Fortgeschrittene funktionale Programmierung LVA 185.A05, VU 2.0, ECTS 3.0 SS 2021 (Stand: 25.03.2021)

Jens Knoop

Technische Universität Wien Information Systems Engineering Compilers and Languages

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chan 14

Concludin Note

Lecture 3

Part II: Programming Principles

- Chapter 4: Equational Reasoning for Functional Pearls
 - + Chap. 4.6: Recommended Reading: Basic, Advanced
- Part IV: Advanced Language Concepts
 - Chapter 9: Monoids
 - + Chap. 9.5: Recommended Reading: Basic, Advanced
 - Chapter 10: Functors
 - + Chap. 10.4: Recommended Reading: Basic, Advanced
 - Chapter 11: Applicative Functors
 - + Chap. 11.3: Recommended Reading: Basic
 - Chapter 14: Kinds, or: Types of Types
 - + Chap. 14.3: Recommended Reading: Basic

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludii Note

Outline in more Detail (1)

Part II: Programming Principles

Chap. 4: Equational Reasoning for Functional Pearls

- 4.1 Equational Reasoning
- 4.2 Application: Functional Pearls
 - 4.2.1 Functional Pearls: The Very Idea
 - 4.2.2 Functional Pearls: Origin, Background
- 4.3 The Smallest Free Number
 - 4.3.1 The Initial Algorithm
 - 4.3.2 An Array-based Algorithm and Two Variants
 - 4.3.3 A Divide-and-Conquer Algorithm
 - 4.3.4 In Closing

4.4 Not the Maximum Segment Sum

- 4.4.1 Two Initial Algorithms
- 4.4.2 The Linear Time Algorithm
- 4.4.3 In Closing

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludi Note

Outline in more Detail (2)

9.4 Summary, Looking ahead9.5 References, Further Reading

Chap. 4: Equational Reasoning for Funct. Pearls (cont'd) 4.5 A Simple Sudoku Solver 4.5.1 Two Initial Algorithms 4.5.2 Pruning the Initial Algorithm 4.5.3 In Closing 4.6 References, Further Reading Part IV: Advanced Language Concepts Chap. 9: Monoids 9.1 Motivation 9.2 The Type Class Monoid 9.3 Monoid Examples 9.3.1 The List Monoid 9.3.2 Numerical Monoids 9.3.3 Boolean Monoids 9.3.4 The Ordering Monoid

4/215

Detailed Outline

Outline in more Detail (3)

Chap. 10: Functors

- 10.1 Motivation
 10.2 The Type Constructor Class Functor
 10.3 Functor Examples
 10.3.1 The Identity Functor
 10.3.2 The List Functor
 10.3.3 The Maybe Functor
 10.3.4 The Either Functor
 10.3.5 The Map Functor
 10.3.6 The Input/Output Functor
- 10.4 References, Further Reading

Lecture 3

Detailed Outline

Chap. 4

-rom Type to Higher-Order Type Classes

Chap. 9

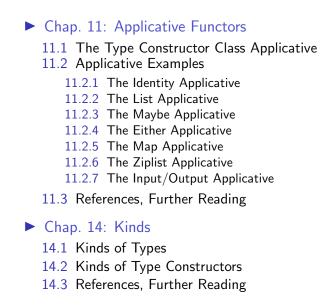
Chap. 10

Chap. 11

Chap. 14

Concludir Note

Outline in more Detail (4)



Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Lecture 3

Detailed Outline

Chap. 4

4.1

- 4.3
- 4.4
- 4.5
- 4.6
- From Type to Higher-Order Type
- l ype Classes
- Chap. 9
- Chap. 10
- Chap. 11
- Chap. 14

Concludir Note

Assignme

Chapter 4

Equational Reasoning for Functional Pearls

Chapter 4.1 Equational Reasoning

Lecture 3

Detailed Outline

Chap. 4

4.1 4.2

4.3

4.4

4.6

From Type to Higher-Order Type

Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Equational Reasoning

...a well-known mathematical means for reasoning about and proving the validity of e.g. arithmetical statements:

Proposition 4.1.1

$$(a+b) * (a-b) = a^2 - b^2$$

Proof. Equational reasoning yields:

$$(a+b) * (a-b)$$
(Distributivity of *, +) = $a * a - a * b + b * a - b * b$
(Commutativity of *) = $a * a - a * b + a * b - b * b$

$$= a * a - b * b$$

$$= a^2 - b^2$$

Lecture 3

Detailed Outline

Chap. 4 4.1

4.3 4.5 4.6 From Type to Higher-

Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Equational Reasoning

...carries over to functional programming because in functional programming the equality symbol '=' means:

'equal by definition:'

The value of the left-hand side expression is defined as the value of the right-hand side expression.

An equation of the form

f x y = x+y

as (part of the) definition of a function f is thus a

genuine mathematical equation:

The expression on the left hand side and the right hand side of = have the same value.

Lecture 3

Detailed Outline

Chap. 4

4.1
4.2
4.3
4.4
4.5

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Illustrating Equational Reasoning		
in a functional programming context:		
Proposition 4.1.2		
The Haskell functions f and g :		
f :: Int -> Int -> Int f a b = (a+b) * (a-b)		
g :: Int -> Int -> Int g a b = a ² - b ²		
denote the same function.		
Proof. Using Proposition $4.1.1$ and equational reasoning we		
obtain: fab		
(Definition of f, unfolding f) = $(a+b) * (a-b)$		
$(Proposition 4.1.1) = a^2 - b^2$		
(Definition of g, folding g) $=$ g a b		

4.1

11/215

Illustration Equational Descaping

Folding, Unfolding of Functional Definitions

...can be applied from

- left-to-right (called unfolding)
- right-to-left (called folding)

in equational reasoning as shown in the proof of Proposition 4.1.2

Lecture 3

Detailed Outline

Chap. 4

4.1 4.2

4.4

4.5

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Note

...however, that some care on folding/unfolding must be taken because the Haskell semantics implicitly imposes an ordering on the equations.

For illustration consider:

isZero :: Int -> Bool isZero 0 = True isZero n = False

The first equation isZero 0 = True can be viewed as a logical property. It can

- freely be applied in both directions.

The second equation isZero n = False can not. It can

- only be applied, if n is different from 0.

Outline Chap. 4 4.1 4.2 4.3 4.4 4.5 4.6 From Type to Higher-Order Type Classes Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Towards Functional Pearls (1)

Consider functions reverse, fast_reverse for list reversal:

Note:

- reverse requires $\frac{n(n+1)}{2}$ calls of the concatenation function (++) with *n* denoting the length of the argument list.
- fast_reverse does not rely on list concatenation (++) but on list construction (:); it is thus much more efficient.

Lecture 3

Detailed Dutline

Chap. 4

4.1
 4.2
 4.3
 4.4
 4.5

From Type to Higher-Order Type Classes Chap. 9 Chap. 10

Chap. 11

Chap. 14

Concludir Note

Towards Functional Pearls (2)

If we could prove Theorem 4.1.5 stating that reverse and fast_reverse actually denote the same function, replacing reverse by fast_reverse would yield a significant speed-up of programs:

Theorem 4.1.5 (Equality)

The functions **reverse** and fast_reverse denote the same function, i.e.,

```
\forall ls \in a-List. reverse ls = fast_reverse ls
```

Proving Theorem 4.1.5: The Functional Pearl!

Equational reasoning (in concert with other techniques like induction) will be instrumental to conduct this proof showing that reverse and fast_reverse are equal and hence, the optimization of replacing reverse by fast_reverse correct!

Lecture 3

Detailed Outline

Chap. 4 41

4.2 4.3 4.4 4.5

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Proving Theor. 4.1.5: The Functional Pearl (1)

Proof of Theorem 4.1.5 by structural induction on the structure of the list argument and equational reasoning.

Induction base: Let ls = []. We obtain:

reverse ls

(ls = []) = reverse []

(Unfolding reverse) = []

- (Folding fr) = fr [] []
- (Folding fast_reverse) = fast_reverse []
 - ([] = ls) = fast_reverse ls

Lecture 3

Detailed Outline

Chap. 4

4.1 4.2 4.3 4.4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Proving Theor. 4.1.5: The Functional Pearl (2) Induction step: Let 1s = (v:1s'). We obtain: reverse 1s

(lst = (v:ls')) = reverse (v:ls')(Unfolding reverse) = reverse ls' ++ [v] $(IH) = fast_reverse ls' ++ [v]$ $(Unfolding fast_reverse) = (fr ls' []) ++ [v]$ (Lemma 4.1.7) = fr ls' [v](Folding fr) = fr ls' (v:[]) (Folding fr) = fr (v:ls') [](Folding fast_reverse) = fast_reverse (v:ls') ((v:lst') = ls) = fast_reverse ls

41

Proving the Supporting Results (1)

Lemma 4.1.6 ∀ls1,ls2∈a-List ∀v∈a-Value. (fr ls1 ls2) ++ [v] = fr ls1 (ls2++[v])

Proof. by structural induction on the structure of the list argument ls1 and equational reasoning.

Induction base: Let ls1 = [], let $ls2 \in a-List$, and let $v \in a-Value$. We obtain:

(fr ls1 ls2) ++ [v] (ls1=[]) = (fr [] ls2) ++ [v] (Unfolding fr) = ls2 ++ [v] (Folding fr) = fr [] (ls2++ [v]) ([]=ls1) = fr ls1 (ls2++ [v])

Lecture 3

Detailed Outline

Chap. 4

4.14.24.34.4

4.5 4.6

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Proving the Supporting Results (2)

Induction step: Let ls1 = (v': ls1'), let $ls2 \in a-List$, and let $v \in a-Value$. We obtain:

	(fr ls1 ls2) ++ [v]
=	(fr (v':ls1') ls2) ++ [v]
=	(fr ls1' (v':ls2)) ++ [v]
=	(fr ls1' ls3) ++ [v]
=	fr ls1' (ls3++ [v])
=	fr ls1' ((v':ls2)++[v])
=	fr ls1' (v':(ls2++[v]))
=	fr (v':ls1') (ls2++[v])
=	fr ls1 (ls2++[v])

Lecture 3

Detailed Outline

Chap. 4 4.1

4.2 4.3 4.4 4.5 4.6

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Proving the Supporting Results (3)

```
Lemma 4.1.7

\forall ls' \in a-List \forall v \in a-Value.

(fr ls' []) ++ [v] = fr ls' [v]
```

Proof. Let $ls' \in a$ -List and let $v \in a$ -Value. Setting ls1 = ls'and ls2 = [], we obtain by equational reasoning and Lemma 4.1.6:

(fr ls' []) ++ [v] (ls'=ls1,[]=ls2) = (fr ls1 ls2) ++ [v] (Lemma 4.1.6) = fr ls1 (ls2++ [v]) (ls1=ls', ls2=[]) = fr ls' ([]++ [v]) ([]++[v]=[v]) = fr ls' [v] Lecture 3

Detailed Outline

Chap. 4 41

4.2 4.3 4.4 4.5 4.6 From Type to Higher-Order

Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Application: Program Optimization

...equational reasoning together with inductive proof principles (structural induction) allowed us to prove Theorem 4.1.5:

 For all finite lists xs, the Haskell expressions reverse xs, fast_reverse xs are equal, i.e., have the same value:
 ∀xs∈a-List. reverse xs == fast_reverse xs

Replacing reverse by fast_reverse is thus safe:

Corollary 4.1.8 (Optimization)

Replacing every call of **reverse** by a call of fast_reverse in a program is a safe optimization of the program.

Lecture 3

Detailed Outline

Chap. 4

4.2 4.3 4.4

4.6

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Comparing the Suitability

...of functional and imperative programming for equational reasoning.

Functional definitions are

genuine mathematical equations.

This enables reasoning about functional programs by means of equational reasoning as is known from mathematics and standard (algebraic) reasoning.

Reasoning about functional programs is thus a lot easier as about imperative programs where equational reasoning does not apply (as easily). Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Note

...in imperative programming, the equality symbol '=' means:

'equal by assignment:'

The contents of the memory cell named by the left-hand side variable is replaced by the value of the right-hand side expression.

An 'equation' of the form

x = x+y

thus does not represent a mathematical equation meaning that x and x+y have the same value but a command, an instruction, a destructive assignment statement meaning that

 the sum of the values stored in the memory cells named x and y is used for overwriting the value stored so far in the memory cell named x, destroying thereby this value.

Note: To avoid confusion some imperative languages thus use a different symbol, e.g. := such as in Pascal, to denote the assignment operator (instead of the conceptually misleading symbol =).

Lecture 3

Detailed Outline

Chap. 4 4.1

4.2 4.3 4.4 4.5

From Type to Higher-Order Type Classes Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Illustrating the Difference

...consider the definition-like symbol sequence S:

у

In functional languages like Haskell, S is an

 invalid sequence of definitions raising an error that x is defined multiple times. Since = means 'equal by definition', redefinition is forbidden. S can not be evaluated.

In imperative languages like C, Java, etc., S is a

valid sequence of destructive assignment statements meaning that after executing S the memory cells named x and y store the values 3 and 2, respectively. No error is raised.

Lecture 3

Detailed Outline

Chap. 4

4.1
4.2
4.3
4.4
4.5

```
From
Type to
Higher-
Order
Type
Classes
```

Chap. 11

Chap. 14

Concludir Note

Summing up

Functional definitions are

- genuine mathematical equations.
- This allows us to prove
- equality and other relations among functional expressions applying standard mathematical reasoning.
- Proven equality of functions can be used e.g. for optimization by replacing a
 - less efficient implementation (called initial algorithm, initial program) by a more efficient one (called final algorithm, final program).

Example:

- Initial program: reverse
- Final program: fastReverse

Next, we are going to consider this approach in the realm of combinatorially complex problems of functional pearls.

Lecture 3

Detailed Outline

Chap. 4

4.1
 4.2
 4.3
 4.4
 4.5

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Chapter 4.2 Application: Functional Pearls

Lecture 3

Detailed Outline

Chap. 4

4.2

4.2.2

4.4

4.6

From Type to Higher-Order

Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme 26/215

Chapter 4.2.1 Functional Pearls: The Very Idea

Lecture 3

Detailed Outline

Chap. 4

4.1 4.2 4.2.1

4.2.2

4.4

4.5

From Type to Higher-Order

Гуре Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme 27/215

Functional Pearls: The Very Idea

- 1. Pick a combinatorially (highly) complex problem P.
- 2. Solve *P* by a conceptually straightforward, simple, and intuitive algorithm, the so-called initial algorithm (IA) implemented by some initial program IP, which is
 - obviously correct
 - typically (hopelessly) inefficient.
- 3. The Functional Pearl:
 - 3.1 Transform IP step by step into some final program (FP) which may be
 - conceptually more complex, less intuitive, not at all obviously correct but (much more) efficient than IP (e.g., feasible instead of practically infeasible, logarithmic instead of quadratic, linear instead of quasi linear,...)
 - 3.2 Prove that every transformation step preserves the semantics of the program it is applied to (ensuring overall equivalence of the initial and the final program and hence the correctness of the latter).

Lecture 3

Detailed Outline

4.1 4.2 **4.2.1** 4.2.2 4.3

4.5 4.6

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme 28/215

The Beauty of a Functional Pearl

It is important to note: The functional pearl is

- not the finally resulting (efficient) implementation
- but the calculation and proof process leading to it!

The elegance of the calculation and proof process makes the

beauty of a functional pearl!

The transformation of

 reverse into fast_reverse together with the proof of the two functions' equality

can be considered a most simple example of a functional pearl.

Lecture 3

Detailed Outline

Chap. 4

4.2 4.2.1

4.2.2

4.4

4.6

From Type to Higher-Order Type

Classes

. Chan 10

hap 11

Chap. 14

Concludin Note

Assignme 29/215

Chapter 4.2.2 Functional Pearls: Origin, Background

hap. 9 hap. 10 hap. 11 hap. 14

4.2.2

Concludin Note

Assignme 30/215

Functional Pearls: Origin, Background

In 1990, in the course of founding the

Journal of Functional Programming

Richard Bird was asked by the then designated editors-in-chief Simon Peyton Jones and Philip Wadler to contribute a regular column to the journal entitled

Functional Pearls.

In spirit, this column should follow and emulate the successful series of essays written by Jon Bentley in the 1980s under the title

Programming Pearls

and published in the

Communications of the ACM.

4.2.2 31/215

Functional Pearl Examples

From 1990 to (roughly) 2011 some

80 functional pearls have been published in the Journal of Functional Programming dealing with

- Divide-and-conquer
- Greedy
- Exhaustive search
- ...

and other problems.

Some more were published in proceedings of conferences including editions of the series of the

- International Conference of Functional Programming
- Mathematics of Program Construction

Roughly a quarter of these pearls have been written by Richard Bird.

4.2.2

Concludin Note

32/215

A Major Resource of Functional Pearls

In 2011, Richard Bird presented a collection of 30 "revised, polished, and re-polished functional pearls" written by him and others in his monograph:

 Richard Bird. *Pearls of Functional Algorithm Design*. Cambridge University Press, 2011

Here, we consider three of them with a particular focus on the use of equational reasoning for proving the transformation steps correct leading from the initial programs being

- obviously correct but (hopelessly) inefficient at their final versions being
- into their final versions being
 - much more efficient (but possibly less intuitive):
 - Pearl 1: The Smallest Free Number Problem
 - Pear 2: Not the Maximum Segment Sum Problem
 - Pearl 3: A Simple Sudoku Solver

4.2.2

Note Assignme 33/215

Go for Equational Reasoning!

...the name of the GoFER language, which is both acronym and name of a functional programming language standing for:

Go F(or) E(quational) R(easoning)

might be considered an indication of the relevance and importance of equational reasoning in the realm of functional programming.

Looking ahead

 In spirit, the program transformation processes follow a correctness by construction approach (cf. Chapter 6.7.1), where correctness of a program constructed by a transformation is ensured by equational reasoning (and other techniques especially inductive reasoning).

34/215

Chapter 4.3 The Smallest Free Number

Lecture 3

Detailed Outline

Chap. 4

4.1 4.2 4.3

4.3.1

4.4

4.6

Type to Higher-Order Type

Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme

35/215

The Smallest Free Number (SFN) Problem

The SFN Problem:

- Let X be a finite set of natural numbers.
- Compute the smallest natural number y that is not in X.

Examples:

The smallest free number of set

- $\{0,1,5,9,2\}$ is 3.
- $\{0, 1, 2, 3, 18, 19, 22, 25, 42, 71\}$ is 4.
- $\{8, 23, 9, 12, 11, 1, 10, 0, 13, 7, 41, 4, 21, 5, 17, 3, 19, 2, 6\}$ is not immediately obvious!

Concludin Note

Assignme

.ecture 3

Detailed Outline

Chap. 4

4.2 4.3

4.3.1

4.5

From Type to Higher-Order Type

Chap 9

Chap. 10

nap. 11

Chapter 4.3.1 The Initial Algorithm

Lecture 3

Detailed Outline

Chap. 4

4.1 4.2

4.3

4.4

4.6

From Type to Higher-Order

Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme

The SFN Problem

...can easily be solved, if

 X is represented as an increasingly ordered list xs of numbers without duplicates.

- If so, it suffices to look for the first gap in xs.

Illustration:

- Let X be set: {8,23,9,12,11,1,10,0,13,7,41,4,21,5,17,3,19,2,6}
- After sorting (and removing duplicates) we obtain list: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 19, 21, 23, 41]
- Looking for the first gap yields:
 The smallest free number of X is 14!

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme

IA: The Initial SFNP Algorithm

...based on the previous observation, the initial algorithm *IA* (for 'Initial Algorithm') for the SFNP problem is the following:

IA: Initial SFNP Algorithm

- 1. Represent X as a list of integers xs.
- 2. Sort xs increasingly, while removing all duplicates.
- 3. Compute the first gap in the list obtained from step 2.

Lecture 3

Detailed Outline

Chap. 4

4.2

4.3.1

4.5

From Type to Higher-Order Type

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme

*IP*₁: The 1st Initial SFNP Program

IA can easily be implemented by a system of two functions called:

- ssfn (for 'simple sfn')
- sap (for 'search and pick').

```
IP_1: 1st Initial SFNP Program
ssfn :: [Integer] -> Integer
ssfn = (sap 0) . removeDuplicates . quickSort
sap :: Integer -> [Integer] -> Integer
sap n [] = n
sap n (x:xs)
| n /= x = n
| otherwise = sap (n+1) xs
```

Lecture 3

Detailed Outline

4.1 4.2 4.3 **4.3.1** 4.4 4.5 4.6

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme

*IP*₂: The 2nd Initial SFNP Program

Note, function minfree implements IA, too, giving us a second initial program IP_2 solving the SFN problem.

```
IP<sub>2</sub>: 2nd Initial SFNP Program
minfree :: [Nat] -> Nat
minfree xs = head $ ([0..]) \\ xs
```

where

denotes difference on sets (i.e., $xs \setminus ys$ is the list of those elements of xs that remain after removing any elements in ys) and

```
type Nat = Int
```

the type of natural numbers starting from 0.

Lecture 3

Detailed Outline

Chap. 4

4.2 4.3 4.3.1

```
4.6
From
Type to
```

```
Higher-
Order
Type
Classes
```

```
Chap. 9
```

Chap. 10

```
Chap. 11
```

```
Chap. 14
```

```
Concludin
Note
```

```
Assignme
```

Looking at IA, IP_1 and IP_2 in More Detail

...the initial algorithm IA and its implementing programs IP_1 and IP_2 for the SFN problem are (obviously) sound but inefficient:

- IA_1 , IP_1 : Sorting is not of linear time complexity.
- IP_2 : Evaluating minfree for a list of length *n* requires $O(n^2)$ steps in the worst case.

(Note: Evaluating minfree [n-1, n-2..0] requires doublechecking that "*i*, $0 \le i \le n$, is not an element of list [n-1, n-2..0]" and thus n(n+1)/2 equality tests.)

Lecture 3

Detailed Outline

4.1 4.2 4.3 4.3.1 4.4

From Type to Higher-Order

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme

The SFN Problem as a Functional Pearl

 \dots starting from IP_2

- develop a new SFNP Algorithm LinSFNP which is of linear time complexity (i.e., linear in the number of elements of the inital set X of natural numbers)
- prove that all steps transforming IA_2 into LinSFNP are correct (i.e., preserve the semantics of IA_2).

Lecture 3

Detailed Outline

Chap. 4

4.2 4.3 **4.3.1**

4.5

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme

Outline

Starting from IP_2 , i.e., from minfree, we will develop:

- 1. an array based
- 2. a divide-and-conquer based

linear time algorithm for the SFN problem.

Both algorithms rely on the following Key Fact (KF): KF: In [0..length xs], there is a number which is not in xs where xs denotes the argument list of natural numbers.

KF implies: The smallest number not in xs is given by

- the smallest number not in filter (<=n) xs, where n == length xs! Lecture 3

Detailed Outline

Chap. 4 4.1

4.3 4.3.1 4.4 4.5 4.6

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme

Chapter 4.4 Not the Maximum Segment Sum

4.2 4.3 **4.4**

4.4.1 4.4.2 4.4.3

4.6

Type to Higher-Order Type

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

/45/215

The Maximum Segment Sum (MSS) Problem

A segment of a list

- is a contiguous subsequence.

The MSS Problem:

- Let L be a list of (positive and negative) integers.
- Compute the maximum of the sums of all possible segments of *L*.

Example:

Let *L* be the list

The maximum segment sum of L is

-3, the sum of the elements of the segment [2,1].

Lecture 3

Detailed Outline

4.1 4.2 4.3 **4.4** 4.4.1 4.4.2 4.4.3 4.5

-rom Type to Higher-Order

Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

The MSS Problem: Background, Motivation

The MSS Problem

 was considered quite often in the late 1980s mostly as a show- case by programmers to illustrate and demonstrate their favorite style of program development or their particular theorem prover.

In this chapter, however, we consider

- the 'Maximum Non-Segment Sum (MNSS) Problem'

in the spirit of a functional pearl problem.

Lecture 3

Detailed Outline

44

The Max. Non-Segment Sum (MNSS) Problem

A non-segment of a list

 is a subsequence that is not a segment, i.e., a non-segment has one or more 'holes' in it.

The MNSS Problem:

- Let L be a list of (positive and negative) integers.
- Compute the maximum of the sums of all possible non-segments of *L*.

Example:

Let *L* be the list segment [2,1,-2,-1]- [-4,-3,-7,2,1,-2,-1],-4]. non-segment [2,1]++[-1]

The maximum non-segment sum of L is

- 2, the sum of the elements from the non-segment [2,1,-1].

Lecture 3

Detailed Outline

4.1 4.2 4.3 **4.4** 4.4.1 4.4.2 4.4.3

-rom Type to Higher-Order Type

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

What does MNSS qualify a Pearl Problem?

let L be a list of length n .					
- There are $O(n^2)$ segments of L.					
- There are $O(2^n)$ subsequences of L.					
This means there are					
 many more non-segments of a list than segments. 					
This raises the problem:					
– Can the maximum non-segment sum be computed in linear time?					
This (pearl) problem will be tackled in this chapter.					

49/215

4.4

Chapter 4.4.1 The Initial Algorithm

Lecture 3

Detailed Outline

Chap. 4

4.2 4.3 4.4 4.4.1

4.4.2 4.4.3

4.6

Type to

Order Type

Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

/50/215

IA: The Initial MNSS Algorithm

...the MNSS problem can easily be solved by a three-stage process matching the generate/transform/select pattern:

IA: Initial MNSS Algorithm

- 1. Generate: Compute a list of all non-segments of the argument list.
- 2. Transform: Compute the sum of all these non-segments.
- 3. Select: Pick a non-segment whose sum is maximum.

Lecture 3

Detailed Outline

Chap. 4

4.2 4.3 4.4

4.4.1

4.4.3

4.5

From Type to Higher-Order Type

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

/51/215e

IP: The Initial MNSS Program

IA can straightforwardly be implemented in Haskell as composition of three functions.

IP: Initial MNSS Program

mnss :: [Int] -> [Int]
mnss = maximum . map sum . nonsegs

where

- nonsegs computes a list of all non-segments of the argument list,
- map sum computes the sum of all these non-segments,
- maximum picks those whose sum is maximum.

441

Concludin Note

Chapter 4.4.2 The Linear Time Algorithm

Lecture 3

Detailed Outline

> Chap. 4 4.1

4.3 4.4

4.4.2 4.4.3

4.6

ype to ligher-Order Type

Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

/53/215

Work Plan to Derive the Linear Time Alg.

Recall the initial algorithm for the MNSS problem with nonsegs replaced by its supporting functions:

Work plan:

- Express extract . filter nonseg . markings as an instance of foldl.
- Apply then the fusion law of foldl to arrive at a better algorithm.

Lecture 3

Detailed Outline

4.1 4.2 4.3 4.4 4.4.1 **4.4.2** 4.4.3 4.5 4.6

Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

/54/215

Transforming, transforming, transforming

...and proving semantics preservation of every transformation step.

Lecture 3

Detailed Outline

> 4.1 4.2

4.4 4.4.1

4.4.2

4.5

4.6

rom

Higher-Drder

Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

/55//215

The Linear Time Algorithm

... for the MNSS Problem:

mnss xs
= fourth (foldl h (start (take 3 xs)) (drop 3 xs))
start [x,y,z]
= (0, max [x+y+z,y+z,z], max [x,x+y,y], x+z)

...less obviously sound for itself compared to the initial algorithm for the MNSS Problem:

```
mnss :: [Int] -> [Int]
mnss = maximum . map sum . nonsegs
```

but efficient and proven correct on the fly of its construction.

```
Lecture 3
```

Detailed Outline

4.1 4.2 4.3 4.4 4.4.1 **4.4.1**

4.5 4.6

Type to Higher-Order Type Classes Chap. 9 Chap. 10

Chap. 14

```
Concludin
Note
```

Chapter 4.4.3 In Closing

4.4.3

Background

The MSS Problem goes back to Jon R. Bentley:

 Jon R. Bentley. Programming Pearls. Addison-Wesley, 1987.

David Gries and Richard Bird later on presented an invariant assertions and algebraic approach, respectively.

- David Gries. The Maximum Segment Sum Problem. In Formal Development of Programs and Proofs. Edsger W. Dijkstra (Ed.), Addison-Wesley, 43-45, 1990.
- Richard Bird. Algebraic Identities for Program Calculation. Computer Journal 32(2):122-126, 1989.

Lecture 3

Detailed Outline

4.1 4.2 4.3

4.4.1

4.4.2 4.4.3

4.5

From Type to Higher-Order Type

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

...on the MSS Problem have been presented in:

 Shin-Cheng Mu. The Maximum Segment Sum is Back. In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Program Manipulation (PEPM 2008), 31-39, 2008.

4.4.3

Chapter 4.5 A Simple Sudoku Solver

Lecture 3

Detailed Outline

Chap. 4

4.2 4.3 4.4

4.5 4.5.1 4.5.2

4.5.3

ype to ligher-

Order Type

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

60/215e

Sudoku Puzzles

	3	7	8		6			5
		5	2	7			3	
				3	5		6	8
		1					9	3
		2		5		4		
5	7					8		
2	1		5	6				
	4			2	1	5		
6			3		7	2	4	

Fill in the grid so that every row, every column, and every 3×3 box contains the digits 1 - 9. There's no maths involved. You solve the puzzle with reasoning and logic.

The Independent Newspaper

Lecture 3

Detailed Outline

hap. 4

4.2 4.3 4.4 4.5 4.5.1

4.5.2 4.5.3

> From Type to Higher-Order Type Classes Chap. 9

Chap. 10

Chap. 14

Concludin Note

Chapter 4.5.1 Two Initial Algorithms

Lecture 3

Detailed Outline

Chap. 4

4.2 4.3 4.4

4.5.1 4.5.2

4.5.3 4.6

ype to

Order Type

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

IA1, IA2: Two Initial Soduko Algorithms

There are two straightforward (brute force) approaches to solving a Sudoku puzzle:

*IA*₁: 1st Initial Soduko Algorithm:

- Construct a list of all correctly completed grids.
- Subsequently, test the input grid against them to identify those whose non-blank entries match the given ones.
- IA2: 2nd Initial Soduko Algorithm:
 - Start with the input grid and construct all possible choices for the blank entries.
 - Then compute all grids that arise from making every possible choice and filter the result for the valid ones.

In the following we proceed with IA_2 for solving the Sudoku problem.

Lecture 3

Detailed Outline

4.1 4.2 4.3 4.4

4.5.1 4.5.2

4.5.3

Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Preliminaries

...data types for modelling Soduko puzzles:

- $m \times n$ -matrix: A list of m rows of the same length n.

```
type Matrix a = [Row a]
type Row a = [a]
```

– Grid: A 9 \times 9-matrix of digits.

type Grid = Matrix Digit type Digit = Char

- Valid digits: '1' to '9'; '0' stands for a blank.

digits = ['1'..'9'] blank = (== '0')

In the following, we assume that the input grid is valid, i.e.,

- it contains only digits and blanks
- no digit is repeated in any row, column or box.

451

IP: The Initial Soduko Program

 $...IA_2$ can straightforwardly be implemented in Haskell as a composition of three functions matching the generate/filter pattern:

IP: Initial Sudoku Program

solve = filter valid . expand . choices
choices :: Grid -> Matrix Choices

- expand :: Matrix Choices -> [Grid]
- valid :: Grid -> Bool

where

- Generate:
 - choices constructs all choices for the blank entries of the input grid,
 - expand computes all grids that arise from making every possible choice,
- Filter: filter valid selects all the valid grids.

Lecture 3

Detailed Dutline

4.2 4.3 4.4 4.5 **4.5.1** 4.5.2

Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Concludin Note

Completing the Initial Program (1)

...we start with introducing the type synonym

```
type Choices = [Digit]
```

whose values will represent the set of choices.

Based on this, we next define the subsidiary functions of solve, i.e., the functions

- choices
- expand
- valid

Completing the Initial Program (2)

Implementing choices:

choices :: Grid -> Matrix Choices choices = map (map choice) choice d = if blank d then digits else [d]

Intuitively

- If the cell is blank, then all digits are installed as possible choices.
- Otherwise there is no choice and a singleton is returned.

Detailed

Outline

hap. 4

4.3 4.4 4.5 4.5 1

4.5.2 4.5.3

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Completing the Initial Program (3)

Implementing expand:

expand :: Matrix Choices	-> [Grid]
expand :: cp . map cp	
•	$(\texttt{cp} \ \widehat{=} \ \texttt{cartesian_product})$
cp [] = [[]]	_

cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]

Intuitively

- Expansion is a Cartesian product, i.e., a list of lists yielded by the function cp, e.g., cp[[1,2],[3],[4,5]]
 >> [[1,3,4],[1,3,5],[2,3,4],[2,3,5]]
- map cp returns a list of all possible choices for each row.
- cp . map cp, finally, installs each choice for the rows in all possible ways.

Lecture 3

Detailed Outline

> 4.1 4.2 4.3 4.4

4.5 4.5.1

4.5.3

-rom Type to Higher-Order Type Classes

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Completing the Initial Program (4)

Implementing valid:

Intuitively

 A grid is valid, if no row, column or box contains duplicates.

Completing the Initial Program (5)

Lecture 3

Implementing rows and columns:

rows :: Matrix a -> Matrix a rows = id

cols :: Matrix a -> Matrix a
cols [xs] = [[x] | x <- xs]
cols (xs:xss) = zipWith (:) xs (cols xss)</pre>

Intuitively

- rows is the identity function, since the grid is already given as a list of rows.
- columns computes the transpose of a matrix.

4.5.3 4.6 From Type to Higher-Order Type Classes Chap. 9 Chap. 10 Chap. 11 Chap. 14 Caschudia

451

Completing the Initial Program (6)

Implementing **boxs**:

```
boxs :: Matrix a -> Matrix a
boxs = map ungroup . ungroup . map cols .
    group . map group
group :: [a] -> [[a]]
group [] = []
group xs = take 3 xs : group (drop 3 xs)
ungroup :: [[a]] -> [a]
ungroup = concat
```

Intuitively

- group splits a list into groups of three.
- ungroup takes a grouped list and ungroups it.
- group . map group produces a list of matrices; transposing each matrix and ungrouping them yields the boxes.

Lecture 3

Detailed Outline

4.1 4.2 4.3 4.4 4.5 **4.5.1** 4.5.2 4.5.3 4.6

Higher-Order Type Classes

Chap. 10

Chap. 11

Concludin

/71/215

Completing the Initial Program (7)

...illustrating the effect of boxs for the (4×4) -case, when group splits a list into groups of two:

$$\begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{pmatrix} \rightarrow \begin{pmatrix} \begin{pmatrix} ab & cd \\ ef & gh \\ (ij & kl \\ mn & op \end{pmatrix} \end{pmatrix} \rightarrow \begin{pmatrix} \begin{pmatrix} ab & ef \\ cd & gh \\ (ij & mn \\ kl & op \end{pmatrix}$$

Note: Eventually, the elements of the 4 boxes show up as the elements of the 4 rows, where they can easily be accessed.

Lecture 3

Detailed Outline

4.1 4.2 4.3 4.4 4.5 **4.5.1** 4.5.2 4.5.3 4.6

Type to Higher-Order Type Classes Chap. 9

Chap. 11

Chap. 14

Concludin Note

Wholemeal Programming

Instead of - thinking about matrices in terms of indices, and - doing arithmetic on indices to identify rows, columns, and boxes the preceding approach has gone for functions which - treat a matrix as a complete entity in itself. Geraint Jones coined the notion - wholemeal programming for this style of programming. Wholemeal programming helps avoiding indexitis and - encourages lawful program construction.

451

Lawful Programming

Lemma 4.5.1.1

The laws (A), (B), and (C) hold on arbitrary ($N \times N$)-matrices, in particular on (9 × 9)-grids:

rows . rows = id(A)cols . cols = id(B)boxs . boxs = id(C)

This means, all 3 functions are involutions.

Lemma 4.5.1.2 The laws (D), (E), and (F) hold on $(N^2 \times N^2)$ -matrices: map rows . expand = expand . rows (D) map cols . expand = expand . cols (E) map boxs . expand = expand . boxs (F)

Lecture 3

Detailed Outline Chap. 4 4.1 4.2 4.3 4.4 4.5 **4.5** 4.5.1 4.5.2 4.5.3 4.6 From

> Higher-Order Type Classes Chap. 9

> Chap. 10

Chap. 11

Chap. 14

Concludir Note

/74/215

A Quick Analysis of the Initial Program

...suppose that half of the entries (cells) of the input grid are fixed.

Then there are about 9^{40} , or

147.808.829.414.345.923.316.083.210.206.383.297.601

grids to be constructed and checked for validity!

This is hopeless!

Lecture 3

Detailed Outline

4.1 4.2 4.3 4.4 4.5 **4.5.1** 4.5.2 4.5.3 4.6

> ype to ligher-Drder ype

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Chapter 4.5.2 Pruning the Initial Algorithm

Lecture 3

Detailed

Chap. 4

4.2 4.3

4.5 4.5.1 4.5.2

4.5.3

Type to Higher-Order Type

Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

/76/215

Optimizing the Initial Algorithm

1st Optimization: Pruning the matrix of choices:

Idea

 Remove any choices from a cell c that occurs as a singleton entry in the row, column or box containing c.

```
Hence, we are seeking for a function
```

prune :: Matrix Choices -> Matrix Choices

which satisfies

filter valid . expand
 = filter valid . expand . prune

and implements the above idea.

Lecture 3

Detailed Outline

452

Pruning a Row

Lecture 3

Detailed Outline

Pruning a row

remove xs ds

= if singleton ds then ds else ds \setminus xs

Intuitively

- remove removes choices from any choice that is not fixed.

4.6 From Type to Higher-Order Type Classes Chap. 9 Chap. 10 Chap. 11

452

Concludir

/78/215

Laws for pruneRow, nodups, and cp

- The function pruneRow satisfies law (G):
 - filter nodups . cp
 = filter nodups . cp . pruneRow
- The functions nodups and cp satisfy laws (H) and (I):
 If f is an involution, i.e., f . f = id, then
 filter (p.f) = map f . filter p . map f (H)
 filter (all p) . cp = cp . map (filter p) (I)

Lecture 3

Detailed Outline

/79/215

(G)

Rewriting filter valid . expand					
using nodups, boxs, cols, and rows.					
	Detailed Outline				
We can prove:	Chap. 4				
Lemma 4.5.2.1					
filter valid . expand					
-	4.5 4.5.1				
= filter (all nodups . boxs) .	4.5.2				
filter (all nodups . cols) .	4.5.3 4.6				
1					
filter (all nodups . rows) . expand	From Type to				
	Higher- Order				
(Note: The order of the 3 filters on the right hand side above					
č	Classes				
is not relevant.)	Chap. 9				
	Chap. 10				
Work plan: Apply each of the filters to expand.					

...doing this requires some reasoning which we exemplify for the ${\tt boxs}$ case.

Note /80/215e

Proof Sketch of Lemma 4.5.2.1: boxs Case(1)

filter (all nodups . boxs) . expand

= {(H), since boxs . boxs = id}
map boxs . filter (all nodups) . map boxs . expand
= {(F)}

map boxs . filter (all nodups) . expand boxs
[definition of _____]

= {definition of expand}

map boxs . filter (all nodups) . cp . map cp . boxs

= {(l), and map f . map g = map (f . g)}
map boxs . cp . map (filter nodups . cp) . boxs
= {(G)}

map boxs . cp . map (filter nodups . cp . pruneRow) . boxs 4

Lecture 3

Detailed

Chap. 4 4.1 4.2

4.4

4.5.1 4.5.2

4.5.3

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Concludin Note

/81/215

Proof Sketch of Lemma 4.5.2.1: boxs Case (2) $= \{(1)\}$ map boxs . filter (all nodups) . cp . map cp . map pruneRow . boxs $= \{ definition of expand \} \}$ map boxs . filter (all nodups) . expand . 452 map pruneRow . boxs = {(H) in the form map f . filter p = filter (p. f) . map f} filter (all nodups . boxs) . map boxs . expand map pruneRow . boxs $= \{(F)\}$ filter (all nodups . boxs) . expand . boxs . map pruneRow . boxs

Summing up

Overall, we have shown:					
Lemma 4.5.2.2					
filter (all nodups . boxs) . expand	4.1				
Titter (all nodups . boxs) . expand	4.2				
= filter (all nodups . boxs) .	4.3				
-	4.4				
expand . pruneBy boxs, where	4.5				
	4.5.2				
pruneBv f = f . map pruneRow . f					
Frances, i i map Francisco i i	4.6				
	From				
<pre>expand . pruneBy boxs, where pruneBy f = f . map pruneRow . f Repeating the same calculation for rows and cols we get: Lemma 4.5.2.3</pre>					
	Higher				
	Order Type				
Lemma 4.5.2.3	Classe				
filtor volid ovpond					
filter valid . expand	Chap.				
= filter valid . expand . prune, where					
fitter varia - enpana - prano, more	Chan				
	Chap.				
prune	Chap.				
= pruneBy boxs . pruneBy cols . pruneBy rows	Conclu				
pranoby some . pranoby some . pranoby rowb	Note				

/83/215

Implementation of solve after the 1st Opt.

Implementation of solve after the 1st Optimization (pruningimproved):

solve = filter valid . expand . prune . choices

Note: Pruning can be done more than once.

- After each round of pruning some choices might be resolved into singletons allowing the next round of pruning to remove even more impossible choices.
- For simple Sudoku problems repeated rounds of pruning will eventually yield the solution of the input Sudoku problem.

Lecture 3

452

Concludin Note

/84/215

Tuning the Solver Further

... based on the following idea:

 Combine pruning with expanding the choices for a single cell only at a time, called single-cell expansion.

Which cell to expand?

 Any cell with the smallest number of choices for which there are at least 2 choices.

Note: If there is a cell with no choices then the Sudoku problem is unsolvable (from a pragmatic point of view, such cells should be identified quickly). Lecture 3

Detailed Outline

Chap. 4

4.2 4.3 4.4 4.5

4.5.2

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

/85//215

Empowering the Function expand

Lecture 3

Detailed Outline

...we replace the function expand by a new version

expand = concat . map expand . expand1 (J)

where expand1 expands the choices of a single cell only, which is defined next.

/86/215

4.5.2

Defining expand1

Think of a cell containing cs choices as sitting in the middle of a row row, i.e., row = row1 ++ [cs] ++ row2, in the matrix of choices, with rows rows1 above it and rows rows2 below it:

expand1 :: Matrix Choices -> [Matrix Choices]
expand1 rows

= [rows1 ++ [row1 ++ [c] : row2] ++ rows2 | c<-cs] where

(rows1,row:rows2) = break (any smallest) rows (row1, cs:row2) = break smallest row smallest cs = length cs == n n = minimum (counts rows) counts = filter (/=1) . map length . concat

break p xs

= (takeWhile (not . p) xs, dropWhile (not . p) xs)

4.5.2 87/215

Remarks on expand1

- The value n is the smallest number of choices, not equal to 1 in any cell of the matrix of choices.
- If the matrix contains only singleton choices, then n is the minimum of the empty list, which is not defined.
- The standard function break p splits a list into two.
- break (any smallest) rows thus breaks the matrix into two lists of rows with the head of the second list being some row that contains a cell with the smallest number of choices.
- Another application of break then breaks this row into two sub-rows, with the head of the second being the element cs with the smallest number of choices.
- Each possible choice is installed and the matrix reconstructed.
- If there are no choices, expand1 returns an empty list.

Lecture 3

Detailed Outline

4.1 4.2 4.3

4.4 4.5

4.5.1 4.5.2

4.5.3

From Type to Higher-Order Type Classes

chap. 9

Chap. 10

Chap. 11

Concludin

Completeness and Safety of a Matrix

The definition of n implies that (J) only holds when

- applied to matrices with at least one non-singleton choice.
- This suggests: A matrix is
 - complete, if all choices are singletons,
 - unsafe, if the singleton choices in any row, column or box contain duplicates.

Note:

- Incomplete and unsafe matrices can never lead to valid grids.
- A complete and safe matrix of choices determines a unique valid grid.

Lecture 3

Detailed Outline

Lhap. 4 4.1 4.2 4.3 4.4 4.5

4.5.1 4.5.2

4.5.3

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

/89/215

Testing Completeness and Safety

Completeness and safety can be tested as follows:

- Completeness Test:

complete = all (all single)
where single is the test for a singleton list.

```
- Safety Test:
```

safe m = all ok (rows m) &&
 all ok (cols m) &&
 all ok (boxs m)

ok row = nodups [d | [d] <- row]

Lecture 3

Detailed Outline

4.1 4.2 4.3 4.4 4.5 4.5.1 **4.5.2** 4.5.3 4.6

Гуре to Higher-Order Гуре Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

/90/215e

Equational Reasoning

...allows us to show: If a matrix is safe but incomplete, we have:

filter valid . expand = {since expand = concat . map expand . expand1 on incomplete matrices} filter valid . concat . map expand . expand1 = {since filter p . concat = concat . map (filter p)} concat . map (filter valid . expand) . expand1 = {since filter valid . expand =

filter valid . expand . prune}

concat . map (filter valid . expand . prune) . expand1

Lecture 3

Detailed Outline

4.1 4.2 4.3 4.4 4.5

4.5.3 4.6 From Type to Higher-

452

Order Type Classes Chap. 9 Chap. 10

Chap. 11

Concludin Note

/91/215e

Implementation of solve after the 2nd Opt. Defining search by search = filter valid . expand . prune we have for safe but incomplete matrices the equality search . prune = concat . map search . expand1 This leads us to the final Implementation of solve, after the 2nd Optimization (single cell-improved): solve = search. choices search m | not (safe m) = [] complete m' = [map (map head) m'] | otherwise = concat (map search (expand1 m')) where m' = prune m

/92/215e

452

Lecture 3

Detailed Outline

Chap. 4

l.2 l.3 l.4 l.5

4.5.2 4.5.3

4.6

rom ype to ligher-)rder

ype Jasses

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

/93/215

Chapter 4.5.3 In Closing

Quality and Performance Assessment

The final version of the Sudoku solver has been tested on various Sudoku puzzles available at

- haskell.org/haskellwiki/Sudoku
- It is reported that the solver
 - turned out to be most useful, and
 - competitive to (many) of the about a dozen different Haskell Sudoku solvers available at this site.

While many of the other solvers use arrays and monads, and reduce or transform the problem to

 Boolean satisfiability, constraint satisfaction, modelchecking, etc.

the solver presented here seems unique in terms of length, conceptual simplicity and that it has been derived in part by

equational reasoning!

Lecture 3

Detailed Outline

4.2 4.3 4.4 4.5

4.5.2

4.5.5

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14 Concludin

Chapter 4.6 References, Further Reading

Lecture 3

Detailed Outline

Chap. 4

4.1 4.2

4.4

4.5

From Type to Higher-Order Type

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme

Chapter 4: Basic Reading

- Richard Bird. Fifteen Years of Functional Pearls. In Proceedings of the 11th ACM SIGPLAN International Conference on Functional Programming (ICFP 2006), 215, 2006.
- Richard Bird. How to Write a Functional Pearl. Invited presentation at the 11th ACM SIGPLAN International Conference on Functional Programming (ICFP 2006), 2006. http://icfp06.cs.uchicago.edu/bird-talk.pdf
- Richard Bird. Pearls of Functional Algorithm Design. Cambridge University Press, 2011. (Chapter 1, The smallest free number; Chapter 11, Not the maximum segment sum; Chapter 19, A simple Sudoku solver)
- Jeremy Gibbons. Functional Pearls An Editor's Perspective. www.cs.ox.ac.uk/people/jeremy.gibbons/pearls/

Lecture 3

Detailed Outline

Chap. 4

4.1 4.2 4.3 4.4 4.5 **4.6**

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Chapter 4: Selected Advanced Reading (1)

- Jon R. Bentley. Programming Pearls. Addison-Wesley, 1987.
- Jon R. Bentley. Programming Pearls. Addison-Wesley, 2nd edition, 2000. (Excerpt of the book online available from www.cs.bell-labs.com/cm/cs/pearls)
- Richard Bird. Algebraic Identities for Program Calculation. Computer Journal 32(2):122-126, 1989.
- Richard Bird. Thinking Functionally with Haskell. Cambridge University Press, 2015. (Chapter 5, A simple Sudoku solver; Chapter 6.6, The maximum segment sum)

Lecture 3

Detailed Outline

Chap. 4

4.1 4.2 4.3 4.4 4.5 **4.6**

> From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Chapter 4: Selected Advanced Reading (2)

- Antonie J.T. Davie. An Introduction to Functional Programming Systems using Haskell. Cambridge University Press, 1992. (Chapter 10, Applicative Program Transformations)
- Kees Doets, Jan van Eijck. The Haskell Road to Logic, Maths and Programming. Texts in Computing, Vol. 4, King's College, UK, 2004. (Chapter 1.9, Haskell Equations and Equational Reasoning)
- Graham Hutton. *Programming in Haskell*. Cambridge University Press, 2007. (Chapter 13, Reasoning about programs)

Lecture 3

Detailed Outline

Chap. 4

4.2 4.3 4.4 4.5 **4.6**

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

From Type to Higher-Order Type Classes

Type Classes like

- Eq, Ord, Num, Enum, Show, Monoid,...

have types as instances, e.g.,

- String, Int, [Int], Maybe Int, Either Int Bool,...

which must satisfy a set of laws.

Higher-Order Type Classes like

- Functor, Applicative, Monad, Arrows,...

have type constructors as instances, e.g.,

- [], (->), ((->) Int), Maybe, Either, Either Int,
 (,), (,,), (,,,),...

which must satisfy a set of laws.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Example

Compare:

Type class Monoid: class Monoid m where mempty :: m mappend :: $m \rightarrow m \rightarrow m$ mconcat :: [m] -> m -- Default implementation mconcat = foldr mappend mempty plus monoid laws. Note: Usage of m implies: m must be a type! Type constructor class Functor: class Functor f where $fmap :: (a \rightarrow b) \rightarrow f a \rightarrow f b$ plus functor laws. Note: Usage of f implies: f must be a type constructor!

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

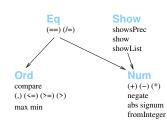
Chap. 11

Chap. 14

Concludir Note

Type Classes, Type Constructor Classes

...as part of the Haskell'98 type class hierarchy:



succ pred toEnum fromEnum enumFrom enumFromThen enumFromTo enumFromThenTo

Monoid

mempty mappend mconcat

Functor

fmap

pure

(<*>)

(>>=)(>>) return fail Applicative

MonadPlus mZero mPlus

Monad

Fethi Rabhi, Guy Lapalme. Algorithms. Addison-Wesley, 1999, Figure 2.4, p.46 (extended)

From Type to Higher-Order Type Classes

Arrow

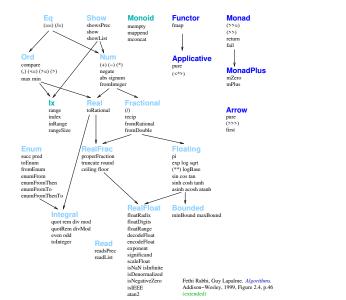
pure

first

(>>>)

Type Classes, Type Constructor Classes

...a larger section of the Haskell'98 type class hierarchy:



Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

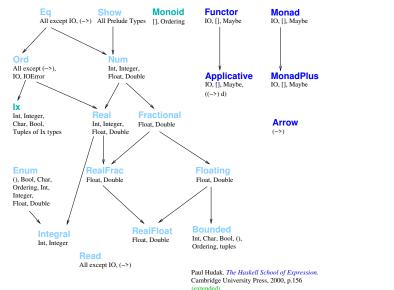
Chap. 11

Chap 14

Concludir Note

Type (Constr.) Classes w/ Predef. Instances

... of a section of the Haskell'98 type class hierarchy:



Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap 14

Concludir Note

Haskell: A Research Vehicle & Moving Target ...therefore, an update on the Haskell'98 Type Class Hierarchy:

Haskell'98

Haskell'98 Onwards

					Chap. 4
Functor	Monad	Arrow	Functor	Category	
fmap	(>>=)	pure	fmap	id :: cat a a	From
1	(>>) return	(>>>) first	(<\$) :: a → f b → f a	(.) :: cat b c → cat a b → cat a c	Type to
Ļ	fail	mst	(<\$) = fmap . const		Higher-
Annillanting				•	Order
Applicative	4		+	Arrow	Туре
pure (<*>)	MonadPlus mZero mPlus		Applicative	arr :: $(b \rightarrow c) \rightarrow (b 'arr' c)$	
((<))				first :: (b 'arr' c) -> ((b,d) 'arr' ((c,d))	Classes
	mrius		pure (<*>)	second :: (b 'arr' c) \rightarrow ((d,b) 'arr' (d,c))	<u> </u>
			$ (*>) :: fa \rightarrow fb \rightarrow fb al *> a2 = (id < sal) <*> a2 (<*) :: fa \rightarrow fb \rightarrow fa $	$(^{\ast\ast\ast})::(b\ `arr\ `c)\rightarrow (b'\ `arr\ `c')\rightarrow ((b,b')\ `arr\ `(c,c'))$	Chap. 9
				(&&&) :: (b 'arr' c) → (b 'arr' c') → (c,c'))	CI 10
				where 'arr' is a two-ary type variable	Chap. 10
				where arr is a two-ary type variable	<u> </u>
			(<*) = liftA2 const		Chap. 11
					CL 14
			+		Chap. 14
			Monad		
			(>>=)		Concludin
			(>>)		Note
			fail		
					Assignme
			1		
			MonadPlus		
			mZero		
			mPlus		

... for more information, check out:

https://wiki.haskell.org/Typeclassopedia

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

9.2 9.3 9.4

9.5

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Assignme

105/215

Chapter 9 Monoids

...in medias res.

Chapter 9.2 The Type Class Monoid

Lecture 3

Detailed Outline

Chap. 4

-rom Type to Higher-Order Type Classes

Chap. 9

9.2 9.3

9.5

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Assignme

The Type Class Monoid

...monoids are instances of type class Monoid obeying the monoid laws.

Type Class Monoid class Monoid m where mempty :: m mappend :: m -> m -> m mconcat :: [m] -> m -- Default implementation mconcat = foldr mappend mempty Manaid Laws

Monoid Laws

mempty 'mappend' x = x

- x 'mappend' mempty = x (x 'mappend' y) 'mappend' z =
 - x 'mappend' (y 'mappend' z)

(MonoL1) (MonoL2) (MonoL3)

0.2

Informally

Monoids are types with

- a binary operation mappend.
- a value mempty.
- a unary operation mconcat reducing a list of monoid values to a single monoid value using mappend.

The monoid laws

- MonoL1 and MonoL2 require that mempty is a left-unit and a right-unit of mappend, hence a unit.
- MonoL3 requires that mappend is associative.

Programmer obligation:

 Programmers must prove that their instances of Monoid satisfy the monoid laws.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

9.3 9.4 9.5

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

9.3 9.4 9.5 Chap. 10

9.2

- Chap. 11
- Chap. 14

Concludir Note

Assignme

109/215

Note

- The value mempty can be considered a nullary function or a polymorphic constant.
- The name mappend is often misleading; for most monoids the effect of mappend cannot be thought of in terms of 'appending' values.
- Usually, it is wise to think of mappend in terms of a function that takes two m values and maps them to another m value.
- Commutativity of mappend is not required by the monoid laws.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes Chap. 9 9.2 9.3 9.3.1 9.3.1 9.3.2/0.2

.3.2/9.2.3 .3.4

1

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme

110/215

Chapter 9.3 Monoid Examples

Chapter 9.3.1 The List Monoid

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes Chap. 9 9.2 9.3 9.3.1

9.3.2/9.2.3

.4

Chan 10

Chap. 11

Chap. 14

Concludin Note

Assignme

The List Monoid

...making [a] an instance of type class Monoid:

```
instance Monoid [a] where
mempty = []
mappend = (++)
```

Proof obligation: The monoid laws

Lemma 9.3.1.1 (Soundness of List Monoid)

For every instance of type variable a, the [a] instance of Monoid satisfies the three monoid laws MonoL1, MonoL2, and MonoL3.

...[a] is thus a proper instance of Monoid, the so-called list monoid.

Lecture 3

Detailed Outline

Chap. 4

931

Concludin Note

Assignme

Example: Applying the List Monoid Operations

mempty ->> [] [1,2,3] 'mappend' [4,5,6] ->> [1,2,3,4,5,6] [1,2,3] 'mappend' mempty ->> [1,2,3] ++ [] ->> [1,2,3] "Advanced " 'mappend' "Functional " 'mappend' "Programming" ->> "Advanced Functional Programming" "Advanced " 'mappend' ("Functional " 'mappend' "Programming" ->> "Advanced Functional Programming") ("Advanced " 'mappend' "Functional ") 'mappend' "Programming" ->> "Advanced Functional Programming"

to

Higher-Order Type

```
Classes
```

```
9.2
9.3
9.3.1
9.3.2/9.2.3
9.3.4
9.4
9.5
```

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Chapter 9.3.2/9.3.3 Numerical/Boolean Monoids

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes Chap. 9

9.3

9.3.2/9.2.3

9.5.4

9.5

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme

Numerical/Boolean Monoids

Numerical types and the Boolean type Bool are equipped with more than one associative operation and corresponding unit. E.g.:

Associative operations:

- Addition (+), multiplication (*) for numerical types
- Disjunction (||), conjunction (&&) for Bool

with units:

- 0 for (+), 1 for (*)
- False for (||), True for (&&)

Hence, these types allow different instances; check-out full course notes for details.

Lecture 3

Detailed Outline

Chap. 4

9.3.2/9.2.3

Concludin Note

Assignme

Chapter 9.3.4 The Ordering Monoid

Lecture 3

Detailed Outline

Chap. 4

From Fype to Higher-Order Fype Classes Chap. 9 9.2

9.3 9.3.1 9.3.2/9.2.3

9.3.4

9.5

Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme

The Ordering Monoid

...making type Ordering an instance of type class Monoid:

instance Monoid Ordering where

mempty = EQ
LT 'mappend' _ = LT
EQ 'mappend' x = x

GT 'mappend' _ = GT

Proof obligation: The monoid laws

Lemma 9.3.4.1 (Soundness of Ordering Monoid)

The Ordering instance of Monoid satisfies the three monoid laws MonoL1, MonoL2, and MonoL3.

...Ordering is thus a proper instance of Monoid, the so-called ordering monoid.

Lecture 3

Detailed Outline

Chap. 4

From Frype to Higher-Drder Drder Classes Chap. 9 9.2 9.3.1 9.3.2/9.2.3 9.3.4 9.4 9.5 Chap. 10

Chap. 11

Chap. 14

Concludin Note

Assignme

Note

The mappend operation of the Ordering instance of Monoid:

- is not commutative:
 - LT 'mappend' GT ->> LT
 - GT 'mappend' LT ->> GT
- induces a 'lexicographical' comparison of two list arguments.

...we will make use of the latter observation in the following example.

Lecture 3

Detailed Outline

Chap. 4

9.3.4

Concludin Note

Assignme

Example: Applying the Monoid Operations (1)

The two definitions of lengthCompare without and with mappend:

```
lengthCompare :: String -> String -> Ordering
lengthCompare x y
= let a = length x 'compare' length y -- 1st priority
       b = x 'compare' y
                                        -- 2nd priority
   in if a == EQ then b else a
                                                       9.3.4
lengthCompare :: String -> String -> Ordering
lengthCompare x y = (length x 'compare' length y)
                          'mappend' (x 'compare' y)
```

...are equivalent what can be proved using the properties of mappend.

Example: Applying the Monoid Operations (2) ...as suggested both versions of lengthCompare yield: lengthCompare "his" "ants" ->> LT (since string "his" is shorter than string "ants") and lengthCompare "his" "ant" ->> GT 9.3.4 (since string "his" is lexicographically larger than "ant").

Concludin Note

Assignme

Example: Applying the Monoid Operations (3)

...additional comparison criteria can easily be added and prioritirized.

The below extension of lengthCompare, e.g., takes the number of vowels as second most important comparison criterion:

lengthCompareExt :: String -> String -> Ordering
lengthCompareExt x y

= (length x 'compare' length y) -- 1st priority 'mappend' (vowels x 'compare' vowels y)

```
-- 2nd priority
```

```
'mappend' (x 'compare' y) -- 3rd priority
where vowels = length . filter ('elem' "aeiou")
```

As suggested we get:

lengthCompareExt "songs" "abba" ->> GT lengthCompareExt "song" "abba" ->> LT lengthCompareExt "sono" "abba" ->> GT lengthCompareExt "sono" "sono" ->> EQ Lecture 3

Detailed Outline

Chap. 4

9.3.4

Concludin Note

Assignme

Chapter 9.4 Summary, Looking ahead

Lecture 3

Detailed Outline

Chap. 4

Type to Higher-Order Type Classes

9.2

9.3 9.4

9.5

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Assignme

Summary: Commutativity of mappend

...unlike associativity, commutativity of the mappend operation is not required by the monoid laws for monoids.

For some monoids, commutativity of mappend holds, e.g., the:

- sum, product, any, all monoids.

For other instances it does not hold, e.g., the:

- list, ordering monoids.

Lecture 3

Detailed Outline

Chap. 4

Type to Higher-Order Type Classes Chap. 9 9.2 9.3 9.4 9.5 Chap. 10 Chap. 11 Chap. 14

Concludiı Note

Summary: Using Monoids

Monoids are most useful for defining

- folds over values of structured data

since folding requires an associative operation.

Folding seems obviousand natural for

- lists

but is possible, too, for the values of many other structured data, e.g.:

- trees

This motivates the introduction of the type (constructor) class Foldable as collection of all type constructors whose values can be folded (cf. module Data.Foldable; qualified import because of name clashes with the standard prelude). Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes Chap. 9 9.2 9.3 9.4

9.5

Chap. 11

Chap. 14

Concludir Note

Looking ahead: Type Constructor Classes

...type classes of a new kind:

Note:

- f and t are applied to type variables, here a and b. This means, f and t are (1-ary) type constructors, not types.
- Foldable is thus a type constructor class, a special type class.
- The fold1, foldr operations of Foldable extend folding of lists to folding of values of other 'foldable' structured data while allowing to reuse the operation names.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes Chap. 9 9.2 9.3 9.4 9.5

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Looking ahead: The List Type Constructor []

... is one important instance of Foldable:

foldr :: (a -> b -> b) -> b -> [] a -> b foldl :: (a -> b -> a) -> a -> [] b -> a

where Data.Foldable.fold1 and Data.Foldable.foldr are defined in terms of their counterparts fold1 and foldr introduced in Chapter 10.5, LVA 185.A03 Funktionale Programmierung.

Foldable is the first example of this new kind of higher-order type classes called type constructor classes of which we consider more examples next: Functor, Applicative, Monad, and Arrow (cf. Chapters 10, 11, 12, and 13).

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

9.2 9.3 9.4

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Chapter 9.5 References, Further Reading

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

1.3

9.5

9.5

Chap. 10

Chap, 11

Chap. 14

Concludir Note

Assignme

Chapter 9: Basic Reading

- Miran Lipovača. Learn You a Haskell for Great Good! A Beginner's Guide. No Starch Press, 2011. (Chapter 12, Monoids)
- Bryan O'Sullivan, John Goerzen, Don Stewart. Real World Haskell. O'Reilly, 2008. (Chapter 13, Data Structures – Monoids)

Lecture 3

Detailed Outline

Chap. 4

-rom Type to Higher-Order Type Classes

Chap. 9

9.3 9.4

9.5

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Chapter 9: Selected Advanced Reading

Paul Hudak. The Haskell School of Expression – Learning Functional Programming through Multimedia. Cambridge University Press, 2000. (Chapter 13.4.3, Defining New Type Classes for Behaviors)

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

9.2

0.4

9.5

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

10.1

.0.2

1.3

4

Chap. 11

Chap. 14

Concludir Note

Assignme

130/215

Chapter 10 Functors

Chapter 10.1 Motivation

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type

Chap. 9

Chap. 10

10.1

10.2

0.4

Chap. 11

Chap. 14

Concludir Note

Assignme

Mapping

...over values is a typical and recurring task, e.g., over:

– Lists	
mapL :: (a -> b) -> ([] a) -> ([] b)	
mapL g [] = []	
mapL g (1:ls) = g l : mapL g ls	
– Trees	
data <mark>Tree</mark> a = Leaf a Node a (<mark>Tree</mark> a) (<mark>Tree</mark> a)	
<pre>mapT :: (a -> b) -> Tree a -> Tree b</pre>	
mapT g (Leaf v) = Leaf (g v)	
mapT g (Node v l r)	
= Node (g v) (mapT g l) (mapT g r)	

10.1

Higher-Order Type (Constructor) Classes

.. the conceptual similarity of tasks performed by functions like

- mapL, mapT

suggests bundling all types whose values can be mapped over in a unique type class:

- Functor

offering an (over-loaded) function:

- fmap

having mapL, mapT, and many more as specific instance implementations.

Note: Functor is a representative of a new kind of type classes, a higher-order type class, a so-called:

type constructor class

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10 10.1 10.2

10.3

.0.4

Chap. 11

Chap. 14

Concludir Note

This means

...types, whose values can be mapped over compositionally, with a neutral element, like e.g.:

- Lists with mapL and id g :: a -> b, h :: b -> c mapLg[] = []mapL g (x:xs) = (g x) : mapL g xsmapL (h . g) xs = mapL h (mapL g xs) (compositional) (neutral element) mapL id xs = xs Trees with mapT and id g :: a -> b, h :: b -> c data Tree a = Leaf a | Node a (Tree a) (Tree a) mapT g (Leaf v) = Leaf (g v)mapT g (Node v l r) = Node (g v) (mapT g l) (mapT g r)
 - mapT (h . g) t = mapT h (mapT g t) (compositional)
 mapT id t = t (neutral element)

should be made instances of type constructor class Functor.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

```
Chap. 9
```

```
10.1
10.2
10.3
10.4
```

Chap. 11

Chap. 14

Concludir Note

Chapter 10.2 The Type Constructor Class Functor

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

10.1

10.2

0.5

.4

Chap. 11

Chap. 14

Concludir Note

Assignme

The Type Constructor Class Functor

...functors are instances of the type constructor class Functor obeying the functor laws.

```
Type Constructor Class Functor
  class Functor f where
  fmap :: (a -> b) -> f a -> f b
Functor Laws
```

fmap id = id
fmap (h . g) = fmap h . fmap g

Programmer obligation

 Programmers must prove that their instances of Functor satisfy the functor laws. Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10 10.1 10.2

0.4

(FL1)

(FL2)

Chap. 11

Chap. 14

Concludin Note

Note

...argument f of Functor is applied to type variables, i.e.:

 f is a 1-ary type constructor variable (that is applied to type variables a and b), not a type variable.

...instances of Functor (like of other type constructor classes) are thus type constructors, not types.

The functor laws ensure:

- fmap preserves the "shape of the container type."
- fmap does not regroup the contents of the container.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10 10.1 10.2 10.3

LO.4

Chap. 11

Chap. 14

Concludir Note

The Functor Laws in more Detail ...with added type information: Type Constructor Class Functor class Functor f where $fmap :: (a \rightarrow b) \rightarrow f a \rightarrow f b$ Functor Laws fmap id id ':: a -> a` $:: f a \rightarrow f a$ (id over-loaded!) · · f $a \rightarrow f a$. fmap g (FL2) fmap (h g) = fmap h ::: a -> c ′:: c -> :: a -> c :: b b :: f c -> :: f a -> f c b а а а

(FI.1)

10.2

The Curried and Uncurried View of fmap Curried view: fmap takes - a polymorphic function $g :: a \rightarrow b$ and yields a polymorphic function $g' :: f a \rightarrow f b$. Example: newtype Month a = M ainstance Functor Month where fmap g (M v) = M (g v)g :: Int -> String g' :: Month Int -> Month String 1 = "January" g' (M 1) = M "January" g 12 = "December" g' (M 12) = M "December" 10.2 fmap ->> g :: Int -> String :: Month Int -> Month String Uncurried view: fmap takes - a polymorphic function $g :: a \rightarrow b$ and a functor value va :: f a and yields a new functor value vb :: f b. Example: fmap g (M 8) ->> fmap (M (g 8)) ->> M "August" :: Month Int :: Month String_{139/215}

Chapter 10.3 Functor Examples

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

10.3

10.3.2

10.3.4

10.3.6

0.4

Chap. 11

Chap. 14

Concludin Note 140/215

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

1.2

10.3.1 10.3.2

3.3

.3.5

3.6

Lnap. 11

Chap. 14

Concludin Note 141/215

Chapter 10.3.1 The Identity Functor

The Identity Functor

...making the 1-ary type constructor Id an instance of Functor (conceptually the simplest functor):

```
newtype Id a = Id a
instance Functor Id where
fmap g (Id x) = Id g x
```

Proof obligation: The functor laws

Lemma 10.3.1.1 (Soundness of Identity Functor)

The Id instance of Functor satisfies the two functor laws FL1 and FL2.

...Id is thus a proper instance of Functor, the so-called identitiy functor.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

10.1

10.3 10.3.1

10.3.2

10.3.4

10.3.5

0.3.6

.

.hap. 14

Concludir Note 142/215

Chapter 10.3.2 The List Functor

10.3.2

Lecture 3

Detailed Outline

Chap. 4

The List Functor

...making the 1-ary type constructor [] an instance of Functor:

instance Functor [] where
fmap g [] = []
fmap g (1:1s) = g 1 : fmap g 1s

Proof obligation: The functor laws

Lemma 10.3.2.1 (Soundness of List Functor)

The [] instance of Functor satisfies the two functor laws FL1 and FL2.

...[] is thus a proper instance of Functor, the so-called list functor.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes Chap. 9

Chap. 10 10.1 10.2

10.3.1 10.3.2

10.3.3

10.3.5

10.4

Chap. 14

Lecture 3

Detailed Outline

Chap. 4

Type to Higher-Order Type Classes

Chap. 9

Chap. 10

.2

0.3.1 0.3.2

10.3.3

0.3.5

.3.6

.

snap. 11

Chap. 14

Concludin Note 145/215

Chapter 10.3.3 The Maybe Functor

The Maybe Functor

...making the 1-ary type constructor Maybe an instance of Functor:

```
data Maybe a = Nothing | Just a
instance Functor Maybe where
fmap g (Just x) = Just (g x)
fmap g Nothing = Nothing
```

Proof obligation: The functor laws

Lemma 10.3.3.1 (Soundness of Maybe Functor) The Maybe instance of Functor satisfies the two functor laws FL1 and FL2.

...Maybe is thus a proper instance of Functor, the so-called maybe functor.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

10.1

10.3

10.3.1

10.3.2

10.3.3

10.3.5

10.3.6

10.4

Chap. 11

Chap. 14

Concludir Vote 146/215

Example: Applying the Functor Operation

fmap (++ "Programming") (Just "Functional")
 ->> Just "Functional Programming"

fmap (++ "Programming") Nothing
 ->> Nothing

Lecture 3

Detailed Outline

Chap. 4

-rom Type to Higher-Order Type Classes

Chap. 9

Chap. 10 10.1

.0.3.1

10.3.3

.0.3.4

3.6

.

Chap. 11

Chap. 14

Concludin Note 147/215

Chapter 10.3.4 The Either Functor

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

2011 - 2012 2011 - 2012

.0.2

10.3.1

10.3.3

10.3.4

10.3.6

.4

Chap. 11

Chap. 14

Concludin Note 148/215

The Either Functor

...making the 1-ary type constructor (Either a) an instance of Functor:

```
data Either a b = Left a | Right b
```

instance Functor (Either a) where fmap g (Right x) = Right (g x) fmap g (Left x) = Left x

Note: The type constructor Either has two arguments, i.e., is a 2-ary type constructor. Hence, only the partially evaluated 1-ary type constructor (Either a) can be made an instance of Functor. Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

```
10.1
10.2
10.3
```

```
10.3.1
```

10.3.3

10.3.4

10.3.6

D.4

Chap. 11

Chap. 14

Concludin Note 149/215

Proof Obligation: The Functor Laws

Lemma 10.3.4.1 (Soundness of Either Functor) The (Either a) instance of Functor satisfies the two functor laws FL1 and FL2.

...(Either a) is thus a proper instance of Functor, the so-called either functor.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10 10.1

10.2

10.3.1

. . . .

1034

0.3.5

0.3.6

.

Lnap. 11

Chap. 14

Concludir Note 150/215

Example: Applying the Functor Operation

fmap length (Right "Programming")
 ->> Right 11

fmap length (Left "Programming")
 ->> Left "Programming"

Lecture 3

Detailed Outline

Chap. 4

-rom Type to Higher-Order Type Classes

Chap. 9

Chap. 10

.3

132

0.3.3

10.3.4

0.3.5

.3.6

7

chap. 11

Chap. 14

Concludir Note 151/215

Chapter 10.3.5 The Map Functor

10.3.5

Lecture 3

Detailed Outline

Chap. 4

The Map Functor

...making the 1-ary type constructor ((->) d) an instance of Functor:

instance Functor ((->) d) where -- d reminding fmap g h = ($x \rightarrow g$ (h x)) -- to domain

Note: Like Either, also (->) is a 2-ary type constructor, i.e., has two arguments. Hence, only the partially evaluated type constructor ((->) d) can be made an instance of Functor, since it is a 1-ary type constructor.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

1035

153/215

Proof Obligation: The Functor Laws

Lemma 10.3.5.1 (Soundness of Map Functor) The ((->) d) instance of Functor satisfies the two functor laws FL1 and FL2.

...((->) d) is thus a proper instance of Functor, the so-called map functor.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10 10.1 10.2 10.3

10.3.1

10.3.3

10.3.4

10.3.5

.....

Chap. 11

Chap. 14

Concludin Note 154/215

The Map Functor in more Detail ...with added type information: class Functor f where $fmap :: (a \rightarrow b) \rightarrow f a \rightarrow f b$ instance Functor ((->) d) where $h = (\langle x - \rangle g (h x) \rangle)$ fmap g $(a \rightarrow b)$ $((\rightarrow) d)$ a $(a \rightarrow b)$ ((->) d) b Note: fmap defined (as above) by fmap g h = $(x \rightarrow g (h x))$ means just function composition: fmap g h = (g . h)

1035 155/215

The Instance Declaration of the Map Functor

...reconsidered.

The observation on the meaning of fmap allows us to define the instance declaration of ((->) d) directly as ordinary functional composition:

instance Functor ((->) d) where
fmap = (.)

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

10.1 10.2 10.3

10.3.2

10.3.4 10.3.5

0.3.6

U.4

Chap. 11

Chap. 14

Concludin Note 156/215

Notes on the Map Functor

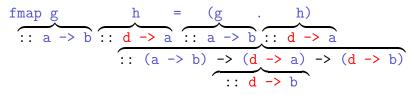
...for the map functor ((->) d) the type of the generic operation fmap of the type constructor class Functor

fmap :: (Functor f) => (a -> b) -> f a -> f b specializes to:

fmap :: $(a \rightarrow b) \rightarrow (((\rightarrow) d) a) \rightarrow (((\rightarrow) d) b)$ Using infix notation for (->), this can equivalently be written as:

fmap :: (a -> b) -> (d -> a) -> (d -> b)

where fmap can be implemented by:



Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

10.1 10.2 10.3 10.3.1 10.3.2

10.3.4 10.3.5

10.3.6

10.4

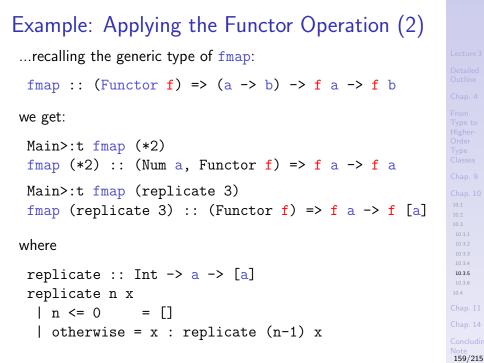
Thop 14

Concludin Vote 157/215

Example: Applying the Functor Operation (1)	
Main>:t fmap (*3) (+100)	Chap. 4
fmap (*3) (+100) :: (Num a) => a -> a	
fmap (*3) (+100) 1 ->> 303	
(*3) 'fmap' (+100) \$ 1 ->> 303	Chap. 9
(*3) . (+100) \$ 1 ->> 303	Chap. 10 10.1
fmap (show . (*3)) (+100) 1 ->> "303"	10.2 10.3
	10.3.1 10.3.2
Note: Using fmap as an infix operator emphasizes the equali-	10.3.3 10.3.4
	10.3.5

ty of fmap and functional composition (.) for the map functor ((->) d).

Concludin Note 158/215



Example: Applying the Functor Operation (3)

<pre>fmap (replicate 3) [1,2,3,4] ->> [[1,1,1],[2,2,2],[3,3,3],[4,4,4]]</pre>	
<pre>fmap (replicate 3) (Just 4) ->> Just [4,4,4]</pre>	
imap (replicate 3) (Right "iun")	Chap. 9 Chap. 1 10.1
<pre>fmap (replicate 3) Nothing ->> Nothing</pre>	10.2 10.3 10.3.1 10.3.2 10.3.3
<pre>fmap (replicate 3) (Left "fun") ->> Left "fun"</pre>	10.3.4 10.3.5 10.3.6 10.4 Chap. 1

Chap. 14

Concludir Note 160/215

Example: Applying the Functor Operation (4)

Applying fmap to n-ary maps (e.g., (*), (++), $\langle x y z - \rangle$..., ...) instead of 1-ary maps (e.g., replicate 3, (*3), (+100), ...) as so far, we get:

Chap. 14

161/215

Note

some of the previous examples showed
– lifting
of a map of type
$- (a \rightarrow b)$
to type
- (f a -> f b)
by fmap. This again shows that fmap
fmap :: (Functor f) => (a -> b) -> f a -> f b
can be thought of in two ways. As a map which takes a map
$g :: a \rightarrow b$ and
1. lifts g to a new function $h :: f a \rightarrow f b$ operating on
functor values \rightsquigarrow curried view.
2. a functor value $v :: f$ a and maps g over $v \rightsquigarrow$ uncur-
ried view.

10.1 10.2 10.3 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.4 Chap. 11 Chap. 14 Concludin Note 162/215

10.3.6

163/215

Chapter 10.3.6 The Input/Output Functor

The Input/Output Functor

...making the 1-ary type constructor **IO** for input/output an instance of Functor:

Proof obligation: The functor laws Lemma 10.3.6.1 (Soundness of IO Functor) The IO instance of Functor satisfies the two functor laws FL1 and FL2.

 $\dots {\tt IO}$ is thus a proper instance of Functor, the so-called in-put/output (IO) functor.

Lecture 3

Detailed Outline

Chap. 4

Type to Higher-Order Type Classes Chap. 9 Chap. 10 10.1 10.2 10.3

10.3.2

10.3.5 10.3.6

10.4

Chap 14

Concludir Note 164/215

Example: Applying the Functor Operation (1) ... the two versions of program main main = do line <- fmap reverse getLine putStrLn \$ "You said " ++ line ++ " backwards!" putStrLn \$ "Yes, you said " ++ line ++ " backwards!" main = do line <- getLine let line' = reverse line putStrLn \$ "You said " ++ line' ++ " backwards!" putStrLn \$ "Yes, you said " ++ line' ++ " backwards!" 1036 which differ in using and not using fmap are equivalent.

Concludir Note 165/215



Chapter 10.4 References, Further Reading

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

10.2

0.5

10.4

Chap. 11

Chap. 14

Concludir Note

Assignme

167/215

Chapter 10: Basic Reading

- Miran Lipovača. Learn You a Haskell for Great Good! A Beginner's Guide. No Starch Press, 2011. (Chapter 7, Making Our Own Types and Type Classes – The Functor Type Class)
- Paul Hudak. The Haskell School of Expression: Learning Functional Programming through Multimedia. Cambridge University Press, 2000. (Chapter 18.1, The Functor Class)

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10 10.1

10.2

10.4

Chap. 11

Chap. 14

Concludir Note

Chapter 10: Selected Advanced Reading

- Bryan O'Sullivan, John Goerzen, Don Stewart. Real World Haskell. O'Reilly, 2008. (Chapter 10, Code Case Study: Parsing a Binary Data Format – Introducing Functors, Writing a Functor Instance for Parse, Using Functors for Parsing)
- Peter Pepper, Petra Hofstedt. Funktionale Programmierung. Springer-V., 2006. (Kapitel 11.1, Kategorien, Funktoren und Monaden)
- Fethi Rabhi, Guy Lapalme. Algorithms A Functional Programming Approach. Addison-Wesley, 1999. (Chapter 2.8.3, Type classes and inheritance)

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10 10.1

10.3

10.4

Chap. 11

Chap. 14

Concludir Note

Chapter 11 Applicative Functors

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

11.1

11.2

11.3

Chap. 14

Concludi Note

Assignme

170/215

Chapter 11.1 The Type Constructor Class Applicative

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

11.1

11.2

11.3

Chap. 14

Concludi Note

Assignme

171/215

The Type Constructor Class Applicative ...applicatives are instances of the type constructor class Applicative obeying the applicative laws. Type Constructor Class Applicative class (Functor f) => Applicative f where pure :: $a \rightarrow f a$ -- Value 'lifting': -- Making an appli--- cative value $(\langle * \rangle)$:: f (a -> b) -> f a -> f b -- Mapping over 11.1 Applicative Laws pure id <*> v (AL1) = v pure (.) <*> u <*> v <*> w = u <*> (v <*> w) (AL2)= pure (g x) (AL3) pure g <*> pure x (AL4)= pure (\$ y) <*> u u <*> pure y

...applicatives must be functors and hence 1-ary type constructors.

Intuitively

- pure takes a value of any type and returns an applicative value.
- (<*>) takes a functor value, which has a function in it, and another functor value, which has a value in it. It extracts the function from the first functor and maps it over the value of the second one.

Programmer obligation

 Programmers must prove that their instances of Applicative satisfy the applicative laws.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

11.1 11.2

11.3

Chap. 14

Concludir Note

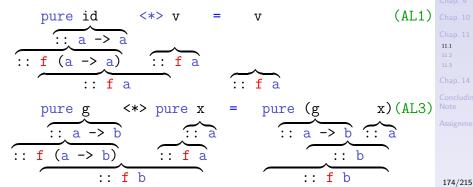
Selected Applicative Laws in more Detail

...with added type information:

Class Applicative

class (Functor f) => Applicative f where pure :: $a \rightarrow f a$ (<*>) :: f (a -> b) -> f a -> f b

Applicative Laws



Syntactic Sugar: Infix Operator <\$>

...as alias for fmap for more compelling operation sequences involving both fmap and (<*>).

The infix alias (<\$>) of fmap of Functor:

(<\$>) :: (Functor f) => (a -> b) -> f a -> f b g <\$> x = fmap g x

Example: Using (<\$>) as infix operator, we can write: (++) <\$> Just "Functional " <*> Just "Programming" ->> Just "Functional Programming"

instead of the less compelling variants using the prefix operator fmap:

...or its infix variant 'fmap':

((++) 'fmap' Just "Functional ") <*> Just "Programming"
 ->> Just "Functional Programming"

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

11.1

11.2

Chap 14

Concludir Note

...overloading f and defining (<\$>) by:

(<\$>) :: (Functor f) => (a -> b) -> f a -> f b
f <\$> x = fmap f x

would be valid, too, since the context allows to decide if f is used as type constructor (f) or as argument (f).

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

11.1

11.2

11.5

Chap. 14

Concludir Note

Utility Maps for Applicatives

Utility Maps: liftA2 :: (Applicative f) => $(a \rightarrow b \rightarrow c) \rightarrow f a \rightarrow f b \rightarrow f c$ liftA2 g a b = g <\$> a <*> b sequenceA :: (Applicative f) => [f a] -> f [a] sequenceA [] = pure [] sequenceA (x:xs) = (:) <\$> x <*> sequenceA xs sequenceA :: (Applicative f) => [f a] -> f [a] sequenceA = foldr (liftA2 (:)) (pure [])

Examples:

fmap (\x -> [x]) (Just 4) ->> Just [4] liftA2 (:) (Just 3) (Just [4]) ->> Just [3,4] (:) <\$> Just 3 <*> Just 4 ->> Just [3,4]

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

11.1

11.0

Chap. 14

Concludir Note

Chapter 11.2 Applicative Examples

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type

Chap. 9

Chap. 10

Chap. 11

11.1

11.2

11.2.2

11.2.3/4

11.2.5

11.2.7

Chap 14

Concludin Note

Assignme 178/215

Chapter 11.2.1 The Identity Applicative

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type

Chap. 9

Chap. 10

Chap. 11

11.2

11.2.1

11.2.2

111210/ 4

11.2.7

1.3

Chap. 14

Concludin Note

Assignme 179/215

The Identity Applicative

...making the 1-ary type constructor Id an instance of Applicative (conceptually the simplest applicative):

newtype Id a = Id a

instance Applicative Id where
 pure = Id
 Id g <*> (Id x) = Id (g x)

Note: g plays the rôle of the applicative functor.

Proof obligation: The applicative laws

Lemma 11.2.1.1 (Soundness of Identity Applicative)

The Id instance of Applicative satisfies the four applicative laws AL1, AL2, AL3, and AL4.

...Id is thus a proper instance of Applicative, the so-called identity applicative.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

11.2 11.2.1

11.2.3/4

11.2.5

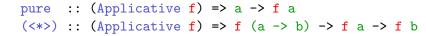
1.3

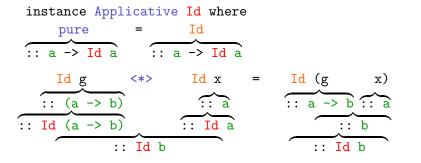
Chap. 14

Concludin Note

Assignme 180/215

The Identity Applicative in more Detail





Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

11.2

11.2.2

11.2.5

11.2.7

Chap. 14

Concludin Note

Assignme 181/215

Chapter 11.2.2 The List Applicative

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type

Chap. 9

Chap. 10

Chap. 11

11.1

11.2.1

11.2.2

11.2.3/4

11.2.5

1.3

Chap. 14

Concludin Note

Assignme 182/215

The List Applicative

...making the 1-ary type constructor [] an instance of Applicative:

instance Applicative [] where
pure x = [x]
gs <*> xs = [g x | g <- gs, x <- xs]</pre>

Proof obligation: The applicative laws

Lemma 11.2.2.1 (Soundness of List Applicative) The [] instance of Applicative satisfies the four applicative laws AL1, AL2, AL3, and AL4.

...[] is thus a proper instance of Applicative, the so-called list applicative.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

11.2

11.2.1

11.2.2

125

1.2.7

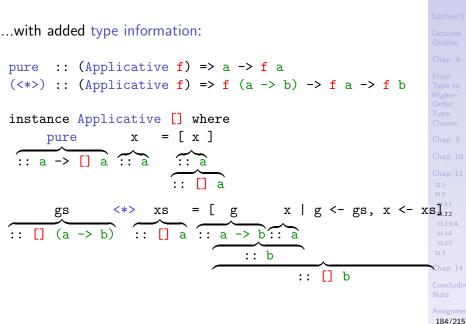
3

Chap. 14

Concludin Note

Assignme 183/215

The List Applicative in more Detail



Example: Applying the Applicative Operations (1)

pure "Hallo" :: String ->> ["Hallo"]
pure "Hallo" :: Maybe String ->> Just "Hallo"

[(+),(*)] <*> [1,2] <*> [3,4] ->> [f x | f <- [(+),(*)], x <- [1,2]] <*> [3,4] ->> [(1+),(2+),(1*),(2*)] <*> [3,4] ->> [f x | f <- [(1+),(2+),(1*),(2*)], x <- [3,4]] ->> [4,5,5,6,3,4,6,8]

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap 11

11.1

11.2.1

11.2.2

1.2.3/4

1.2.5

11.2.7

Chap. 14

Concludin Note

Assignme 185/215

Example: Applying the Applicative Operations (2)

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes Chap. 9

Chap. 10

Chap. 11

11.2

11.2.1

11.2.2

127

11.3

Chap. 14

Concludin Note

Assignme 186/215

->> [55,80,100,110]

Example: Applying the Applicative Operations (3)

The preceeding example using filter shows that expressions using list comprehension:

[x*y | x <- [2,5,10], y <- [8,10,11]] ->> [16,20,22,40,50,55,80,100,110]

...can alternatively be written using (<\$>) and <*> and vice versa:

(*) <\$> [2,5,10] <*> [8,10,11]
->> [16,20,22,40,50,55,80,100,110]

Lecture 3

Detailed Dutline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

11.2 11.2.1

11.2.2 11.2.3/4

1.2.7

Concludin Note

Assignme 187/215

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

..2

1.2.1

11.2.2

11.2.3/4

127

.3

Chap. 14

Concludin Note

Assignme 188/215

Chapter 11.2.3/11.2.4 The Maybe/Either Applicatives

The Maybe Applicative

...making the 1-ary type constructor Maybe an instance of Applicative:

instance Applicative Maybe where
 pure = Just
 Nothing <*> _ = Nothing
 (Just g) <*> something = fmap g something

Note: g plays the rôle of the applicative functor.

Proof obligation: The applicative laws

Lemma 11.2.3.1 (Soundness of Maybe Applicative) The Maybe instance of Applicative satisfies the four applicative laws AL1, AL2, AL3, and AL4.

...Maybe is thus a proper instance of Applicative, the socalled maybe applicative.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

11.2

11.2.2

11.2.3/4

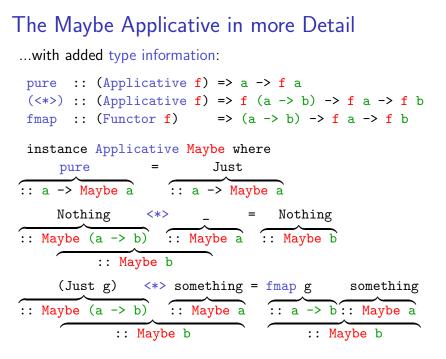
11.2.5

11.3

Chap. 14

Concludin Note

Assignme 189/215



Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 10

Chap. 11 11.1 11.2

11.2.2 11.2.3/4

11.2.5

11.3

Chap. 14

Concludin Note

Assignme 190/215

Example: Applying the Applicative Operations (1)

Just (+3) <*> Just 9 ->> fmap (+3) (Just 9) ->> Just 12	Detailed Outline Chap. 4 From
Just (+3) <*> Nothing ->> fmap (+3) Nothing ->> Nothing	
Just (++ "good ") <*> Just "morning" ->> fmap (++ "good ") "morning" ->> Just "good morning"	Chap. 10 Chap. 11 11.1 11.2
Just (++ "good ") <*> Nothing ->> fmap (++ "good ") Nothing ->> Nothing	11.2.1 11.2.2 11.2.3/4 11.2.5 11.2.7 11.3
Nothing <*> Just "good " ->> Nothing	Chap. 14 Concludin Note Assignme

Example: Applying the Applicative Operations (2)

```
pure (+) <*> Just 3 <*> Just 5
 ->> Just (+) <*> Just 3 <*> Just 5
 ->> (fmap (+) Just 3) <*> Just 5
 ->> Just (3+) <*> Just 5
 ->> Just 8
pure (+) <*> Just 3 <*> Nothing
 ->> Just (+) <*> Just 3 <*> Nothing
 ->> fmap (+) Just 3 <*> Nothing
 ->> Just (3+) <*> Nothing
                                                         11.2.3/4
 ->> fmap (3+) Nothing
 ->> Nothing
```

Assignme 192/215

Exercise 11.2.4.1: The Either Applicative

- Make type constructor (Either a) an instance of Applicative.
- Show that the defining equations of the applicative operations pure and (<*>) of (Either a) are type correct. Annotate the laws with the (most general) type information applying.
- 3. Prove that your (Either a) instance of Applicative satisfies the applicative laws.

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

11.1

11.2

11.2.2

11.2.3/4

127

1.3

Chap. 14

Concludin Note

Assignme 193/215

Chapter 11.2.5 The Map Applicative

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type

Chap. 9

Chap. 10

Chap. 11

...

11.0.1

11.2.2

11.2.3/4

11.2.5

11.2.7

CI 14

Concludin Note

Assignme 194/215

The Map Applicative

...making the 1-ary type constructor ((-> d) an instance of Applicative:

instance Applicative ((->) d) where pure x = $(\setminus -> x)$ g <*> h = $\setminus x -> g x$ (h x)

Proof obligation: The applicative laws

Lemma 11.2.5.1 (Soundness of Map Applicative) The ((->) d) instance of Applicative satisfies the four applicative laws AL1, AL2, AL3, and AL4.

...(->) d) is thus a proper instance of Applicative, the so-called map applicative.

Lecture 3

Detailed Outline

Chap. 4

-rom Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

11.2

11.2.1

11.2.2

11.2.3/4 11.2.5

1.2.5

. . .

Chap. 14

Concludin Note

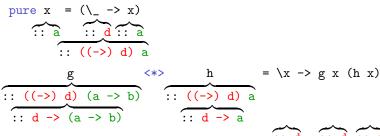
Assignme 195/215

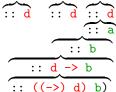
The Map Applicative in more Detail

...with added type information:

- pure :: (Applicative f) => a -> f a
- (<*>) :: (Applicative f) => f (a -> b) -> f a -> f b

instance Applicative ((->) d) where





Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

11.1

11.2.1

11.2.3/4 11.2.5

11.2.7

11.3

Chap. 14

Concludin Note

Assignme 196/215

Example: Applying the Applicative Operations

```
pure 3 "Hello"
->> (pure 3) "Hello"
                                (left-assoc. of expr.)
 ->> (\_ -> 3) "Hello"
->> 3
(+) <$> (+3) <*> (*100) :: (Num a) => a -> a
(+) <$> (+3) <*> (*100) $ 5 :: Int
 ->> (fmap (+) (+3)) <*> (*100) $ 5
 ->> ((+) . (+3)) <*> (*100) $ 5
 \rightarrow (\x -> ((+) . (+3)) x ((*100) x)) $ 5
 ->> ((+) . (+3)) 5 ((*100) 5)
 ->> (+)((+3) 5) (5*100)
 ->> (+)(5+3) 500
                                                            11.2.5
->> (+) 8 500
->> (8+) 500
->> 8+500
->> 508 :: Int
                                                           197/215
```

Chapter 11.2.7 The Input/Output Applicative

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

11.2

11.2.2

11.2.3/4

11.2.7

1.3

Chap. 14

Concludin Note

Assignme 198/215

The Input/Output Applicative

...making the 1-ary type constructor IO an instance of Applicative:

instance	Applicative $\ensuremath{\text{IO}}$ where
pure	= return
a <*> b	= do g <- a
	x <- b
	return (g x)

Proof obligation: The applicative laws

Lemma 11.2.7.1 (Soundness of IO Applicative) TheIO instance of Applicative satisfies the four applicative laws AL1, AL2, AL3, and AL4.

...**IO** is thus a proper instance of Applicative, the so-called input/output (IO) applicative.

Lecture 3

Detailed Outline

Chap. 4

-rom Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

1.2

11.2.2

11 2 3/4

11.2.5

11.2.7

**.0

Cnap. 14

Concludin Note

Assignme 199/215

The Input/Output Applicative in more Detail ...with added type information: :: (Applicative f) => a -> f a pure $(\langle * \rangle)$:: (Applicative f) => f (a -> b) -> f a -> f b instance Applicative IO where pure return :: a -> ™ a :: a -> IO a <*> b = do <а g а :: TO (a -> b) tt TO a :: IO (a -> b) :: a -> b <b х tt TO a return x) (g

11.2.7 11.3 Chap. 14

:: a -> h

TO b

 \underline{b} $\overline{\vdots}$ \overline{a}

Concludin Note

Assignme 200/215

Example: Applying the Applicative Operations

... the following two versions of myAction are equivalent:

```
myAction :: IO String
 myAction = do a <- getLine
                b <- getLine
                return $ a++b
 myAction :: IO String
 myAction = (++) <$> getLine <*> getLine
Type and effect of myAction' are similar but slightly different:
myAction' :: IO ()
                                                          11.2.7
 mvAction' =
  do a <- (++) <$> getLine <*> getLine
     putStrLn $ "Concatenation yields: " ++ a
```

Assignme 201/215

Chapter 11.3 References, Further Reading

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type

Chap. 9

Chap. 10

Chap. 11

11.1

11.3

11.5

Chap. 14

Concludir Note

Assignme

Chapter 11: Basic Reading

Miran Lipovača. Learn You a Haskell for Great Good! A Beginner's Guide. No Starch Press, 2011. (Chapter 11, Applicative Functors)

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

11.1

.1.2

11.3

Chap. 14

Concludir Note

Assignme

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

14.1

14.2

Concludi Note

Assignme

Chapter 14 Kinds

Kinds

Just as values also
– types
 type constructors
have types themselves, so-called:
– kinds.
Kinds of types and type constructors are represented by expressions over the symbol * (read as "star" or as "type").

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

14.1 14.2

- I I

Concludii Note

Assignme

Chapter 14.1 Kinds of Types

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

14.1

14.2

14.3

Concludir Note

Assignme

Types

...i.e., nullary type constructors, type constructors accepting no type arguments, have kind *. Intuitively, * indicates that types are 'concrete', 'final'.

In GHCi, kinds of types (and type constructors) can be computed and displayed using the command ":k".

Examples: ghci> :k Int Int :: * ghci> :k (Char,String) (Char, String) :: * ghci> :k [Float] [Float] :: * ghci> :k (Int -> Int) (Int -> Int) :: *

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap 14

14.1

14.2

Concludi Note

Assignme

Chapter 14.2 Kinds of Type Constructors

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chan 14

14.1

14.2

14.3

Concludir Note

Assignme

Type Constructors

...take types as arguments to produce concrete types. Examples:

The 1-ary type constructor Maybe, the 2-ary type constructor Either, and the 3-ary type constructor Tree:

data Maybe a = Nothing | Just a data Either a b = Left a | Right b data Tree a b c = Leaf a b | Node a (Tree a b c) (Tree a b c) produce for a, b, and c chosen Int, String, and Bool, re-14.2 spectively, the concrete types: Maybe Int -- a concrete type :: * Either Int String :: * -- a concrete type Tree Int String Bool :: * -- a concrete type ... of kind *.

Detailed Outline

Chap. 4

Kinds of Type Constructors

Like concrete types, type constructors have kinds, too, reflecting the number of their type arguments.

Examples:

```
ghci> :k Maybe
Maybe :: * -> *
                        -- a type constructor accepting
                        -- a concrete type as argument
                        -- and yielding a concrete type.
ghci> :k Either
Either :: * -> * -> * -- a type constructor accepting
                           -- two concrete types as arguments
                           -- and yielding a concrete type.
ghci> :k Tree
Tree :: * \rightarrow * \rightarrow * \rightarrow * \rightarrow * - - a type constructor accep-
                              -- ting three concrete types...
```

Kinds of Partially Evaluated Type Constructors Like functions, type constructors can be partially evaluated, too, resulting in different kinds. Examples: ghci> :k Either Either :: $* \rightarrow * \rightarrow *$ -- a type constructor accepting -- two concrete types as arguments 9 -- and yielding a concrete type. ghci> :k Either Int Either Int :: $* \rightarrow *$ -- a type constructor accepting 14.2 -- one concrete type as argument -- and yielding a concrete type. ghci> :k Either Int Char Either Int Char :: * -- a concrete type.

Chapter 14.3 References, Further Reading

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap 14

14.1

14.2

14.3

Concludi Note

Assignme

Chapter 14: Basic Reading

- Paul Hudak. The Haskell School of Expression: Learning Functional Programming through Multimedia. Cambridge University Press, 2000. (Chapter 18.5, Type Class Type Errors, Kinds of Types)
- Simon Peyton Jones (Ed.). Haskell 98: Language and Libraries. The Revised Report. Cambridge University Press, 2003. (Chapter 4.1.1, Kinds; Chapter 4.6, Kind Inference)

Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap 14

14.1

L4.2

14.3

Concludin Note

Assignme

... for additional information and details refer to

full course notes

available in TUWEL and at the homepage of the course at:

 Lecture 3

Detailed Outline

Chap. 4

From Type to Higher-Order Type Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Concludir Note

Assignme

Assignment for Thursday, 15 April 2021

...independent study of Part II, Chapter 4, and Part IV, Chapters 9 to 11, 14 and of Central and Control Questions III for self-assessment and as a basis of the flipped classroom session on 04/15/2021:

Topic Flip. Classr. Lecture, Flipped Classroom **Topic Lecture** P. I. Ch. 1 n.a. / Prel. Mtg^{Higher-} Thu, 03/04/2021, 4.15-6.00 pm P. II, Ch. 2 P. IV, Ch. 7,8 P. I. Ch. 1 Thu, 03/11/2021, 4.15-6.00 pm P. II, Ch. 3 P. II, Ch. 2 P. II, Ch. 4 P. IV, Ch. 7, 8 Chap. 10 Thu, 03/25/2021, 4.15-6.00 pm P. IV, Ch. 9-11, 14 P. II, Ch. 3 P. II. Ch. 4 Thu, 04/15/2021, 4.15-6.00 pm P. IV, Ch. 12, 13 P. IV, Ch. 9-11, 14 P. IV, Ch. 12, 13 Assignme Thu, 04/22/2021, 4.15-6.00 pm P. III, Ch. 5, 6 Thu, 04/29/2021, 4.15-6.00 pm P. V. Ch. 15.16 P. III, Ch. 5,6 P. V. Ch. 17.18 Thu, 05/20/2021, 4.15-6.00 pm P. V, Ch. 15, 16 P. VI. Ch. 19.20

Detailed