use self-defined modules! If you want to re-use functions (written for
other assignments), copy them to Assignment2.hs. Import declarations for self-
defined modules will fail: Only Assignment2.hs will be copied for the (semi-
automatical) evaluation procedure, no other ones.

4. Your programs will be (semi-automatically) evaluated on g0 using the there
installed GHC interpreter of GHC version 8.65. If you use a different tool or
a different version of GHC for program development, please, double-check well
in time before the submission deadline that your programs behave on g0 and
the there installed GHC interpreter version as you expect.

Programming assignments:

We consider a variant of the travelling salesman problem. In our variant of the
problem, the vaccine coordinator of the Austrian federal government performs round
trip visits of all or some of the Austrian federal state capitals in order to discuss
challenges of the ongoing vaccination campaign with local authorities. In order to
minimize travel time and costs the state capitals visited on a round trip shall be
visited exactly once in an order that miminizes the overall travel distance. To this

end we assume that the state capitals are connected by a system of one-way roads,
however, we do not assume that the state capitals are pairwise linked by direct one-
way roads. There may be a one-way road from state capital A to state capital B
but not vice versa; and there may be state capitals, which are not linked at all by
a connecting one-way road. Each round trip shall start and end in the state capital
coming lexicographically first in the list of state capitals to be visited on a round
trip. Finally, we assume that the vaccine coordinator travels with a battery powered
e-car with limited range. In order to ensure to not run out of power on the road, the
range of the car sets an upper limit on the travel distance of round trips that can
be chosen by the vaccine coordinator.

We model the travelling vaccine coordinator problem as follows:

type Nat1 = Int

type Kilometer = Nat1

type Distance = Kilometer

type MaxRange = Kilometer

data Capital = Bregenz | Eisenstadt | Graz | Innsbruck | Klagenfurt

| Linz | Salzburg | StPoelten | Wien

deriving (Eq,Ord,Enum,Show)

type From = Capital

type To = Capital

type Roadmap = From -> To -> Maybe Distance

-- Just values of Maybe Distance denote the length of the

-- one-way road from capital ‘from’ to capital ‘to’. The Nothing

-- value indicates the absence of such a one-way road.

type ToBeVisited = Capital -> Bool

-- A capital is to be visited on a round trip iff it is mapped to True.

type RoundTrip = [Capital]

-- Each round trip starts and ends in the state capital coming lexicographi-

-- cally first, e.g. [Eisenstadt,Wien,Linz,Salzburg,Innsbruck,Eisenstadt]

type RoundTripTravelDistance = Kilometer

type Itinerary = (RoundTrip,RoundTripTravelDistance)

1. Use the algorithm pattern for backtracking search of Chapter 3 to implement:

vcp1 :: Roadmap -> ToBeVisited -> MaxRange -> Maybe [Itinerary]

which yields as Just value all round trips not exceeding the maximum range
of the vaccine coordinator’s e-car. If there is more than one, they can be listed
in any particular order. If there is none, vcp1 yieds the value Nothing.

2. Modify the algorithm pattern for backtracking search of Chapter 3 to termina-
te after the first solution has been discovered. Use the modified backtracking
algorithm pattern to implement:

vcp2 :: Roadmap -> ToBeVisited -> MaxRange -> Maybe Itinerary

which behaves like vcp1 but returns only one round trip proposal, if there is
one (or more), otherwise it returns Nothing.

3. Use the algorithm pattern for greedy search of Chapter 3 to implement:

vcp3 :: Roadmap -> ToBeVisited -> MaxRange -> Maybe Itinerary

Like vcp2, vcp3 returns a round trip proposal, if there is one (or more) but the
one returned if some exist(s), is the one uniquely determined by the principle
of greedy search, where uniqueness is ensured as follows: as we are interested
in round trips as short as possible, greedy search picks that capital as the next
one on a trip which is nearest to the current one. If two capitals are equally far
away from the current one, it (arbitrarily) picks the one coming alphabetically
first in order to ensure uniqueness. If a valid round trip does not exist, vcp3
returns Nothing.

4. Without submission:

(a) Test and validate your implementations with test data of your own choice.

(b) Use the result of vcp1 to double-check, if

i. vcp2 yields a round trip with minimum overall travel distance, if there
is one. If not, why not?

ii. vcc3 does so? If not, why not?

(c) What is the asymptotic complexity (‘big-O’) of vcp1, vcp2, vcp3?

Dynamic programming, a historical mis-nomer for a computing approach (called
programming) storing results of computations for later reuse in a table instead of
recomputing them, often helps in overcoming the complexity of brute force ap-
proaches for solving optimization problems with an exponential number of solution
candidates.

Informally, dynamic programming succeeds if a problem can be decomposed into
smaller problems such that the optimal solution of the original problem can be
computed from the optimal solutions of the smaller ones.

This is formalized in Bellman’s optimality criterion, which is thanks to and named
in honor of Richard E. Bellman:

Bellman’s Optimality Criterion
An optimization problem P satifies Bellman’s Optimality Criterion, if:

(i) Every (non trivial) instance I of P can be decomposed into m smaller and
independent of each other instances Ik, 1 ≤ k ≤ m, of P such that

(ii) every combination of arbitrary optimal solutions of I1, . . . , Ik yields an optimal
solution of I.

Finding the longest common subsequence (LCS) of two strings is an example of an
optimization problem satisfying Bellman’s optimality criterion. The definition of
this problem reuires the following notion: If s is a string, a substring of s can be
constructed by deleting arbitrarily many (not necessarily neighboured) characters
of s. The LCS problem is then the following:

• Let a1 . . . am and b1 . . . bn two (possibly empty) strings. Find the length of the
longest common substring(s) of a1 . . . am and b1 . . . bn.

For example, given the two strings "BANANAS" and ANALYSIS, their longest com-
mon substring is "ANAS" of length 4, and of "BANANAS-FARMS" and "BIDIRECTIONAL-

ANALYSIS" it is the substring "BNANASS" of length 7.
The following recurrence relation shows how the optimal solution of an instance I

of LCS can be computed from optimal solutions of smaller instances of LCS I can be
decomposed into. Let d(i, j) denote the length of the longest common substring(s)
of a1 . . . ai and b1 . . . bj. Then d(i, j), 0 ≤ i ≤ m, 0 ≤ j ≤ n, enjoys the recurrence
relation:

d(i, j) =

0 if i = 0 ∨ j = 0

max

(
d(i, j − 1), d(i− 1, j), d(i− 1, j − 1) +

{
1 if ai = bj
0 if ai 6= bj

})
if i, j > 0

5. Use the algorithm pattern for dynamic programming of Chapter 3 to implement:

lcs :: String -> String -> Int

6. Without submission:

(a) Test and validate your implementation of lcs with test data of your own
choice.

(b) What is the asymptotic complexity (‘big-O’) of lcs compared to a brute
force approach for solving the LCS problem?

(c) Memoization is often (considered) an immediate alternative to dynamic
programming. Does this apply to the LCS problem, too? Explain your
reasoning.

Iucundi acti labores.

Getane Arbeiten sind angenehm.

Cicero (106 - 43 v.Chr.)

röm. Staatsmann und Schriftsteller

Note: The deadlines for the first submission of assignment 2 and the second sub-
mission of assignment 1 are both on Monday, 12 April 2021, at noon.

