
Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

Concluding
Note

Assignment

Fortgeschrittene funktionale

Programmierung
LVA 185.A05, VU 2.0, ECTS 3.0

SS 2021

(Stand: 15.04.2021)

Jens Knoop

Technische Universität Wien
Information Systems Engineering

Compilers and Languages

compilers
languages

1/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

Concluding
Note

Assignment

Lecture 4

Part IV: Advanced Language Concepts

– Chapter 12: Monads

+ Chap. 12.8: Recommended Reading: Basic, Advanced

– Chapter 13: Arrows

+ Chap. 13.7: Recommended Reading: Basic, Advanced

2/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

Concluding
Note

Assignment

Outline in more Detail (1)

Part IV: Advanced Language Concepts

I Chap. 12: Monads

12.1 Motivation
12.2 The Type Constructor Class Monad
12.3 Syntactic Sugar: The do-Notation
12.4 Monad Examples

12.4.1 The Identity Monad
12.4.2 The List Monad
12.4.3 The Maybe Monad
12.4.4 The Either Monad
12.4.5 The Map Monad
12.4.6 The State Monad
12.4.7 The Input/Output Monad

12.5 Monadic Programming
12.5.1 Folding Trees
12.5.2 Numbering Tree Labels
12.5.3 Renaming Tree Labels

3/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

Concluding
Note

Assignment

Outline in more Detail (2)

I Chap. 12: Monads (cont’d)
12.6 Monad-Plusses

12.6.1 The Type Constructor Class MonadPlus
12.6.2 The List Monad-Plus
12.6.3 The Maybe Monad-Plus

12.7 Summary
12.8 References, Further Reading

I Chap. 13: Arrows

13.1 Motivation
13.2 The Type Constructor Class Arrow
13.3 The Map Arrow
13.4 Application: Modelling Electronic Circuits
13.5 An Update on the Haskell Type Class Hierarchy
13.6 Summary
13.7 References, Further Reading

4/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12

Monads

5/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.1

Motivation

6/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Monad: The Mystic Type Constructor Class

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

...

...is there any reason for the mystic aura around monads?

Compare monad with other type constructor classes:

class Functor f where

fmap :: (a -> b) -> f a -> f b

class (Functor f) => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

7/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Monad: The Mystic Type Constructor Class

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

(>>) :: m a -> m b -> m b

fail :: String -> m a

c >> k = c >>= \ -> k

fail s = error s

For comparison repeated:

class Functor f where

fmap :: (a -> b) -> f a -> f b

class (Functor f) => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

8/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Does the Name Itself

...give reason for a kind of mysticism?

Monad, derived from Greek monas, means:

– unit, unity (in German: Eins, Einheit).

9/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Does the Usage of Monads

...(in other fields) give reason for a kind of mysticism?

10/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Monads in Philosophy

Gottfried Wilhelm Leibniz (∗ 1646 in Leipzig; † 1716 in Hanno-
ver) used the monad notion as a counterpart of

– ‘atom’ denoting just as atom ‘something indivisable’

to ‘solve’ (more accurate possibly: tackle) the so-called

– body-soul problem (in German: Leib-Seele-Problem)

evolving from the body-soul dualism in the the classical formu-
lation of René Descartes (∗ 1596 in La Haye 50 km south of
Tours, today Descartes; † 1650 in Stockholm).

11/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Monads in Category Theory

Eugenio Moggi introduced the monad notion to

– category theory

and used it for describing the

– semantics of programming languages.

in the realm of

– programming languages theory.

Eugenio Moggi. Computational Lambda Calculus and Mo-
nads. In Proceedings of the 4th Annual IEEE Symposium
on Logic in Computer Science (LICS’89), 14-23, 1989.

12/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Monads in Philosophy and Category Theory
Monads in Leibniz’ Philosophy:

Definition (Gottfried Wilhelm Leibniz, 1714)
[Monadology, Paragraph 1]: The monad we want to talk about
here is nothing else as a simple substance (German: Substanz),
which is contained in the composite matter (German: Zusammen-
gesetztes); simple means as much as: to be without parts.

Monads in Category Theory (cf. Saunders Mac Lane, 1971):

Definition (Eugenio Moggi, 1989)
[LICS’89]: A monad over a category C is a triple (T , η, µ), where
T : C → C is a functor, η : IdC → T and µ : T 2 → T are natural
transformations and the following equations hold:

µTA;µA = T (µa);µA
ηTA;µA = idTA = T (ηA);µA

...“a monad is a monoid in the category of endofunctors.”
13/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Monads in Functional Programming

...the monad notion became particularly popular in the field of
functional programming (Philip Wadler, 1992) because (Has-
kell-style) monads

– allow to introduce some useful aspects of imperative
programming such as sequencing into functional pro-
gramming

– are well suited to smoothly integrate input/output into
functional programming, as well as many other program-
ming tasks and domains

– provide a suitable interface between functional program-
ming and programming paradigms with side effects, in
particular, imperative and object-oriented programming

...without breaking the functional paradigm!

14/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

These Capabilities let Monads
...appear to be a Suisse Knife of Functional Programming!

Monadic programming seems/is perfect for problems involving:

– Global state
– Updating data during computation is often simpler than

making all data dependencies explicit (the state monad).

– Huge data structures
– No need for replicating a data structure that is not nee-

ded otherwise.

– Exception and error handling
– The Maybe monad.

– ...

– Side-effects, explicit sequencing and evaluation orders
– Canonical scenario: Input/output operations (the IO

monad).
15/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Good to Know

...the monad notion in functional programming lost its links to
those in philosophy and category theory (almost) completely if
there have been ever any tied ones, and hence, everything
which might or might be considered a mystery or a miracle.

Rather than introducing a mystery, monads and monadic pro-
gramming close a ‘functional gap’ between

– function application

– sequential function composition

– functorial mapping

16/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Comparing Functorial and Monadic Mapping

I Functorial mapping:

fmap :: (Functor f) => (a -> b) -> f a -> f b

fmap k c = ... “(unpack, map, pack)“

(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b

(<*>) k c = ... “(unpack, unpack, map, pack)“

I Monadic mapping and sequencing:

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

(>>=) c k = ... “(unpack, map, repeat >>=)“

17/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Why and How Monadic Sequencing? (1)
The associativity of (>>=) allows writing

(((((c >>= k) >>= k1) >>= k2) >>= k3) >>= k4)

more concisely:

c >>= k >>= k1 >>= k2 >>= k3 >>= k4

Double-checking types yields:

c >>= k >>= k1 >>= k2 >>= k3 >>= k4︷ ︸︸ ︷
:: m a

︷ ︸︸ ︷
:: a -> m b

︷ ︸︸ ︷
:: b -> m c

︷ ︸︸ ︷
:: c -> m d

︷ ︸︸ ︷
:: d -> m e

︷ ︸︸ ︷
:: e -> m g

︷ ︸︸ ︷
:: m b︷ ︸︸ ︷

:: m c︷ ︸︸ ︷
:: m d︷ ︸︸ ︷

:: m e︷ ︸︸ ︷
:: m g

18/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Why and How Monadic Sequencing? (2)
c >>= k >>= k1 >>= k2 >>= k3 >>= k4 :: m g︷ ︸︸ ︷

:: m a
︷ ︸︸ ︷
:: a -> m b

︷ ︸︸ ︷
:: b -> m c

︷ ︸︸ ︷
:: c -> m d

︷ ︸︸ ︷
:: d -> m e

︷ ︸︸ ︷
:: e -> m g

c >>= k︷ ︸︸ ︷
:: m a

︷ ︸︸ ︷
:: a -> m b︸ ︷︷ ︸
c1 >>= k1︷ ︸︸ ︷

:: m b
︷ ︸︸ ︷
:: b -> m c︸ ︷︷ ︸
c2 >>= k2︷ ︸︸ ︷

:: m c
︷ ︸︸ ︷
:: c -> m d︸ ︷︷ ︸
c3 >>= k3︷ ︸︸ ︷

:: m d
︷ ︸︸ ︷
:: d -> m e︸ ︷︷ ︸
c4 >>= k4︷ ︸︸ ︷

:: m e
︷ ︸︸ ︷
:: e -> m g︸ ︷︷ ︸
c5︷ ︸︸ ︷

:: m g

19/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Why and How Monadic Sequencing? (3)

c >>= k >>= k1 >>= k2 >>= k3 >>= k4 :: m g︷ ︸︸ ︷
:: m a

︷ ︸︸ ︷
:: a -> m b

︷ ︸︸ ︷
:: b -> m c

︷ ︸︸ ︷
:: c -> m d

︷ ︸︸ ︷
:: d -> m e

︷ ︸︸ ︷
:: e -> m g

c >>= k >>= k1 >>= k2 >>= k3 >>= k4

->> c1 >>= k1 >>= k2 >>= k3 >>= k4

->> c2 >>= k2 >>= k3 >>= k4

->> c3 >>= k3 >>= k4

->> c4 >>= k4

->> c5 :: m g

20/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Why so Differently?

...why do functional composition and monadic sequencing look
so differently?

Functional Composition:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(g . f) x = g (f x) -- (g . f) = \y -> g (f y)

Monadic Sequencing:

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

(>>=) c k = k “unpack c“ -- pseudo code

Or (using infix notation):

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

c >>= k = k “unpack c“ -- pseudo code

21/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

This Different Appearance is an Artifact!
The standard operator (.) for function composition:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(g . f) x = g (f x)

...enables sequences of function applications applied R2L:

(k . (. . . . (h . (g . f)). . .)) x

->> k (...(h (g (f x))))...)

We can define a dual operator (;) for function composition:

(;) :: (a -> b) -> (b -> c) -> (a -> c)

(f ; g) = (g . f)

...enabling sequences of function applications applied L2R:

((. . .((f ; g) ; h) ; . . .) ; k) x

->> k (...(h (g (f x))))...)

22/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Operator (;)

...suggests introducing another operator (>>;):

(>>;) :: a -> (a -> b) -> b

x >>; f = f x

enabling also sequences of function applications applied L2R:

(. . .(((x >>; f) >>; f1) >>; f2) >>; . . . >>; fn)

=̂ x >>; f >>; f1 >>; f2 >>; . . . >>; fn

...where a value x is fed to the sequence of functions which are
then applied one after the other to x (resp. its resulting
images).

23/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Opposing and Comparing

...non-monadic (>>;) and monadic (>>=) sequencing:

1. Ordinary Functional Sequencing from left to right:

(>>;) :: a -> (a -> b) -> b

x >>; f = f x

...enables L2R application sequences of the form:

x >>; f >>; f1 >>; f2 >>; f3 >>; . . . >>; fn

2. Monadic Functional Sequencing from left to right:

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

c >>= k = k “unpack c“

...enables L2R application sequences of the form:

c >>= k >>= k1 >>= k2 >>= k3 >>= ... >>= kn

...reveals: There is no mystery at all!

24/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Summing up
...the difference between (>>;) and (>>=) is a technical one:

(>>;) :: a -> (a -> b) -> b

x >>; f = f x

– The second argument f of (>>;) can directly be applied
to its first argument x.

– This means, (>>;) is parametric polymorphic.

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

c >>= k = k “unpack c“

– The first argument c of (>>=) needs to be unpacked
before its second argument k can be applied to it.

– The unpacking of the first argument is type specific.
– Hence, (>>=) can only be ad hoc polymorphic, and must

be a member function of some type (constructor) class.
– This type constructor class is (called) Monad.

...again, except of this difference, no mystery!
25/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.2

The Type Constructor Class Monad

26/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Type Constructor Class Monad
...monads are instances of the type constructor class Monad

obeying the monad laws:

Type Constructor Class Monad

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

(>>) :: m a -> m b -> m b

fail :: String -> m a

c >> k = c >>= \ -> k

fail s = error s

Monad Laws

return x >>= f = f x (ML1)

c >>= return = c (ML2)

c >>= (\x -> (f x) >>= g) = (c >>= f) >>= g (ML3)

27/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Note
...monads must be 1-ary type constructors (like functors).

Intuitively, the monad laws require from (proper) monad in-
stances:

– return is unit of (>>=), i.e., it must pass its argument
without any other effect (just as function pure of type
constructor class Applicative) (ML1, ML2).

– (>>=) is associative, i.e., sequencings given by (>>=)

must not depend on how they are bracketed (ML3).

Programmer obligation

– Programmers must prove that their instances of Monad
satisfy the monad laws.

Note: Sequence operator (>>=): Read as bind (Paul Hudak) or

then (Simon Thompson). Sequence operator (>>): Derived from

(>>=), read as sequence (Paul Hudak).
28/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Type Constructor Class Monad in more Detail
class Monad m where

-- ‘Primary’ functions (relevant for every monad)

return :: a -> m a -- Value ‘lifting:’ Ma-

-- king a monadic value

(>>=) :: m a -> (a -> m b) -> m b -- Sequencing

-- ‘Secondary’ functions (relevant for some monads)

fail :: String -> m a -- Error handling

(>>) :: m a -> m b -> m b -- Simplified sequencing

-- Default implementations

fail s = error s -- Failing computation:︷ ︸︸ ︷
:: String

︷ ︸︸ ︷
:: String -- Outputting s as errror︷ ︸︸ ︷

:: m a
︷ ︸︸ ︷
:: m a -- error message

c >> k = c >>= \ -> k︷ ︸︸ ︷
:: m a

︷ ︸︸ ︷
:: m b

︷ ︸︸ ︷
:: m a

︷ ︸︸ ︷
:: a -> m b︷ ︸︸ ︷

:: m b
︷ ︸︸ ︷

:: m b 29/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Monad Laws in more Detail

...with added type information:

return x >>= f = f x (ML1)︷ ︸︸ ︷
:: a -> m a

︷︸︸︷
:: a

︷ ︸︸ ︷
:: a -> m b

︷ ︸︸ ︷
:: a -> m b

︷︸︸︷
:: a︷ ︸︸ ︷

:: m a
︷ ︸︸ ︷

:: m b︷ ︸︸ ︷
:: m b

c >>= return = c (ML2)︷ ︸︸ ︷
:: m a

︷ ︸︸ ︷
:: a -> m a

︷ ︸︸ ︷
:: m a︷ ︸︸ ︷

:: m a

30/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Associativity of (>>)

Lemma 12.2.2 (Associativity of (>>))

Monotonicity of (>>=) for some monad m implies that the
default implementation of (>>) is associative, too, i.e.:

c1 >> (c2 >> c3) = (c1 >> c2) >> c3

Compared with the associativity statement of Lemma 12.2.2
for (>>), the left-hand side of (ML3) requiring the associa-
tivity of (>>=) looks ‘ugly:’

c >>= (\x -> (f x) >>= g) = (c >>= f) >>= g (ML3)

To improve on this, we introduce a new operator (>@>):

(>@>) :: Monad m => (a -> m b) -> (b -> m c)

-> (a -> m c)

f >@> g = \x -> (f x) >>= g

31/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Monad Laws in Terms of (>@>)

...using (>@>), the monad laws, especially the associativity
requirement, look as natural and obvious as for (>>).

Lemma 12.2.3
If (>>=) and return of some monad m are associative and
unit of (>>=), respectively, then we have:

return >@> f = f (ML1′)

f >@> return = f (ML2′)

(f >@> g) >@> h = f >@> (g >@> h) (ML3′)

Intuitively

– return is unit of (>@>) (ML1′, ML2′).

– (>@>) is associative (ML3′).

32/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

A Law linking Classes Monad and Functor

...type constructors, which shall be proper instances of both
Monad and Functor must satisfy law MFL:

fmap g xs = xs >>= return . g (MFL)

(= do x <- xs; return (g x))

(regarding the do-notation, refer to Chapter 12.3.)

33/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Selected Utility Functions for Monads (1)

(=<<) :: Monad m => (a -> m b) -> m a -> m b

f =<< x = x >>= f

sequence :: Monad m => [m a] -> m [a]

sequence = foldr mcons (return [])

where mcons p q = do l <- p

ls <- q

return (l:ls)

sequence_ :: Monad m => [m a] -> m ()

sequence_ = foldr (>>) (return ())

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

mapM f as = sequence (map f as)

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()

mapM_ f as = sequence_ (map f as)

34/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Selected Utility Functions for Monads (2)

mapF :: Monad m => (a -> b) -> m [a] -> m [b]

mapF f x = do v <- x; return (f v)

-- equals map on lists, i.e., for picking [] as m

joinM :: Monad m => m (m a) -> m a

joinM x = do v <- x; v

-- equals concat on lists, i.e., for picking [] as m

...and many more (see e.g., library Monad).

Lemma 12.2.4
1. mapF (f . g) = mapF . mapF g

2. joinM return = joinM . mapF return

3. joinM return = id

35/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.3

Syntactic Sugar: The do-Notation

36/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The do-Notation

...the monadic operations (>>=) and (>>) allow very much as
functional composition (.)

– to explicitly specify the sequencing of (fitting) operations.

Both functional and monadic sequencing introduce

– an imperative flavour into functional programming.

The syntactic sugar of the so-called

– do-notation

replacing (>>=) and (>>) allows to express this imperative
flavour of monadic sequencing syntactically even more com-
pelling and concise.

37/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Relating Monadic Operations and do-Notation

...four conversion rules allow converting sequences of monadic
operations composed of

– (>>=) and (>>)

into equivalent (‘<=>’) sequences of

– do-blocks

and vice versa.

38/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Intuitively
Recall:

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

Then:

dc v >>= f ->> f v︷ ︸︸ ︷
:: m a

︷ ︸︸ ︷
:: (a -> m b)

︷ ︸︸ ︷
:: m b

" <=> do x <- dc v; y <- f x; return y "︷︸︸︷
:: a

︷ ︸︸ ︷
:: m a

︷︸︸︷
:: b

︷ ︸︸ ︷
:: m b

︷ ︸︸ ︷
:: m b

dc v >> dc′ v′ ->> dc v >>= -> dc′ v′︷ ︸︸ ︷
:: m a

︷ ︸︸ ︷
:: m b

︷ ︸︸ ︷
:: m a

︷ ︸︸ ︷
:: (a -> m b)

" <=> do _ <- dc v; y <- dc′ v′; return y "︷︸︸︷
:: a

︷ ︸︸ ︷
:: m a

︷︸︸︷
:: b

︷ ︸︸ ︷
:: m b

︷ ︸︸ ︷
:: m b

with dc, dc′ some data constructors of type constructor m.
39/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Conversion Rules

(R1) do e <=> e

(R2) do e1;e2;...;en <=> e1 >>= \ -> do e2;...;en

<=> e1 >> do e2;...;en

(R3) do let decl_list;e2;...;en <=> let decl_list

in do e2;...;en

(R4) do pattern <- e1;e2;...;en <=>

let ok pattern = do e2;...;en

ok _ = fail "..."

in e1 >>= ok

...and as a special case of the ‘pattern’ rule (R4):

(R4′) do x <- e1;e2;...;en <=>

e1 >>= \x -> do e2;...;en

40/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Notes on the Conversion Rules

Intuitively

– (R2): If the return value of an operation is not needed, it
can be moved to the front.

– (R3): A let-expression storing a value can be placed in
front of the do-block.

– (R4): Return values bound to a pattern require a suppor-
ting function that handles the pattern matching and the
execution of the remaining operations, or that calls fail,
if the pattern matching fails.

Note: It is rule (R4) which necessitates fail as a mona-
dic operation in Monad. Overwriting this operation allows
a monad-specific exception and error handling.

41/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Illustrating the do-Notation

...using the monad laws as example.

A) The monad laws using (>>=) and (>>):

return a >>= f = f a (ML1)

c >>= return = c (ML2)

c >>= (\x -> (f x) >>= g) = (c >>= f) >>= g (ML3)

B) The monad laws using do-notation:

do x <- return a; f x = f a (ML1)

do x <- c; return x = c (ML2)

do x <- c; y <- f x; g y =

do y <- (do x <- c; f x); g y (ML3)

42/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Semicolons vs. Linebreaks in do-Notation
B) do-notation in ‘one’ line (w/ ‘;’, no linebreaks):

do x <- return a; f x = f a (ML1)

do x <- c; return x = c (ML2)

do x <- c; y <- f x; g y =

do y <- (do x <- c; f x); g y (ML3)

C) do-notation in ‘several’ lines (w/ linebreaks, no ‘;’):

do x <- return a

f x = f a (ML1)

do x <- c

return x = c (ML2)

do x <- c

y <- f x

g y = do y <- (do x <- c

f x)

g y (ML3)
43/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.4

Monad Examples

44/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Predefined Monads in Haskell

We consider a selection of predefined monads:

– Identity monad

– List monad

– Maybe monad

– Map monad

– State monad

– Input/Output monad

...but there are many more of them predefined in Haskell:

– Writer monad

– Reader monad

– Failure monad

– ...

45/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

As a Rule of Thumb
...when making a 1-ary type constructor a monad, then:

– (>>=) will be defined to unpack the value of the first ar-
gument, map the second argument over it, and return the
packed result this yields.

– return will be defined in the most straightforward way to
lift the argument value to its monadic counterpart.

– (>>) and fail are usually not to be implemented afresh.
Usually, their default implementations provided in type
constructor class Monad are just fine.

If the default implementations of (>>) and fail are
used, this means for

– (>>): the first argument is evaluated and dropped, the
second argument is evaluated and returned as result
(makes sense for some monads like the IO-monad).

– fail: the computation stops by calling error with
some appropriate error message.

46/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.4.1

The Identity Monad

47/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Identity Monad
...making the 1-ary type constructor Id an instance of Monad
(conceptually the simplest monad):

newtype Id a = Id a

instance Monad Id where

(Id x) >>= f = f x

return = Id

Note:

– Id: 1-ary type constructor, i.e., if a is a type variable,
then Id a denotes a type.

– Id: 1-ary data (or value) constructor, i.e., if x :: a,
then Id x is a value of type Id a: Id x :: Id a.

– (>>), fail implicitly defined by default implementations.
– (>>=) :: Id a -> (a -> Id b) -> Id b

return :: a -> Id a

(>>) :: Id a -> Id b -> Id b
48/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Proof Obligation: The Monad Laws

Lemma 12.4.1.1 (Soundness of Identity Monad)

The Id instance of Monad satisfies the three monad laws ML1,
ML2, and ML3.

...Id is thus a proper instance of Monad, the so-called identity
monad.

49/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Identity Monad Operations in more Detail
The monad operations recalled:

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

v >>= k = ... :: m b

return :: (Monad m) => a -> m a

return v = ... :: m a

The instance declaration for Id with added type information:

instance Monad Id where

Id x >>= f = f x -- yields an (Id b)-value︷ ︸︸ ︷
:: Id a

︷ ︸︸ ︷
:: a -> Id b

︷ ︸︸ ︷
:: Id b

return x = Id x -- yields an (Id a)-value︷︸︸︷
:: a

︷ ︸︸ ︷
:: Id a

Recall the overloading of Id (newtype Id a = Id a):

– Id followed by x: Id is data (or value) constructor (Id =̂ Id).

– Id followed by a or b: Id is type constructor (Id =̂ Id).
50/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Note

Intuitively

– The identity monad maps a type to itself.

– It represents the trivial state, in which no actions are
performed, and values are returned immediately.

– It is useful because it allows to specify computation
sequences on values of its type (cf. Chapter 12.5.1)

Moreover

– The operation (>@>) boils down to forward composition
of functions (>.>) (=̂ (>>;)) for the identity monad:

(>.>) :: (a -> b) -> (b -> c) -> (a -> c)

g >.> f = f . g = g ; f

– Forward composition of functions (>.>) is associative
with unit element id.

51/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.4.2

The List Monad

52/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The List Monad
...making the 1-ary type constructor [] an instance of Monad:

instance Monad [] where

xs >>= f = concat (map f xs) -- concat, map:

return x = [x] -- Standard Prelude

fail s = []

Note:

– []: 1-ary type constructor, i.e., if a is a type variable,
then [a] (=̂ [] a) denotes a type.

– []: 1-ary data (or value) constructor, i.e., if x :: a,
then [x] is a value of type [a]: [x] :: [a]; in particu-
lar, [] is a value, the empty list, i.e., [] :: [a]

– (>>) is implicitly defined by its default implementation;
the default implementation of fail is overwritten.

– (>>=) :: [] a -> (a -> [] b) -> [] b

return :: a -> [] a

(>>) :: [] a -> [] b -> [] b 53/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Proof Obligation: The Monad Laws

Lemma 12.4.2.1 (Soundness of List Monad)

The [] instance of Monad satisfies the three monad laws ML1,
ML2, and ML3.

...[] is thus a proper instance of Monad, the so-called identity
monad.

For convenience, we recall from the Standard Prelude:

concat :: [[a]] -> [a]

concat lss = foldr (++) [] lss

concat [[1,2,3],[4],[5,6]] ->> [1,2,3,4,5,6]

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x : xs) = f x : map f xs

map (*2) [1,2,3] ->> [2,4,6]
54/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The List Monad Operations in more Detail
The monad operations recalled:

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

v >>= k = ... :: m b

return :: (Monad m) => a -> m a

return v = ... :: m a

fail :: (Monad m) => String -> m a

fail s = ... :: m a

The instance declaration for [] with added type information:

instance Monad [] where

xs >>= f = concat (map f xs) -- yields a [b]-list︷ ︸︸ ︷
:: [] a

︷ ︸︸ ︷
:: a -> [] b

︷ ︸︸ ︷
:: [] ([] b)︷ ︸︸ ︷
:: [] b

return x = [x] -- yields the singleton list [x]︷︸︸︷
:: a

︷ ︸︸ ︷
:: [] a

fail s = [] -- yields the empty list []︷ ︸︸ ︷
:: String

︷ ︸︸ ︷
:: [] a

55/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Example: Applying the Monad Operations

ls = [1,2,3] :: [] Int

f = \n -> [(n,odd(n))] :: Int -> [] (Int,Bool)

g = \n -> [x*n | x <- [1.5,2.5,3.5]] :: Int -> [] Float

h = \n -> [1..n] :: Int -> [] Int

h 3 >>= f

->> ls >>= f

->> concat [[(1,True)], [(2,False)], [(3,True)]]

->> [(1,True),(2,False),(3,True)] :: [] (Int,Bool)

h 3 >>= g

->> ls >>= g

->> concat [[x*n | x <- [1.5,2.5,3.5]] | n <- [1,2,3]]

->> concat [[1.5*1,2.5*1,3.5*1], [1.5*2,2.5*2,3.5*2],

[1.5*3,2.5*3,3.5*3]]

->> concat [[1.5,2.5,3.5], [3.0,5.0,7.0], [4.5,7.5,10.5]]

->> [1.5,2.5,3.5,3.0,5.0,7.0,4.5,7.5,10.5] :: [] Float

56/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Example in More Detail
The monad operations recalled:

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

v >>= k = ... :: m b

return :: (Monad m) => a -> m a

return v = ... :: m a

fail :: (Monad m) => String -> m a

fail s = ... :: m a

The instance declaration for [] with added type information:

instance Monad [] where

xs >>= f = concat (map f xs) -- yields a [b]-list︷ ︸︸ ︷
:: [] a

︷ ︸︸ ︷
:: a -> [] b

︷ ︸︸ ︷
:: [] ([] b)︷ ︸︸ ︷
:: [] b

return x = [x] -- yields the singleton list [x]︷︸︸︷
:: a

︷ ︸︸ ︷
:: [] a

fail s = [] -- yields the empty list []︷ ︸︸ ︷
:: String

︷ ︸︸ ︷
:: [] a

Examples:

ls = [1,2,3] :: [] Int

f = \n -> [(n,odd(n))] :: Int -> [] (Int,Bool)

g = \n -> [x*n | x <- [1.5,2.5,3.5]] :: Int -> [] Float

h = \n -> [1..n] :: Int -> [] Int

h 3 >>= f ->> ls >>= f ->> concat [[(1,True)], [(2,False)], [(3,True)]]

->> [(1,True),(2,False),(3,True)] :: [] (Int,Bool)

h 3 >>= g ->> ls >>= g ->> concat [[x*n | x <- [1.5,2.5,3.5]] | n <- [1,2,3]]

->> concat [[1.5*1,2.5*1,3.5*1], [1.5*2,2.5*2,3.5*2], [1.5*3,2.5*3,3.5*3]]

->> concat [[1.5,2.5,3.5], [3.0,5.0,7.0], [4.5,7.5,10.5]]

->> [1.5,2.5,3.5,3.0,5.0,7.0,4.5,7.5,10.5] :: [] Float

57/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Reconsidering the List Monad Implementation

...the list monad could have equivalently been implemented by:

instance Monad [] where

(x:xs) >>= f = f x ++ (xs >>= f)

[] >>= f = []

return x = [x]

fail s = []

Recall: The operations (>>=) and return of the list monad
have types:

(>>=) :: [a] -> (a -> [b]) -> [b]

return :: a -> [a]

58/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

List Monad and List Comprehension
...the list monad and list comprehension are closely related:

do x <- [1,2,3]

y <- [4,5,6]

return (x,y)

->> [(1,4),(1,5),(1,6),

(2,4),(2,5),(2,6),

(3,4),(3,5),(3,6)]

In fact, the following expressions are equivalent:

Proposition 12.4.2.2
[(x,y) | x <- [1,2,3], y <- [4,5,6]] <=>

do x <- [1,2,3]

y <- [4,5,6]

return (x,y)

...list comprehension is syntactic sugar for monadic syntax!
59/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

List comprehension: Syntactic Sugar

...for monadic syntax.

We have:

Lemma 12.4.2.3
[f x | x <- xs] <=> do x <- xs; return (f x)

Lemma 12.4.2.4
[a | a <- as, p a] <=>

do a <- as; if (p a) then return a else fail ""

60/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Exercise 12.4.2.5

Prove by stepwise evaluation the equivalences stated in:

1. Proposition 12.4.2.2

2. Lemma 12.4.2.3

3. Lemma 12.4.2.4

61/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.4.3

The Maybe Monad

62/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Maybe Monad
...making the 1-ary type constructor Maybe a monad:

data Maybe a = Nothing | Just a

instance Monad Maybe where

(Just x) >>= k = k x

Nothing >>= k = Nothing

return = Just

fail s = Nothing

Note:

– (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

return :: a -> Maybe a

(>>) :: Maybe a -> Maybe b -> Maybe b

– The Maybe monad is useful for computation sequences
that can produce a result, but might also produce an
error.

63/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Proof Obligation: The Monad Laws

Lemma 12.4.3.1 (Soundness of Maybe Monad)

The Maybe instance of Monad satisfies the three monad laws
ML1, ML2, and ML3.

...Maybe is thus a proper instance of Monad, the so-called
maybe monad.

Recall that Maybe is also an instance of Functor:

instance Functor Maybe where

fmap f Nothing = Nothing

fmap f (Just x) = Just (f x)

Lemma 12.4.3.2 (MFL Soundness of Maybe Mo/Fu)

The Maybe instances of Monad and Functor satisfy law MFL
(of Chap. 12.2).

64/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Maybe Monad Operations in More Detail
The monad operations recalled:

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

v >>= k = ... :: m b

return :: (Monad m) => a -> m a

return v = ... :: m a

fail :: (Monad m) => String -> m a

fail s = ... :: m a

The instance declaration for Maybe with added type information:

instance Monad Maybe where

Just x >>= k = k x -- yields a Just-value︷ ︸︸ ︷
:: Maybe a

︷ ︸︸ ︷
:: a -> Maybe b

︷ ︸︸ ︷
:: Maybe b

Nothing >>= k = Nothing -- yields the Nothing-value︷ ︸︸ ︷
:: Maybe a

︷ ︸︸ ︷
:: a -> Maybe b

︷ ︸︸ ︷
:: Maybe b

return x = Just x -- yields the Just-value︷︸︸︷
:: a

︷ ︸︸ ︷
:: Maybe a

fail s = Nothing -- yields the empty list︷ ︸︸ ︷
:: String

︷ ︸︸ ︷
:: Maybe a

65/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Example: Error Handling: (1)

...or: How to compose functions with monadic value ranges.

Let f′, g′ be two functions of type:

f′ :: a -> b

g′ :: b -> c

Obviously, composing f′ and g′ sequentially is straightforward:

h′ :: a -> c

h′ = (g′ . f′)

h′ x ->> (g′ . f′) x ->> g′ (f′ x)

66/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Example: Error Handling (2)
If the computations of f′ and g′ can fail, this can be taken
care of by replacing f′ and g′ by two new functions f and g

embedding the computation into the Maybe type:

f :: a -> Maybe b -- f replaces f′

g :: b -> Maybe c -- g replaces g′

Unlike f′ and g′, however, f and g can not straightforwardly
be sequentially composed:

h :: a -> Maybe c -- "h = (g . f)":

h x = case (f x) of -- Composing f and g

Nothing -> Nothing -- requires nested

Just y -> case (g y) of -- case clauses

Nothing -> Nothing

Just z -> Just z

Though possible, the explicit nesting of cases to sequentially
compose f and g is inconvenient and tedious.

67/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Example: Error Handling (3)

Step 1: Hiding nestings.

...embedding f′ and g′ into the Maybe type gets a lot easier by
exploiting the monad property of Maybe: Using the monadic
sequencing operations for composing f and g allows:

h :: a -> Maybe c -- "h = (g . f)"

h x = f x >>= \y -> g y >>= \z -> return z

or, equivalently, using the do notation:

h :: a -> Maybe c -- "h = (g . f)"

h x = do y <- f x

z <- g y

return z

...the ‘nasty’ error checks are now hidden in the implemen-
tation of the bind operation (>>=) of the maybe monad.

68/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Example: Error Handling (4)

Step 2: Hiding the bind operation (>>=).

Note that the sequence of monad operations:

f x >>= \y -> g y >>= \z -> return z

can be simplified to:

f x >>= \y -> g y >>= \z -> return z

<=> (simplification by currying)

f x >>= \y -> g y >>= return

<=> (monad law for return)

f x >>= \y -> g y

<=> (simplification by currying)

f x >>= g

Hence, h x (“= g (f x)”) is equivalent to f x >>= g.
69/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Example: Error Handling (5)
...making use of this observation and introducing function:

composeM :: Monad m => (b -> m c) ->

(a -> m b) -> (a -> m c)

(g ‘composeM‘ f) x = f x >>= g

allows an even more pleasing notation for composing f and g:

h :: a -> Maybe c -- "h = (g . f)"

h = (g ‘composeM‘ f)

Hence, we get:

(g ‘composeM‘ f)

as the monadic notational counterpart of sequentially compo-
sing f′ and g′:

(g′ . f′)

70/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Example: Error Handling (6)

Overall: Using monadic sequencing

f x >>= g (or equivalently: (g ‘composeM‘ f) x)

for embedding the composition of f′ and g′ into the Maybe

type preserves the original syntactical form of composing f′

and g′:

(g′ . f′) x = g′ (f′ x)

in almost a 1-to-1 kind:

(g ‘composeM‘ f) x = f x >>= g

71/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.4.4

The Either Monad

72/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Exercise 12.4.4.1 The Either Monad

1. Make the type constructor (Either a) a monad.

2. Provide (most general) type information for the defining
equations of the monad operations (>>=), (>>), return,
and fail of (Either a).

3. Prove that (Either a) satisfies the monad laws.

4. Does your implementation of the (Either a) monad in-
stance and the implementation of the (Either a) func-
tor instance of Chapter 10.3.4 satisfy the law FML (of
Chap. 12.2)? Prove or provide a counter-example.

73/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.4.5

The Map Monad

74/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Map Monad
...making the 1-ary type constructor ((->) d) a monad:

instance Monad ((->) d) where

h >>= f = \x -> f (h x) x

return x = _ -> x

Note: (d for domain, r for range)

(>>=) :: ((->) d) r -> (r -> ((->) d) r′) -> ((->) d) r′

return :: r -> ((->) d) r

(>>) :: ((->) d) r -> ((->) d) r′ -> ((->) d) r′

Proof obligation: The monad laws

Lemma 12.4.5.1 (Soundness of Map Monad)

The ((->) d) instance of Monad satisfies the three monad
laws ML1, ML2, and ML3.

...((->) d) is thus a proper instance of Monad, the so-called
map monad.

75/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Example (w/ String, Int, (Bool,String) for d, r, r′, resp.) (1)

(>>=) :: ((->) d) r -> (r -> ((->) d) r′) -> ((->) d) r′

(=̂ (>>=) :: (d -> r) -> (r -> (d -> r′)) -> (d -> r′))

h >>= f = \x -> f (h x) x

h_length :: ((->) String) Int

(=̂ h_length :: String -> Int)

h_length = length

f_cp_p :: Int -> ((->) String) ((,) Bool String)

(=̂ f_cp_p :: Int -> (String -> (Bool,String))

f_cp_p n s = (,) (mod n 2 == 1) (copy n s)

where copy n s = if n > 0 then s ++ " " ++ copy (n-1) s else ""

g :: ((->) String) ((,) Bool String)

(=̂ g :: String -> (Bool,String))

g = \s -> f_cp_p (h_length s) s

(=̂ g s = (mod (length s) 2 == 1,copy (length s) s))

h_length >>= f_cp_p

->> (\x -> f_cp_p (h_length x) x) (= g)

(h_length >>= f_cp_p) "Fun"

->> . . . ->> (True,"Fun Fun Fun")

76/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Example (w/ String, Int, (Bool,String) for d, r, r′, resp.) (2)

...in more detail:

h_length >>= f_cp_p

->> (\x -> f_cp_p (h_length x) x)

= g (:: String -> (Bool,String))

(h_length >>= f_cp_p) "Fun"

->> (\x -> f_cp_p (h_length x) x) "Fun"

= g "Fun"

->> (mod (length "Fun") 2 == 1,copy (length "Fun") "Fun")

->> (mod 3 2 == 1,copy 3 "Fun")

->> (True,"Fun Fun Fun") (:: (Bool,String))

77/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Example (w/ String, Int, (Bool,String) for d, r, r′, resp.) (3)

(>>=) :: ((->) d) r -> (r -> ((->) d) r′) -> ((->) d) r′

h >>= f = \x -> f (h x) x

return :: r -> ((->) d) r (=̂ return :: Int -> ((->) String) Int)

return x = _ -> x =̂ return :: Int -> (String -> Int))

return 0 = _ -> 0 (:: String -> Int)

return 0 >>= f_cp_p

->> \x -> f_cp_p ((return 0) x) x

->> \x -> f_cp_p (_ -> 0) x) x (:: String -> (Bool,String))

(return 0 >>= f_cp_p) "Fun"

->> (\x -> f_cp_p ((return 0) x) x) "Fun"

->> f_cp_p ((return 0) "Fun") "Fun"

->> f_cp_p ((_ -> 0) "Fun") "Fun"

->> f_cp_p 0 "Fun"

->> (mod 0 2 == 1,copy 0 "Fun")

->> (False,"") (:: (Bool,String))

(return 1 >>= f_cp_p) "Fun" ->> . . . ->> (True,"Fun")

(return 2 >>= f_cp_p) "Fun" ->> . . . ->> (False,"Fun Fun")

(return 3 >>= f_cp_p) "Fun" ->> . . . ->> (True,"Fun Fun Fun")
78/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Example (w/ String, Int for d, r, resp.) (4)

(>>=) :: ((->) d) r -> (r -> ((->) d) r′) -> ((->) d) r′

h >>= f = \x -> f (h x) x

return :: r -> ((->) d) r (=̂ return :: Int -> ((->) String) Int)

return x = _ -> x =̂ return :: Int -> (String -> Int))

return 3 = _ -> 3 (:: String -> Int)

h_length >>= return

->> \x -> return (h_length x) x

->> \x -> return (length x) x

->> \x -> (_ -> length x) x (:: String -> Int)

(h_length >>= return) "Fun"

->> (\x -> (return (h_length x) x)) "Fun"

->> return (h_length "Fun") "Fun"

->> return (length "Fun") "Fun"

->> return 3 "Fun"

->> (_ -> 3) "Fun"

->> 3 (:: Int)

79/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Exercise 12.4.5.2

1. Recall the monad operations:
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

v >>= k = ... :: m b

return :: (Monad m) => a -> m a

return v = ... :: m a

Add (most general) type information for the instance de-
claration of ((->) d):

instance Monad ((->) d) where

h >>= f = \x -> f (h x) x

return x = _ -> x

2. Evaluate stepwise:

2.1 (return 2 >>= f cp p) "Fun"

2.2 (h length >>= return) "Fun Prog"

2.3 (h length >>= return >>= f cp p) "Fun"

80/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.4.6

The State Monad

81/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Objective: Modelling Global State, Side-Effects

...by means of functions, so-called state transformers, which,
applied to some current state s yield a new state s′ together
with some additional result at the side.

Key: The state monad of an appropriate state type:

newtype State st a = St (st -> (st,a))

where

– State : 2-ary type constructor (bundling st and a).

– st, a: Type variables (concrete types inserted for st and
a are the actual state type of interest and the type of
some additional result of state transformers, resp.).

– St (st -> (st,a)): State values capsulating state
transformers mapping ‘old’ to ‘new’ states plus delivering
some additional result.

82/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

State Transformers

...map (or: transform) global (internal program) states of a
type st into (possibly modified) new states of the same type
st computing additionally a result of some type a.

In more detail:

State transformers are mappings m of type:

m :: st -> (st,a)

mapping states s :: st to pairs of (possibly modified result)
states s′ :: st and values x :: a:

m s ->> (s′ , x)︷ ︸︸ ︷
:: st

︷ ︸︸ ︷
:: st

︷︸︸︷
:: a

83/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The State Monad

...making the 1-ary type constructor (State st) resulting
from partially evaluating the 2-ary type constructor State

newtype (State st) a = St (st -> (st,a))

a monad:

instance Monad (State st) where

(St h) >>= f = St (\s -> let (s′,x) = h s

St f′ = f x

in f′ s′)

return x = St (\s -> (s,x))

Note: The sequence operation (>>) and fail inherit their
default implementations of type constructor class Monad.

84/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Stepwise developing bind operation (>>=) (1)

(>>=) :: (State st) a -> (a -> (State st) b) -> (State st) b

(St h) >>= f = St g

where g :: st -> (st,b)

⇒ g = "apply h, then apply f to h’s result" ⇐
wrt given maps h :: st -> (st,a)

f :: a -> (State st) b

where values of type (State st) b look like:

St k :: (State st) b with k :: st -> (st,b)

ensuring St g :: (State st) b is of type (State st) b

as required.

This might look confusing at first sight but we are well familar
with the pattern “apply h, then apply f to h’s result” from se-
quentially composing functions:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . h) x = f (h x)

Let us thus look into this pattern in more detail...
85/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Stepwise developing bind operation (>>=) (2)

Recall how two functions f and h are sequentially composed:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . h) x = f (h x)

The sequential composition (f . h) of f and h applies f to the
result yielded by h applied to x: This “apply f to h’s result” gets
even more obvious by introducing name y for the result h yields
applied to x and passing this name as argument to f:

(f . h) x = let y = h x

z = f y

in z

Note: y denotes the intermediate result yielded by h applied to x.

y as intermediate result is passed as argument to f yielding z,

which is already the result of sequentially composing f and h.
86/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Stepwise developing bind operation (>>=) (3)
The sequential composition (f . h) of f and h is itself a function: let’s
name it g. This gets obvious by defining (f . h) pointfree:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

f . h = g where g :: (a -> c)

g = \x -> let y = h x

z = f y

in z

Note: This definition is nothing else as the answer to asking how to
define the sequential composition (f . h) of two functions f and h we
could have started our considerations of (f . h) with:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

f . h = g

where g :: a -> c

⇒ g = "apply h, then apply f to h’s result" ⇐
wrt given maps h :: a -> b

f :: b -> c

where values of type c look like:

k :: c (with k w/out further inner structure)
87/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Cp. the two patterns and note their similarity:
Pattern 1: Sequential composition of f and h:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

f . h = g

where g :: a -> c

g = "apply h, then apply f to h’s result"

wrt given maps h :: a -> b

f :: b -> c

where values of type c look like:

k :: c (with k w/out further inner structure)

Pattern 2: Monadic composition of (St h) and f:

(>>=) :: (State st) a -> (a -> (State st) b) -> (State st) b

(St h) >>= f = St g

where g :: st -> (st,b)

g = "apply h, then apply f to h’s result"

wrt given maps h :: st -> (st,a)

f :: a -> (State st) b

where values of type (State st) b look like:

St k :: (State st) b with k :: st -> (st,b)

ensuring St g :: (State st) b as required.
88/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

This means
...if we understand sequential composition:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

f . h = g where g :: (a -> c)

g = \x -> let y = h x -- apply h

z = f y -- then apply f to

in z -- h’s result

we understand monadic composition, too: Composing a monadic value
(St h) capsulating a state transformer h and a state transformer pro-
ducing function f yields eventually a value (St g) of another monadic
type being the result the monadic composition of (St h) and f:

(>>=) :: (State st) a -> (a -> (State st) b) -> (State st) b

(St h) >>= f = St g

where g :: st -> (st,b)

g = "apply h, then apply f to h’s result"

wrt given maps h and f...

Of course, the details of monadic composition are more complex than for
sequential composition because the involved types are more complex...

89/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Getting bind (>>=) done!
(>>=) :: (State st) a -> (a -> (State st) b) -> (State st) b

(St h) >>= f = St g

where g :: st -> (st,b)

g = (\s -> let (s′,x) = h s -- Apply h︷ ︸︸ ︷
:: st St f′ = f x -- then apply f to

(s′′,y) = f′ s′ -- (part of) h’s

in (s′′,y)) -- result giving f′︷ ︸︸ ︷
:: (st,b) -- and f′ to the rest

-- of h’s result
Note: The two functions

1) h :: (st -> (st,a)) 2) f :: a -> (State st) b

involved in monadic composition for the state monad are applied one
after the other and yield as intermediate result a third function

3) f′ :: st -> (st,b)

that, applied to another intermediate result, completes a fourth function

4) g :: st -> (st,b)

which, capsulated in state value St g, is the result of monad. compos.!
90/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Constructing g in three steps (1)
Note: g = \s -> let ... in (s′′,y) :: st -> (st,b) is con-
structed in 3 steps:

g :: st -> (st,b)

g = (\s -> let (s′,x) = h s -- 1) Apply h,︷ ︸︸ ︷
:: st St f′ = f x -- 2) then apply f to

(s′′,y) = f′ s′ -- (part of) h’s

in (s′′,y)) -- result giving f′,︷ ︸︸ ︷
:: (st,b) -- 3) and then f′ to the

-- rest of h’s result

-- giving (s′′,y).

1) State transformer h is applied to s :: st yielding a pair (s′,x) ::

(st,a) of an intermediate new state s′ and an additional value x.

2) Applied to x :: a, f yields a monadic value St f′ :: (State

st) b capsulating a new state transformer f′ :: st -> (st,b).

3) f′ is applied to the intermediate new state s′ :: st yielding the
pair (s′′,y) :: (st,b) with final state s′′ and additional value y

as result of the monadic composition of (St h) and f as required.
91/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Constructing g in three steps (2)

In summary, there are two intermediate results showing up in
the course of constructing g:

1. a pair (s′,x) of an intermediate new state s′ and some
value x,

2. an intermediate new state transformer function f′ capsu-
lated in a (State st b) value (St f′)!

92/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Mission accomplished: Bind (>>=) done!

(>>=) :: (State st) a -> (a -> (State st) b) -> (State st) b

(St h) >>= f = St g

where g :: st -> (st,b)

g = (\s -> let (s′,x) = h s -- 1) Apply h,︷ ︸︸ ︷
:: st St f′ = f x -- 2) then apply f

(s′′,y) = f′ s′ -- to (part of) h’s

in (s′′,y)) -- result giving f′,︷ ︸︸ ︷
:: (st,b) -- 3) and then f′ to

-- the rest of h’s

-- result giving (s′′,y).

This effect of the bind operation can be visualized as follows:

z,()s’’

= St g

g = λ s . (s’, x)

>>= f

St f’x

f’
s’

St h

h

f

s

93/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Getting the remaining State monad op’s done!
Having defined bind (>>=), we are left with defining return,
sequence (>>), and fail:

return :: a -> (State st) a

return x = St g

where g :: st -> (st,a)

g = \s -> (s,x)

For sequence (>>) and fail we’ll go ahead with their default im-
plementations of type constructor class Monad, i.e.:

(>>) :: (State st) a -> (State st) b -> (State st) b

(St h) >> f = (St h) >>= _ -> f

z,()s’’

= St g

g = λ s . (s’, x)

>> f

St f’_

f’
s’

St h

h

f

s

f’independent of x)(

fail :: String -> (State st) b

fail s = error s 94/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Getting done with the State monad!

instance Monad (State st) where

(St h) >>= f︷ ︸︸ ︷
:: st -> (st,a)

︷ ︸︸ ︷
:: a -> (State st) b

= St (\s -> let (s′,x) = h s︷ ︸︸ ︷
:: st St f′ = f x

in f′ s′)︷ ︸︸ ︷
:: (st,b)

return x = St (\s -> (s,x))︷ ︸︸ ︷
:: a

︷ ︸︸ ︷
:: st

︷ ︸︸ ︷
:: (st,a)

...with types:

(>>=) :: (State st) a -> (a -> (State st) b) -> (State st) b

return :: a -> (State st) a

(>>) :: (State st) a -> (State st) b -> (State st) b

fail :: String -> (State st) a

95/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Or, more concisely, w/out type information:

instance Monad (State st) where

(St h) >>= f = St (\s -> let (s′,x) = h s

St f′ = f x

in f′ s′)

return x = St (\s -> (s,x))

96/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Once again, the State Monad in more Detail
The monad operations recalled:

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

c >>= k = ... :: m b

return :: (Monad m) => a -> m a

return x = ... :: m a

The instance declaration for (State st) with added type information:

instance Monad (State st) where

St h >>= f︷ ︸︸ ︷
:: (State st) a

︷ ︸︸ ︷
:: a -> (State st) b

= St (\s -> let ... in f′ s′) -- constructing︷ ︸︸ ︷
:: st

︷ ︸︸ ︷
:: (st,b) -- a proper state︷ ︸︸ ︷

:: st -> (st,b) -- value using h︷ ︸︸ ︷
:: (State st) b -- and f.

return x = St (\s -> (s,x)) -- constructing a proper︷︸︸︷
:: a

︷ ︸︸ ︷
:: (State st) a -- state value using x︷ ︸︸ ︷

:: (State st) a -- in the simplest way. 97/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Proof Obligation: The Monad Laws

Lemma 12.4.6.1 (Soundness of the State Monad)

The (State st) instance of Monad satisfies the three monad
laws ML1, ML2, and ML3.

...(State st) is thus a proper instance of Monad, the so-
called state monad.

98/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

State′: The Specialized State Monad

...specialized for a concrete state type CStT (‘Concrete State
Type’) (e.g., Int, [String],...):

newtype State′ a = St′ (CStT -> (CStT,a))

instance Monad State′ where

St′ m >>= f = St′ (\cs -> let (cs′,x) = m cs︷ ︸︸ ︷
:: CStT St′ f′ = f x

in f′ cs′)︷ ︸︸ ︷
::] (CStT,b)

return x = St′ (\cs -> (cs,x))︷ ︸︸ ︷
:: a

︷ ︸︸ ︷
:: CStT

︷ ︸︸ ︷
:: (CStT,a)

Note: State′ is a 1-ary type constructor whereas State is a
2-ary type constructor.

99/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Proof Obligation: The Monad Laws (State′)

Lemma 12.4.6.2 (Soundness of Spec. State Monad)

The State′ instance of Monad satisfies the three monad laws
ML1, ML2, and ML3.

...(State′) is thus a proper instance of Monad, the so-called
specialized state monad.

Note: For State′ the types of the monad operations (>>=),
return, and (>>) boil down to:

(>>=) :: State′ a -> (a -> State′ b) -> State′ b

return :: a -> State′ a

(>>) :: State′ a -> State′ b -> State′ b

100/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The State Monad Reconsidered (1)
...sometimes also renaming helps getting things clear(er).

Think of st otw as a type variable where the values of appro-
priate concrete types for st otw describe or model the

– state of the world (st otw).

The bind operation (>>=) of state monad (State st otw)

then allows us to transform current states of the world into
new states of the world, i.e., to

– transform (the description of) the state of the world it is
currently in into (the description of) the world it is in af-
ter the transformation, i.e., (the description of) the new
state the world is in afterwards.

This suggests that state transformers are of the type:

state_transformer :: st_otw -> st_otw

...class Monad makes this a bit more complex as shown next.
101/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The State Monad Reconsidered (2)

newtype (State st otw) a = St (st otw -> (st otw,a))

instance Monad (State st otw) where

St h >>= f

= St (\current_state ->

let (intermediate_state,x) = h current_state

St g = f x

(new_state,z) = g intermediate_state

in (new_state,z)

return x = St (\current_state -> (new_state,x))

where new_state = current_state

where

(>>=) :: (State st otw) a -> (a -> (State st otw) b) ->

(State st otw) b

return :: a -> (State st otw) a

102/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Finally

...recall (or note) that we find the same pattern when sequentially
composing functions (note particularly the similarity of the defi-
nitions of the left-to-right sequencing operations (>>=) and (;)):

(g . f) = (f ; g) = \x -> let intermediate = f x

z = g intermediate

in z

Obviously:

(g . f) y =

(f ; g) y =

(\x -> let intermediate = f x; z = g intermediate in z) y

= z

= g (f y)

103/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.4.7

The Input/Output Monad

104/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Input/Output Monad
instance Monad IO where (Impl. intern. hidden)

(>>=) :: IO a -> (a -> IO b) -> IO b

return :: a -> IO a

(>>) :: IO a -> IO b -> IO b

fail :: String -> IO a

Note:
– IO-values are so-called IO-commands (or commands).
– Commands have a procedural effect (i.e., reading or wri-

ting) and a functional effect (i.e., computing a value).
– (>>=): With p, q commands, p >>= q is a composed

command that first executes p, thereby performing a read
or write operation and yielding an a-value x as result;
subsequently q is applied to x, thereby performing a read
or write operation and yielding a b-value y as result.

– return: Lifts an a-value to an IO a-value w/out perfor-
ming any input or output operation. 105/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Proof Obligation: The Monad Laws

Lemma 12.4.7.1 (Soundness of I/O Monad)

The IO instance of Monad satisfies the three monad laws ML1,
ML2, and ML3.

...IO is thus a proper instance of Monad, the so-called in-
put/output (I/O) monad.

Note: The implementation of the input/output monad is in-
ternally hidden; it is thus the compiler writer who is in charge
for proving Lemma 12.4.7.1.

106/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Illustrating the Nature of Commands
Command cmd :: IO a

:: aIO Operation IOa

IO acmd :: Command

Component with ‘procedural’

behaviour: IO operation

generates irreversible

side effect.

Component with ‘functional’

behaviour: Computes

a−value as result of the

command.

Command yielding function f cmd :: a -> IO b

−> IO b

a ::IO Operation

on the

b value

command (depending possibly

b

as result of the

a value

IO b

Command yielding function

Component with ‘procedural’

behaviour: IO operation

generates irreversible side

effect

a−value).

(depending possibly

Component with ‘functional’

behaviour: Computes

).

f_cmd :: a 107/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Illustrating

...the operational meaning of (cmd >>= f cmd):

IO b::

−> IO b

a IO OperationIO Operation b

IO a acmd :: f_cmd ::

cmd >>= f_cmd =̂ cmd >>= \x -> f_cmd x

108/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Illustrating

...the operational meaning of (cmd >> cmd′):

IO b::

IO b

a IO OperationIO Operation b

IO acmd :: cmd’ ::

cmd >> cmd′ =̂ cmd >> _ -> cmd′

109/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Illustrating

...the operational meaning of return:

IO aa ::a‘skip’

operation, no side effect.

:: a −> IO a

Component with‘procedural’

behaviour: ‘empty’; no IO

Component with ‘functional’

return

a−value

behaviour: Forwards the

as the result of
the command.

Command

110/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Type

...of all read commands is

– (IO a) (for type instances a whose values can be read).

The a-value into which the read value is transformed
serves as the (formally required and actually wanted)
result of read operations.

...of all write commands is

– (IO ()), where () is the singleton null tuple type with
the single unique element ().

() as (the one and only) value of the null tuple type ()

serves as the formally required result of write operations.

111/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The I/O Monad viewed as a State Monad

...the input/output monad is similar in spirit to the state mo-
nad: It passes around the “state of the world!”

For a suitable type World whose values represent the

– states of the world

interactive programs (or IO-programs) can informally be con-
sidered functions of a type IO with:

– “type IO = (World -> World)”

In order to reflect that interactive programs do not only modi-
fy the state of the world but may also return a result, e.g., the
Int-value of a sequence of characters that has been read from
the keyboard and interpreted as an integer, this leads to chan-
ging the informal type of IO-programs from IO to (IO a):

– “type IO a = (World -> (World,a))”
112/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Input/Output Monad (1)

...allows switching from a batch-like handling of input/output:

Input
Haskell

Program
Output

Peter Pepper. Funktionale Programmierung.
Springer−Verlag, 2003, p. 245.

where

– all input data must be provided at the very beginning

– there is no interaction between a program and a user
(i.e., once called there is no opportunity for the user to
react on a program’s response and behaviour)

to a...

113/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Input/Output Monad (2)

...truly interactive handling of input/output in terms of se-
quentially composed dialogue components, while preserving
referential transparency as far as possible:

O1 F O F O3 F

Runtime System

2 3 4

F F F
1 2 3

Peter Pepper. Funktionale Programmierung.

Springer−Verlag, 2003, p. 253.

I I 21 I 32

Note that input/output operations are a major source for side
effects: read statements e.g. will yield different values for every
call causing unavoidably the loss of referential transparency.

114/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Examples: Simple IO Programs (1)

...a question/response interaction with a user:

ask :: String -> IO String

ask question = do putStrLn question

getLine

interAct :: IO ()

interAct =

do name <- ask "May I ask your name?"

putStrLine ("Welcome " ++ name ++ "!")

115/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Examples: Simple IO Programs (2)

...input/output from and to files:

type FilePath = String -- file names according

-- to the conventions of

-- the operating system

writeFile :: FilePath -> String -> IO ()

appendFile :: FilePath -> String -> IO ()

readFile :: FilePath -> IO String

isEOF :: FilePath -> IO Bool

interAct :: IO ()

interAct = do putStr "Please input a file name: "

fname <- getLine

contents <- readFile fname

putStr contents

116/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Examples: Simple IO Programs (3)
...the sequence of input/output commands with local declara-
tions within a do-construct

reverse2lines :: IO ()

reverse2lines = do line1 <- getLine

line2 <- getLine

let rev1 = reverse line1

let rev2 = reverse line2

putStrLn rev2

putStrLn rev1

is equivalent to the following one without:

reverse2lines :: IO ()

reverse2lines = do line1 <- getLine

line2 <- getLine

putStrLn (reverse line2)

putStrLn (reverse line1)

117/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Examples: Simple IO Programs (4)

...sequences of (canonic) monadic operations:

writeFile "testFile.txt" "Hello File System!"

>> putStr "Hello World!" >> putStr "Oh, yeah."

can be replaced by their equivalent do-expressions:

do writeFile "testFile.txt" "Hello File System!"

putStr "Hello World!"

putStr "Oh, yeah."

118/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Examples: Simple IO Programs (5)

...note the sometimes subtle differences in the representation
of values of output and non-output types.

Output types:

Main>putStr (‘a‘:(‘b‘:(‘c‘:[]))) Main>putChar (head [‘x‘,‘y‘,‘z‘])
->> abc :: IO () ->> x :: IO ()

Non-output types:

Main>(‘a‘:(‘b‘:(‘c‘:[]))) Main>head [‘x‘,‘y‘,‘z‘]
->> "abc" :: [Char] ->> ‘x‘ :: Char

Main>print "abc" Main>print ‘x‘
->> "abc" :: IO () ->> ‘a‘ :: IO ()

119/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Monadic Input/Output in Haskell
...allows us to conceptually think of a Haskell program as
being composed of a

– purely functional computational core
– procedural-like interaction shell.

Core

Shell

Computational

Interaction

Manuel Chakravarty, Gabriele Keller.

Programmierung mit Haskell. Pearson, 2004, p. 89.

Einführung in die

120/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Conceptual Separation
...of functions belonging to the

– computational core (pure functions)

– interaction shell (impure functions, i.e., performing in-
put/output operations causing side effects).

is achieved by assigning different types to them:

– Int, Real, String,... vs. IO Int, IO Real, IO String,...

with the type constructor IO a pre-defined monad.

The monadic implementation of input/output allows us

– precisely specify the evaluation order of functions of the
interaction shell (i.e., basic input/output primitives provi-
ded by Haskell) by using the monadic sequencing opera-
tions (>>=) and (>>).

...see e.g. lecture notes of LVA 185.A03 Funktionale Program-
mierung for further details and examples.

121/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.5

Monadic Programming

122/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Monadic Programming

...we consider three examples for illustration:

1. Folding trees by adding the values of their numerical la-
bels.

2. Numbering tree labels (and overwriting the original la-
bels).

3. Renaming tree labels by the number of their occurrences.

The first two examples are handled

– without

– with

monads in order to oppose and illustrate the relative merits of
the two programming styles.

123/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.5.1

Folding Trees

124/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Setting

Given:

data Tree a = Nil | Node a (Tree a) (Tree a)

Objective:

– Write a function that computes the sum of the values of
all labels of a tree of type Tree Int.

Illustration:
0

1 2

2

3 4

45

21
t

sum t

125/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

For Comparison

...we consider three approaches:

1. w/out monads

2. w/ monads

3. w/ monads followed by unpacking the monadic result.

126/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

1st Approach: Straightforward w/out Monads
...using a recursive function:

sum :: Tree Int -> Int

sum Nil = 0

sum (Node n t1 t2) = n + sum t1 + sum t2

Note:

– The evaluation order of the right-hand term of the (non-
trivial) defining equation of sTree is not fixed; only data
dependencies need to be respected.

– This leaves interpreter and compiler a degree of freedom
in picking an evaluation order.

– This freedom can not be broken by a programmer by
using a specific right-hand side term:

sum (Node n t1 t2) = n + sum t1 + sum t2

sum (Node n t1 t2) = sum t2 + n + sum t1
. . .
sum (Node n t1 t2) = sum t2 + sum t1 + n

127/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

2nd Approach: Using the Identity Monad
...using the identity monad Id:

sum′ :: Tree Int -> Id Int

sum′ Nil = return 0

sum′ (Node n t1 t2) =

do s2 <- sum′ t2 -- Evaluating right subtree

num <- return n -- Bounding n :: Int to num

s1 <- sum′ t1 -- Evaluating left subtree

return (s2+num+s1) -- Yielding Id (num+s1+s2) ::

-- Id Int as result
Note:

– The evaluation order of the defining ‘equations’ for s2, n,
and s1 is explicitly fixed; there is no degree of freedom
for the sequence in which values are bound to them.

– Changing their order allows the programmer to enforce a
different evaluation order.

– Note, this does not apply to evaluating s2+num+s1.
128/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Recall

...the definition of the identity monad Id:

newtype Id a = Id a

instance Monad Id where

(Id x) >>= f = f x

return = Id

...and the overloading of Id:

– Id: 1-ary type constructor, i.e., if a is a type variable,
then Id a denotes a type.

– Id: 1-ary data (or value) constructor, i.e., if x :: a,
then Id x is a value of type Id a: Id x :: Id a.

129/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Illustrating the Imperative Flavour of sum′

...unlike sum, sum′ enjoys an ‘imperative’ flavour quite similar
to sequentially sequencing assignment statements of some
imperative programming language:

Imperative Monadic

s2 := sumTree t2; do s2 <- sumTree t2

s1 := sumTree t1; s1 <- sumTree t1

num := n; num <- return n

return (s2+s1+num); return (s2+s1+num)

Note: Just for folding a tree, a monadic approach might be considered

too ‘heavy’ and a foldable approach with tree an instance of class

Foldable more lightweight. If, however, for some reason it is important

that subtrees are folded in a particular order, this can be achieved by the

monadic approach, however, not by the foldable one.
130/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

3rd Approach: Unpacking the Monadic Result
...to this end we introduce an extraction function unpacking a
monadic value:

extract :: Id a -> a

extract (Id x) = x

This allows function sum′′ yielding again an Int-value (instead
of a monadic one):

sum′′ :: Tree Int -> Int

sum′′ = extract . sum′

Example:

t = (Node 5 (Node 3 Nil Nil) (Node 7 Nil Nil))

sum′′ t ->> (extract . sum′) t

->> extract (sum′ t)

->> extract (Id 15)

->> 15
131/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.5.2

Numbering Tree Labels

132/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Setting
Given:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

Objective:

– Replace the labels of leafs by continuous natural numbers.

Illustration: The tree value t :: Tree Char:

t = Branch (Branch (Leaf ‘a‘) (Leaf ‘b‘))
(Branch (Leaf ‘b‘) (Leaf ‘c‘))

shall be transformed into the tree value t′ :: Tree Int:

t′ = Branch (Branch (Leaf 0) (Leaf 1))

(Branch (Leaf 2) (Leaf 3))

’b’ ’b’’a’ ’c’ 1 2 30

tlabelt t

133/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

For Comparison

...we consider two approaches:

1. w/out monads

2. w/ monads

134/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

1st Approach: Straightforward w/out Monads

...using a pair of functions, one of which a recursive supporting
function:

label :: Tree a -> Tree Int

label t = snd (lab t 0)

lab :: Tree a -> Int -> (Int, Tree Int)

lab (Leaf a) n = (n+1, Leaf n)

lab (Branch t1 t2) n

= let (n1,t1′) = lab t1 n

(n2,t2′) = lab t2 n1

in (n2, Branch t1′ t2′)

Note: The solution is simple and straightforward but passing
the counter value n through the incarnations of lab is tedious
and intricate.

135/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

2nd Approach: Using the Spec. State Monad (1)
...using the pattern of the specialized state monad State′:

newtype Label a = Lab (Int -> (Int,a))

instance Monad Label where

Lab lt >>= flt = Lab $ \n -> let (n′,x) = lt n

Lab lt′ = flt x

in lt′ n′

return x = Lab (\n -> (n,x))

Note:

– The $-operator in the defining equation of (>>=) can be
replaced by bracketing: (\n -> let ... in lt′ n′).

– For the state monad Label the monad operations (>>=)

and return have the types:

(>>=) :: Label a -> (a -> Label b) -> Label b

return :: a -> Label a
136/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

2nd Approach: Using the Spec. State Monad (2)

...the renaming of labels is now achieved by using:

label′ :: Tree a -> Tree Int

label′ t = let Lab lt = lab′ t

in snd (lt 0)

lab′ :: Tree a -> Label (Tree Int)

lab′ (Leaf a) = do n <- get_label

return (Leaf n)

lab′ (Branch t1 t2) = do t1′ <- lab′ t1

t2′ <- lab′ t2

return (Branch t1′ t2′)

get_label :: Label Int

get_label = Lab (\n -> (n+1,n))

137/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

2nd Approach: Using the Spec. State Monad (3)

Example: Applying label′ to tree value t:

t = Branch (Branch (Leaf ‘a‘) (Leaf ‘b‘))
(Branch (Leaf ‘b‘) (Leaf ‘c‘))

...we get as desired:

label′ t ->> Branch (Branch (Leaf 0) (Leaf 1))

(Branch (Leaf 2) (Leaf 3))

≡ t′

’b’ ’b’’a’ ’c’ 1 2 30

tt
label’ t

138/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.5.3

Renaming Tree Labels

139/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Setting

Given:

data Tree a = Nil | Node a (Tree a) (Tree a)

Objective:

– Rename labels of equal a-value by the same natural num-
ber.

Illustration:

0

0

1 4

4

4

2

2

2

6

6

3

3

3

"Schubert"

"Beethoven"

"Bach" "Beethoven"

"Mozart"

"Bach"

"Chopin"

"Chopin"

"Haydn""Mozart"

"Haydn"

"Schubert"

"Bach""Beethoven"

"Haydn"

"Salieri" 1 5

number

140/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Ultimate Goal

...a function number of type

number :: Eq a => Tree a -> Tree Int

solving this task using the state monad State.

141/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Towards the Monadic Approach (1)

We start defining:

number_tree :: Eq a => Tree a -> State a (Tree Int)

number_tree Nil = return Nil

number_tree (Node x t1 t2) =

= do num <- number_node x

nt1 <- number_tree t1

nt2 <- number_tree t2

return (Node num nt1 nt2)

...post-poning the implementation of number node.

142/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Towards the Monadic Approach (2)

Additionally, we introduce a table type

type Table a = [a]

for storing pairs of the form

(<string>,<number of occurrences>)

In particular, the list (or table) value

[True,False]

encodes that True represents (or is associated with) 0 and
False with 1.

143/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Mon. Approach: Using the State Monad (1)

...using the pattern of the state monad State st:

newtype State a b = St (Table a -> (Table a, b))

instance Monad (State a) where

(St st) >>= f

= St (\tab -> let (tab′,y) = st tab

(St transf) = f y

in transf tab′)

return x = St (\tab -> (tab, x))

Intuitively:

– Computing b-values: The (functional) result

– Updating tables: The side effect

...of the monadic operations.

144/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Mon. Approach: Using the State Monad (2)

...providing the post-poned implementation of number node:

number_node :: Eq a => a -> (State a) Int

number_node x = St (num_node x)

num_node :: Eq a => a -> (Table a -> (Table a, Int))

num_node x table

| elem x table = (table, lookup x table)

| otherwise = (table ++ [x], length table)

-- num_node yields the position of x in the table:

-- if x is stored in the table, using lookup; if

-- not, after adding x to the table using length.

lookup :: Eq a => a -> Table a -> Int

lookup x table = ... -- Homework: Completing the

-- implementation of lookup.

145/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Mon. Approach: Using the State Monad (3)
Putting the pieces together, number tree is fully defined:

number_tree :: Eq a => Tree a -> State a (Tree Int)

number_tree Nil = return Nil

number_tree (Node x t1 t2)

= do num <- number_node x

nt1 <- number_tree t1

nt2 <- number_tree t2

return (Node num nt1 nt2)

Note, for every value t :: Eq a => Tree a, e.g., the tree of
the illustrating example, we can conclude (functional and
hence) type correctness:

number_tree t :: State a (Tree Int)

≡ (State a) (Tree Int)

≡ ((State a) (Tree Int))

146/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.5.1

12.5.2

12.5.3

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Mon. Approach: Using the State Monad (4)

...introducing and using the extraction function:

extract :: State a b -> b

extract (St st) = snd (st [])

we get the implementation of the initially envisioned function
number:

number :: Eq a => Tree a -> Tree Int

number = extract . number_tree

147/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.6.1

12.6.2

12.6.3

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.6

Monad-Plusses

148/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.6.1

12.6.2

12.6.3

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.6.1

The Type Constructor Class MonadPlus

149/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.6.1

12.6.2

12.6.3

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Type Constructor Class MonadPlus

...monads with a ‘plus’ operation and a ‘zero’ element, which
is a unit for ‘plus’ and a zero for (>>=), can be instances of
the type constructor class MonadPlus obeying the monad-plus
laws:

Type Constructor Class MonadPlus

class Monad m => MonadPlus m where

mzero :: m a

mplus :: m a -> m a -> m a

Monad-Plus Laws

m >>= (_ -> mzero) = mzero (MPL1)

mzero >>= m = mzero (MPL2)

m ‘mplus‘ mzero = m (MPL3)

mzero ‘mplus‘ m = m (MPL4)

150/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.6.1

12.6.2

12.6.3

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Note

...MonadPlus instances are monads and thus must satisfy in
addition to the monad-plus laws also all monad laws.

Intuitively, the monad-plus laws require from (proper) monad-
plus instances:

– mzero is left-zero and right-zero for (>>=).

– mzero is left-unit and right-unit for mplus.

Programmer obligation:

– Programmers must prove that their instances of
MonadPlus satisfy the monad and monad-plus laws.

Note: The IO monad can not be made an instance of
MonadPlus because it is lacking an appropriate ‘zero’ element.

151/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.6.1

12.6.2

12.6.3

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.6.2

The List Monad-Plus

152/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.6.1

12.6.2

12.6.3

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The List Monad-Plus

...making the 1-ary type constructor [] an instance of
MonadPlus:

instance MonadPlus [] where -- note the over-

mzero = [] -- loading of Id

mplus = (++)

Proof obligation: The Monad-Plus Laws

Lemma 12.6.2.1 (Soundness of List Monad-Plus)

The [] instance of MonadPlus satisfies all monad and monad-
plus laws.

...[] is thus a proper instance of MonadPlus, the so-called list
monad-plus.

153/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.6.1

12.6.2

12.6.3

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.6.3

The Maybe Monad-Plus

154/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.6.1

12.6.2

12.6.3

12.7

12.8

Chap. 13

Concluding
Note

Assignment

The Maybe Monad-Plus

...making the 1-ary type constructor Maybe an instance of
MonadPlus:

instance MonadPlus Maybe where

mzero = Nothing

Nothing ‘mplus‘ ys = ys

xs ‘mplus‘ ys = xs

Proof obligation: The Monad-Plus Laws

Lemma 12.6.3.1 (Soundness of Maybe Monad-Plus)

The Maybe instance of MonadPlus satisfies all monad and mo-
nad-plus laws.

...Maybe is thus a proper instance of MonadPlus, the so-called
maybe monad-plus.

155/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.7

Summary

156/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Summary
Monads (i.e., instances of the type constructor class Monad)
combine features of

– functors and functional composition/sequencing:
(>>=) :: m a -> (a -> m b) -> m b

c >>= k >>= k′ >>= k′′ >>= . . .

Monads are thus well-suited for

– structuring and ordering the steps of a computation

because the monadic sequencing operations (>>=) and (>>)

– allow specifying the order of computations explicity.

– offer an adequately high abstraction by decoupling the
data type forming a monad (instance) from the structure
of computation.

– support equational reasoning, e.g., in terms of the monad
laws.

157/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Monads

...are often considered of being fanned by an aura of some-
thing

– mystic, wondrous that is difficult to grasp and lets mo-
nads appear the Holy Grail of functional programming
(‘once I will have understood monads, I will have under-
stood functional programming’).

This (slightly odd) image of monads might be due to the ori-
gin and ties of the monad notion to (possibly often difficult
considered) fields like

– philosophy, category theory, programming languages
theory and semantics.

158/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Recall
Monads in Leibniz’ Philosophy:

Definition (Gottfried Wilhelm Leibniz, 1714)
[Monadology, Paragraph 1]: The monad we want to talk about
here is nothing else as a simple substance (German: Substanz),
which is contained in the composite matter (German: Zusammen-
gesetztes); simple means as much as: to be without parts.

Monads in Category Theory (cf. Saunders Mac Lane, 1971):

Definition (Eugenio Moggi, 1989)
[LICS’89]: A monad over a category C is a triple (T , η, µ), where
T : C → C is a functor, η : IdC → T and µ : T 2 → T are natural
transformations and the following equations hold:

µTA;µA = T (µa);µA
ηTA;µA = idTA = T (ηA);µA

...“a monad is a monoid in the category of endofunctors.”
159/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

But Remember

...the monad notion in functional programming (in Haskell,
too) lost its connection to the monad notion in philosophy and
category theory (almost) completely, and hence, everything
which might or might be considered a mystery or miracle.

Rather than introducing a mystery, monads and monadic se-
quencing in functional programming close a ‘functional gap’
between function application, sequential function composition,
and functorial mapping.

160/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

On the Closing of a ‘Functional Gap’ (1)
...smashing the myth behind functional programming monads.

I Function application (‘mapping over’):

($) :: (a -> b) -> a -> b

g $ x = g x

– Special case (m a for a, m b for b):

($) :: (m a -> m b) -> m a -> m b

g $ x = g x

I Sequential function composition (‘sequencing’):

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . g) x = f (g x)

– Special case (m a for a, m b for b, m c for c):

(.) :: (m b -> m c) -> (m a -> m b) -> (m a -> m c)

(f . g) x = f (g x)

...one implementation fits all types: Parametric polymorphism
161/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

On the Closing of a ‘Functional Gap’ (2)

I Functorial mapping (‘mapping over’):

fmap :: (Functor f) => (a -> b) -> f a -> f b

fmap g c = ... ‘(unpack, map, pack)’

(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b

(<*>) k c = ... ‘(unpack, unpack, map, pack)’

I (Monadic) mapping plus sequencing:

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

(>>=) c k = k ‘‘unpack c’’

‘(unpack, map, repeat >>=)’

...type-specific instance implementations required for 1-ary type

constructors: Ad hoc polymorphism

162/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Commonalities of Functions at a Glimpse
...compare (same color means ‘correspond to each other’):

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . g) x = f (g x)

(;) :: (a -> b) -> (b -> c) -> (a -> c)

(f ; g) = g . f -- pointfree

(>>;) :: a -> (a -> b) -> b

x >>; f = f x -- Non-monadic operations

(>>.) :: Monad m => (m b -> m c) -> (m a -> m b) -> (m a -> m c)

(>>.) = (.) -- Monadic operations

(>>=) :: Monad m => m a -> (a -> m b) -> m b

m >>= k = k ‘unpack m’

(>@>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)

f >@> g = \x -> (f x) >>= g -- pointfree

163/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12.8

References, Further Reading

164/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12: Basic Reading (1)

Manuel Chakravarty, Gabriele Keller. Einführung in die
Programmierung mit Haskell. Pearson Studium, 2004.
(Kapitel 7, Eingabe und Ausgabe)

Ernst-Erich Doberkat. Haskell: Eine Einführung für
Objektorientierte. Oldenbourg Verlag, 2012. (Kapitel 5,
Ein-/Ausgabe; Kapitel 7, Monaden)

Paul Hudak. The Haskell School of Expression: Learning
Functional Programming through Multimedia. Cambridge
University Press, 2000. (Chapter 18.2, The Monad Class;
Chapter 18.3, The MonadPlus Class; Chapter 18.4, State
Monads)

Graham Hutton. Programming in Haskell. Cambridge
University Press, 2007. (Chapter 10.6, Class and Instance
Declarations – Monadic Types)

165/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12: Basic Reading (2)

Miran Lipovača. Learn You a Haskell for Great Good! A
Beginner’s Guide. No Starch Press, 2011. (Chapter 13, A
Fistful of Monads; Chapter 14, For a Few Monads More)

Simon Peyton Jones, Philip Wadler. Imperative Functional
Programming. In Conference Record of the 20 ACM SIG-
PLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’93), 71-84, 1993.

Simon Thompson. Haskell: The Craft of Functional Pro-
gramming. Addison-Wesley/Pearson, 3rd edition, 2011.
(Chapter 18, Programming with monads)

Philip Wadler. Comprehending Monads. Mathematical
Structures in Computer Science 2:461-493, 1992.

166/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12: Selected Advanced Reading (1)

A (Reasonably) Comprehensive List of Tutorials on Monads:
haskell.org/haskellwiki/Monad tutorials.

John Launchbury, Simon Peyton Jones. State in Haskell.
Lisp and Symbolic Computation 8(4):293-341, 1995.

Martin Odersky. Funktionale Programmierung. In Informa-
tik-Handbuch, Peter Rechenberg, Gustav Pomberger
(Hrsg.), Carl Hanser Verlag, 4. Auflage, 599-612, 2006.
(Kapitel 5.3, Funktionale Komposition: Monaden, Bei-
spiele für Monaden)

167/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12: Selected Advanced Reading (2)

Bryan O’Sullivan, John Goerzen, Don Stewart. Real World
Haskell. O’Reilly, 2008. (Chapter 7, I/O – The I/O Mo-
nad; Chapter 14, Monads; Chapter 15, Programming with
Monads; Chapter 16, Using Parsec – Applicative Functors
for Parsing; Chapter 18, Monad Transformers; Chapter 19,
Error Handling – Error Handling in Monads)

Philip Wadler. Monads for Functional Programming. In
Johan Jeuring, Erik Meijer (Eds.), 1st Int. Spring School
on Advanced Functional Programming Techniques. Sprin-
ger-V., LNCS 925, 24-52, 1995.

Philip Wadler. How to Declare an Imperative. ACM Com-
puting Surveys 29(3):240-263, 1997.

168/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12: Selected Advanced Reading (3)

Simon Peyton Jones. Tackling the Awkward Squad: Mo-
nadic Input/Output, Concurrency, Exceptions, and
Foreign-language Calls in Haskell. In Tony Hoare, Manfred
Broy, Ralf Steinbruggen (Eds.), Engineering Theories of
Software Construction, IOS Press, 47-96, 2001 (Presented
at the 2000 Marktoberdorf Summer School).

Wouter S. Swierstra, Thorsten Altenkirch. Beauty in the
Beast: A Functional Semantics for the Awkward Squad. In
Proceedings of the ACM SIGPLAN Workshop on Haskell
(Haskell 2007), 25-36, 2007.

169/209

Lecture 4

Detailed
Outline

Chap. 12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Chap. 13

Concluding
Note

Assignment

Chapter 12: Background Reading

René Descartes. Meditationes de prima philosophia. 1641.

Gottfried Wilhelm Leibniz. Monadology (Original in
French). 90 Paragraphen, 1714.

Saunders Mac Lane. Categories for the Working Mathe-
matician. Springer-V., 1971 (2nd edition, 1998).

Eugenio Moggi. Computational Lambda Calculus and
Monads. In Proceedings of the 4th Annual IEEE Symposi-
um on Logic in Computer Science (LICS’89), 14-23, 1989.

Eugenio Moggi. Notions of Computation and Monads.
Information and Computation 93(1):55-92, 1991.

Thomas Petricek. What We Talk about when We Talk
about Monads. The Art, Science, and Engineering of
Programming 2(3), Article 12, 1-27, 2018.

170/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Chapter 13

Arrows

171/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Chapter 13.1

Motivation

172/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Motivation

...monads do not always suffice.

The higher-order type constructor class Arrow

– complements the type class Monad

with a complementary mechanism for

– composing and sequencing functions

which support 2-ary type constructors and is useful e.g. for:

– electronic circuits modelling (this chapter)

– functional reactive programming (cf. Chapter 18).

173/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Chapter 13.2

The Type Constructor Class Arrow

174/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

The Type Constructor Class Arrow
Arrows are instances of the type constructor class Arrows

obeying the arrow laws:

class Arrow a where

pure :: (b -> c) -> a b c

-- equivalently: pure :: ((->) b c) -> a b c

(>>>) :: a b c -> a c d -> a b d

first :: a b c -> a (b,d) (c,d)

Note:

– pure allows embedding of ordinary maps into the con-
structor class Arrow (the role of pure for maps is similar
to the role of return in class Monad for values of type a).

– (>>>) serves the composition of computations.
– first has as an analogue on the level of ordinary func-

tions: The function firstfun with
firstfun f = \(x,y) -> (f x, y)

175/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

The Arrow Laws
...proper instances of Arrow must satisfy the following nine
arrow laws:

Arrow Laws

pure id >>> f = f (ArrL1): identity

f >>> pure id = f (ArrL2): identity

(f >>> g) >>> h = f >>> (g >>> h) (ArrL3): associa-

tivity

pure (g . f) = pure f >>> pure g (ArrL4): functor

composition

first (pure f) = pure (f × id) (ArrL5): extension

first (f >>> g) = first f >>> first g (ArrL6): functor

first f >>> pure (id × g) = pure (id × g) >>> first f

(ArrL7): exchange

first f >>> pure fst = pure fst >>> f (ArrL8): unit

first (first f) >>> pure assoc = pure assoc >>> first f

(ArrL9): association

176/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Utility Functions for Arrows (1)
The product map ×:∗)

(×) :: (a -> a′) -> (b -> b′) -> (a,b) -> (a′,b′)

(f × g) ~(a,b) = (f a, g b)

Regrouping arguments via assoc, unassoc, and swap:∗)

assoc :: ((a,b),c) -> (a,(b,c))

assoc ~(~(x,y),z) = (x,(y,z))

unassoc :: (a,(b,c)) -> ((a,b),c)

unassoc ~(x,~(y,z)) = ((x,y),z)

swap :: (a,b) -> (b,a)

swap ~(x,y) = (y,x)

The dual analogue of first, map second:
second :: Arrow a => a b c -> a (d,b) (d,c)

second f = pure swap >>> first f >>> pure swap

∗) Refer to Chapter 2.5.1 for lazy patterns like ∼(a,b).
177/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Utility Functions for Arrows (2)

Derived operators for arrows:

(***) :: Arrow a => a b c -> a b′ c′ ->

a (b,b′) (c,c′)

f *** g = first f >>> second g

(&&&) :: Arrow a => a b c -> a b c′ -> a b (c,c′)

f &&& g = pure (
¯
-> (b,b)) >>> (f *** g)

idA :: Arrow a => a b b

idA = pure id

178/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Chapter 13.3

The Map Arrow

179/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

The Map Arrow
...making the 2-ary type constructor (->) an instance of Arrow:

instance Arrow (->) where

pure f = f

f >>> g = g . f

first f = f × id

where

(×) :: (b -> c) -> (d -> e) -> (b,d) -> (c,e)

(f × g)~(bv,dv) = (f bv, g dv) :: (c,e)

Note: Defining first f = \(b,d) -> (f b, d) is equivalent.

Proof obligation: The arrow laws

Lemma 13.3.1 (Arrow Laws for (->))

The (->) instance of Arrows satisfies the 9 arrow laws.

...(->) is thus a proper instance of Arrow, the so-called map
arrow.

180/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

The Map Arrow in More Detail
...with added type information:

class Arrow a where

pure :: ((->) b c) -> a b c

(>>>) :: a b c -> a c d -> a b d

first :: a b c -> a (b,d) (c,d)

...making (->) an instance of Arrow means constructor a equals (->):

instance Arrow (->) where

pure f = f︷ ︸︸ ︷
:: (->) b c

︷ ︸︸ ︷
:: (->) b c

f >>> g = g . f︷ ︸︸ ︷
:: (->) b c

︷ ︸︸ ︷
:: (->) c d

︷ ︸︸ ︷
:: (->) b d

first f = f × id︷ ︸︸ ︷
:: (->) b c

︷ ︸︸ ︷
:: (->) (b,d) (c,d)

Recall: Defining first by first f = \(b,d) -> (f b, d) is equi-

valent.
181/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Note

(>>>) :: Arrow a => a b c -> a c d -> a b d

...introduces composition for 2-ary type constructors.

This means, for the map instance of class Arrow:

instance Arrow (->) where

pure f = f

f >>> g = g . f

first f = f × id

arrow composition boils down to:

– ordinary functional composition, i.e.: (>>>) = (.)

182/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Chapter 13.4

Application: Modelling Electronic Circuits

183/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

A Notion of Computation
The map add introduces a notion of computation:

add :: (b -> Int) -> (b -> Int) -> (b -> Int)

add f g z = f z + g z

...which can be generalized in various ways, e.g., to

– state transformers
– non-determinism
– map transformers
– simple automata

for modelling electronic circuits.

Illustration:

g

f

+

Int

Int
Int

b

s s s

184/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Towards Modelling Electronic Circuits (1)

...generalizing add to state transformers:

type State s i o = (s,i) -> (s,o)

addST :: State s b Int -> State s b Int ->

State s b Int

addST f g (s,z) = let (s′,x) = f (s,z)

(s′′,y) = g (s′,z)

in (s′′,x+y)

185/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Towards Modelling Electronic Circuits (2)

...generalizing add to non-determinism:

type NonDet i o = i -> [o]

addND :: NonDet b Int -> NonDet b Int ->

NonDet b Int

addND f g z = [x+y | x <- f z, y <- g z]

186/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Towards Modelling Electronic Circuits (3)

...generalizing add to map transformers:

type MapTrans s i o = (s -> i) -> (s -> o)

addMT :: MapTrans s b Int -> MapTrans s b Int ->

MapTrans s b Int

addMT f g m z = f m z + g m z

187/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Towards Modelling Electronic Circuits (4)

...generalizing add to simple automata:

newtype Auto i o = A (i -> (o, Auto i o))

addAuto :: Auto b Int -> Auto b Int -> Auto b Int

addAuto (A f) (A g)

= A (\z -> let (x,f′) = f z

(y,g′) = g z

in (x+y), addAuto f′ g′))

188/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Putting all this together

...allows us

– modelling of synchronous circuits (with feedback loops).

Note:

– The preceding examples have in common that there is a
type A B of computations, where inputs of type A are
transformed into outputs of type B .

– The type class Arrow yields a sufficiently general interface
to describe these commonalities uniformly and to encap-
sulate them in a class.

189/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Returning to the Application

...we are now going to make the previously introduced types
instances of the type constructor class Arrow. To this end, we
reintroduce them as new types (using newtype):

newtype State s i o = ST ((s,i) -> (s,o))

newtype NonDet i o = ND (i -> [o])

newtype MapTrans s i o = MT ((s -> i) -> (s -> o))

newtype Auto i o = A (i -> (o, Auto i o))

190/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

The State Transformer Arrow

...making (State s) an instance of Arrow:

newtype State s i o = ST ((s,i) -> (s,o))

instance Arrow (State s) where

pure f = ST (id × f)

ST f >>> ST g = ST (g . f)

first (ST f) = ST (assoc . (f × id) . unassoc)

191/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

The State Transformer Arrow in more Detail
...with added type information:

class Arrow a where

pure :: ((->) b c) -> a b c

(>>>) :: a b c -> a c d -> a b d

first :: a b c -> a (b,d) (c,d)

...making (State s) an instance of Arrow means type constructor
variable a is set to (State s):

newtype State s i o = ST ((s,i) -> (s,o))

instance Arrow (State s) where

pure f = ST (id × f)︷ ︸︸ ︷
:: (->) b c

︷ ︸︸ ︷
:: (State s) b c

ST f >>> ST g = ST (g . f)︷ ︸︸ ︷
:: (State s) b c

︷ ︸︸ ︷
:: (State s) c d

︷ ︸︸ ︷
:: (State s) b d

first (ST f) = ST (assoc . (f × id) . unassoc)︷ ︸︸ ︷
:: (State s) b c

︷ ︸︸ ︷
:: (State s) (b,d) (c,d)

192/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

The Non-Determinism Arrow

...making NonDet an instance of Arrow:

newtype NonDet i o = ND (i -> [o])

instance Arrow NonDet where

pure f = ND (\b -> [f b])

ND f >>> ND g = ND (\b -> [d | c <- f b, d <- g c])

first (ND f) = ND (\(b,d) -> [(c,d) | c <- f b])

193/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

The Non-Determinism Arrow in more Detail
...with added type information:

class Arrow a where

pure :: ((->) b c) -> a b c

(>>>) :: a b c -> a c d -> a b d

first :: a b c -> a (b,d) (c,d)

...making NonDet an instance of Arrow means type constructor variable
a is set to NonDet:

NonDet i o = ND (i -> [o])

instance Arrow NonDet where

pure f = ND (\b -> [f b])︷ ︸︸ ︷
:: (->) b c

︷ ︸︸ ︷
:: NonDet b c

ND f >>> ND g = ND (\b -> [d | c <- f b, d <- g c])︷ ︸︸ ︷
:: NonDet b c

︷ ︸︸ ︷
:: NonDet c d

︷ ︸︸ ︷
:: NonDet b d

first (ND f) = ND (\(b,d) -> [(c,d) | c <- f b])︷ ︸︸ ︷
:: NonDet b c

︷ ︸︸ ︷
:: NonDet (b,d) (c,d)

194/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

The Map Transformer Arrow

...making (MapTrans s) an instance of Arrow:

newtype MapTrans s i o = MT ((s -> i) -> (s -> o))

instance Arrow (MapTrans s) where

pure f = MT (f .)

MT f >>> MT g = MT (g . f)

first (MT f) = MT (zipMap . (f x id) . unzipMap)

where

zipMap :: (s -> a, s -> b) -> (s -> (a,b))

zipMap h s = (fst h s, snd h s)

unzipMap :: (s -> (a,b)) -> (s -> a, s -> b)

unzipMap h = (fst . h, snd . h)

195/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

The Map Transformer Arrow in more Detail
...with added type information:

class Arrow a where

pure :: ((->) b c) -> a b c

(>>>) :: a b c -> a c d -> a b d

first :: a b c -> a (b,d) (c,d)

...making (MapTrans s) an instance of Arrow means type constructor
variable a is set to (MapTrans s):

MapTrans s i o = MT ((s -> i) -> (s -> o))

instance Arrow (MapTrans s) where

pure f = MT (f .)︷ ︸︸ ︷
:: (->) b c

︷ ︸︸ ︷
:: (MapTrans s) b c

MT f >>> MT g = MT (g . f)︷ ︸︸ ︷
:: (MapTrans s) b c

︷ ︸︸ ︷
:: (MapTrans s) c d

︷ ︸︸ ︷
:: (MapTrans s) b d

first (MT f) = MT (zipMap . (f x id) . unzipMap)︷ ︸︸ ︷
:: (MapTrans s) b c

︷ ︸︸ ︷
:: (MapTrans s) (b,d) (c,d)

196/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

The Automata Arrow

...making Auto an instance of Arrow:

newtype Auto i o = A (i -> (o, Auto i o))

instance Arrow Auto where

pure f = A (\b -> (f b, pure f)

A f >>> A g = A (\b -> let (c,f′) = f b

(d,g′) = g c

in (d, f′ >>> g′)))

first (A f) = A (\(b,d) -> let (c,f′) = f b

in ((c,d),first f′))

197/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

The Automata Arrow in more Detail
...with added type information:

class Arrow a where

pure :: ((->) b c) -> a b c

(>>>) :: a b c -> a c d -> a b d

first :: a b c -> a (b,d) (c,d)

...making Auto an instance of Arrow means type constructor variable a is
set to Auto:

Auto i o = A (i -> (o, Auto i o))

instance Arrow Auto where

pure f = A (\b -> (f b, pure f)︷ ︸︸ ︷
:: (->) b c

︷ ︸︸ ︷
:: Auto b c

A f >>> A g = A (\b -> let (c,f’) = f b

(d,g’) = g c

in (d, f’ >>> g’)))︷ ︸︸ ︷
:: Auto b c

︷ ︸︸ ︷
:: Auto c d

︷ ︸︸ ︷
:: Auto b d

first (A f) = A (\(b,d) -> let (c,f’) = f b

in ((c,d),first f’))︷ ︸︸ ︷
:: Auto b c

︷ ︸︸ ︷
:: Auto (b,d) (c,d) 198/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Proof Obligation: The Arrow Laws

Lemma 13.4.1 (Soundness: Arrow Laws)

The state transformer, non-determinism, map transformer, and
automata instances of Arrow satisfy the arrow laws and are
thus proper arrows.

199/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Last but not least, it is worth noting

....that each of the considered variants of add results as a
specialization of general combinator addA with the corres-
ponding arrow-type:

addA :: Arrow a => a b Int -> a b Int -> a b Int

addA f g = f &&& g >>> pure (uncurry (+))

200/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Chapter 13.5

An Update on the Haskell Type Class
Hierarchy

201/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

An Update on the Haskell Type Class Hierarchy
...Haskell is a research vehicle and, hence, a moving target:

(>>=)
(>>)
return
fail

mZero
mPlus

Functor
fmap

Applicative
pure

(<*>)

(>>=)
(>>)
return
fail

mZero
mPlus

Monad

MonadPlus

Monad

MonadPlus

Arrow
pure

(>>>)

first

Haskell’98 Haskell’98 Onwards

fmap

(<$) :: a −> f b −> f a

Category

(.) :: cat b c −> cat a b −> cat a c

id :: cat a a

Functor

Arrow
arr :: (b −> c) −> (b ‘arr‘ c)

first :: (b ‘arr‘ c) −> ((b,d) ‘arr‘ ((c,d))

second :: (b ‘arr‘ c) −> ((d,b) ‘arr‘ (d,c))

(***) :: (b ‘arr‘ c) −> (b’ ‘arr‘ c’) −> ((b,b’) ‘arr‘ (c,c’))

(&&&) :: (b ‘arr‘ c) −> (b ‘arr‘ c’) −> (c,c’))

(<$) = fmap . const

Applicative
pure

(<*>)

(*>) :: f a −> f b −> f b

a1 *> a2 = (id <$ a1) <*> a2

(<*) :: f a −> f b −> f a

(<*) = liftA2 const

where ‘arr‘ is a two−ary type variable

...for more information, check out:

https://wiki.haskell.org/Typeclassopedia
202/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Chapter 13.6

Summary

203/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Summing up

– Functions and programs often contain components that
are ‘function-like’ ‘w/out being just functions.’

– Arrows define a common interface for coping w/ the “no-
tion of computation” of such function-like components.

– Monads are a special case of arrows.

– Like monads, arrows allow to meaningfully structure the
computation process of programs.

– Arrow combinators operate on ‘computations’, not on
values. They are point-free in distinction to the ‘common
case’ of functional programming.

– Analoguous to the monadic case a do-like notational
variant makes programming with arrow operations often
easier and more suggestive (cf. literature hint at the end
of the chapter), whereas the pointfree variant is more
useful and advantageous for proof-theoretic reasoning.

204/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Chapter 13.7

References, Further Reading

205/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Chapter 13: Basic Reading

John Hughes. Generalising Monads to Arrows. Science of
Computer Programming 37:67-111, 2000.

Ross Paterson. A New Notation for Arrows. In Procee-
dings of the 6th ACM SIGPLAN Conference on Functional
Programming (ICFP 2001), 229-240, 2001.

Ross Paterson. Arrows and Computation. In Jeremy
Gibbons, Oege de Moor (Eds.), The Fun of Programming.
Palgrave MacMillan, 201-222, 2003.

206/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

13.1

13.2

13.3

13.4

13.5

13.6

13.7

Concluding
Note

Assignment

Chapter 13: Selected Advanced Reading

Paul Hudak, Antony Courtney, Henrik Nilsson, John
Peterson. Arrows, Robots, and Functional Reactive Pro-
gramming. In Johan Jeuring, Simon Peyton Jones (Eds.)
Advanced Functional Programming – Revised Lectures.
Springer-V., LNCS Tutorial 2638, 159-187, 2003.

207/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

Concluding
Note

Assignment

Concluding Note

...for additional information and details refer to

I full course notes

available in TUWEL and at the homepage of the course at:

http:://www.complang.tuwien.ac.at/knoop/

ffp185A05 ss2021.html

208/209

Lecture 4

Detailed
Outline

Chap. 12

Chap. 13

Concluding
Note

Assignment

Assignment for Thursday, 22 April 2021
...independent study of Part IV, Chapters 12 and 13 and of Central and
Control Questions IV for self-assessment and as a basis of the flipped
classroom session on 04/22/2021:

Lecture, Flipped Classroom Topic Lecture Topic Flip. Classr.

P. I, Ch. 1
Thu, 03/04/2021, 4.15-6.00 pm

P. II, Ch. 2
n.a. / Prel. Mtg.

P. IV, Ch. 7, 8 P. I, Ch. 1
Thu, 03/11/2021, 4.15-6.00 pm

P. II, Ch. 3 P. II, Ch. 2
P. II, Ch. 4 P. IV, Ch. 7, 8

Thu, 03/25/2021, 4.15-6.00 pm
P. IV, Ch. 9–11, 14 P. II, Ch. 3

P. II, Ch. 4
Thu, 04/15/2021, 4.15-6.00 pm P. IV, Ch. 12, 13

P. IV, Ch. 9–11, 14

Thu, 04/22/2021, 4.15-6.00 pm P. III, Ch. 5, 6 P. IV, Ch. 12, 13

Thu, 04/29/2021, 4.15-6.00 pm P. V, Ch. 15, 16 P. III, Ch. 5, 6

P. V, Ch. 17, 18
Thu, 05/20/2021, 4.15-6.00 pm

P. VI, Ch. 19, 20
P. V, Ch. 15, 16

209/209

	Lecture 4
	Detailed Outline
	12 Monads
	12.1 Motivation
	12.2 The Type Constructor Class Monad
	12.3 Syntactic Sugar: The do-Notation
	12.4 Monad Examples
	12.5 Monadic Programming
	12.6 Monad-Plusses
	12.7 Summary
	12.8 References, Further Reading

	13 Arrows
	13.1 Motivation
	13.2 The Type Constructor Class Arrow
	13.3 The Map Arrow
	13.4 Application: Modelling Electronic Circuits
	13.5 An Update on the Haskell Type Class Hierarchy
	13.6 Summary
	13.7 References, Further Reading

	Concluding Note
	Assignment

