
Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Fortgeschrittene funktionale

Programmierung
LVA 185.A05, VU 2.0, ECTS 3.0

SS 2021

(Stand: 06.05.2021)

Jens Knoop

Technische Universität Wien
Information Systems Engineering

Compilers and Languages

compilers
languages

1/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Lecture 7

Part V: Applications

– Chapter 17: Pretty Printing

+ Chap. 17.6: Recommended Reading: Basic, Advanced

– Chapter 18: Functional Reactive Programming

+ Chap. 18.5: Recommended Reading: Basic, Advanced

Part VI: Extensions, Perspectives

– Chapter 19: Extensions to Parallel and ‘Real World’
Functional Programming

+ Chap. 19.3: Recommended Reading: Basic, Advanced

– Chapter 20: Conclusions and Perspectives

+ Chap. 20.4: Recommended Reading: Basic, Advanced

2/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Outline in more Detail (1)
Part V: Applications
I Chap. 17: Pretty Printing

17.1 Motivation
17.2 The Simple Pretty Printer

17.2.1 Basic Document Operators
17.2.2 Normal Forms of String Documents
17.2.3 Printing Trees

17.3 The Prettier Printer
17.3.1 Algebraic Documents
17.3.2 Algebraic Representations of Document Operators
17.3.3 Multiple Layouts of Algebraic Documents
17.3.4 Normal Forms of Algebraic Documents
17.3.5 Improving Performance
17.3.6 Utility Functions
17.3.7 Printing XML-like Documents

17.4 The Prettier Printer Code Library
17.4.1 The Prettier Printer
17.4.2 The Tree Example
17.4.3 The XML Example

3/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Outline in more Detail (2)
I Chap. 17: Pretty Printing (cont’d)

17.5 Summary
17.6 References, Further Reading

I Chap. 18: Functional Reactive Programming
18.1 Motivation
18.2 An Imperative Robot Language

18.2.1 The Robot’s World
18.2.2 Modelling the Robot’s World
18.2.3 Modelling Robots
18.2.4 Modelling Robot Commands as State Monad
18.2.5 The Imperative Robot Language
18.2.6 Defining a Robot’s World
18.2.7 Robot Graphics: Animation in Action

18.3 Robots on Wheels
18.3.1 The Setting
18.3.2 Modelling the Robots’ World
18.3.3 Classes of Robots
18.3.4 Robot Simulation in Action
18.3.5 Examples 4/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Outline in More Detail (3)

I Chap. 18: Functional Reactive Programming (cont’d)
18.4 In Conclusion
18.5 References, Further Reading

Part VI: Extensions, Perspectives

I Chap. 19: Extensions: Parallel and ‘Real World’
Functional Programming
19.1 Parallelism in Functional Languages
19.2 Haskell for ‘Real World’ Programming
19.3 References, Further Reading

I Chap. 20: Conclusions, Perspectives
20.1 Research Venues, Research Topics, and More
20.2 Programming Contest
20.3 In Conclusion
20.4 References, Further Reading

5/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17

Pretty Printing

6/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.1

Motivation

7/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Pretty Printing

...is about

– ‘beautifully’ printing values of tree-like structures as plain
text.

A pretty printer is a

– tool (often a library of routines) designed for converting a
tree value into plain text

such that the

– tree structure is preserved and reflected by indentation
while utilizing a minimum number of lines to display the
tree value.

Pretty printing can thus be considered

– dual to parsing.

8/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Pretty Printing

...is just as parsing often used for demonstrating the power
and elegance of functional programming, where not just the

– printed result of a pretty printer shall be ‘pretty’

– but also the pretty-printer ifself including that its code is
short and fast, and its operators enjoy properties which
are appealing from a mathematical point of view.

Overall, a ‘good’ pretty printer must properly balance:

– Ease of use

– Flexibility of layout

– ‘Beauty’ of output

...while being ifself ‘pretty.’

9/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Prettier Printer

...presented in this chapter has been proposed by Philip Wad-
ler in:

– Philip Wadler. A Prettier Printer. In Jeremy Gibbons,
Oege de Moor (Eds.), The Fun of Programming. Pal-
grave MacMillan, 2003.

which has been designed to improve (cf. Chapter 17.5) on a
pretty printer proposed by John Hughes which is widely recog-
nized as a standard:

– John Hughes. The Design of a Pretty-Printer Library. In
Johan Jeuring, Erik Meijer (Eds.), Advanced Functional
Programming, First International Spring School on Ad-
vanced Functional Programming Techniques. Springer-V.,
LNCS 925, 53-96, 1995.

10/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Outline and Assumptions

...the implementation of the simple pretty printer and the pret-
tier printer of Philip Wadler assumes some implementation of
a type of documents Doc.

The

1. simple pretty printer (cf. Chapter 17.2)

– implements Doc as strings.
– supports for every document only one possible layout, in

particular, no attempt is made to compress structure on-
to a single line.

2. prettier printer (cf. Chapter 17.3)

– implements Doc in terms of suitbable algebraic sum data
types.

– allows multiple layouts of a document and to pick a best
one out of them for printing a document.

11/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.2

The Simple Pretty Printer

12/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.2.1

Basic Document Operators

13/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Simple Pretty Printer
...(as well as the prettier printer later on) relies on six basic
document operators:

Associative operator for concatenating documents:

(<>) :: Doc -> Doc -> Doc

The empty document being a right and left unit for (<>):

nil :: Doc

Converting a string into a document (arguments of

function text shall not contain newline characters):

text :: String -> Doc

The document representing a line break:

line :: Doc

Adding indentation to a document:

nest :: Int -> Doc -> Doc

Layouting a document as a string:

layout :: Doc -> String

14/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

String Documents

...choosing for the simple pretty printer strings for implemen-
ting documents, i.e.:

– type Doc = String

the implementation of the basic operators boils down to:

– (<>): String concatenation ++.

– nil: The empty string [].

– text: The identity on strings.

– line: The string formed by the newline character ‘\n‘.

– nest i: indentation, adding i spaces (only used after
line breaks by means of line).

– layout: The identity on strings.

15/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Note

...the coupling of line and nest is an essential difference to
the pretty printer of John Hughes, where insertion of spaces is
also allowed in front of strings.

This difference is key for succeeding with only one concatena-
tion operator for documents instead of the two in the pretty
printer of John Hughes (cf. Chapter 17.5).

16/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.2.2

Normal Forms of String Documents

17/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

String Documents

...can always be reduced to a normal form representation alter-
nating applications of function

– text with line breaks nested to a given indentation:

text s 0 <> nest i 1 line <> text s 1 <> ...

<> nest i k line <> text s k

where every

– s j is a string (possibly empty).

– i j is a natural number (possibly zero).

18/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Example: Normal Form Representation
The document (i.e., a Doc-value):

text "bbbbb" <> text "[" <>

nest 2 (

line <> text "ccc" <> text "," <>

line <> text "dd"

) <>

line <> text "]" :: Doc

which prints as: bbbbb[

ccc,

dd

]

has the normal form (representation):

text "bbbbb[" <>

nest 2 line <> text "ccc," <>

nest 2 line <> text "dd" <>

nest 0 line <> text "]" :: Doc
19/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Normal Form Representations

...of string documents exist because of a variety of laws the
basic operators of the simple pretty printer enjoy. In particu-
lar:

Lemma 17.2.2.1 (Associativity of Doc. Concatenat.)

(<>) is associative with unit nil.

...as well as the collection of basic operator laws compiled in
Lemma 17.2.2.2.

20/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Basic Operators Laws

Lemma 17.2.2.2 (Basic Operator Laws)

1. Operator text is a homomorphism from string to docu-
ment concatenation:

text (s ++ t) = text s <> text t

text "" = nil

2. Opr. nest is a homomorph. from addition to composition:

nest (i+j) x = nest i (nest j x)

nest 0 x = x

3. Opr. nest distributes through document concatenation:

nest i (x <> y) = nest i x <> nest i y

nest i nil = nil

4. Nesting is absorbed by text (differently to the pretty prin-
ter of Hughes):

nest i (text s) = text s
21/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Note

...the laws compiled in Lemma 17.2.2.1 and 17.2.2.2

I come, except of the last one, in pairs with a correspon-
ding law for the unit of the respective operator.

I are sufficient to ensure that every document can be trans-
formed into normal form, where the

– laws of part 1) and 2) are applied from left to right.
– last of part 3) and 4) are applied from right to left.

22/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Laws

...relating string documents with their layouts:

Lemma 17.2.2.3 (Layout Operator Laws)

1. Operator layout is a homomorphism from document to
string concatenation:

layout (x <> y) = layout x ++ layout y

layout nil = ""

2. Operator layout is the inverse of function text:

layout (text s) = s

3. The result of layout applied to a nested line is a newline
followed by one space for each level of indentation:

layout (nest i line) = ‘\n‘ : copy i ‘ ‘

23/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.2.3

Printing Trees

24/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Using the Simple Pretty Printer

...for prettily printing values of the data type Tree defined by:

data Tree = Node String [Tree]

For illustration, consider Tree-value t:

t = Node "aaa"

[Node "bbbbb" [Node "ccc" [],Node "dd" []],

Node "eee" [],

Node "ffff"

[Node "gg" [],Node "hhh" [],Node "ii" []]]

25/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Two different Layouts of t as Strings

aaa[bbbbb[ccc, aaa[

dd], bbbbb[

eee, ccc,

ffff[gg, dd

hhh,],

ii]] eee,

ffff[

gg,

hhh,

ii

]

]

where t = Node "aaa"

[Node "bbbbb" [Node "ccc" [],Node "dd" []],

Node "eee" [],

Node "ffff"

[Node "gg" [],Node "hhh" [],Node "ii" []]]

...and two possible layouts of it (as strings):

26/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Layout Strategies
...used for layouting and printing tree t:

– Left: Tree siblings start on a new line, properly indented.
– Right: Every subtree starts on a new line, properly inden-

ted by two spaces.

aaa[bbbbb[ccc, aaa[

dd], bbbbb[

eee, ccc,

ffff[gg, dd

hhh,],

ii]] eee,

ffff[

gg,

hhh,

ii

]

]
27/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Implementing the ‘Left’ Layout Strategy
...by means of a utility function showTree converting a tree
into a string document according to the ‘left’ layout strategy:

type Doc = String

data Tree = Node String [Tree]

showTree :: Tree -> Doc

showTree (Node s ts) =

text s <> nest (length s) (showBracket ts)

showBracket :: [Tree] -> Doc

showBracket [] = nil

showBracket ts =

text "[" <> nest 1 (showTrees ts) <> text "]"

showTrees :: [Tree] -> Doc

showTrees [t] = showTree t

showTrees (t:ts) =

showTree t <> text "," <> line <> showTrees ts

28/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.2.1

17.2.2

17.2.3

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Implementing the ‘Right’ Layout Strategy
...by means of a utility function showTree′ converting a tree
into a string document according to the ‘right’ layout strategy:

type Doc = String

data Tree = Node String [Tree]

showTree′ :: Tree -> Doc

showTree′ (Node s ts) = text s <> showBracket′ ts

showBracket′ :: [Tree] -> Doc

showBracket′ [] = nil

showBracket′ ts =

text "[" <> nest 2 (line <> showTrees′ ts) <> line

<> text "]"

showTrees′ :: [Tree] -> Doc

showTrees′ [t] = showTree t

showTrees′ (t:ts) =

showTree t <> text "," <> line <> showTrees ts

29/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.3

The Prettier Printer

30/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.3.1

Algebraic Documents

31/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Algebraic Documents
...for the prettier printer we consider a document a

– concatenation of items, where each item is a text or a line
break indented a given amount.

Documents are thus implemented as an algebraic sum data
type:

data Doc = Nil

| String ‘Text‘ Doc

| Int ‘Line‘ Doc

Note, the data constructors Nil, Text, and Line of Doc re-
late to the basic document operators nil, text, and line of
the simple pretty printer as follows:

(1) Nil =̂ nil

(2) s ‘Text‘ x =̂ text s <> x

(3) i ‘Line‘ x =̂ nest i line <> x
32/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Example: String vs. Algebraic Document Rep.

...the normal form representation of the string document con-
sidered in Chapter 17.2.2:

text "bbbbb[" <>

nest 2 line <> text "ccc," <>

nest 2 line <> text "dd" <>

nest 0 line <> text "]"

...is represented by the algebraic Doc-value:

"bbbbb[" ‘Text‘ (

2 ‘Line‘ ("ccc," ‘Text‘ (

2 ‘Line‘ ("dd," ‘Text‘ (

0 ‘Line‘ ("]," ‘Text‘ Nil))))))

33/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.3.2

Implementing Document Operators on
Algebraic Documents

34/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Implementations
...of the basic document operators on algebraic documents can
easily be derived from ‘equations’ (1) - (3) of Chapter 17.3.1:

nil = Nil

text s = s ‘Text‘ Nil

line = 0 ‘Line‘ Nil

Nil <> y = y

(s ‘Text‘ x) <> y = s ‘Text‘ (x <> y)

(i ‘Line‘ x) <> y = i ‘Line‘ (x <> y)

nest i Nil = Nil

nest i (s ‘Text‘ x) = s ‘Text‘ nest i x

nest i (j ‘Line‘ x) = (i+j) ‘Line‘ nest i x

layout Nil = ""

layout (s ‘Text‘ x) = s ++ layout x

layout (i ‘Line‘ x) = ‘\n‘ : copy i ‘ ‘ ++ layout x

35/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Justification
...for the derived definitions can be given using equational rea-
soning, e.g.:

Proposition 17.3.2.1

(s ‘Text‘ x) <> y = s ‘Text‘ (x <> y)

Proof by equational reasoning.

(s ‘Text‘ x) <> y

= { Definition of Text, equ. (2) }

(text s <> x) <> y

= { Associativity of <> }

text s <> (x <> y)

= { Definition of Text, equ. (2) }

s ‘Text‘ (x <> y) �

...similarly, correctness of the other equations from the pre-
vious slide can be shown.

36/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.3.3

Multiple Layouts of Algebraic Documents

37/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Single vs. Multiple Layouts of Documents

...so far, a document d could essentially be considered equiva-
lent to a

I single string defining a unique single layout for d.

Next, a document shall be considered equivalent to a

I set of strings, each of them defining a layout for d, to-
gether thus multiple layouts.

To achieve this, only one new document operator must be
added:

group :: Doc -> Doc

group x = flatten x <|> x

with flatten and (<|>) to be defined soon.

38/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Meaning of group

...applied to a document representing a set of layouts, group

I returns the set with one new element added representing
the layout, in which everything is compressed on one line.

This is achieved by

I replacing each newline (and the corresponding indenta-
tion) with text consisting of a single space.

Note: Variants where

I each newline carries with it the alternate text it should be
replaced with

are possible, e.g. some newlines might be replaced by the emp-
ty text, others by a single space (but are not considered here).

39/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The relative ‘Beauty’ of a Layout

...depends much on the preferred maximum line width con-
sidered eligible for a layout.

Therefore, the document operator layout used so far is re-
placed by a new operator pretty:

pretty :: Int -> Doc -> String

which picks the ‘prettiest’ among a set of layouts depending on
the Int-value of the preferred maximum line width argument.

40/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Example
...replacing showTree of the ‘left’ layout strategy for trees of
Chapter 17.2.3:

data Tree = Node String [Tree]

showTree :: Tree -> Doc

showTree (Node s ts) =

text s <> nest (length s) (showBracket ts)

by a refined version with an additional call of group:

showTree (Node s ts) =

group (text s <> nest (length s) (showBracket ts))

will ensure that

I trees are fit onto one line where possible (≤ max width).
I sufficiently many line breaks are inserted in order to avoid

exceeding the preferred maximum line width.
41/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Example (cont’d)

...calling, e.g., pretty 30 will (when completely specified!)
yield the output:

aaa[bbbbb[ccc, dd],

eee,

ffff[gg, hhh, ii]]

42/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Defining the new Operators (<|>), flatten

...for completing the implementation of the operators group

and pretty.

Union operator, forming the union of two sets of layouts:

(<|>) :: Doc -> Doc -> Doc

Flattening operator, replacing each line break (and its asso-
ciated indentation) by a single space:

flatten :: Doc -> Doc

Note: The operators <|> and flatten will not directly ex-
posed to the user but only via group and the operators
fillwords and fill defined in Chapter 17.3.6.

43/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Required Invariant for (<|>)

...assuming that a document always represents a non-empty
set of layouts, which all flatten to the same layout, the follow-
ing invariant for the union operator (<|>) is required:

I Invariant: In (x <|> y) all layouts of x and y flatten to
the same layout.

...this invariant must be ensured when creating a union (<|>).

44/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Distribution Laws

...required for the implementations of (<|>) and flatten.

Each operator on simple documents extends pointwise through
union:

Distributive Laws for (<|>)
1. (x <|> y) <> z = (x <> z) <|> (y <> z)

2. x <> (y <|> z) = (x <> y) <|> (x <> z)

3. nest i (x <|> y) = nest i x <|> nest i y

Since flattening gives the same result for each element of a
set, the distribution law for flatten is simpler:

Distributive Law for flatten
flatten (x <|> y) = flatten x

45/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Interaction Laws

...required for the implementation of flatten.

Concerning the interaction of flatten with other document
operators:

Interaction Laws for flatten
1. flatten (x <> y) = flatten x <> flatten y

2. flatten nil = nil

3. flatten (text s) = text s

4. flatten line = text " "

5. flatten (nest i x) = flatten x

Note, laws (4) and (5) are the most interesting ones:

– (4): linebreaks are replaced by a single space.

– (5): indentations are removed.
46/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Recalling the Implementation

...of group in terms of flatten and (<|>):

group :: Doc -> Doc

group x = flatten x <|> x

Recall, too:

– Documents always represent a non-empty set of layouts
whose elements all flatten to the same layout.

– group adds the flattened layout to a set of layouts.

47/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.3.4

Normal Forms of Algebraic Documents

48/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Normal Form Representations

...due to the laws for flattening (flatten) and union ((<|>))
every document can be reduced to a representation in normal
form of the form:

x 1 <|> ... <|> x n

where every x j is in the normal form of simple documents (cf.
Chapter 17.2.2).

49/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Picking a ‘prettiest’ Layout

...out of a set of layouts is done by means of an ordering rela-
tion on lines depending on the preferred maximum line width,
and extended lexically to an ordering between documents.

Out of two lines

I which both do not exceed the maximum width, pick the
longer one.

I of which at least one exceeds the maximum width, pick
the shorter one.

Note: These rules reqire to pick sometimes a layout where
some lines exceed the limit. This is an important difference to
the approach of John Hughes, done only, however, if unavoid-
able.

50/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Adapting the Algebraic Definition of Doc
...the algebraic definition of Doc of Chapter 17.3.1 is extended
by a new data vconstructor Union representing the union of
two documents:

data Doc = Nil

| String ‘Text‘ Doc

| Int ‘Line‘ Doc

| Doc ‘Union‘ Doc -- Union, the new

-- data constructor!

Note, these data value constructors relate to the basic docu-
ment operators as follows:

(1) Nil =̂ nil

(2) s ‘Text‘ x =̂ text s <> x

(3) i ‘Line‘ x =̂ nest i line <> x

(4) x ‘Union‘ y =̂ x <|> y

51/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Required Invariants for Union

...assuming again that a document always represents a non-
empty set of layouts flattening all to the same layout, two
invariants are required for Union:

I Invariant 1: In (x ‘Union‘ y) all layouts of x and y

flatten to the same layout.

I Invariant 2: Every first line of a document in x is at least
as long as every first line of a document in y.

...these invariants must be ensured when creating a Union.

52/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Performance

...of pretty printing is improved by applying the distributive law
for Union giving

(s ‘Text‘ (x ‘Union‘ y))

preference to the equivalent

((s ‘Text‘ x) ‘Union‘ (s ‘Text‘ y))

53/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Illustrating the Performance Impact (1)

...of distributivity considering the document:

group(

group(

group(

group(text "hello" <> line <> text "a")

<> line <> text "b")

<> line <> text "c")

<> line <> text "d")

...and its possible layouts:

hello a b c d hello a b c hello a b hello a hello

d c b a

d c b

d c

d

54/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Illustrating the Performance Impact (2)

...printing the previous document within a maximum line width
of 5, its

I right-most layout must be picked

...ideally, while the other ones are eliminated in one fell swoop.

Intuitively, this is achieved by picking a representation, which
brings to the front any common string, e.g.:

"hello" ‘Text‘ ((" ") ‘Text‘ x) ‘Union‘ (0 ‘Line‘ y))

for suitable documents x and y, where "hello" has been fac-
tored out of all the layouts in x and y, and " " of all the lay-
outs in x.

Since "hello" followed by " " is of length 6 exceeding the
limit 5, the right operand of Union can immediately be chosen
without further examination of x, as desired.

55/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Fixing the Performance Issue

...to realize this, (<>) and nest must be extended to specify
how they interact with Union:

(x ‘Union‘ y) <> z = (x <> z) ‘Union‘ (y <> z) (1)

nest k (x ‘Union‘ y) = nest k x ‘Union‘ nest k y (2)

while the definitions of nil, text, line, (<>), and nest re-
main unchanged.

Note, (1) and (2) follow from the distributive laws. In particu-
lar, they preserve Invariant 2 required by Union.

56/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Algebraic Definitions

...of group and flatten are then easily derived:

group Nil = Nil

group (i ‘Line‘ x) = (" " ‘Text‘ flatten x)

‘Union‘ (i ‘Line‘ x)

group (s ‘Text‘ x) = s ‘Text‘ group x

group (x ‘Union‘ y) = group x ‘Union‘ y

flatten Nil = Nil

flatten (i ‘Line‘ x) = " " ‘Text‘ flatten x

flatten (s ‘Text‘ x) = s ‘Text‘ flatten x

flatten (x ‘Union‘ y) = flatten x

57/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Justification (1)
...for the derived definitions can be given using equational rea-
soning, e.g.:

Proposition 17.3.4.1
group (i ‘Line‘ x) =

(" " ‘Text‘ flatten x) ‘Union‘ (i ‘Line‘ x)

Proof by equational reasoning.

group (i ‘Line‘ x)

= { Definition of Line, equ. (3) }

group (nest i line <> x)

= { Definition of group }

flatten (nest i line <> x) <|> (nest i line s <> x)

= { Definition of flatten }

(text " " <> flatten x) <|> (nest i line <> x)

= { Definition of Text, Union, Line, equ. (2), (4), (3) }

(" " ‘Text‘ flatten x) ‘Union‘ (i ‘Line‘ x) �
58/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Justification (2)

Proposition 17.3.4.2
group (s ‘Text‘ x) = s ‘Text‘ group x

Proof by equational reasoning.

group (s ‘Text‘ x)

= { Definition of Text, equ. (2) }

group (text s <> x)

= { Definition of group }

flatten (text s <> x) <|> (text s <> x)

= { Definition of flatten }

(text s <> flatten x) <|> (text s <> x)

= { (<>) distributes through (<|>) }

text s <> (flatten x <|> x)

= { Definition of group }

text s <> group x

= { Definition of Text, equ. (2) }

s ‘Text‘ group x �
59/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Picking the ‘best’ Layout (1)
...among a set of layouts using functions best and better:

best w k Nil = Nil

best w k (i ‘Line‘ x) = i ‘Line‘ best w i x

best w k (s ‘Text‘ x)

= s ‘Text‘ best w (k + length s) x

best w k (x ‘Union‘ y)

= better w k (best w k x) (best w k y)

better w k x y

= if fits (w-k) x then x else y

Note:

– best: Converts a ‘union’-afflicted document into a ‘uni-
on’-free document.

– Argument w: Maximum line width.
– Argument k: Already consumed letters (including inden-

tation) on current line.
60/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Picking the ‘best’ Layout (2)

Check, if the first document line stays within the maximum
line length w:

fits w x | w<0 = False -- cannot fit

fits w Nil = True -- fits trivially

fits w (s ‘Text‘ x)

= fits (w - length s) x -- fits if x fits into

-- the remaining space

-- after placing s

fits w (i ‘Line‘ x) = True -- yes, it fits

Last but not least, the output routine: Pick the best layout
and convert it to a string:

pretty w x = layout (best w 0 x)

61/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.3.5

Improving Performance

62/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Intuitively

...pretty printing a document should be doable in time O(s),
where s is the size of the document, i.e., a count of

I the number of (<>), nil, text, nest, and group opera-
tions

I plus the length of all string arguments to text.

and in space proportional to O(w max d), where

I w is the width available for printing

I d is the depth of the document, the depth of calls to
nest or group.

63/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Sources of Inefficiency
...of the prettier printer implementation so far:

1. Document concatenation might pile up to the left:

(...((text s_0 <> text s_1) <> ...) <> text s_n

...assuming each string has length one, this may require
time O(n2) to process (instead of O(n) as hoped for).

2. Nesting of documents adds a layer of processing to incre-
ment the indentation of the inner document:

nest i_o (text s_0 <> nest i_1 (text s_1 <>

... <> nest i_n (text s_n)...))

...even if we assume document concatenation associates
to the right.

...assuming again each string has length one, this may
also require time O(n2) to process (instead of O(n) as
hoped for).

64/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Performance Fixes

...for inefficiency source 1):

I Adding an explicit representation for concatenation, and
generalizing each operation to act on a list of concatena-
ted documents.

...for inefficiency source 2):

I Adding an explicit representation for nesting, and main-
taining a current indentation that is incremented as
nesting operators are processed.

Combining both fixes suggests

I generalizing each operation to work on a list of indenta-
tion-document pairs.

65/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Implementing the Fixes

...by switching to a new representation for documents such
that there is one data constructor for every operator building a
document:

data DOC = NIL

| DOC :<> DOC

| NEST Int DOC

| TEXT String

| LINE

| DOC :<|> DOC

Note: To avoid name clashes with the previous definitions,
capital letters are used.

66/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Implementing the Document Operators

...building a document of the new algebraic type is straight-
forward:

nil = NIL

x <> y = x :<> y

nest i x = NEST i x

text s = TEXT s

line = LINE

As before, also the invariants on the equality of flattened
layouts and on the relative lengths of first lines are required:

– In (x :<|> y) all layouts in x and y flatten to the same
layout.

– No first line in x is shorter than any first line in y.

67/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Implementing group and flatten

...for the new algebraic type is straightforward, too:

group x = flatten x :<|> x

flatten NIL = NIL

flatten (x :<> y) = flatten x:<> flatten y

flatten (NEST i x) = NEST i (flatten x)

flatten (TEXT s) = TEXT s

flatten LINE = TEXT " "

flatten (x :<|> y) = flatten x

...the definitions follow immediately from the equations given
before.

68/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Representation Function rep

...maps a list of indentation-document pairs into the corres-
ponding document:

rep z = fold (<>) nil [nest i x | (i,x) <- z]

69/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Finding the ‘best’ Layout
...the operation best of Chapter 17.3.4 to find the ‘best’ lay-
out of a document is generalized to act on a list of indenta-
tion-document pairs by combining it with the new representa-
tion function rep:

be w k z = best w k (rep z) (hypothesis)

The new definition is directly derived from the old one:

best w k x = be w k [(0,x)]

be w k [] = Nil

be w k ((i,NIL):z) = be w k z

be w k ((i,x :<> y) : z) = be w k ((i,x) : (i,y) : z)

be w k ((i,NEST j x) : z) = be w k ((i+j),x) : z)

be w k ((i,TEXT s) : z) = s ‘Text‘ be w (k,+ length s) z

be w k ((i,LINE) : z) = i ‘Line‘ be w i z

be w k ((i.x :<|> y) : z) =

better w k (be w k ((i.x) : z)) (be w k (i,y) : z))

70/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Correctness

...of the equations of the previous slide can be shown by equa-
tional reasoning, e.g.:

Proposition 17.3.5.1

best w k x = be w k [(0,x)]

Proof by equational reasoning.

best w k x

= { 0 is unit for nest }

best w k (nest 0 x)

= { nil is unit for <> }

best w k (nest 0 x <> nil)

= { Definition of rep, hypothesis }

be w k [(0,x)] �

71/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Last but not least

...while the argument to best is represented using

I DOC

its result is represented using the formerly introduced type

I Doc

Hence, pretty can be defined as in Chapter 17.3.4:

pretty w x = layout (best w 0 x)

The functions layout, better, and fits, finally, remain un-
changed.

72/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.3.6

Utility Functions

73/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Utility Functions (1)

...for recurringly occurring tasks, e.g.:

I Separating two documents by inserting a space:

x <+> y = x <> text " " <> y

I Separating two documents by inserting a line break:

x </> y = x <> line <> y

I Folding a document:

folddoc f [] = nil

folddoc f [x] = x

folddoc f (x:xs) = f x (folddoc f xs)

I Advanced document folding:

spread = folddoc (<+>)

stack = folddoc (</>)

74/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Utility Functions (2)

...as abbreviations of frequently occurring tasks, e.g.:

I An opening bracket, followed by an indented portion,
followed by a closing bracket, abbreviated by bracket:

bracket l x r = group (text l <>

nest 2 (line <> x) <>

line <> text r)

I The ‘right’ layout strategy for trees of Chapter 17.2.3,
abbreviated by showBracket′:

showBracket′ ts = bracket "[" (showTrees′ ts) "]"

I Taking a string, returning a document, where every line is
filled with as many words as will fit (note: words is from
the Haskell Standard Library), abbreviated by fillwords:

x <+/> y = x <> (text " " :<|> line) <> y

fillwords = folddoc (<+/>) . map text . words

75/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Utility Functions (3)

...abbreviations (cont’d):

I A variant of fillwords collapsing a list of documents to
a single document by putting a space between two docu-
ments when this leads to a reaonsable layout, and a
newline otherwise, abbreviated by fill:

fill [] = nil

fill [x] = x

fill (x:y:zs) =

(flatten x <+> fill (flatten y : zs)) :<|>

(x </> fill (y : zs)

Note: fill is copied from pretty printer library of Simon Pey-
ton Jones, which extends the one of John Hughes.

76/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.3.7

Printing XML-like Documents

77/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Printing XML Documents

...enjoying a simplified XML syntax with elements, attributes,
and text defined by:

data XML = Elt String [Att] [XML]

| Txt String

data Att = Att String String

78/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Utility Functions (1)
...for printing XML documents:

I Showing documents:

showXML x = folddoc (<>) (showXMLs x)

I Showing elements:

showXMLs (Elt n a []) =

[text "<" <> showTag n a <> text "/>"

showXMLs (Elt n a c) =

[text "<" <> showTag n a <> text ">" <>

showFill showXMLs c <>

text "</" <> text n <> text ">"]

I Showing text:

showXMLs (Txt s) = map text (words s)

I Showing attributes:

showAtts (Att n v) =

[text n <> text "=" <> text (quoted v)]
79/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Utility Functions (2)

...for printing XML documents (cont’d):

I Adding quotes:

quoted s = "\"" ++ s ++ "\""

I Showing tags:

showTag n a = text n <> showFill showAtts a

I Filling lines:

showFill f [] = nil

showFill f xs =

bracket "" (fill (concat (map f xs))) ""

80/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Example: 1st Layout of an XML Document

...for a maximum line width of 30 characters:

<p

color="red" font="Times"

size="10"

>

Here is some

 emphasized text.

Here is a

<a

href="http://www.eg.com/"

> link

elsewhere.

</p>

81/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Example: 2nd Layout of an XML Document

...for a maximum line width of 60 characters:

<p color="red" font="Times" size="10" >

Here is some emphasized text. Here is a

 link elsewhere.

</p>

82/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Example: 3rd Layout of an XML Document

...dropping the two occurrences of flatten in fill (cf.
Chapter 17.3.6) leads to the following output:

<p color="red" font="Times" size="10" >

Here is some

emphasized

 text. Here is a <a

href="http://www.eg.com/"

> link elsewhere.

</p>

...in the above layout start and close tags of the emphasis and
anchor elements are crammed together with other text, rather
than getting lines to themselves; it thus looks less ‘beautiful.’

83/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.4

The Prettier Printer Code Library

84/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

A Summary

...of the code of the

– performance-improved fully-fledged prettier printer.

– tree example.

– XML-documents example.

according to:

– Philip Wadler. A Prettier Printer. In Jeremy Gibbons,
Oege de Moor (Eds.), The Fun of Programming.
Palgrave MacMillan, 2003.

85/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.4.1

The Prettier Printer

86/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Prettier Printer (1)
Defining operator priorities

infixr 5:<|>

infixr 6:<>

infixr 6 <>

Defining algebraic document types

data DOC = NIL

| DOC :<> DOC

| NEST Int DOC

| TEXT String

| LINE

| DOC :<|> DOC

data Doc = Nil

| String ‘Text‘ Doc

| Int ‘Line‘ Doc

87/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Prettier Printer (2)

Defining basic operators algebraically

nil = NIL

x <> y = x :<> y

nest i x = NEST i x

text s = TEXT s

line = LINE

Layouting normal form documents

layout Nil = ""

layout (s ‘Text‘ x) = s ++ layout x

layout (i ‘Line‘ x) = ‘\n‘: copy i ‘ ‘ ++ layout x

copy i x = [x | _ <- [1..i]]

88/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Prettier Printer (3)

Generating multiple layouts

group x = flatten x :<|> x

Flattening layouts

flatten NIL = NIL

flatten (x :<> y) = flatten x:<> flatten y

flatten (NEST i x) = NEST i (flatten x)

flatten (TEXT s) = TEXT s

flatten LINE = TEXT " "

flatten (x :<|> y) = flatten x

89/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Prettier Printer (4)
Ordering and comparing layouts

best w k x = be w k [(0,x)]

be w k [] = Nil

be w k ((i,NIL):z) = be w k z

be w k ((i,x :<> y) : z) = be w k ((i,x) : (i,y): z)

be w k ((i,NEST j x) : z) = be w k ((i+j),x) : z)

be w k ((i,TEXT s) : z) = s ‘Text‘ be w (k + length s) z

be w k ((i,LINE) : z) = i ‘Line‘ be w i z

be w k ((i.x :<|> y) : z) =

better w k (be w k ((i.x) : z)) (be w k (i,y) : z))

better w k x y = if fits (w-k) x then x else y

fits w x | w<0 = False

fits w Nil = True

fits w (s ‘Text‘ x) = fits (w - length s) x

fits w (i ‘Line‘ x) = True
90/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Prettier Printer (5)
Printing documents prettily

pretty w x = layout (best w 0 x)

Defining utility functions

x <+> y = x <> text " " <> y

x </> y = x <> line <> y

x <+/> y = x <> (text " " :<|> line) <> y

folddoc f [] = nil

folddoc f [x] = x

folddoc f (x:xs) = f x (folddoc f xs)

spread = folddoc (<+>)

stack = folddoc (</>)

bracket l x r =

group (text l <> nest 2 (line <> x) <>

line <> text r)
91/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Prettier Printer (6)

Defining utility functions (cont’d)

fillwords = folddoc (<+/>) . map text . words

fill [] = nil

fill [x] = x

fill (x:y:zs) =

(flatten x <+> fill (flatten y : zs))

:<|> (x </> fill (y : zs)

92/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.4.2

The Tree Example

93/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Tree Example (1)

Defining trees

data Tree = Node String [Tree]

Defining utility functions

showTree (Node s ts) =

group (text s <> nest (length s) (showBracket ts))

showBracket [] = nil

showBracket ts =

text "[" <> nest 1 (showTrees ts) <> text "]"

showTrees [t] = showTree t

showTrees (t:ts) =

showTree t <> text "," <> line <> showTrees ts

94/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Tree Example (2)

Defining utility functions (cont’d)

showTree′ (Node s ts) = text s <> showBracket′ ts

showBracket′ [] = nil

showBracket′ ts = bracket "[" (showTrees′ ts) "]"

showTrees′ [t] = showTree t

showTrees′ (t:ts) =

showTree t <> text "," <> line <> showTrees ts

95/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Tree Example (3)

Defining a tree value for illustration

tree = Node "aaa"[Node "bbbb"[Node "ccc"[],

Node "dd"[]

],

Node "eee"[],

Node "ffff"[Node "gg"[],

Node "hhh"[],

Node "ii"[]

]

]

Defining two testing environments

testtree w = putStr(pretty w (showTree tree))

testtree′ w = putStr(pretty w (showTree′ tree))

96/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.4.3

The XML Example

97/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The XML Example (1)
Defining the XML-like document format

data XML = Elt String [Att] [XML]

| Txt String

data Att = Att String String

Defining utility functions

showXML x = folddoc (<>) (showXMLs x)

showXMLs (Elt n a []) =

[text "<" <> showTag n a <> text "/>"

showXMLs (Elt n a c) =

[text "<" <> showTag n a <> text ">" <>

showFill showXMLs c <>

text "</" <> text n <> text ">"]

showXMLs (Txt s) = map text (words s)

98/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The XML Example (2)

Defining utility functions (cont’d)

showAtts (Att n v) =

[text n <> text "=" <> text (quoted v)]

quoted s = "\"" ++ s ++ "\""

showTag n a = text n <> showFill showAtts a

showFill f [] = nil

showFill f xs =

bracket "" (fill (concat (map f xs))) ""

99/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.4.1

17.4.2

17.4.3

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The XML Example (3)
Defining an XML-document value for illustration

xml =

Elt "p"[Att "color" "red",

Att "font" "Times",

Att "size" "10"

] [Txt "Here is some",

Elt "em" [] [Txt "emphasized"],

Txt "text.",

Txt "Here is a",

Elt "a" [Att "href" "http://www.eg.com/"]

[Txt "link"],

Txt "elsewhere."

]

Defining a testing environment

testXML w = putStr (pretty w (showXML xml))
100/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.5

Summary

101/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Summary

...the pretty printer library proposed by John Hughes is widely
recognized as a standard:

– John Hughes. The Design of a Pretty-Printer Library. In
Johan Jeuring, Erik Meijer (Eds.), Advanced Functional
Programming, First International Spring School on Ad-
vanced Functional Programming Techniques. Springer-V.,
LNCS 925, 53-96, 1995.

...a variant of it is implemented in the Glasgow Haskell Com-
piler:

– Simon Peyton Jones. Haskell pretty-printer library. 1997.
www.haskell.org/libraries/#prettyprinting

102/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Why ‘prettier’ than ‘pretty’?

...the pretty printer of John Hughes

I uses two operators for the horizontal and vertical conca-
tenation of documents

– one without a unit (vertical)
– one with a right-unit but no left-unit (horizontal).

...the prettier printer of Philip Wadler can be considered an
improvement of the pretty printer of John Hughes because it

I uses only one operator for document concatenation which

– is associative.
– has a left-unit and a right-unit.

I consists of about 30% less code.

I is about 30% faster.

103/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

In Closing

...a hint to an early work on an imperative pretty printer by:

– Derek Oppen. Pretty-printing. ACM Transactions on Pro-
gramming Languages and Systems 2(4):465-483, 1980.

and a functional realization of it by:

– Olaf Chitil. Pretty Printing with Lazy Dequeues. In Pro-
ceedings of the ACM SIGPLAN Haskell Workshop (Has-
kell 2001), Universiteit Utrecht UU-CS-2001-23, 183-201,
2001.

104/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17.6

References, Further Reading

105/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17: Basic Reading

Philip Wadler. A Prettier Printer. In Jeremy Gibbons,
Oege de Moor (Eds.), The Fun of Programming. Palgrave
MacMillan, 223-243, 2003.

John Hughes. The Design of a Pretty-Printer Library. In
Johan Jeuring, Erik Meijer (Eds.), Advanced Functional
Programming, First International Spring School on Ad-
vanced Functional Programming Techniques. Springer-V.,
LNCS 925, 53-96, 1995.

Tillmann Rendel, Klaus Ostermann. Invertible Syntax
Descriptions: Unifying Parsing and Pretty Printing. In
Proceedings of the 3rd ACM Haskell Symposium on
Haskell (Haskell 2010), 1-12, 2010.

Simon Peyton Jones. Haskell pretty-printer library. 1997.
www.haskell.org/libraries/#prettyprinting

106/277

Lecture 7

Detailed
Outline

Chap. 17

17.1

17.2

17.3

17.4

17.5

17.6

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 17: Selected Advanced Reading

Derek Oppen. Pretty-printing. ACM Transactions on Pro-
gramming Languages and Systems 2(4):465-483, 1980.

Olaf Chitil. Pretty Printing with Lazy Dequeues. In Pro-
ceedings of the ACM SIGPLAN 2001 Haskell Workshop
(Haskell 2001), Universiteit Utrecht UU-CS-2001-23,
183-201, 2001.

Manuel M.T. Chakravarty, Gabriele Keller. Einführung in
die Programmierung mit Haskell. Pearson Studium, 2004.
(Kapitel 13.1.2, Ausdrücke formatieren; Kapitel 13.2.1,
Formatieren und Auswerten in erweiterter Version)

Bryan O’Sullivan, John Goerzen, Don Stewart. Real World
Haskell. O’Reilly, 2008. (Chapter 5, Writing a Library:
Working with JSON Data – Pretty Printing a String,
Fleshing Out the Pretty-Printing Library)

107/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18

Functional Reactive Programming

108/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.1

Motivation

109/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Hybrid Systems

...are systems composed of

I continuous

I discrete

components.

110/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Mobile Robots

...are special hybrid systems (or cyber-physical systems) from
both a physical and logical perspective:

I Physically

– Continuous components: Voltage-controlled motors,
batteries, range finders,...

– Discrete components: Microprocessors, bumper swit-
ches, digital communication,...

I Logically

– Continuous notions: Wheel speed, orientation, distance
from a wall,...

– Discrete notions: Running into another object, receiving
a message, achieving a goal,...

111/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

In this chapter

...designing and implementing two

I imperative-style languages for controlling robots

Beyond the concrete application, this provides two examples of

I domain specific language (DSL)

and an application of the type constructor classes

I Monad

I Arrow

I Functor

Note, the languages aim at simulating robots in order to allow
running simulations at home without having to buy (possibly
expensive) robots first.

112/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Reading

...for Chapter 18.2 (using monads):

– Paul Hudak. The Haskell School of Expression – Learning
Functional Programming through Multimedia. Cambridge
University Press, 2000. (Chapter 19, An Imperative Ro-
bot Language)

...for Chapter 18.3 (using arrows):

– Paul Hudak, Antony Courtney, Herik Nilsson, John Peter-
son. Arrows, Robots, and Functional Reactive Program-
ming. Summer School on Advanced Functional Program-
ming 2002, Springer-V., LNCS 2638, 159-187, 2003.

Note: Chapter 18.2 and 18.3 are independent and do not build
upon each other.

113/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.2

An Imperative Robot Language

114/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.2.1

The Robot’s World

115/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Robot’s World

...a two-dimensional grid surrounded by walls, with rooms ha-
ving doors, and gold coins as treasures!

R

116/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

In more detail

...the robot’s world is

I a finite two-dimensional grid of square form

– equipped with walls
– possibly forming rooms, possibly having doors
– with gold coins placed on some grid points

The preceding example shows

I a robot’s world with one room, an open door, full of gold:
Eldorado!

I a robot sitting in the centre of the world ready for ex-
ploring it!

117/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Robot’s Mission

...exploring the world, collecting treasures, leaving footprints!

R

118/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

In more detail

...the robot’s mission is

I to explore its world, to collect the treasures in it, and to
leave footprints of its exploration, i.e., to

– strolling and searching through its world, e.g., following
the path way of an outward-oriented spiral.

– picking up the gold coins it finds on its way and saving
them in its pocket.

– dropping gold coins at some (other) grid points.
– marking its way with differently colored pens.

119/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Objective

...developing an imperative-like robot language allowing to
write programs, which advise a robot how to explore and
shape its world!

E.g., programs such as:

(1) drawSquare = (2) moveToWall =

do penDown while (isnt blocked)

move do move

turnRight

move

turnRight (3) getCoinsToWall =

move while (isnt blocked) $

turnRight do move

move checkAndPickCoin

120/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

In more detail

...assuming that Robot is a monad:

newtype Robot a = Rob...

instance Monad Robot where...

drawSquare =

do penDown (penDown :: Robot () / pen ready to write)

move (move :: Robot () / moving one space for-

turnRight ward)

move

turnRight (turnRight: Robot () / turn 90 degrees

move clock-wise)

turnRight

move

Note, for the robot monad, operation (>>) is relevant!

121/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Implementation Environment
...required modules:

module Robot where

import Array

import List

import Monad

import SOEGraphics

import Win32Misc (timeGetTime)

import qualified GraphicsWindows as GW (getEvent)

Note:

– Graphics, SOEGraphics are two commonly used gra-
phics libraries being Windows compatible.

– Double-check the SOE homepage at haskell.org/soe
regarding the availability of the modules SOEGraphics

and GraphicsWindows.
122/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.2.2

Modelling the Robot’s World

123/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Modelling the World

...the robots live and act in a 2-dimensional grid.

Positions are given by their x and y coordinates:

type Position = (Int,Int)

Directions a robot can face or head to:

data Direction = North | East | South | West

deriving (Eq, Show, Enum)

World, a two-dimensional grid as Array-type:

type Grid = Array Position [Direction]

124/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.2.3

Modelling Robots

125/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Modelling Robots

...by their internal states, which are characterized by 6 values:

1. Robot position

2. Robot orientation

3. Pen status (up or down)

4. Pen color

5. Treasure map

6. Number of coins in the robot’s pocket

Note, the grid does not change and is thus not part of a robot
(state).

126/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Modelling Internal Robot States
...as an algebraic product type:

data RobotState = RState { position :: Position

, facing :: Direction

, pen :: Bool

, color :: Color

, treasure :: [Position]

, pocket :: Int

} deriving Show

where the number of coins at a position is given by the num-
ber of its occurrences in treasure, and Color defines the set
of possible pen colors:

data Color = Black | Blue | Green | Cyan

| Red | Magenta | Yellow | White

deriving (Eq, Ord, Bounded, Enum,

Ix, Show, Read)
127/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Note
...the definition of RobotState takes advantage of Haskell’s
field-label (or record) syntax: The field labels (position,
facing, pen, color, treasure, pocket) offer

– access to state components by names instead of position
without requiring specific selector functions.

This advantage would have been lost defining robot states
equivalently but without field-label syntax as in:

data RobotState = RState

Position

Direction

Bool

Color

[Position]

Int deriving Show

128/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Illustrating Field-label Syntax Usage (1)
...generating, modifying, and accessing values of robot-state
components.

Example 1: Generating field values

The definition

s1 = RState { position = (0,0)

, facing = East

, pen = True

, color = Green

, treasure = [(2,3),(7,9),(12,42)]

, pocket = 2

} :: RobotState

is equivalent to:

s2 = RState (0,0) East True Green

[(2,3),(7,9),(12,42)] 2 :: RobotState

129/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Illustrating Field-label Syntax Usage (2)
Example 2: Modifying field values

s3 = s2 { position = (22,43), pen = False }

->> RState { position = (22,43)

, facing = East

, pen = False

, color = Green

, treasure = [(2,3),(7,9),(12,42)]

, pocket = 2

} :: RobotState

Example 3: Accessing field values

position s1 ->> (0,0)

treasure s3 ->> [(2,3),(7,9),(12,42)]

color s3 ->> Green

Example 4: Using field names in patterns

jump (RState { position = (x,y) }) = (x+2,y+1)
130/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Benefits and Advantages

...of using field-label syntax:

– It is more ‘informative’ (due to field names).

– The order of fields gets irrelevant, e.g., the definition of:

s4 = RState { position = (0,0)

, pocket = 2

, pen = True

, color = Green

, treasure = [(2,3),(7,9),(12,42)]

, facing = East

} :: RobotState

is equivalent to the robot state defined by s1.

131/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.2.4

Modelling Robot Commands as State Monad

132/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Modelling Robot Commands
...by Robot, a 1-ary type constructor, defined by:

newtype Robot a =

Rob (RobotState -> Grid -> Window

-> IO (RobotState,a))

allows making Robot an instance of type class Monad (mat-
ching the pattern of a state monad by concepually considering
the Grid argument part of the state):

instance Monad Robot where

Rob sf0 >>= f = Rob $ \s0 g w ->

do (s1,a1) <- sf0 s0 g w

let Rob sf1 = f a1

(s2,a2) <- sf1 s1 g w

return (s2,a2)

return a = Rob (\s _ _ -> return (s,a))

133/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Note

– $ can be replaced by parentheses:

instance Monad Robot where

Rob sf0 >>= f = Rob (\s0 g w ->

do (s1,a1) <- sf0 s0 g w

let Rob sf1 = f a1

(s2,a2) <- sf1 s1 g w

return (s2,a2))

return a = Rob (\s _ _ -> return (s,a))

– the Grid argument in

newtype Robot a =

Rob (RobotState -> Grid -> Window

-> IO (RobotState,a))

can conceptually be considered a ‘read- only’ part of a ro-
bot state; the Window argument allows specifying the
window, in which the graphics is displayed.

134/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.2.5

The Imperative Robot Language

135/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

IRL: The Imperative Robot Language

Key insight:

I Taking state as input

I Possibly querying the state in some way

I Returning a possibly modified state

...reveals the imperative nature of IRL commands.

136/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Utility Functions
...not intended (except of at) for direct usage by an IRL pro-
grammer.

I Direction commands:

right, left :: Direction -> Direction

right d = toEnum (succ (mod (fromEnum d) 4))

left d = toEnum (pred (mod (fromEnum d) 4))

at :: Grid -> Position -> [Direction]

at = (!)

I Supporting functions for updating and querying states:

updateState :: (RobotState -> RobotState)

-> Robot ()

updateState u = Rob (\s _ _ -> return (u s, ()))

queryState :: (RobotState -> a) -> Robot a

queryState q = Rob (\s _ _ -> return (s, q s))

137/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Recalling the Definition of Type Class Enum
...of the Standard Prelude:

class Enum a where

succ, pred :: a -> a

toEnum :: Int -> a

fromEnum :: a -> Int

enumFrom :: a -> [a] -- [n..]

enumFromThen :: a -> a -> [a] -- [n,n′..]

enumFromTo :: a -> a -> [a] -- [n..m]

enumFromThenTo :: a -> a -> a -> [a] -- [n,n′..m]

succ = toEnum . (+1) . fromEnum

pred = toEnum . (subtract 1) . fromEnum

enumFrom x = map toEnum [fromEnum x..]

enumFromThen x y = map toEnum [fromEnum x, fromEnum y..]

enumFromTo x y = map toEnum [fromEnum x..fromEnum y]

enumFromThenTo x y z = map toEnum [fromEnum x,

fromEnum y..fromEnum z]

toEnum, fromEnum = ...implementation is type-dependent

138/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Recalling the Usage of Type Class Enum

The following ‘equalities’ hold:

enumFrom n =̂ [n..]

enumFromThen n n′ =̂ [n,n′..]
enumFromTo n m =̂ [n..m]

enumFromThenTo n n′ m =̂ [n,n′..m]

Example:

data Color = Red | Orange | Yellow | Green

| Blue | Indigo | Violet deriving Enum

[Red..Green] ->> [Red, Orange, Yellow, Green]

[Red, Yellow..] ->> [Red, Yellow, Blue, Violet]

fromEnum Blue ->> 4

toEnum 3 ->> Green

139/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

IRL Commands for Robot Orientation
...by updating the internal robot state.

I Turn right:

turnLeft :: Robot ()

turnLeft =

updateState (\s -> s {facing = left (facing s)})

I Turn left:

turnRight :: Robot ()

turnRight =

updateState (\s -> s {facing = right (facing s)})

I Turn to:

turnTo :: Direction -> Robot ()

turnTo d = updateState (\s -> s {facing = d})

I Facing what direction?

direction :: Robot Direction

direction = queryState facing
140/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

IRL Command for Blockade Checking

I Motion blocked in direction currently facing?

blocked :: Robot Bool

blocked =

Rob $ \s g _ ->

return (s, facing s ‘notElem‘ (g ‘at‘ position s))

with notElem from the Standard Prelude.

141/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

IRL Commands for Motion

I Moving forward one space if not blocked:

move :: Robot ()

move =

cond1 (isnt blocked)

(Rob $ \s _ w -> do

let newPos = movePos (position s) (facing s)

graphicsMove w s newPos

return (s {position = newPos}, ())

)

I Moving forward one space in direction of:

movePos :: Position -> Direction -> Position

movePos (x,y) d = case d of North -> (x,y+1)

South -> (x,y-1)

East -> (x+1,y)

West -> (x-1,y)

142/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

IRL Commands for Pen Usage

I Choose pen color for writing:

setPenColor :: Color -> Robot ()

setPenColor c = updateState (\s -> s {color = c})

I Pen down to start writing:

penDown :: Robot ()

penDown = updateState (\s -> s {pen = True})

I Pen up to stop writing:

penUp :: Robot ()

penUp = updateState (\s -> s {pen = False})

143/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

IRL Commands for Coin Handling (1)

I At position with coin according to treasure map?

onCoin :: Robot Bool

onCoin = queryState (\s ->

position s ‘elem‘ treasure s)

I Pick coin:

pickCoin :: Robot ()

pickCoin =

cond1 onCoin

(Robot $ \s _ w ->

do eraseCoin w (position s)

return (s {treasure =

position s ‘delete‘ treasure s,

pocket = pocket s+1}, ())

)

144/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

IRL Commands for Coin Handling (2)

I How many coins currently in pocket?

coins :: Robot Int

coins = queryState pocket

I Drop coin, if there is at least one in the pocket:

dropCoin :: Robot ()

dropCoin =

cond1 (coins >* return 0)

(Robot $ \s _ w ->

do drawCoin w (position s)

return (s {treasure =

position s : treasure s,

pocket = pocket s-1}, ())

)

145/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Utility Functions for Logic and Control (1)

I Conditionally performing commands:

cond :: Robot Bool -> Robot a

-> Robot a -> Robot a

cond p c a = do pred <- p

if pred then c else a

cond1 p c = cond p c (return ())

I Performing commands while some condition is met:

while :: Robot Bool -> Robot () -> Robot ()

while p b = cond1 p (b >> while p b)

I Connecting commands ‘disjunctively:’

(||*) :: Robot Bool -> Robot Bool -> Robot Bool

b1 ||* b2 = do p <- b1

if p then return True

else b2
146/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Utility Functions for Logic and Control (2)

I Connecting commands ‘conjunctively:’

(&&*) :: Robot Bool -> Robot Bool -> Robot Bool

b1 &&* b2 = do p <- b1

if p then b2

else return False

I Lifting negation to commands:

isnt :: Robot Bool -> Robot Bool

isnt = liftM not

I Lifting comparisons to commands:

(>*) :: Robot Int -> Robot Int -> Robot Bool

(>*) = liftM2 (>)

(<*) :: Robot Int -> Robot Int -> Robot Bool

(<*) = liftM2 (<)

147/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Recalling the Definitions of the Lift Operators

...the higher-order lift operations liftM and liftM2 are de-
fined in the library Monad (as well as liftM3, liftM4, and
liftM5):

liftM :: (Monad m) => (a -> b) -> (m a -> m b)

liftM f = \a -> do a′ <- a

return (f a′)

liftM2 :: (Monad m) => (a -> b -> c)

-> (m a -> m b -> m c)

liftM2 f = \a b -> do a′ <- a

b′ <- b

return (f a′ b′)

148/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Note

The implementations of

– isnt, (>*), and (<*) are based on liftM and liftM2,
thereby avoiding the usage of special lift functions.

– (||*) and (&&*) are not based on liftM2, thereby avoi-
ding (unnecessary) strictness in their second arguments.

149/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Illustrating the Usage of cond and cond1

...moving the robot one space forward if it is not blocked; mo-
ving it one space to the right if it is.

An implementation using

I cond:

evade :: Robot ()

evade = cond blocked

(do turnRight

move)

move

I cond1:

evade′ :: Robot ()

evade′ = do cond1 blocked turnRight

move

150/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Moving in a Spiral

...an example of an advanced IRL program:

spiral :: Robot ()

spiral = penDonw >> loop 1

where loop n =

let twice = do turnRight

moven n

turnRight

moven n

in con blocked

(twice >> turnRight >> moven n)

(twice >> loop (n+1))

moven :: Int -> Robot ()

moven n = mapM . (const move) [1..]

151/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.2.6

Defining a Robot’s World

152/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Robot’s World: Preliminary Definitions

The robots’ world is a grid of type Array:

type Grid = Array Position [Direction]

Grid points can be accesssed using:

at :: Grid -> Position -> [Direction]

at = (!)

153/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Defining the Initial World g0 (1)

The size of the initial grid world g0 is given by:

size :: Int

size = 20

with the grid world’s

I centre at: (0,0)

I corners at: (-size,size) (size,size)

((-size),(-size)) (size,(-size))

154/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Defining the Initial World g0 (2)
..inner, border, and corner points of world g0 are characterized
by the directions of motion they allow:

I Inner points of g0 allow moving toward:
interior = [North, South, East, West]

I Border points at the north, east, south, and west border
allow moving toward:
nb = [South, East, West] (nb: north border)

eb = [North, South, West]

sb = [North, East, West]

wb = [North, South, East] (wb: west border)
I Corner points at the northwest, northeast, southeast, and

southwest corner allow moving toward:
nwc = [South, East] (nwc: northwest corner)

nec = [South, West]

sec = [North, West]

swc = [North, East] (swc: southwest corner) 155/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Defining the Initial World g0 (3)
...all grid points, i.e., inner and border grid points can thus be
enumerated using list comprehension, which allows to define
the initial world grid g0 as follows:

g0 :: Grid

g0 = array ((-size, -size), (size, size))

([((i, size), nb) | i <- r] ++

([((i, -size), sb) | i <- r] ++

([((size, i), eb) | i <- r] ++

([((-size, i), wb) | i <- r] ++

([((size, i), eb) | i <- r] ++

([((i,j), interior) | i <- r, j <- r] ++

([((size, size), nec), ((size, -size), sec),

((-size, size), nwc),

((-size, -size), swc)])

where r = [1-size..size-1]

156/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Building World g1 from World g0

...by erecting a west/east-oriented wall leading from (-5,10)

to (5,10):

g1 :: Grid

g1 = g0 // mkHorWall (-5) 5 10

where (//) is the Array library function (cf. Chapter 7.2):

(//) :: Ix a => Array a b -> [(a,b)] -> Array a b

157/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Recalling the (//) Function
...of the Array library:

(//) :: Ix a => Array a b -> [(a,b)] -> Array a b

and illustrating its usage: To this end, let:

colors :: Array Int Color

colors = array (0,7)

[(0,Black),(1,Blue),(2,Green),(3,Cyan),

(4,Red),(5,Magenta),(6,Yellow),

(7,White)]

then:

colors // [(0,White),(7,Black)]

->> array (0,7) [(0,White),(1,Blue),(2,Green),(3,Cyan),

(4,Red),(5,Magenta),(6,Yellow),

(7,Black)] :: Array Int Color

swaps the ‘black’ und ‘white’ entries in colors.
158/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Note

Type Color is defined as in the

I Graphics library:

data Color = Black | Blue | Green | Cyan

| Red | Magenta | Yellow | White

deriving (Eq, Ord, Bounded, Enum,

Ix, Show, Read)

Equivalently but more concisely we could have defined

I colors by:

colors :: Array Int Color

colors = array (0,7) (zip [0..7] [Black..White])

159/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Utility Functions for Building Walls

Building walls horizontally (west/east-oriented, leading from
(x1,y) to (x2,y)):

mkHorWall :: Int -> Int -> Int -> [(Position,[Direction])]

mkHorWall x1 x2 y =

[((x,y), nb) | x <- [x1..x2]] ++

[((x,y+1), sb) | x <- [x1..x2]]

Building walls vertically (north/south-oriented, leading from
(x,y1) to (x,y2)):

mkVerWall :: Int -> Int -> Int -> [(Position,[Direction])]

mkVerWall y1 y2 x =

[((x,y), eb) | y <- [y1..y2]] ++

[((x+1,y), wb) | y <- [y1..y2]]

160/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Utility Functions for Building Rooms

...naively, rooms could be built using mkHorWall and
mkVerWall straightforwardly:

mkBox :: Position -> Position

-> [(Position, [Direction])]

mkBox (x1, y1) (x2, y2) =

mkHorWall (x1+1) x2 y1 ++ mkHorWall (x1+1) x2 y2 ++

mkVerWall (y1+1) y2 x1 ++ mkVerWall (y1+1) y2 x2

This, however, creates two field entries for each of the four in-
ner corners causing their values undefined after the call is
finished (cf. Chapter 7.2).

This problem can elegantly be overcome by using the Array

library operation accum (cf. Chapter 7.2) in combination with
mkBox.

161/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Recalling the accum Function

...of the Array library:

accum :: (Ix a) => (b -> c -> b)

-> Array a b -> [(a,c)] -> Array a b

As discussed in Chapter 7.2, accum

I is quite similar to (//).

I in case of replicated entries the function of the first argu-
ment is applied for resolving conflicts.

I the intersect function of the List library is appropriate
for this in the case of our example, e.g.:

[South, East, West] ‘intersect‘
[North, South, West] ->> [South, West]

represents the northeast corner.

162/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Building World g2 from World g0

...by building a room with its lower left and upper right corner
at positions (-10,5) and (-5,10), respectively:

g2 :: Grid

g2 = accum intersect g0 (mkBox (-15,8) (2,17))

using accum, intersect, and mkBox.

163/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Building World g3 from World g2

...by adding a door (to the middle of the top wall of the room)

g3 :: Grid

g3 = accum union g2 [((-7,17), interior),

((-7,18), interior)]

using accum, union, and interior.

164/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.2.7

Robot Graphics: Animation in Action

165/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Objective of Animation

...drawing the world the robot lives in and then showing the
robot running around (at some predetermined rate) accom-
plishing its mission:

I Drawing lines if the pen is down.

I Picking up coins.

I Dropping coins, letting them thereby appear in possibly
other locations.

This requires to incrementally update the drawn and displayed
graphics, which will be achieved by means of the operations of
the Graphics library.

166/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Updating the Graphics Incrementally

...key for incrementally updating the displayed world the
Graphics library operation drawInWindowNow:

drawInWindowNow :: Window -> Color

-> Point -> Point -> IO ()

which draws the updated graphics immediately after any chan-
ges, and can be used, e.g., for drawing lines:

drawLine :: Window -> Color

-> Point -> Point -> IO ()

drawLine w c p1 p2 =

drawInWindowNow w (withColor c (line p1 p2))

167/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Note

...in order to work properly, the incremental update of the
world must be organized such that the

I absence of interferences of graphics actions

is ensured.

This is achieved by assuming:

1. Grid points are 10 pixels apart.

2. Walls are drawn halfway between grid points.

3. The robot pen draws lines directly from one grid point to
the next.

4. Coins are drawn as yellow circles just above and to to the
left of each grid point.

5. Coins are erased by drawing black circles over the yellow
ones which are already there.

168/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Defining Top-level Constants
...for dealing with the preceding assumptions.

Half the distance between grid points:

d :: Int

d = 5

Color of walls and coins:

wc, cc :: Color

wc = Blue

cc = Yellow

Window size:

xWin, yWin :: Int

xWin = 600

yWin = 500

169/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Defining Utility Functions (1)

Drawing grids:

drawGrid :: Window -> Grid -> IO ()

drawGrid w wld =

let (low@(xMin,yMin),hi@(xMax,yMax)) = bounds wld

(x1,y1) = trans low

(x2,y2) = trans hi

in

do drawLine w wc (x1-d,y1+d) (x1-d,y2-d)

drawLine w wc (x1-d,y1+d) (x1+d,y2+d)

sequence_ [drawPos w (trans (x,y)) (wld ‘at‘ (x,y))

| x <- [xMin..xMax], y <- [yMin..yMax]]

170/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Defining Utility Functions (2)

Used by drawGrid:

drawPos :: Window -> Point -> [Direction] -> IO ()

drawPos x (x,y) ds =

do if North ‘notElem‘ ds

then drawLine w wc (x-d,y-d) (x+d,y-d)

else return ()

if East ‘notElem‘ ds

then drawLine w wc (x+d,y-d) (x+d,y+d)

else return ()

Used by drawGrid, from the Array library:

bounds :: Ix a => Array a b -> (a,a)

-- yields the bounds of its array argument

171/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Defining Utility Functions (3)
Dropping and drawing coins:

drawCoins :: Window -> RobotState -> IO ()

drawCoins w s = mapM_ (drawCoin w) (treasure s)

drawCoin :: Window -> Position -> IO ()

drawCoin w p =

let (x,y) = trans p

in drawInWindowNow w

(withColor cc (ellipse (x-5,y-1) (x-1,y-5)))

Erasing coins:

eraseCoin :: Window -> Position -> IO ()

eraseCoin w p =

let (x,y) = trans p

in drawInWindowNow w

(withColor Black (ellipse (x-5,y-1) (x-1,y-5)))

172/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Defining Utility Functions (4)

Drawing robot moves:

graphicsMove :: Window -> RobotState

-> Position -> IO ()

graphicsMove w s newPos =

do if pen s

then drawLine w (color s) (trans (position s))

(trans newPos)

else return ()

getWindowTick w

trans :: Position -> Point

trans (x,y) = (div xWin 2+2*d*x, div yWin 2-2*d*y)

Causing a short delay after each robot move

getWindowTick :: Window -> IO ()

173/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Running IRL Programs: The Top-level Prg. (1)

...putting it all together.

Running an IRL program:

runRobot :: Robot () -> RobotState -> Grid -> IO ()

runRobot (Robot sf) s g =

runGraphics $

do w <- openWindowEx "Robot World" (Just (0,0))

(Just (xWin, yWin)) drawGraphic (Just 10)

drawGrid w g

drawCoins w s

spaceWait w

sf s g w

spaceClose w

174/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Running IRL Programs: The Top-level Prg. (2)
Intuitively, runRobot

– opens a window
– draws a grid
– draws the coins
– waits for the user to hit the spacebar
– continues running the program with starting state s and

grid g

– closes the window when execution is complete and the
spacebar is pressed again.

where spaceWait provides the user with progress control by
awaiting the user’s pressing the spacebar:

spaceWait :: Window -> IO ()

spaceWait w = do k <- getKey w

if k == ‘ ‘ then return ()

else spaceWait w
175/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Animation in Action (1)
...the grids g0 through g3 can now be used to run IRL pro-
grams with.

1) Fixing s0 as a suitable starting state:

s0 :: RobotState

s0 = RobotState { position = (0,0)

, pen = False

, color = Red

, facing = North

, treasure = tr

, pocket = 0

}

2) Placing ’treasure’ (all coins are placed inside the room in
grid g3):

tr :: [Position]

tr = [(x,y) | x <- [-13,-11..1], y <- [9,11..15]]
176/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.2.1

18.2.2

18.2.3

18.2.4

18.2.5

18.2.6

18.2.7

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Animation in Action (2)
3) Running the ‘spiral’ program with s0, g0:

main = runRobot spiral s0 g0

...leads to the ‘spiral’ example shown for illustration at the
beginning of this chapter:

R

177/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.3

Robots on Wheels

178/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Outline

...we consider and define a simulation of

I mobile robots (called Simbots)

using functional reactive programming.

The implementation will make use of the type class

I Arrow

which is another example of a type constructor class genera-
lizing the concept of a monad.

179/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.3.1

The Setting

180/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Configuration of Mobile Robots (1)

...is assumed to be as follows:

“Robots are differential drive robots having two wheels that are

each driven by an independent motor. The relative velocity of

these two wheels governs the turning rate of the robot. If the

velocities are identical, the robot will go straight.

A robot has several kinds of sensors. Among these, (1) a bumper

switch to detect when the robot gets ‘stuck’ because of being

blocked by something, (2) a range finder to determine the nearest

object in any given direction (in the following it is assumed that

there are four independent range finders that only look forward,

backward, left and right; the range finder will thus only be queried

at these four angles), (4) an animate object tracker that gives the

current position of all other robots and possibly those of some

free-moving balls that are within a certain distance from the robot.

181/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Configuration of Mobile Robots (2)

This object tracker can be thought of as modelling either a visual

subsystem that can ‘see’ these objects, or a communication

subsystem through which the robots and balls share each other’s

coordinates. Some further capabilities will be introduced as need

occurs.

Last but not least, each robot has a unique ID.”

182/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Application Scenario: Robot Soccer

...the overall task:

“Write a program to play ‘robocup soccer’ as follows:

Use wall segments to create two goals at either end of the field.

Decide on a number of players on each team and write generic

controllers, such as one for a goalkeeper, one for attack, and one

for defense.

Create an initial world where the ball is at the center mark, and

each of the players is positioned strategically while being on-side

(with the defensive players also outside of the center circle. Each

team may use the same controller, or different ones.”

183/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Code for ‘Robots on Wheels’

...can be down-loaded at the Yampa homepage at

http://www.haskell.org/yampa

In the following we highlight essential code snippets.

184/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.3.2

Modelling the Robots’ World

185/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Signal Functions, Signals, and Simbots
Signal functions are

I signal transformers, i.e., functions mapping signals to
signals,

I of type SF, a 2-ary type constructor defined in Yampa,
which is an instance of type constructor class Arrow.

Yampa provides

I a number of primitive signal functions and a set of special
composition operators (or combinators) for constructing
(more) complex signal functions from simpler ones.

Signals are no

I first-class values in Yampa but can only be manipulated
by means of signal functions to avoid time- and space-
leaks (abstract data type).

Simbot is a short hand for simulated robot.
186/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Modelling Time, Signals, and Signal Functions

SF is an instance of class Arrow:

type Time = Double

type Signal a~ = Time -> a

type SF a b = Signal a -> Signal b

Intuitively: SF-values are signal transformers resp. signal
functions (thus the type name SF).

187/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Modelling Simbots

type RobotType = String

type RobotId = Int

type SimbotController =

SimbotProperties -> SF SimbotInput SimbotOutput

Class HasRobotProperties i where

rpType :: i -> RobotType -- Type of robot

rpId :: i -> RobotId -- Identity of robot

rpDiameter :: i -> Length -- Distance between wheels

rpAccMax :: i -> Acceleration -- Max translational acc

rpWSMax :: i -> Speed -- Max wheel speed

188/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Modelling the World

type WorldTemplate = [ObjectTemplate]

data ObjectTemplate =

OTBlock otPos :: Position2 -- Square obstacle

| OTVWall otPos :: Position2 -- Vertical wall

| OTHWall otPos :: Position2 -- Horizontal wall

| OTBall otPos :: Position2 -- Ball

| OTSimbotA otRId :: RobotId, -- Simbot A robot

otPos :: Position2,

otHdng :: Heading

| OTSimbotB otRId :: RobotId, -- Simbot B robot

otPos :: Position2,

otHdng :: Heading

189/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.3.3

Classes of Robots

190/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Types of Robots

...usually, there are different types of robots

I differring in their features (2 wheels, 3 wheels, camera,
sonar, speaker, blinker, etc.)

The type of a robot is fixed by its

I input and output types

which are encoded in input and output classes together with
the functions operating on the class elements.

191/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Input Classes (1)

...and functions operating on their elements:

data BatteryStatus = BSHigh | BSLow | BSCritical

deriving (Eq, Show)

class HasRobotStatus i where

-- Current battery status

rsBattStat :: i -> BatteryStatus

-- Currently stuck or not stuck

rsIsStuck :: i -> Bool

-- Derived event sources:

rsBattStatChanged :: HasRobotStatus i =>

SF i (Event BatteryStatus)

rsBattStatLow :: HasRobotStatus i => SF i (Event ())

rsBattStatCritical :: HasRobotStatus i => SF i (Event ())

rsStuck :: HasRobotStatus i => SF i (Event ())

192/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Input Classes (2)

class HasOdometry where

-- Current position

odometryPosition :: i -> Position2

-- Current heading

odometryHeading :: i -> Heading

class HasRangeFinder i where

rfRange :: i -> Angle -> Distance

rfMaxRange :: i -> Distance

-- Derived range finders:

rfFront :: HasRangeFinder i => i -> Distance

rfBack :: HasRangeFinder i => i -> Distance

rfLeft :: HasRangeFinder i => i -> Distance

rfRight :: HasRangeFinder i => i -> Distance

193/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Input Classes (3)

class HasAnimateObjectTracker i where

aotOtherRobots :: i -> [(RobotType, Angle, Distance)]

aotBalls :: i -> [(Angle, Distance)]

class HasTextualConsoleInput i where

tciKey :: i -> Maybe Char

tciNewKeyDown :: HasTextualConsoleInput i =>

Maybe Char -> SF i (Event Char)

tciKeyDown :: HasTextualConsoleInput i =>

SF i (Event Char)

194/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Output Classes

...and functions operating on their elements:

class MergeableRecord o => HasDiffDrive o where

-- Brake both wheels

ddBrake :: MR o

-- Set wheel velocities

ddVelDiff :: Velocity -> Velocity -> MR o

-- Set velocities and rotation

ddVelTR :: Velocity -> RotVel -> MR o

class MergeableRecord o =>

HasTextConsoleOutput o where

tcoPrintMessage :: Event String -> MR o

195/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.3.4

Robot Simulation in Action

196/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Typical Structure of a Robot Control Program

module MyRobotShow where

import AFrob

import AFrobRobotSim

main :: IO ()

main = runSim (Just world) rcA rcB

world :: WorldTemplate

world = ...

-- controller for simbot A

rcA :: SimbotController

rcA = ...

-- controller for simbot B

rcB :: SimbotController

rcB = ...

197/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Robot Simulation in Action
Running a robot simulation:

runSim :: Maybe WorldTemplate

-> SimbotController

-> SimbotController -> IO ()

Simbot controllers:

rcA :: SimbotController

rcA rProps =

case rrpId rProps of

1 -> rcA1 rProps

2 -> rcA2 rProps

3 -> rcA3 rProps

rcA1, rcA2, rcA3 :: SimbotController

rcA1 = ...

rcA2 = ...

rcA3 = ...
198/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.3.5

Examples

199/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Robot Actions: Control Programs (1)

A stationary robot:

rcStop :: SimbotController

rcStop _ = constant (mrFinalize ddBrake)

A blind robot moving at constant speed:

rcBlind1 _ =

constant (mrFinalize $ ddVelDiff 10 10)

A blind robot moving at half the maximum speed:

rcBlind2 rps =

let max = rpWSMax rps

in constant (mrFinalize $

ddVelDiff (max/2) (max/2))

200/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.3.1

18.3.2

18.3.3

18.3.4

18.3.5

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Robot Actions: Control Programs (2)

A robot rotating at a pre-given speed:

rcTurn :: Velocity -> SimbotController

rcTurn vel rps =

let vMax = rpWSMax rps

rMax = 2 * (vMax - vel) / rpDiameter rps

in constant (mrFinalize $ ddVelTR vel rMax)

201/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.4

In Conclusion

202/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

The Origins

...of functional reactive programming (FRP) can be traced
back to functional reactive animation (FRAn):

I Conal Elliot, Paul Hudak. Functional Reactive Animation.
In Proceedings of the 2nd ACM SIGPLAN 1997 Interna-
tional Conference on Functional Programming (ICFP’97),
263-273, 1997.

I Conal Elliot. Functional Implementations of Continuous
Modeled Animation. In Proceedings of the 10th Interna-
tional Symposium on Principles of Declarative Program-
ming, held jointly with the International Conference on
Algebraic and Logic Programming (PLILP/ALP’98),
Springer-V., LNCS 1490, 284-299, 1998.

203/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Seminal Works

...on functional reactive programming (FRP):

I Zhanyong Wan, Paul Hudak. Functional Reactive Pro-
gramming from First Principles. In Proceedings of the
ACM SIGPLAN 2000 Conference on Programming Lan-
guages Design and Implementation (PLDI 2000), ACM
Press, 2000.

I John Peterson, Zhanyong Wan, Paul Hudak, Henrik Nils-
son. Yale FRP User’s Manual. Department of Computer
Science, Yale University, January 2001.
http://www.haskell.org/frp/manual.html

I Henrik Nilsson, Antony Courtney, John Peterson. Func-
tional Reactive Programming, Continued. In Proceedings
of the ACM SIGPLAN Workshop on Haskell (Haskell
2002), 51-64, 2002.

204/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Applications of FRP (1)

...on Functional Reactive Robotics (FRob):

I Izzet Pembeci, Henrik Nilsson, Gregory D. Hager. Func-
tional Reactive Robotics: An Exercise in Principled Inte-
gration of Domain-Specific Languages. In Proceedings of
the 4th International ACM SIGPLAN Conference on Prin-
ciples and Practice of Declarative Programming (PPDP
2002), 168-179, 2002.

I John Peterson, Gregory Hager, Paul Hudak. A Language
for Declarative Robotic Programming. In Proceedings of
the IEEE International Conference on Robotics and Auto-
mation (ICRA’99), Vol. 2, 1144-1151, 1999.

205/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Applications of FRP (2)
...on Functional Animation Languages (FAL):

I Paul Hudak. The Haskell School of Expression – Learning
Functional Programming through Multimedia. Cambridge
University Press, 2000. (Chapter 15, A Module of Reac-
tive Animations)

...on Functional Vision Systems (FVision):

I Alastair Reid, John Peterson, Gregory D. Hager, Paul Hu-
dak. Prototyping Real-Time Vision Systems: An Experi-
ment in DSL Design. In Proceedings of the 1999 Inter-
national Conference on Software Engineering (ICSE’99),
484-493, 1999.

...on Functional Reactive User Interfaces (FRUIt):

I Antony Courtney, Conal Elliot. Genuinely Functional User
Interfaces. In Proceedings of the 2001 Haskell Workshop,
September 2001.

206/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Applications of FRP (3)

...towards Real-Time FRP (RT-FRP):

I Zhanyong Wan, Walid Taha, Paul Hudak. Real-Time
FRP. In Proceedings of the 6th ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP
2001), 146-156, 2001.

I Zhanyong Wan. Functional Reactive Programming for
Real-Time Embedded Systems. PhD thesis. Department
of Computer Science, Yale University, December 2002.

...towards Event-Driven FRP (ED-FRP):

I Zhanyong Wan, Walid Taha, Paul Hudak. Event-Driven
FRP. In Proceedings of the 4th International Symposium
on Practical Aspects of Declarative Languages (PADL
2002), Springer-V., LNCS 2257, 155-172, 2002.

207/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18.5

References, Further Reading

208/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18: Basic Reading

Paul Hudak. The Haskell School of Expression – Learning
Functional Programming through Multimedia. Cambridge
University Press, 2000. (Chapter 19, An Imperative Robot
Language)

Paul Hudak, Antony Courtney, Henrik Nilsson, John Peter-
son. Arrows, Robots, and Functional Reactive Program-
ming. In Johan Jeuring, Simon Peyton Jones (Eds.), Ad-
vanced Functional Programming – Revised Lectures.
Springer-V., LNCS Tutorial 2638, 159-187, 2003.

Izzet Pembeci, Henrik Nilsson, Gregory D. Hager. Func-
tional Reactive Robotics: An Exercise in Principled Inte-
gration of Domain-Specific Languages. In Proceedings of
the 4th International ACM SIGPLAN Conference on Prin-
ciples and Practice of Declarative Programming (PPDP
2002), 168-179, 2002.

209/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18: Selected Advanced Reading (1)

Zhanyong Wan, Paul Hudak. Functional Reactive Pro-
gramming from First Principles. In Proceedings of the
ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation (PLDI 2000),
242-252, 2000.

Henrik Nilsson, Antony Courtney, John Peterson. Functio-
nal Reactive Programming, Continued. In Proceedings of
the ACM SIGPLAN Workshop on Haskell (Haskell 2002),
51-64, 2002.

Zhanyong Wan, Walid Taha, Paul Hudak. Real-Time FRP.
In Proceedings of the 6th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2001),
146-156, 2001.

210/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18: Selected Advanced Reading (2)

Zhanyong Wan, Walid Taha, Paul Hudak. Event-Driven
FRP. In Proceedings of the 4th International Symposium
on Practical Aspects of Declarative Languages (PADL
2002), Springer-V., LNCS 2257, 155-172, 2002.

John Peterson, Gregory D. Hager, Paul Hudak. A Lan-
guage for Declarative Robotic Programming. In Procee-
dings of the IEEE International Conference on Robotics
and Automation (ICRA’99), Vol. 2, 1144-1151, 1999.

John Peterson, Paul Hudak, Conal Elliot. Lambda in Mo-
tion: Controlling Robots with Haskell. In Proceedings of
the 1st International Workshop on Practical Aspects of
Declarative Languages (PADL’99), Springer-V., LNCS
1551, 91-105, 1999.

211/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

18.1

18.2

18.3

18.4

18.5

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Chapter 18: Selected Advanced Reading (3)

Tomas Petricek, Jon Skeet. Real World Functional Pro-
gramming: With Examples in F# and C#. Manning Pu-
blications Co., 2009. (Chapter 16, Developing reactive
functional programs)

Zhanyong Wan. Functional Reactive Programming for
Real-Time Embedded Systems. PhD Thesis, Department
of Computer Science, Yale University, December 2002.

Johan Nordlander. Reactive Objects and Functional Pro-
gramming. PhD thesis. Chalmers University of Technology,
1999.

212/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Part VI

Extensions, Perspectives

213/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Chapter 19

Extensions: Parallel and ‘Real World’
Functional Programming

214/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Chapter 19.1

Parallelism in Functional Languages

215/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Motivation, Background

...recall:

I Konrad Hinsen. The Promises of Functional Program-
ming. Computing in Science and Engineering
11(4):86-90, 2009.

...adopting a functional programming style could make
your programs more robust, more compact, and more
easily parallelizable.

Reading for this chapter:

I Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung, Springer-V., 2006. (In German). (Kapitel 21, Mas-
siv Parallele Programme)

216/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Parallelism in Programming Languages

Predominant in imperative languages:

I Libraries (PVM, MPI) Message Passing Model (C++,
C, Fortran)

I Data-parallel Languages (e.g., High Performance Fortran)

Predominant in functional languages:

I Implicit (expression) parallelism

I Explicit parallelism

I Algorithmic skeletons

217/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Implicit Parallelism

...also known as expression parallelism.

Idea: If f(e1,...,en) is a functional expression, then

I arguments (and functions) can be evaluated in parallel.

Most important

I advantage: Parallelism for free! No effort for the pro-
grammer at all.

I disadvantage: Results often unsatisfying; e.g. granularity,
load distribution, etc., is not taken into account.

Overall, expression parallelism is

I easy to detect (for the compiler) but hard to fully exploit.

218/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Explicit Parallelism

Idea: Introducing and using

I meta-statements (e.g., for controlling the data and load
distribution, communication).

Most important

I advantage: Often very good results thanks to explicit
hands-on control of the programmer.

I disadvantage: High programming effort and loss of func-
tional elegance.

219/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Algorithmic Skeletons

...a compromise between

I explicit imperative parallel programming

I implicit functional expression parallelism

220/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

In the following

...we consider a setting with

I massively parallel systems

I algorithmic skeletons

221/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Massively Parallel Systems

...are typically characterized by a

I large number of processors with

– local memory
– communication by message exchange

I MIMD-Parallel Processor Architecture (Multiple Instruc-
tion/Multiple Data)

Here we focus and restrict ourselves to

I SPMD-Programming Style (Single Program/Multiple
Data)

222/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Algorithmic Skeletons

I represent typical patterns for parallelization (Farm, Map,
Reduce, Branch&Bound, Divide&Conquer,...).

I are easy to instantiate for the programmer.

I allow parallel programming at a high level of abstraction.

223/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Implementing Algorithmic Skeletons

...in functional languages

I by special higher-order functions.

I with parallel implementation.

I embedded in sequential languages.

I using message passing via skeleton hierarchies.

Advantages:

I Hiding of parallel implementation details in the skeleton.

I Elegance and (parallel) efficiency for special application
patterns.

224/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Example: Parallel Map on Distributed List

Consider the higher-order function map on lists:

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = (f x) : (map f xs)

Observation:

– Applying f to a list element does not depend on other list
elements.

Parallelization idea:

– Divide the list into sublists followed by parallel applica-
tion of map to the sublists:

 parallelization pattern Farm.

225/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Parallel Map on Distributed Lists
Illustration:

f [a1,...,ak] f [ak+1,...,am] f [am+1,...am]

f [a1,...,ak, ak+1,...,am, am+1,...am]

 [b1,...,bk] [bk+1,...,bm] [bm+1,...bm]

 [b1,...,bk, bk+1,...,bm, bm+1,...bm]

Decomposition

Parallel

Computation

Composition

Peter Pepper, Petra Hofstedt. Funktionale Programmierung.

Springer, 2006, S. 445.

226/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Implementing

...the parallel map function requires

I special data structures, which take into account the as-
pect of distribution (ordinary lists are inefficient for this
purpose).

Skeletons on distributed data structures are so-called

I data-parallel skeletons.

Note the difference between:

I Data-parallelism: Supposes an a priori distribution of data
on different processors.

I Task-parallelism: Processes and data to be distributed are
not known a priori but dynamically generated.

227/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Implementing a Parallel Application

...using algorithmic skeletons requires:

I Recognizing problem-inherent parallelism.

I Selecting an adequate data distribution (granularity).

I Selecting a suitable skeleton from a library.

I Instantiating the skeleton problem-specifically.

Remark:

I Some languages (e.g., Eden) support the implementation
of skeletons (in addition to those which might be provi-
ded by a library).

228/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Data Distribution on Processors

...is crucial for

I the structure of the complete algorithm.

I efficiency.

The hardness of the distribution problems depends on

I Independence of all data elements (like in the
map-example): Distribution is easy.

I Independence of subsets of data elements.

I Complex dependences of data elements: Adequate
distribution is challenging.

Auxiliary means: So-called covers for

I describing the decomposition and communication pattern
of a data structure (investigated by various researchers).

229/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Example (1)

...illustrating a simple list cover.

Distributing a list on three processors p0, p1, and p2:

Peter Pepper, Petra Hofstedt. Funktionale Programmierung.

Springer, 2006, S. 446.

p
0

ak ak+1 am amam+1a1

p
1

p
2

230/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Example (2)

...illustrating a list cover with overlapping elements.

Peter Pepper, Petra Hofstedt. Funktionale Programmierung.

Springer, 2006, S. 446.

p
i−1

p
i

p
i+1

231/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

General Structure of a Cover

Cover = {

Type S a -- Whole object

C b -- Cover

U c -- Local sub-objects

split :: S a -> C (U a) -- Decomposing the

-- original object

glue :: C (U a) -> S a -- Composing the

-- original object

}

where it must hold: glue . split = id

Note: The above code snippet is not (valid) Haskell.

232/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Implementing Covers

...requires support for

I the specification of covers.

I the programming of algorithmic skeletons on covers.

I the provision of often used skeletons in libraries.

which is currently a

I hot research topic

in functional programming.

233/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Chapter 19.2

Haskell for ‘Real World’ Programming

234/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

‘Real World’ Haskell (1)

...Haskell these days provides considerable, mature, and stable
support for:

I Systems Programming

I (Network) Client and Server Programming

I Data Base and Web Programming

I Multicore Programming

I Foreign Language Interfaces

I Graphical User Interfaces

I File I/O and filesystem programming

I Automated Testing, Error Handling, and Debugging

I Performance Analysis and Tuning

I ...
235/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

‘Real World’ Haskell (2)

This support comes mostly in terms of

I sophisticated libraries

and makes Haskell a reasonable choice for addressing and sol-
ving

I real world problems

as the choice of a language depends much on the ability and
support a programming language provides for linking and
connecting to the ‘outer world:’ the language’s

I eco-system.

See e.g.:

Bryan O’Sullivan, John Goerzen, Don Stewart. Real World
Haskell. O’Reilly, 2008.

236/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Chapter 19.3

References, Further Reading

237/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Chapter 19.1: Basic Reading (1)

Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung. Springer-V., 2006. (Kapitel 21, Massiv Parallele
Programme)

Simon Marlow. Parallel and Concurrent Programming in
Haskell. O’Reilley, 2013.

Murray Cole. Algorithmic Skeletons: Structured Manage-
ment of Parallel Computation. The MIT Press, 1989.

Fethi A. Rabhi. Exploiting Parallelism in Functional
Languages: A Paradigm Oriented Approach. In J. R. Davy,
P. M. Dew (Eds.), Abstract Machine Models for Highly
Parallel Computers, Oxford University Press, 118-139,
1995.

238/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Chapter 19.1: Basic Reading (2)

Philip W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl,
Simon Peyton Jones. Algorithms + Strategy = Parallelism.
Journal of Functional Programming 8(1):23-60, 1998.

Antonie J.T. Davie. An Introduction to Functional Pro-
gramming Systems using Haskell. Cambridge University
Press, 1992. (Chapter 11, Parallel Evaluation)

Simon Peyton Jones, Satnam Sing. A Tutorial on Parallel
and Concurrent Programming in Haskell. Advanced
Functional Programming – Revised Lectures. Springer-V.,
LNCS 5832, 267-305, 2008.

239/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Chapter 19.1: Selected Advanced Reading (1)

Simon Peyton Jones, Andrew Gordon, Sigbjorn Finne.
Concurrent Haskell. In Conference Record of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’96), 295-308, 1996.

Robert F. Pointon, Philip W. Trinder, Hans-Wolfgang
Loidl. The Design and Implementation of Glasgow Distri-
buted Haskell. In Proceedings of the 12th International
Workshop on Implementation of Functional Languages
(IFL 2000), LNCS 2011, Springer-V., 53-70, 2000.

Manuel M.T. Chakravarty, Roman Leshchinsky, Simon
Peyton Jones, Gabriele Keller, Simon Marlow. Data
Parallel Haskell: A Status Report. In Proceedings on the
Workshop on Declarative Aspects of Multicore Program-
ming (DAMP 2007), ACM, New York, 10-18, 2007.

240/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Chapter 19.1: Selected Advanced Reading (2)

Peng Li, Simon Marlow, Simon Peyton Jones, Andrew
Tolmach. Lightweight Concurrency Primitives for GHC. In
Proceedings of the ACM SIGPLAN Workshop on Haskell
(Haskell 2007), 107-118, 2007.

Philip W. Trinder, Hans-Wolfgang Loidl, Robert F. Poin-
ton. Parallel and Distributed Haskells. Journal of Func-
tional Programming 12(4&5):469-510, 2002.

Martin Braun, Oleg Lobachev, Philip W. Trinder: Arrows
for Parallel Computation. CoRR,
http://arxiv.org/abs/1801.02216, 2018.

241/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Chapter 19.1: Selected Advanced Reading (3)

Joe Armstrong, Robert Virding, Claes Wikstrom, Mike
Williams. Concurrent Programming in Erlang. Prentice-
Hall, 2nd edition, 1996.

Tomas Petricek, Jon Skeet. Real World Functional Pro-
gramming: With Examples in F# and C#. Manning
Publications Co., 2009. (Chapter 14, Writing parallel
functional programs)

Hans-Werner Loidl et al. Comparing Parallel Functional
Languages: Programming and Performance. Higher-Order
and Symbolic Computation 16(3):203-251, 2003.

242/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Chapter 19.2: Basic Reading (1)

Bryan O’Sullivan, John Goerzen, Don Stewart. Real World
Haskell. O’Reilly, 2008. (Chapter 17, Interfacing with C:
The FFI; Chapter 19, Error Handling; Chapter 20, Systems
Programming in Haskell; Chapter 21, Using Data Bases;
Chapter 22, Extended Example: Web Client Programming;
Chapter 23, GUI Programming with gtk2hs; Chapter 24,
Concurrent and Multicore Programming; Chapter 27,
Sockets and Syslog; Chapter 25, Profiling and Optimiza-
tion; Chapter 28, Software Transactional Memory)

Tomas Petricek, Jon Skeet. Real World Functional Pro-
gramming: With Examples in F# and C#. Manning
Publications Co., 2009.

Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung. Springer-V., 2006. (Kapitel 19, Agenten und Pro-
zesse; Kapitel 20, Graphische Schnittstellen (GUIs))

243/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Chapter 19.2: Basic Reading (2)

“Haskell community.” Hackage: A Repository for Open
Source Haskell Libraries. hackage.haskell.org

“Haskell community.” Haskell wiki.
haskell.org/haskellwiki/Applications and libraries

“Haskell community.” Haskell in Industry and Open
Source.
www.haskell.org/haskellwiki/Haskell in industry

Hoogle, Hayoo. Useful search engines.
www.haskell.org/hoogle,
holumbus.fh-wedel.de/hayoo/hayoo.html

244/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Chapter 19.2: Selected Advanced Reading(1)

Magnus Carlsson, Thomas Hallgren. Fudgets – A Graphi-
cal User Interface in a Lazy Functional Language. In Pro-
ceedings of the 6th ACM International Conference on
Functional Programming Languages and Computer
Architecture (FPCA’93), 321-330, 1993.

Thomas Hallgren, Magnus Carlsson. Programming with
Fudgets. In Johan Jeuring, Erik Meijer (Eds.), Advanced
Functional Programming, First International Spring School
on Advanced Functional Programming Techniques.
Springer-V., LNCS 925, 137-182, 1995.

Antony Courtney, Conal Elliot. Genuinely Functional User
Interfaces. In Proceedings of the 2001 Haskell Workshop
(Haskell 2001), September 2001.

245/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

19.1

19.2

19.3

Chap. 20

Concluding
Note

Assignment

Chapter 19.2: Selected Advanced Reading(1)

Nigel W.O. Hutchison, Ute Neuhaus, Manfred Schmidt-
Schauß, Cordelia V. Hall. Natural Expert: A Commercial
Functional Programming Environment. Journal of Func-
tional Programming 7(2):163-182, 1997.

Curt J. Simpson. Experience Report: Haskell in the “Real
World”: Writing a Commercial Application in a Lazy
Functional Language. In Proceedings of the 14th ACM
SIGPLAN International Conference on Functional Pro-
gramming (ICFP 2009), 185-190, 2009.

246/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Chapter 20

Conclusions, Perspectives

247/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Chapter 20.1

Research Venues, Research Topics, and More

248/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Research Venues, Research Topics, and More

...for functional programming and functional programming
languages:

I Research/publication/dissemination venues

– Conference and Workshop Series

– Archival Journals

– Summer Schools

I Research Topics

I Functional Programming in the Real World

249/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Relevant Conference and Workshop Series
For functional programming:
I Annual ACM SIGPLAN International Conference on

Functional Programming (ICFP) Series, since 1996.
I Annual Symposium on Functional and Logic Program-

ming (FLPS) Series, since 2000.
I Annual ACM SIGPLAN Haskell Workshop Series, since

2002.
I HAL Workshop Series, since 2006.

For programming in general:
I Annual ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages and Systems (POPL),
since 1973.

I Annual ACM SIGPLAN Conference on Programming
Language Design and Implementation PLDI), since 1988
(resp. 1973).

250/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Relevant Archival Journals

For functional programming:

I Journal of Functional Programming, since 1991.

For programming in general:

I ACM Transactions on Programming Languages and
Systems (TOPLAS), since 1979.

I ACM Computing Surveys, since 1969.

251/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Summer Schools

Focused on functional programming:

I Summer School Series on Advanced Functional Program-
ming. Springer-V., LNCS series.

252/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Hot Research Topics – Haskell Symposium (1)
...in theory and practice of functional programming considering
the 2012 Call for Papers of the Haskell Symposium:

“The purpose of the Haskell Symposium is to discuss experiences
with Haskell and future developments for the language.

Topics of interest include, but are not limited to:

I Language Design, with a focus on possible extensions and
modifications of Haskell as well as critical discussions of the
status quo;

I Theory, such as formal treatments of the semantics of the
present language or future extensions, type systems, and
foundations for program analysis and transformation;

I Implementations, including program analysis and
transformation, static and dynamic compilation for sequential,
parallel, and distributed architectures, memory management
as well as foreign function and component interfaces;

253/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Hot Research Topics – Haskell Symposium (2)

I Tools, in the form of profilers, tracers, debuggers,
pre-processors, testing tools, and suchlike;

I Applications, using Haskell for scientific and symbolic
computing, database, multimedia, telecom and web
applications, and so forth;

I Functional Pearls, being elegant, instructive examples of using
Haskell;

I Experience Reports, general practice and experience with
Haskell, e.g., in an education or industry context.”

More on Haskell 2012, Copenhagen, DK, 13 Sep 2012:
http://www.haskell.org/haskell-symposium/2012/

254/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Hot Research Topics – ICFP (1)

...in theory and practice of functional programming considering
the 2012 Call for Papers of ICFP:

“ICFP 2012 seeks original papers on the art and science of
functional programming. Submissions are invited on all topics from
principles to practice, from foundations to features, and from
abstraction to application. The scope includes all languages that
encourage functional programming, including both purely
applicative and imperative languages, as well as languages with
objects, concurrency, or parallelism.

Topics of interest include (but are not limited to):

I Language Design: concurrency and distribution; modules;
components and composition; metaprogramming;
interoperability; type systems; relations to imperative,
object-oriented, or logic programming

255/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Hot Research Topics – ICFP (2)

I Implementation: abstract machines; virtual machines;
interpretation; compilation; compile-time and run-time
optimization; memory management; multi-threading;
exploiting parallel hardware; interfaces to foreign functions,
services, components, or low-level machine resources

I Software-Development Techniques: algorithms and data
structures; design patterns; specification; verification;
validation; proof assistants; debugging; testing; tracing;
profiling

I Foundations: formal semantics; lambda calculus; rewriting;
type theory; monads; continuations; control; state; effects;
program verification; dependent types

I Analysis and Transformation: control-flow; data-flow; abstract
interpretation; partial evaluation; program calculation

256/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Hot Research Topics – ICFP (3)

I Applications and Domain-Specific Languages: symbolic
computing; formal-methods tools; artificial intelligence;
systems programming; distributed-systems and web
programming; hardware design; databases; XML processing;
scientific and numerical computing; graphical user interfaces;
multimedia programming; scripting; system administration;
security

I Education: teaching introductory programming; parallel
programming; mathematical proof; algebra

I Functional Pearls: elegant, instructive, and fun essays on
functional programming

I Experience Reports: short papers that provide evidence that
functional programming really works or describe obstacles
that have kept it from working”

257/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Chapter 20.2

Programming Contest

258/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Programming Contest Series: Background (1)

...considering the 2012 contest edition for illustration.

The ICFP Programming Contest 2012 is the 15th instance of the
annual programming contest series sponsored by The ACM
SIGPLAN International Conference on Functional Programming.
This year, the contest starts at 12:00 July 13 Friday UTC and ends
at 12:00 July 16 Monday UTC. There will be a lightning division,
ending at 12:00 July 14 Saturday UTC.

The task description will be published at
icfpcontest2012.wordpress.com/task when the contest
starts. Solutions to the task must be submitted online before the
contest ends. Details of the submission procedure will be
announced along with the contest task.

This is an open contest. Anybody may participate except for the
contest organisers and members of the same group as the contest
chairs. No advance registration or entry fee is required.

259/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Programming Contest Series: Background (2)

Any programming language(s) may be used as long as the
submitted program can be run by the judges on a standard Linux
environment with no network connection. Details of the judges’
environment will be announced later.

There will be cash prizes for the first and second place teams, the
team winning the lightning divison, and a discretionary judges’
prize. There may also be travel support for the winning teams to
attend the conference. (The prizes and travel support are subject
to the budget plan of ICFP 2012 pending approval by ACM.)...

More on ICFP 2012, Copenhagen, DK, 10-12 Sep 2012:

http://icfpconference.org/icfp2012/cfp.html

260/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

The 23rd Programming Contest at ICFP 2020

In 2020, the programming contest started on

I Friday 17 July 2020 10:00am UTC. The 24hr lightning
division will end at Saturday 18 July 2020 10:00am UTC
and the 72hr full contest will end at Monday 20 June
2020 10:00am UTC; full information is available online:

https://icfpcontest2020.github.io

I News are available at the following sites:

– Programming contest series at the ICFP conf. series:
https://www.icfpconference.org/contest.html

– 23nd Programming contest edition in 2020:
https://icfpcontest2020.github.io/

– 2020 Host conference:
ICFP 2020, Online Conference, 2020:
https://icfp20.sigplan.org/

261/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Contest Announcement at ICFP 2021
...coming soon!

Key dates can be expected to be similar as in 2020.

ICFP 2021, Online Conference,
Sun 22 - Fri 27 August 2021:

https://icfp21.sigplan.org/home

...stay tuned for conference and contest news at:

I Programming contest series at the ICFP conf. series:
https://www.icfpconference.org/contest.html

I 24th Programming contest edition in 2021:
https://icfp21.sigplan.org/track/icfp-2021-icfp-programming-contest

I 2021 Host conference:
ICFP 2021, Online Conf., Sun 22 - Fri 27 August 2021:
https://icfp21.sigplan.org/

262/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Chapter 20.3

In Conclusion

263/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Functional Programming

...certainly arrived in the real world:

I Curt J. Simpson. Experience Report: Haskell in the “Real
World”: Writing a Commercial Application in a Lazy
Functional Language. In Proceedings of the 14th ACM
SIGPLAN International Conference on Functional
Programming (ICFP 2009), 185-190, 2009.

I Jerzy Karczmarczuk. Scientific Computation and
Functional Programming. Computing in Science and
Engineering 1(3):64-72, 1999.

I Bryan O’Sullivan, John Goerzen, Don Stewart. Real
World Haskell. O’Reilly, 2008.

I Haskell in Industry and Open Source:
www.haskell.org/haskellwiki/Haskell in industry

264/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

A Plea for Functional Programming

...even though the titles of:

I Philip Wadler. Why no one uses Functional Languages.
ACM SIGPLAN Notices 33(8):23-27, 1998.

I Philip Wadler. An angry half-dozen. ACM SIGPLAN
Notices 33(2):25-30, 1998.

might suggest the opposite, Philip Wadler’s lamentation is
only an apparent one and much more an impassioned

I plea for functional programming

in the real world summarizing a number of very general ob-
stacles preventing good or even superior ideas also in the field
of programming to make their way into mainstream practices
easily and fast.

265/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

More Pleas for Functional Programming
...in and for the real world:

I Konrad Hinsen. The Promises of Functional Program-
ming. Computing in Science and Engineering 11(4):
86-90, 2009.

I Konstantin Läufer, Geoge K. Thiruvathukal. The Promi-
ses of Typed, Pure, and Lazy Functional Programming:
Part II. Computing in Science and Engineering 11(5):
68-75, 2009.

I Yaron Minsky. OCaml for the Masses. Communications
of the ACM, 54(11):53-58, 2011.

I Neal Ford. Functional Thinking: Why Functional Program-
ming is on the Rise. IBM developerWorks, 10 pages, 2013.

and quite recently:

I Neil Savage. Using Functions for Easier Programming.
Communications of the ACM 61(5):29-30, 2018.

266/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Recall Edsger W. Dijkstra’s Prediction

The clarity and economy of expression that the language
of functional programming permits is often very impressive,

and, but for human inertia, functional programming can
be expected to have a brilliant future.∗)

Edsger W. Dijkstra (11.5.1930-6.8.2002)

1972 Recipient of the ACM Turing Award

∗) Quote from: Introducing a course on calculi. Announcement of a

lecture course at the University of Texas at Austin, 1995.

267/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

In the Words of Simon Peyton Jones

When the limestone of
imperative programming has worn away,

the granite of functional programming
will be revealed underneath.

Simon Peyton Jones

268/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

In the Words of John Carmack

Sometimes, the elegant implementation is a function.
Not a method. Not a class. Not a framework.

Just a function.

John Carmack

269/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Chapter 20.4

References, Further Reading

270/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Chapter 20: Basic Reading (1)

Neal Ford. Functional Thinking: Why Functional Program-
ming is on the Rise. IBM developerWorks, 10 pages, 2013.
https://www.ibm.com/developerworks/java/library/

j-ft20/j-ft20-pdf.pdf

John Hughes. Why Functional Programming Matters.
Computer Journal 32(2):98-107, 1989.

John Hughes. Why Functional Programming Matters.
Invited Keynote, Bangalore, 2016.
https://www.youtube.com/watch?v=XrNdvWqxBvA.

Konrad Hinsen. The Promises of Functional Programming.
Computing in Science and Engineering 11(4):86-90, 2009.

271/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Chapter 20: Basic Reading (2)

Konstantin Läufer, George K. Thiruvathukal. The Promi-
ses of Typed, Pure, and Lazy Functional Programming:
Part II. Computing in Science and Engineering
11(5):68-75, 2009.

David A. Turner. Total Functional Programming. Journal
of Universal Computer Science 10(7):751-768, 2004.

Yaron Minsky. OCaml for the Masses. Communications of
the ACM 54(11):53-58, 2011.

Neil Savage. Using Functions for Easier Programming.
Communications of the ACM 61(5):29-30, 2018.

Jerzy Karczmarczuk. Scientific Computation and Func-
tional Programming. Computing in Science and Engi-
neering 1(3):64-72, 1999.

272/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Chapter 20: Basic Reading (3)

Philip Wadler. An angry half-dozen. ACM SIGPLAN Noti-
ces 33(2):25-30, 1998.

Philip Wadler. Why no one uses Functional Languages.
ACM SIGPLAN Notices 33(8):23-27, 1998.

273/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Chapter 20: Selected Advanced Reading (1)
John W. Backus. Can Programming be Liberated from the
von Neumann Style? A Functional Style and its Algebra of
Programs. Communications of the ACM 21(8):613-641,
1978.

Urban Boquist. Code Optimization Techniques for Lazy
Functional Languages. PhD thesis, Chalmers University of
Technology, 1999.

Bryan O’Sullivan, John Goerzen, Don Stewart. Real World
Haskell. O’Reilly, 2008. (Chapter 25, Profiling and Optimi-
zation)

Marcos Viera, S. Doaitse Swierstra, Wouter S. Swierstra.
Attribute Grammars fly First Class: How do we do Aspect
Oriented Programming in Haskell. In Proceedings of the
14th ACM SIGPLAN Conference on Functional Program-
ming (ICFP 2009), 245-256, 2009.

274/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

20.1

20.2

20.3

20.4

Concluding
Note

Assignment

Chapter 20: Selected Advanced Reading (2)

Atze Dijkstra, Jeroen Fokker, S. Doaitse Swierstra. The
Architecture of the Utrecht Haskell Compiler. In Procee-
dings of the 2nd ACM SIGPLAN Symposium on Haskell
(Haskell 2009), 93-104, 2009.

Atze Dijkstra, Jeroen Fokker, S. Doaitse Swierstra. UHC
Utrecht Haskell Compiler, 2009. www.cs.uu.nl/wiki/UHC.

Greg Michaelson. Programming Paradigms, Turing Com-
pleteness and Computational Thinking. The Art, Science,
and Engineering of Programming 4(3), Article 4, 21 pages,
2020.

Philip Wadler. The Essence of Functional Programming. In
Conference Record of the 19th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL’92), 1-14, 1992.

275/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Concluding Note

...for additional information and details refer to

I full course notes

available in TUWEL and at the homepage of the course at:

http:://www.complang.tuwien.ac.at/knoop/

ffp185A05 ss2021.html

276/277

Lecture 7

Detailed
Outline

Chap. 17

Chap. 18

Part VI

Chap. 19

Chap. 20

Concluding
Note

Assignment

Assignment for 14-25 June 2021

...preparing the project demos for the period 14-25 June 2021 plus inde-
pendent study of Part V, Chapters 17 and 18, Part VI, Chapters 19 and
20 and of Central and Control Questions VII and VIII for self-assessment
and final questions for being asked and discussed alongside the demos.

Lecture, Flipped Classroom Topic Lecture Topic Flip. Classr.

P. I, Ch. 1
Thu, 03/04/2021, 4.15-6.00 pm

P. II, Ch. 2
n.a. / Prel. Mtg.

.

Thu, 04/22/2021, 4.15-6.00 pm P. III, Ch. 5, 6 P. IV, Ch. 12, 13

Thu, 04/29/2021, 4.15-6.00 pm P. V, Ch. 15, 16 P. III, Ch. 5, 6

P. V, Ch. 17, 18
Thu, 05/20/2021, 4.15-6.00 pm

P. VI, Ch. 19, 20
P. V, Ch. 15, 16

06/14/2021 – 06/25/2021 All Parts,
(2 to 3 afternoon sessions)

Project Demos
All Chapters

277/277

	Lecture 7
	Detailed Outline
	17 Pretty Printing
	17.1 Motivation
	17.2 The Simple Pretty Printer
	17.3 The Prettier Printer
	17.4 The Prettier Printer Code Library
	17.5 Summary
	17.6 References, Further Reading

	18 Functional Reactive Programming
	18.1 Motivation
	18.2 An Imperative Robot Language
	18.3 Robots on Wheels
	18.4 In Conclusion
	18.5 References, Further Reading

	Part VI Extensions, Perspectives
	19 Extensions
	19.1 Parallelism in Functional Languages
	19.2 Haskell for `Real World' Programming
	19.3 References, Further Reading

	20 Conclusions, Perspectives
	20.1 Research Venues, Research Topics, and More
	20.2 Programming Contest
	20.3 In Conclusion
	20.4 References, Further Reading

	Concluding Note
	Assignment

