
Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

Concluding
Note

Assignment

Fortgeschrittene funktionale

Programmierung
LVA 185.A05, VU 2.0, ECTS 3.0

SS 2021

(Stand: 04.03.2021)

Jens Knoop

Technische Universität Wien
Information Systems Engineering

Compilers and Languages

compilers
languages

1/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

Concluding
Note

Assignment

Lecture 1

Part I: Motivation

– Chapter 1: Why Functional Programming Matters

+ Chap. 1.5: Recommended Reading: Basic, Advanced

Part II: Programming Principles

– Chapter 2: Programming with Streams

+ Chap. 2.7: Recommended Reading: Basic, Advanced

2/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

Concluding
Note

Assignment

Outline in more Detail (1)
Part I: Motivation

– Chap. 1: Why Functional Programming Matters
1.1 Reconsidering Folk Knowledge
1.2 Glueing Functions Together: Higher-Order Functions
1.3 Glueing Programs Together: Lazy Evaluation

1.3.1 Square Root Computation
1.3.2 Numerical Integration
1.3.3 Numerical Differentiation

1.4 Summary, Looking ahead
1.5 References, Further Reading

Part II: Programming Principles
– Chap. 2: Programming with Streams

2.1 Streams, Stream Generators
2.2 The Generate-Prune Pattern

2.2.1 The Generate-Select/Filter Pattern
2.2.2 The Generate-Transform Pattern
2.3.3 Pattern Combinations
2.2.4 Summary 3/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

Concluding
Note

Assignment

Outline in more Detail (2)

Part II: Programming Principles

– Chap. 2: Programming with Streams (cont’d)
2.3 Boosting Performance

2.3.1 Motivation
2.3.2 Stream Programming combined with Münchhausen

Principle
2.3.3 Stream Programming combined with Memoization
2.3.4 Summary

2.4 Stream Diagrams
2.5 Pitfalls, Remedies

2.5.1 Livelocks, Lazy Patterns
2.5.2 Lifting, Undecidability
2.5.3 Termination, Domain-specific Knowledge

2.6 Summary, Looking ahead
2.7 References, Further Reading

4/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

Concluding
Note

Assignment

Sometimes, the elegant implementation is a function.
Not a method. Not a class. Not a framework.

Just a function.

John Carmack

...quoted from: Yaron Minsky. OCaml for the Masses. Communications

of the ACM 54(11):53-58, 2011 (...why the next language you learn

should be functional.)

5/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

Concluding
Note

Assignment

Functional Programming

...owes its name to the fact that programs are composed of
only functions:

– The main program is itself a function.

– It accepts the program’s input as its arguments and deli-
vers the program’s output as its result.

– It is defined in terms of other functions, which themselves
are defined in terms of still more functions (eventually by
primitive functions).

...why should functional programming matter?

6/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Chapter 1

Why Functional Programming Matters

7/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

“Why Functional Programming Matters”

...the title of a now classical position statement and plea for
functional programming by John Hughes he denoted

– ...an attempt to demonstrate to the “real world” that
functional programming is vitally important, and also to
help functional programmers exploit its advantages to the
full by making it clear what those advantages are.

The statement is based on a 1984 internal memo at Chalmers
University, and has slightly revised been published in:

– Computer Journal 32(2):98-107, 1989.

– Research Topics in Functional Programming. David
Turner (Ed.), Addison-Wesley, 1990.

– http://www.cs.chalmers.se/∼rjmh/Papers/whyfp.html

8/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Chapter 1.1

Reconsidering Folk Knowledge

9/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Folk Knowledge
...on the benefits of functional programming:

– Functional programs are free of assignments & side-effects.

– Function calls have no effect except of computing their
result.

⇒ Functional programs are thus free of a major source of
bugs!

– The evaluation order of expressions is irrelevant, expres-
sions can be evaluated any time.

– Programmers are free from specifying the control flow
explicitly.

– Expressions can be replaced by their value and vice versa;
programs are referentially transparent.

⇒ Functional programs are thus easier to cope with mathe-
matically (e.g., for proving them correct)!

10/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Folk Knowledge (cont’d)

...functional programs are

– a magnitude of order smaller than conventional programs

⇒ Functional programmers are thus much more productive!

Regarding evidence consider e.g.:

“Higher-level languages are more productive, says Sergio Antoy,
Textronics Professor of computer science at Oregon’s Portland
State University, in the sense that they require fewer lines of code.
A program written in machine language, for instance, might
require 100 pages of code covering every little detail, whereas the
same program might take only 50 pages in C and 25 in Java, as
the level of abstraction increases. In a functional language, Antoy
says, the same task might be accomplished in only 15 pages.”

quoted from: Neil Savage. Using Functions for Easier Programming.

Communications of the ACM 61(5):29-30, 2018.
11/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Overall, however,

...the features attributed to functional programming by ‘folk
knowledge’ do not really explain the power of functional pro-
gramming; in particular, they do not provide

– any help in exploiting the power of functional languages.

(programs, e.g., cannot be written which are particularly
lacking in assignment statements, or which are particu-
larly referentially transparent).

– a yardstick of program quality, nothing a functional
programmer should strive for when writing a program.

12/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

What we need

...is a positive characterization of what

1. makes the vital nature of functional programming and its
strengths.

2. makes a ‘good’ functional program a functional program-
mer should strive for.

13/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

John Hughes’ Thesis

The expressiveness of a language

– depends much on the power of the concepts and primi-
tives allowing to glue solutions of subproblems to the
solution of an overall problem, i.e., its power to support a
modular program design (as an example, consider the
making of a chair).

Functional programming provides two new, especially powerful
kinds of glue:

I Higher-order functions (glueing functions together)

I Lazy evaluation (glueing programs together)

14/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

John Hughes’ Thesis (cont’d)

The vital nature of functional programming and its strengths

– result from the two new kinds of glue, which enable
conceptually new opportunities for modularization and
re-use (beyond the more technical ones of lexical sco-
ping, separate compilation, etc.), and making them more
easily to achieve.

Striving for ‘good’ functional programs means

– functional programmers shall strive for programs which
are smaller, simpler, more general.

Functional programmers shall assume this can be achieved by
modularization using as glue

I higher-order functions

I lazy evaluation
15/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Chapter 1.2

Glueing Functions Together:
Higher-Order Functions

16/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Preparing the Setting

...following the position statement, program examples will be
presented in MirandaTM syntax:

I Lists

listof X ::= nil | cons X (listof X)

I Abbreviations (for convenience)

[] means nil

[1] means cons 1 nil

[1,2,3] means cons 1 (cons 2 (cons 3 nil)))

I A simple function: Adding the elements of a list

sum nil = 0

sum (cons num list) = num + sum list

17/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Note

...only the framed parts are specific to computing a sum:

+---+

sum nil = | 0 |

+---+

+---+

sum (cons num list) = num | + | sum list

+---+

This observation suggests that computing a sum of values can
be modularly decomposed by properly combining a

– general recursion pattern (called reduce)

– set of more specific operations (in the example: +, 0)

18/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Exploiting the Observation

Exam. 1: Adding the elements of a list

sum = reduce add 0

where add x y = x+y

The example allows to conclude the definition of the higher-
order function reduce almost immediately:

(reduce f x) nil = x

(reduce f x) (cons a l) = f a ((reduce f x) l)

Recalled for convenience:
+---+

sum nil = | 0 |

+---+

+---+

sum (cons num list) = num | + | sum list

+---+

19/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Immediate Benefit: Re-use of the HoF reduce

...without any further programming effort we obtain implemen-
tations of many other functions, e.g.:

Exam. 2: Multiplying the elements of a list
product = reduce mult 1

where mult x y = x*y

Exam. 3: Test, if some element of a list equals ‘true’
anytrue = reduce or false

Exam. 4: Test, if all elements of a list equal ‘true’
alltrue = reduce and true

Exam. 5: Concatenating two lists
append a b = reduce cons b a

Exam. 6: Doubling each element of a list
doubleall = reduce doubleandcons nil

where doubleandcons num list

= cons (2*num) list
20/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

How does it work? (1)
Intuitively, the effect of applying (reduce f a) to a list is to
replace in the list all occurrences of

– cons by f

– nil by a

For illustration reconsider selected examples in more detail:

Exam.1: Adding the elements of a list

sum [2,3,5] ->> sum (cons 2 (cons 3 (cons 5 nil)))

->> reduce add 0 (cons 2 (cons 3 (cons 5 nil)))

->> (add 2 (add 3 (add 5 0)))

->> 10

Exam. 2: Multiplying the elements of a list

product [2,3,5] ->> product (cons 2 (cons 3 (cons 5 nil)))

->> reduce mult 1 (cons 2 (cons 3 (cons 5 nil)))

->> (mult 2 (mult 3 (mult 5 1)))

->> 30
21/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

How does it work? (2)
Exam. 5: Concatenating two lists

Note: The expression reduce cons nil is the identity on lists.
Exploiting this fact suggests the implementation of append in
the form of: append a b = reduce cons b a

append [1,2] [3,4]

->> { expanding [1,2] }

->> append (cons 1 (cons 2 nil)) [3,4]

->> { expanding append }

->> reduce cons [3,4] (cons 1 (cons 2 nil))

->> { replacing cons by cons and nil by [3,4] }

(cons 1 (cons 2 [3,4]))

->> { expanding [3,4] }

(cons 1 (cons 2 (cons 3 (cons 4 nil))))

->> { syntactically sugaring the list expression }

[1,2,3,4]

22/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

How does it work? (3)

Exam. 6: Doubling each element of a list

doubleall = reduce doubleandcons nil

where doubleandcons num list

= cons (2*num) list

Note that doubleandcons can stepwise be modularized, too:

1. doubleandcons = fandcons double

where fandcons f el list = cons (f el) list

double n = 2*n

2. fandcons f = cons . f

with ‘.’ sequential composition of functions: (g . h) k

= g (h k)

23/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

How does it work? (4)

...the correctness of the two modularization steps for
doubleandcons follows from:

fandcons f el = (cons . f) el

= cons (f el)

which yields as desired:

fandcons f el list = cons (f el) list

24/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

How does it work? (5)
Putting the parts together, we obtain the following version of
doubleall based on reduce:

Exam. 6.1: Doubling each element of a list

doubleall = reduce (cons . double) nil

Introducing the higher-order function map, which applies a
function f to every element of a list:

map f = reduce (cons . f) nil

we eventually get the final version of doubleall, which is
indirectly based on reduce via map:

Exam. 6.2: Doubling each element of a list

doubleall = map double

where double n = 2*n

25/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Summing up

By decomposing (modularizing) and representing a simple
function (sum in the example) as a combination of

– a higher-order function and

– some simple specific functions as arguments

we obtained a program frame (reduce) that allows us to
implement many functions on lists essentially without any
further programming effort!

This is especially useful for complex data structures as we are
going to show next!

26/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Generalizing the Approach

...to (more) complex data structures using trees as example:

treeof X ::= node X (listof (treeof X))

A value of type (treeof X):

node 1 1

(cons (node 2 nil) / \
(cons (node 3 (cons (node 4 nil) nil)) 2 3

nil)) |

4

27/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

The Higher-order Function redtree

...following the spirit of reduce on lists we introduce a higher-
order function redtree (short for ‘reduce tree’) on trees:

redtree f g a (node label subtrees)

= f label (redtree′ f g a subtrees)

where

redtree′ f g a (cons subtree rest)

= g (redtree f g a subtree) (redtree′ f g a rest)

redtree′ f g a nil = a

Note: redtree takes 3 arguments f, g, a (and a tree value):

– f to replace occurrences of node with

– g to replace occurrences of cons with

– a to replace occurrences of nil with

in tree values.
28/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Applications of redtree (1)
Like reduce allows to implement many functions on list
without any effort, redtree allows this on trees as we
demonstrate by three examples:

Exam. 7: Adding the labels of the leaves of a tree.

Exam. 8: Generating the list of labels occurring in a tree.

Exam. 9: A function maptree on trees which applies a func-
tion f to every label of a tree, i.e., maptree is the analogue of
the function map on lists.

As a running example, we consider the tree value below:

node 1 1

(cons (node 2 nil) / \
(cons (node 3 (cons (node 4 nil) nil)) 2 3

nil)) |

4

29/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Applications of redtree (2)
Exam. 7: Adding the labels of the leaves of a tree

sumtree = redtree add add 0

sumtree (node 1

(cons (node 2 nil)

(cons (node 3 (cons (node 4 nil) nil))

nil)))

->> redtree add add 0

(node 1

(cons (node 2 nil)

(cons (node 3 (cons (node 4 nil) nil))

nil)))

->> (add 1

(add (add 2 0)

(add (add 3 (add (add 4 0) 0))

0)))

->> 10 30/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Applications of redtree (3)
Exam. 8: Generating the list of labels occurring in a tree

labels = redtree cons append nil

labels (node 1

(cons (node 2 nil)

(cons (node 3 (cons (node 4 nil) nil))

nil)))

->> redtree cons append nil

(node 1

(cons (node 2 nil)

(cons (node 3 (cons (node 4 nil) nil))

nil)))

->> (cons 1

(app’d (cons 2 nil)

(app’d (cons 3 (app’d (cons 4 nil) nil))

nil)))

->> [1,2,3,4]

31/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Applications of redtree (4)
Exam. 9: A function maptree which applies a function f to
every label of a tree

maptree f = redtree (node . f) cons nil

maptree double (node 1

(cons (node 2 nil)

(cons (node 3 (cons (node 4 nil) nil))

nil)))

->> redtree (node . double) cons nil

(node 1

(cons (node 2 nil)

(cons (node 3 (cons (node 4 nil) nil))

nil)))

->> ...

->> (node 2

(cons (node 4 nil)

(cons (node 6 (cons (node 8 nil) nil))

nil))) 32/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Summing up (1)

The simplicity and elegance of the preceding examples
materializes from combining

– a higher-order function and

– a specific specializing function

Once the higher-order function is implemented, lots of

– functions can be implemented essentially effort-less!

33/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Summing up (2)
Lesson learnt:

– Whenever a new data type is defined (like lists, trees,...),
implement first a higher-order function allowing to process
values of this type (e.g., visiting each component of a
structured data value such as nodes in a graph or tree).

Benefits:

– Manipulating elements of this data type becomes easy;
knowledge about this data type is locally concentrated
and encapsulated.

Look & feel:

– Whenever a new data structure demands a new control
structure, then this control structure can easily be added
following the methodology used above (note that this
resembles to some extent the concepts known from con-
ventional extensible languages).

34/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Chapter 1.3

Glueing Programs Together:
Lazy Evaluation

35/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Preparing the Setting

– We consider a function from its input to its output a
complete functional program.

– If f and g are complete functional programs, then also
their composition (g . f) is a complete functional
program.

Applied to input in, (g . f) yields the output out:

out = (g . f) in = g (f in)

Task: Implementing the communication between f and g:
E.g., using temporary files as conventional glue.

Possible problems:

1. Temporary files could get too large and exceed the
available storage capacity.

2. f might not terminate.
36/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Lazy Evaluation

...as functional glue allows a more elegant approach by decom-
posing a program into a

– generator

– selector

component/module glued together by functional composition
and synchronized by

– lazy evaluation

ensuring:

– The generator ‘runs as little as possible’ till it is termi-
nated by the selector.

37/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

In the following

...three examples for illustrating this modularization strategy:

1. Square root computation

2. Numerical integration

3. Numerical differentiation

Note, only the first example will be considered in full detail
here (see complete course notes for the other two examples).

38/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Chapter 1.3.1

Square Root Computation

39/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

The Newton-Raphson Approach

...for square root computation.

Given: N, a positive number

Sought: squareRoot(N), the square root of N

Iteration formula: a(n+1) = (a(n) + N/a(n)) / 2

Justification: If for some initial approximation a(0), the se-
quence of approximations converges to some limit a, a 6= 0, a
equals the square root of N. Consider:

(a + N/a) / 2 = a | *2

⇔ a + N/a = 2a | -a

⇔ N/a = a | *a

⇔ N = a*a | squr

⇔ squareRoot(N) = a

40/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

A Typical Imperative Implementation

...realizing this approach (here in Fortran):

C N is called ZN here so that it has

C the right type

X = A0

Y = A0 + 2.*EPS

C The value of Y does not matter so long

C as ABS(X-Y).GT. EPS

100 IF (ABS(X-Y).LE. EPS) GOTO 200

Y = X

X = (X + ZN/X) / 2.

GOTO 100

200 CONTINUE

C The square root of ZN is now in X

 this is essentially a monolithic, not decomposable program.
41/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Developing now a Modular Functional Version

First, we define function next, which computes the next
approximation from the previous one:

next N x = (x + N/x) / 2

Second, we define function g:

g = next N

This leaves us with computing the (possibly infinite) sequence
of approximations:

[a0, g a0, g (g a0), g (g (g a0)),..

which is equivalent to:

[a0, next N a0, next N (next N a0),

next N (next N (next N a0)),..

42/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Writing a Generator
...applied to some function f and some initial value a, function
repeat computes the (possibly infinite) sequence of values
resulting from repeatedly applying f to a; repeat will be the
generator component in this example:

Generator A:

repeat f a = cons a (repeat f (f a))

Note:

– Applying repeat to the arguments g and a0 yields the
desired sequence of approximations:
repeat g a0

->> repeat (next N) a0

->> [a0, next N a0, next N (next N a0),

next N (next N (next N a0)),...

– Evaluating repeat g a0 does not terminate!
43/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Writing a Selector

...applied to some value eps > 0 and some list xs, function
within picks the first element of xs, which differs at most by
eps from its preceding element; within will be the selector in
this example allowing to tame the looping evaluation of the
generator:

Selector A:

within eps (cons a (cons b rest))

= b, if abs(a-b) <= eps

= within eps (cons b rest), otherwise

44/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Glueing together Generator and Selector

...to obtain the final program.

Glueing together Generator A and Selector A:

sqrt N eps a0 = within eps (repeat (next N) a0)︷ ︸︸ ︷
Selector A

︷ ︸︸ ︷
Generator A

Effect: The composition of Generator A and Selector A stops
approximating the value of the square root of N once the latest
two approximations of this value differ at most by eps > 0,
used here as indication of sufficient precision of the currently
reached approximation.

45/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Summing up
The functional version of the program approximating the sqare
root of a number is unlike the imperative one not monolithic
but composed of two modules running in perfect synchroni-
zation.

Modules:

– Generator program/module: repeat

[a0, g a0, g(g a0), g(g(g a0)),...]

...potentially infinite, no pre-defined limit of length.
– Selector program/module: within

gi a0 with abs(gi a0 - gi+1 a0) <= eps

...lazy evaluation ensures that the selector function
is applied eventually ⇒ termination!

Synchronized by:

I Lazy evaluation

...overcoming the problem of the looping generator for free.
46/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Immediate Benefit: Modules are Re-usable

...we will demonstrate that

– Generator A

– Selector A

can indeed easily be re-used, and therefore be considered
modules.

We are going to start re-using Generator A with a new selector.

47/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Re-using Generator A with a new Selector

Consider a new criterion for termination:

– Instead of awaiting the difference of successive approxi-
mations to approach zero (i.e., <= eps), await their
ratio to approach one (i.e., <= 1+eps).

Selector B:

relative eps (cons a (cons b rest))

= b, if abs(a-b) <= eps * abs b

= relative eps (cons b rest), otherwise

Glueing together (old) Generator A and (new) Selector B:

relativesqrt N eps a0

= relative eps (repeat (next N) a0)︷ ︸︸ ︷
Selector B

︷ ︸︸ ︷
Generator A

48/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Dually: Re-using Selectors A and B

...with new generators.

Dually to re-using a generator module as in the previous
example, also the selector modules can be re-used. To this
end we consider two further examples requiring new gene-
rators:

– Numerical integration

– Numerical differentiation

49/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Chapter 1.3.2

Numerical Integration

50/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Numerical Integration

Given: A real valued function f of one real argument; two
end-points a und b of an interval

Sought: The area under f between a and b

Simple Solution:
...assuming that the function f is roughly linear between a und b.

easyintegrate f a b = (f a + f b) * (b-a) / 2

Note: The results of easyintegrate will be precise enough for

practical usages at most for very small intervals. Therefore, we will

develop an iterative approximation strategy based on the idea

underlying the simple solution.

51/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Illustrating the Essence of easyintegrate

a b

A

A

B
B

}

}
f(a)

f(b)

x

y }b−a

f

f(x) dx = A+B = (f(a) + f(b))*(b−a) / 2

b

a
52/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Writing a Generator
Iterative Approximation Strategy

– Halve the interval, compute the areas for both sub-inter-
vals according to the previous formula, and add the two
results.

– Continue the previous step repeatedly.

The function integrate realizes this strategy:

Generator B:

integrate f a b

= cons (easyintegrate f a b)

map addpair (zip (integrate f a mid)

(integrate f mid b)))

where mid = (a+b)/2

where

zip (cons a s) (cons b t) = cons (pair a b) (zip s t)
53/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Re-using Selectors A, B with Generator B

Note, evaluating the new generator term integrate f a b

does not terminate!

However, the evaluation can be tamed by glueing it together
with any of the previously defined two selectors thereby re-
using these selectors and computing integrate f a b up to
some accuracy.

Re-using Selectors A, B for new generator/selector combi-
nations:

* within eps (integrate f a b)︷ ︸︸ ︷
Selector A

︷ ︸︸ ︷
Generator B

* relative eps (integrate f a b)︷ ︸︸ ︷
Selector B

︷ ︸︸ ︷
Generator B

54/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Summing up

– New generator module: integrate

...looping, no limit for the length of the generated list

– Two old selector modules: within, relative
...picking a particular element of a list.

– Their combination synchronized by lazy evaluation
...ensuring the selector function is eventually successfully
applied ⇒ termination!

Note, the two selector modules A and B picking the solution

– from the stream of approximate solutions could be
re-used from the square root example w/out any change.

In total, we now have 2 generators and 2 selectors, which can
be glued together in any combination. For any combination,
their proper synchronization (and termination) is ensured by

I lazy evaluation!
55/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Chapter 1.3.3

Numerical Differentiation

56/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Numerical Differentiation

Given: A real valued function f of one real argument; a point x

Sought: The slope of f at point x

Simple Solution:
...assuming that the function f does not ‘curve much’ between x

and x+h.

easydiff f x h = (f (x+h) - f x) / h

Note: The results of easydiff will be precise enough for practical

usages at most for very small values of h. Therefore, we will

develop an iterative approximation strategy based on the idea

underlying the simple solution.

57/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Writing a Generator/Selector Combination
Along the lines of the example on numerical integration, we
implement a new generator computing a sequence of approxi-
mations getting more and more accurate by interval halving:

Generator C:

differentiate h0 f x

= map (easydiff f x) (repeat halve h0)

halve x = x/2

As before, the new generator can now be glued together with
any of the selectors we defined so far picking a sufficiently
accurate approximation, e.g.:

Glueing together Generator C and Selector A:

within eps (differentiate h0 f x)︷ ︸︸ ︷
Selector A

︷ ︸︸ ︷
Generator C

58/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Summing up

All three examples (square root computation, numerical inte-
gration, numerical differentiation) enjoy a common compo-
sition pattern, namely using and combining a

– generator (looping!)

– selector

synchronized by

I lazy evaluation

ensuring termination for free.

This composition/modularization principle can be further
generalized to combining

– generators with selectors, filters, and transformers

as illustrated in more detail in Chapter 2.
59/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Chapter 1.4

Summary, Looking ahead

60/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Starting Point

...of John Hughes:

I Modularity is the key to programming in the large.

Findings from reconsidering folk knowledge:

– Just modules (i.e., the capability of decomposing a pro-
blem) do not suffice.

– The benefit of modularly decomposing a problem into
subproblems depends much on the capabilities for glueing
together the modules to larger programs.

Hence

I The availability of proper glue is essential!

61/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Finding

Functional programming offers two new kinds of glue:

1. Higher-order functions (glueing functions)

2. Lazy evaluation (glueing programs)

Higher-order functions and lazy evaluation allow substantially

– new exciting modular compositions of programs (by
offering elegant and powerful kinds of glue for composing
moduls) as given evidence in this chapter by an array of
simple, yet striking examples.

Overall, it is the superiority of these 2 kinds of glue allowing

– functional programs to be written so concisely and ele-
gantly (rather than their freedom of assignments, etc.).

62/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Recommendation

...when writing a program, a functional programmer shall

– strive for adequate modularization and generalization (es-
pecially, if a portion of a program looks ugly or appears to
be too complex).

– expect that higher-order functions and lazy evaluation are
the tools for achieving adequate modularization and gene-
ralization.

63/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Lazy or Eager Evaluation?

...the final conclusion of John Hughes reconsidering this recur-
ring question is:

I The benefits of lazy evaluation as a glue are so evident
that lazy evaluation is too important to make it a
second-class citizen.

I Lazy evaluation is possibly the most powerful glue func-
tional programming has to offer.

I Access to such a powerful means should not airily be
dropped.

Lasst uns faul in allen Sachen,
[...]

nur nicht faul zur Faulheit sein.

Gotthold Ephraim Lessing (1729-1781)
dt. Dichter und Dramatiker

64/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Looking ahead

...in Chapter 2 and Chapter 3 we will discuss the power higher-
order functions and lazy evaluation provide the programmer
with in further detail:

– Stream programming: exploiting lazy evaluation
(cf. Chapter 2).

– Algorithm patterns: exploiting higher-order functions
(cf. Chapter 3).

65/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Chapter 1.5

References, Further Reading

66/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Chapter 1: Basic Reading (and Viewing)

John Hughes. Why Functional Programming Matters.
Computer Journal 32(2):98-107, 1989.

John Hughes. Why Functional Programming Matters.
Invited Keynote, Bangalore, 2016.
https://www.youtube.com/watch?v=XrNdvWqxBvA

67/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Chapter 1: Selected Advanced Reading (1)

Neal Ford. Functional Thinking: Why Functional Pro-
gramming is on the Rise. IBM developerWorks, 10 pages,
2013.
https://www.ibm.com/developerworks/java/library/

j-ft20/j-ft20-pdf.pdf

...why you should care about functional programming even
if you don’t plan to change languages any time soon.

Neil Savage. Using Functions for Easier Programming.
Communications of the ACM 61(5):29-30, 2018.

...when the limestone of imperative programming has worn
away, the granite of functional programming will be
revealed underneath 〈quote of Simon Peyton Jones〉.

68/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Chapter 1: Selected Advanced Reading (2)

Greg Michaelson. Programming Paradigms, Turing Com-
pleteness and Computational Thinking. The Art, Science,
and Engineering of Programming 4(3), Article 4, 21 pages,
2020.

Philip Wadler. The Essence of Functional Programming. In
Conference Record of the 19th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL’92), 1-14, 1992.

Edsger W. Dijkstra. Go To Statement Considered Harmful.
Letter to the Editor. Communications of the ACM
11(3):147-148, 1968.

69/170

Lecture 1

Detailed
Outline

Chap. 1

1.1

1.2

1.3

1.4

1.5

Chap. 2

Concluding
Note

Assignment

Sometimes, the elegant implementation is a function.
Not a method. Not a class. Not a framework.

Just a function.

John Carmack

70/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2

Programming with Streams

71/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Streams, Stream Programming

...a powerful means which – thanks to lazy evaluation – often
allows

– to solve problems elegantly, concisely, efficiently

– to gain/improve performance

but also a

– a source of hassle if applied inappropriately.

Note: Streams are also called infinite lists or lazy lists.

72/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

We will focus on

...applications of streams and stream programming with the

1. Generate-prune pattern as a powerful modularization
principle with instances like:
1.1 Generate-select
1.2 Generate-filter
1.3 Generate-transform

2. Opportunities for performance improvement.

3. Pitfalls and remedies.

In later chapters, we consider the theoretical foundations un-
derlying and justifying stream programming:

4. Well-definedness of functions on streams
(cf. Appendix A.7.5)

5. Proving properties of functions on streams
(cf. Chapter 6.3.4, 6.4, 6.5, 6.6)

73/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Implementing Streams

...could be done by a new polymorphic data type like:

data Stream a = a :* Stream a

to emphasize the conceptual difference of streams (infinite by
definition) and lists (finite by definition).

Pragmatically, however, it is advantageous to model streams
(and lists) by ordinary

– list types [a] (omitting for streams the empty list [])

since this way we can take advantage of the huge array of pre-
defined

– (polymorphic) functions on lists

which otherwise would have to be (re-) defined from scratch.

74/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2.1

Streams, Stream Generators

75/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Simple Stream Generators

I Built-in streams in Haskell

[0..] ->> [0,1,2,3,4,5,...

[0,2..] ->> [0,2,4,6,8,10,...

[1,3..] ->> [1,3,5,7,9,11,...

[1,1..] ->> [1,1,1,1,1,1,...

I User-defined streams in Haskell

ones = 1 : ones

ones ->> 1 : ones

->> 1 : (1 : ones)

->> 1 : (1 : (1 : ones))

->> ...

Note: The expressions ones and [1,1..] represent the same
infinite lists (or streams), the stream of ‘ones.’

76/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Stream Generators: Corecursive Definitions

Definitions like

ones = 1 : ones

twos = 2 : twos

threes = 3 : threes

defining the streams of ‘ones,’ ‘twos,’ ‘threes’ are called

I corecursive.

Corecursive definitions

– are recursive definitions but lack a base case.

– always yield infinite objects.

– remind to Münchhausen’s famous trick of “sich am eige-
nen Schopfe aus dem Sumpf zu ziehen!”

77/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

More Corecursively Defined Stream Generators

The stream

I nats of natural numbers:

nats = 0 : map (+1) nats

->> [0,1,2,3,...

I evens of even natural numbers :

evens = 0 : map (+2) evens

->> [0,2,4,6,...

I odds of odd natural numbers:

odds = 1 : map (+2) odds

->> [1,3,5,7,...

I theNats of natural numbers:

theNats = 0 : zipWith (+) ones theNats

->> [0,1,2,3,...
78/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Stream Generators

...defined in terms of list comprehension and recursion.

The stream of

I powers of some integer:

powers :: Int -> [Int]

powers n = [n^x | x <- [0..]]

 [1, n, n*n, n*n*n,...

I ‘function applications,’ the prelude function iterate:

iterate :: (a -> a) -> a -> [a]

iterate f x = x : iterate f (f x)

 [x, f x, f (f x), f (f (f x)),...

79/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Stream Generators
...defined with iterate yielding alternative definitions of some
of the stream generators defined so far:

powers n = iterate (*n) 1

ones = iterate id 1

twos = iterate id 2

threes = iterate id 3

nats = iterate (+1) 0

theNats = iterate (+1) 0

evens = iterate (+2) 0

odds = iterate (+2) 1

where

id = \x -> x

80/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Streams as Results of Functions
...user-defined stream-yielding functions.

I Streams of integers
from :: Int -> [Int]

from n = n : from (n+1)

fromStep :: Int -> Int -> [Int]

fromStep n m = n : fromStep (n+m) m

Examples:
from 42 ->> [42,43,44,...

fromStep 3 2 ->> 3 : fromStep 5 2

->> 3 : 5 : fromStep 7 2

->> 3 : 5 : 7 : fromStep 9 2

->> ...

->> [3,5,7,9,11,13,15,...

I Streams of (pseudo) random numbers...

I The stream of prime numbers...
81/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Streams of (Pseudo) Random Numbers (1)

...a generator for (periodic) streams of (pseudo) random num-
bers:

randomSequence :: Int -> [Int] -- Periodic

randomSequence = iterate nextRandNum -- Generator

nextRandNum :: Int -> Int

nextRandNum n =

(multiplier * n + increment) ‘mod‘ modulus

82/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Streams of (Pseudo) Random Numbers (2)

Example: Choosing

seed = 17489 increment = 13849

multiplier = 25173 modulus = 65536

the evaluation of randomSequence with argument seed yields
a periodic stream of (pseudo) random numbers, where all
numbers are in the range of 0 to 65536 and occur with the
same frequency:

randomSequence seed

->> [17489, 59134, 9327, 52468, 43805, 8378,...

83/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

The Stream of Primes (1)
...along the idea of Eratosthenes of a Sieve of Primes:

1. Write down the natural numbers from 2 onwards.
2. The smallest number not cancelled is a prime number;

cancel all multiples of this number.
3. Repeat step 2 with the then smallest number not can-

celled.

Illustrating the algorithmic idea of sieving:

Step 1:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17...

Step 2 (with ‘2’ as smallest not cancelled number):

2 3 5 7 9 11 13 15 17...

Step 2 (with ‘3’ as smallest not cancelled number):

2 3 5 7 11 13 17...

Step 2 (with ‘5’ as smallest not cancelled number):

2 3 5 7 11 13 17...
... 84/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

The Stream of Primes (2)

Exploiting the idea of sieving for implementation.

The stream primes of prime numbers as result of applying the
filter function sieve to the generator [2..]:

primes :: [Int]

primes = sieve [2..]︷ ︸︸ ︷
Generator

︷ ︸︸ ︷
Filter

︷ ︸︸ ︷
Generator

sieve :: [Int] -> [Int]

sieve (x:xs) = x : sieve [y | y <- xs, mod y x > 0]

85/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

The Stream of Primes (3)
Illustrating the filtering property of sieve by stepwise evalua-
tion:

primes

->> sieve [2..]

->> 2 : sieve [y | y <- [3..], mod y 2 > 0]

->> 2 : sieve (3 : [y | y <- [4..], mod y 2 > 0]

->> 2 : 3 : sieve [z | z <- [y | y <- [4..],

mod y 2 > 0],

mod z 3 > 0]

->> ...

->> 2 : 3 : sieve [z | z <- [5, 7, 9..],

mod z 3 > 0]

->> ...

->> 2 : 3 : sieve [5,7,11,...

->> ...

->> [2,3,5,7,11,13,17,19,...
86/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Note

...evaluating stream generating terms does not terminate and
yields (at least conceptually) infinitely long lists.

Fortunately, the non-terminating evaluation of stream genera-
ting terms can be tamed using the

I Generate-Prune Pattern

which allows conceptually new ways of

I modularizing

lazily evaluated functional programs.

87/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2.2

The Generate-Prune Pattern

88/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

The Generate-Prune Pattern

...a means of modularly composing lazily evaluated functional
programs:

x, y, z, ...

Generator

x prune

xprune , prune y,...

module: Pruning module:

iterate f

x, f x , f (f x),...

iterate f x prune

x, f x , f (f x),... prune x, ...

PruningandLinking modules together:Generator

prune (f x),

89/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Basic Instances of the Generate-Prune Pattern

...are: The

1. Generate-select

2. Generate-filter

3. Generate-transform

instances and combinations thereof, which themselves can be
considered patterns.

90/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2.2.1

The Generate-Select/Filter Pattern

91/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

The Generate-Select/Filter Pattern

...at a glance:

Selector/Filter

x, y, z, ...

select p

[
select p q == True]

q | q <− [x, y, z, ...],

Generator

x, f x , f (f x),...

iterate f x

module: module:

Linking Generator and Selector/Filter modules together:

xiterate f select p

[q | q <− [x, f x , f (f x),...],
select p q == True]

x, f x , f (f x),...

92/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Examples: Generate-Select Pattern

...applications of the Generate-Select Pattern:

I The head element of a stream:

head nats ->> head (0 : map (+1) nats)︷ ︸︸ ︷
Selector

︷ ︸︸ ︷
Generator ->> 0

I Three pseudo random numbers:

take 3 (randomSequence 17489) ->> [17489,69134,9327]︷ ︸︸ ︷
Selector

︷ ︸︸ ︷
Generator

I The 6th to the 10th prime number:

((take 5) . (drop 5)) primes ->> [13,17,19,23,29]︷ ︸︸ ︷
Selector

︷ ︸︸ ︷
Generator

93/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Examples: Generate-Filter Pattern
...applications of the Generate-Filter Pattern:

I The tail of a stream:

tail nats ->> tail (0 : map (+1) nats)︷ ︸︸ ︷
Filter

︷ ︸︸ ︷
Generator ->> map (+1) nats

->> [1,2,3,...

I The prime numbers, which are a palindrome:

filter is palindrome primes ->> [2,3,5,7,11,101,131,...︷ ︸︸ ︷
Filter

︷ ︸︸ ︷
Generator

I Even pseudo random numbers:

filter is even (randomSequence 17489) ->> [69134,︷ ︸︸ ︷
Filter

︷ ︸︸ ︷
Generator 52468,

8378,...

94/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Is it a Selector or a Filter?

Taking a pragramatic point of view, if applied to a stream, ter-
mination is

– ensured, then it is a selector:

((take 5) . (drop 5)) primes ->> [13,17,19,23,29]︷ ︸︸ ︷
Selector

︷ ︸︸ ︷
Generator

– not ensured, then it is a filter:

filter is palindrome primes ->> [2,3,5,7,11,101,...︷ ︸︸ ︷
Filter

︷ ︸︸ ︷
Generator

95/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

A Note on Termination
...termination of a generate-select program depends crucially
on evaluating the program in normal order reduction (typically
implemented in terms of the efficient lazy order reduction) to
avoid the non-terminating infinite sequence of reductions of
evaluating the program in applicative order reduction:

I Applicative order reduction:

head twos

->> head (2 : twos)

->> head (2 : 2 : twos)

->> head (2 : 2 : 2 : twos)

->> ...

I Normal/lazy order reduction:

head twos

->> head (2 : twos)

->> 2
96/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Reminder

...whenever there is a terminating reduction sequence of an
expression, then normal order reduction will terminate.

Church/Rosser Theorem 12.3.2 (LVA 185.A03 FP)

Normal order reduction is typically implemented in terms of its
efficient variant of lazy order reduction based on leftmost-
outermost evaluation.

97/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2.2.2

The Generate-Transform Pattern

98/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

The Generate-Transform Pattern

...at a glance:

Transformer

x, y, z, ... g x, g y, g z ,...

Generator

iterate f map gx

x, f x , f (f x),...

module: module:

Linking Generator and modules together:

iterate f x map g

x, f x , f (f x),... xg , g(f x), g (f (f x)),...

Transformer

99/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Examples: Generate-Transform Pattern (1)

I The stream of predecessors of prime numbers:

map (\x -> x-1) primes ->> [1,2,4,6,10,12,16,...︷ ︸︸ ︷
Transformer

︷ ︸︸ ︷
Generator

I The stream of truth values indicating which prime num-
bers are a palindrome:

map is palindrome primes ->> [True,True,True,True,︷ ︸︸ ︷
Transformer

︷ ︸︸ ︷
Generator True,False,False,...

I The stream of truth values indicating which values of a
stream of pseudo random numbers are even:

map is even (randomSequence 17489) ->> [False,︷ ︸︸ ︷
Transformer

︷ ︸︸ ︷
Generator True,

False,...

100/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Examples: Generate-Transform Pattern (2)

...often random numbers r within a range from p to q:

p ≤ r ≤ q

are required.

This also can be achieved using the generate/transform pat-
tern by properly scaling (i.e., transforming) the values of a
sequence of pseudo random numbers:

scale 42.0 51.0 randomSequence︷ ︸︸ ︷
Transformer

︷ ︸︸ ︷
Generator

scale :: Float -> Float -> [Int] -> [Float]

scale p q randSeq = map (f p q) randSeq

where f :: Float -> Float -> Int -> Float

f p q n = p + ((n * (q-p)) / (modulus-1))

101/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2.2.3

Pattern Combinations

102/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Examples: Pattern Combinations
...applications of pattern combinations:

I The stream of prime numbers:
primes = sieve (tail (map (\n -> n+1) nats))︷ ︸︸ ︷

Generator
︷ ︸︸ ︷
Filter

︷ ︸︸ ︷
Filter

︷ ︸︸ ︷
Transformer

︷ ︸︸ ︷
Generator

I The 6th to the 10th prime number:
((take 5) . (drop 5)) primes ->> [13,17,19,23,29]︷ ︸︸ ︷

Selector
︷ ︸︸ ︷
Filter

︷ ︸︸ ︷
Generator

I Selecting and adding the first two elements of a stream:
addFirstTwo twos︷ ︸︸ ︷

Selector + Transformer
︷ ︸︸ ︷
Generator
->> addFirstTwo (2:twos)

->> addFirstTwo (2:2:twos)

->> 2+2

->> 4

where addFirstTwo (x:y:zs) = x+y
103/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2.2.4

Summary

104/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Principles of Modularization

...enabled by stream programming and lazy evaluation:

I The Generate-Select Principle
...e.g., computing the square root, the n-th Fibonacci
number.

I The Generate-Filter Principle
...e.g., computing all even Fibonacci numbers.

I The Generate-Tansform Principle
...e.g., ‘scaling’ random numbers.

I (Complex) combinations of generators, transformers,
filters, and selectors.

105/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2.3

Boosting Performance

106/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2.3.1

Motivation

107/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Recall

...the straightforward implementation:

fib :: Int -> Int

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

of the Fibonacci function:

fib : IN0 → IN0

fib(n) =df


0 if n = 0
1 if n = 1
fib(n − 1) + fib(n − 2) if n ≥ 2

has exponential time complexity and is thus inacceptably in-
efficient and slow for all but the smallest arguments (cp. LVA
185.A03 FP).

108/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Fortunately

...stream programming can (often) help

– conquering complexity

– gaining/improving performance!

109/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2.3.2

Stream Programming combined with
Münchhausen Principle

110/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Computing the Fibonacci Numbers Stream Eff.

0 1 1 2 3 5 8 13.. The stream of Fibonacci numbers

1 1 2 3 5 8 13 21.. The tail of the stream of Fib. numb.

+ + + + + + + +.. ++++++ add columnwise ++++++

1 2 3 5 8 13 21 34.. The tail of the tail of the

stream of Fibonacci numbers

This can easily be implemented as a (corecursive) stream:

fibs :: [Int] -- Generator

fibs = 0 : 1︸ ︷︷ ︸ : zipWith (+) fibs (tail fibs)︸ ︷︷ ︸
‘Tuft’ ‘Swamp’︸ ︷︷ ︸

The tail of the tail of the stream of Fib. numb.︸ ︷︷ ︸
The stream of Fibonacci numbers

...using Münchhausen’s trick of “sich am eigenen Schopfe aus
dem Sumpf zu ziehen!”

111/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

The Münchhausen Principle in Detail

‘Sw 0 1 1 2 3 5 8 13.. Stream of fibs

am 1 1 2 3 5 8 13 21.. Tail of stream of fibs

p’ + + + + + + + +.. +++ add columnwise +++

0 1︸ ︷︷ ︸ 1 2 3 5 8 13 21 34..︸ ︷︷ ︸ Stream of fibs

‘Tuft’ Tail of tail of stream of fibs

...and the implementation as (corecursive) stream:

fibs = 0 : 1︸ ︷︷ ︸ : zipWith (+) fibs (tail fibs)︸ ︷︷ ︸
‘Tuft’ adding ‘Swamp’ columnwise︸ ︷︷ ︸

Tail of tail of stream of fibs︸ ︷︷ ︸
Stream of Fibonacci numbers

Note: This way the stream of Fibonacci numbers is computed
w/out referring to the recursive default definition of the Fibo-
nacci function.

112/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Application: Generate/Select Principle

Generator:

fibs ->> 0 : 1 : 1 : 2 : 3 : 5 : 8 : 13 : 21 : 34 : 55 : 89...

Generate-Select applications:

fibs!!7 ->> 13

take 8 fibs ->> [0,1,1,2,3,5,8,13]

(head . (drop 7)) fibs ->> 13

where

take :: Int -> [a] -> [a]

take 0 _ = []

take _ [] = []

take n (x:xs) | n>0 = x : take (n-1) xs

take _ _ = error "Negative argument"

113/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Computing Fibonacci Numbers Efficiently
...the corecursive definition of the stream fibs suggests a con-
ceptually new efficient implementation of the Fibonacci func-
tion fib:

fib :: Int -> Int

fib n = head (drop (n-1) fibs)︷ ︸︸ ︷
Selector 2

︷ ︸︸ ︷
Selector 1

︷ ︸︸ ︷
Generator

[= last (take n fibs)]︷ ︸︸ ︷
Selector 2

︷ ︸︸ ︷
Selector 1

︷ ︸︸ ︷
Generator

And even shorter with only one selector:

fib :: Int -> Int

fib n = fibs !! n︷ ︸︸ ︷
Generator

︷ ︸︸ ︷
Selector

Note the generate-select modularization in the two implementa-

tions of fib.
114/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Note: Lazy Evaluation is Crucial for Performance
...naive evaluation w/out sharing of common subexpression
causes exponential computational effort (using add instead of
zipWith (+)):

fibs

->> { Replace the call of fibs by the body of fibs }

0 : 1 : add fibs (tail fibs)

->> { Replace both calls of fibs by the body of fibs }

0 : 1 : add (0 : 1 : add fibs (tail fibs))

(tail (0 : 1 : add fibs (tail fibs)))

->> { Application of tail }

0 : 1 : add (0 : 1 : add fibs (tail fibs))

(1 : add fibs (tail fibs))

->> ... exponential effort!

...lazy evaluation ensures that common subexpressions (here,
tail and fibs) are not computed multiple times!

115/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

The Benefit of Lazy Evaluation: Sharing (1)
fibs ->> 0 : 1 : add fibs (tail fibs)

->> { Introd. abbrev. allows sharing of results }

0 : tf -- tf reminds to "tail of fibs"

where tf = 1 : dd fibs (tail fibs)

->> 0 : tf

where tf = 1 : add fibs tf

->> { Introducing abbreviations allows sharing }

0 : tf

where tf = 1 : tf2 -- tf2 reminds to "tail

-- of tail of fibs"

where tf2 = add fibs tf

->> { Unfolding of add }

0 : tf

where tf = 1 : tf2

where tf2 = 1 : add tf tf2
116/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

The Benefit of Lazy Evaluation: Sharing (2)

->> { Repeating the above steps }

0 : tf

where tf = 1 : tf2

where tf2 = 1 : tf3 (tf3 reminds to

"tail of tail of tail of fibs")

where tf3 = add tf tf2

->> 0 : tf

where tf = 1 : tf2

where tf2 = 1 : tf3

where tf3 = 2 : add tf2 tf3

->> { tf is only used once and can thus be eliminated }

0 : 1 : tf2

where tf2 = 1 : tf3

where tf3 = 2 : add tf2 tf3

117/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

The Benefit of Lazy Evaluation: Sharing (3)
->> { Finally, we obtain successsively longer pre-

fixes of the stream of Fibonacci numbers }

0 : 1 : tf2

where tf2 = 1 : tf3

where tf3 = 2 : tf4

where tf4 = add tf2 tf3

->> 0 : 1 : tf2

where tf2 = 1 : tf3

where tf3 = 2 : tf4

where tf4 = 3 : add tf3 tf4

{ Note: Eliminating where-clauses corresponds

to garbage collection of unused memory by an

implementation. }

->> 0 : 1 : 1 : tf3

where tf3 = 2 : tf4

where tf4 = 3 : add tf3 tf4
118/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2.3.3

Stream Programming combined with
Memoization

119/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Memoization

...goes back to Donald Michie:

– Donald Michie. ‘Memo’ Functions and Machine Learning.
Nature, 218:19-22, 1968.

Essence

– Replace, where possible, the (costly) computation of a
function according to its body by looking up its value in a
table, a so-called memo table.

Means

– A costly to compute function is replaced by an equivalent
memo function using (memo) table look-ups. Intuitively,
the original function is augmented by a cache storing
argument/result pairs.

120/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Memo Functions, Memo Tables
A memo function is

– an ordinary function, but stores for some or all arguments
it has been applied to the results in a memo table.

A memo table allows

– to replace recomputation by table look-up.

Requirement: A memo function memo

memo :: (a -> b) -> (a -> b)

for replacing some function f : a -> b must satisfy:

memo f x = f x

Referential transparency of pure functional programming lang-
uages (especially, absence of side effects!) greatly simplifies

– Soundness proofs involving memoization.
121/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Illustrating the Essence of Memo Functions
...and memo tables, sometimes simpler memo lists (i.e., one-
dimensional memo tables).

Assume f : ID→ ID′ is a (costly to compute) function with
(enumerable) domain ID and range ID′:

f :: Enum d => d -> r

f d′ = r′ -- basic case

f x = exp -- exp involving recursive calls of f

Then: Replace calls of f by implementing f (except of a few
calls for basic cases) by a look-up in a memo list:

memo_list = [memo f d′′ | d′′ <- [d′..]] -- Generator

memo :: Enum d => (d -> r) -> d -> r

memo f d′ = f d′ -- Basis (‘tuft’)

memo f x = exp′ -- Trigger, (expr′ is exp with calls of

-- f replaced by memo list look-ups)

memo_f d = memo f d -- memo_f replacing f
122/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Memo Functions, Memo Tables: Schematically

‘Generic’ Pattern, schematically:

f :: Enum d => d -> r

f d′ = r′ -- basic case

f x = exp -- exp involving recursive calls of f

memo_list = [memo f d′′ | d′′ <- [d′..]] -- Generator

memo :: Enum d => (d -> r) -> d -> r

memo f d′ = f d′ -- Basis (‘tuft’)

memo f x = exp′ -- Trigger, (expr′ is exp with calls of

-- f replaced by memo list look-ups)

memo_f d = memo f d -- memo_f replacing f

123/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Memo Functions, Memo Tables: Example

Computing the Fibonacci function using memoization:

fib :: Int -> Int

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2) -- Not reached by memo!

memo_list = [memo fib n | n <- [0..]] -- Generator

memo :: (Int -> Int) -> Int -> Int

memo fib 0 = fib 0 -- Basis (‘tuft’)

memo fib 1 = fib 1 -- Basis (‘tuft’)

memo fib n = memolist !! (n-1) + memolist !! (n-2) -- Trigger

memo_fib n = memo fib n -- memo_fib replacing fib

124/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Example 1: Computing Fibonacci Numbers
Computing Fibonacci numbers with memoization/memo lists:

fib_memolist = [fib_ml n | n <- [0..]]

fib_ml 0 = 0

fib_ml 1 = 1

fib_ml n = fib_memolist!!(n-1) + fib_memolist!!(n-2)︷ ︸︸ ︷
Generator

︷ ︸︸ ︷
Selector

︷ ︸︸ ︷
Generator

︷ ︸︸ ︷
Selector

Compare this w/ the straightforward implementation of fib:

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

Lemma 2.3.3.1
∀ n∈ IN. fib_ml n = fib n

Note: Looking-up the result of calls instead of recomputing
them again, leads to a substantial performance gain!

125/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Example 2: Computing Powers
Computing powers (20, 21, . . .) with memoization/memo lists:

pow_memolist = [power_ml x | x <- [0..]]

power_ml 0 = 1

power_ml i = pow_memolist!!(i-1) + pow_memolist!!(i-1)︷ ︸︸ ︷
Generator

︷ ︸︸ ︷
Selector

︷ ︸︸ ︷
Generator

︷ ︸︸ ︷
Selector

Compare this w/ the straightforward implement. of power:

power 0 = 1

power i = power (i-1) + power (i-1)

Lemma 2.3.3.2
∀ n∈ IN. power_ml n = power n

Note: Looking-up the result of the second call instead of re-
computing it requires only 1 + n calls of power ml instead of
1 + 2n. This is a significant performance gain!

126/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Summing up

A memo function memo :: (a -> b) -> (a -> b)

– is essentially the identity on functions.

– (but) keeps track on the arguments it has been applied to
and their corresponding result values.

Motto: Looking-up results which have been computed
earlier instead of recomputing them!

Memo functions are

– not a part of the Haskell’98 standard.

– supported by some non-standard libraries.

Note: In Example 1 and 2, the general memo list/memo func-
tion pattern is syntactically condensed by squeezing

– memo/fib, memo/power into fib ml, power ml, resp.

127/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2.3.4

Summary

128/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Avoiding Recomputations, Avoiding Recursion

...are major sources of performance improvement.

Stream programming combined with

– Münchhausen principle

– memoization

can (often) help avoiding recomputing values unnecessarily
and recursively.

129/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Stream Programming w/ Münchhausen Princ.
...avoiding recomputations, avoiding recursion.

I Computing Fibonacci numbers:

fibs :: [Int]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

fib :: Int -> Int

fib n = fibs !! n︷ ︸︸ ︷
Generator

︷ ︸︸ ︷
Selector

I Computing powers:

powers :: [Int]

powers = 1 : 2 : zipWith (+) (tail powers) (tail powers)

power :: Int -> Int

power n = powers !! n︷ ︸︸ ︷
Generator

︷ ︸︸ ︷
Selector

I ...
130/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Stream Programming w/ Memoization
...avoiding recomps, avoiding rec. (except of 1st call f. an arg.).

I Computing Fibonacci numbers:

fib_ml :: [Int]

fib_ml = [fib n | n <- [0..]] -- Memo list

fib :: Int -> Int

fib 0 = 0

fib 1 = 1

fib n = fib_ml!!(n-1) + fib_ml!!(n-2)

I Computing powers:

power_ml :: [Int]

power_ml = [power n | n <- [0..]] -- Memo list

power :: Int -> Int

power 0 = 1

power i = power_ml!!(i-1) + power_ml!!(i-1)

I ...
131/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Memoization vs. Münchhausen Approach
Memoization approach:

– The first time fib ml and power ml are evaluated for an
argument, the computation proceeds as prescribed by the
default recursive definitions of the Fibonacci and the
power function.

– Subsequent calls of fib ml and power ml for an argu-
ment they have been applied to before, however, benefit
from memoization: Recomputation and recursion is re-
placed by referring to the stored value.

This is different for the Münchhausen approach:

– It does not refer at all to the default recursive definitions
of the Fibonacci and the power function.

– Even the very first look-up of the stream functions for an
argument benefits and does not rely on a recursive com-
putation process (zipWith does not count).

132/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

In closing

Stream programming combined w/ the Münchhausen principle
and memoization are important though

– no silver bullets

for improving performance by avoiding recomputations and
recursion.

If, however, they hit they can significantly

– boost performance: from taking too long to be feasible to
be completed in an instant!

Natural candidates are problems that

– naturally wind up repeatedly computing the solution to
identical subproblems, e.g., tree-recursive processes.

133/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Sometimes
...however, a problem-dependent silver bullet might exist.

Computing Fibonacci numbers is (again) a striking example.

The equality of Theorem 2.3.4.3 (cf. Chapter 6) allows a (re-
cursion-free) direct computation of the Fibonacci numbers:

fib : IN0 → IN0

fib(n) =df


0 if n = 0
1 if n = 1
fib(n − 1) + fib(n − 2) if n ≥ 2

Theorem 2.3.4.3

∀ n ∈ IN0. fib(n) =

(
1+
√
5

2

)n
−
(

1−
√
5

2

)n
√

5
134/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2.4

Stream Diagrams

135/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Stream Diagrams

...are a means for considering and visualizing problems on
streams as

– processes.

We illustrate this considering the streams of

1. Fibonacci numbers

2. communications of some client/server application

as examples.

136/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Example 1: Fibonacci Numbers
...representing the stream of Fibonacci numbers defined by

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

as a stream diagram:

=

(:)

(:)

1,2,3,5,8,...

1

1

0

0,1

add

fibs = 0,1,1,2,3,5,8,...

,1,2,3,5,8,...

,1,2,3,5,8,...

zipWith (+)

137/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Example 2: A Client/Server Application

...a client/server interaction (e.g., Web server/Web browser):

type Request = Integer

type Response = Integer

client :: [Response] -> [Request]

client ys = 1 : ys -- issues 1 as the 1st request,

-- followed by all responses it

-- receives (from the server).

server :: [Request] -> [Response]

server xs = map (+1) xs -- adds 1 to each request it

-- receives (from the client).

Two Transformer-Generator Programs and their Interaction

reqs = client resps -- Transformer-Generator

resps = server reqs -- Transformer-Generator

138/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Stepwise Eval. the Client/Server Interactions
reqs ->> client resps

->> 1 : resps

->> 1 : server reqs

->> { Introducing abbreviations }

1 : tr where tr = server reqs

->> 1 : tr where tr = 2 : (server tr)

->> 1 : tr where tr = 2 : tr2

tr2 = server tr

->> 1 : tr where tr = 2 : tr2

tr2 = 3 : server tr2

->> 1 : (2 : tr2) where tr2 = 3 : (server tr2)

->> ...

->> 1 : (2 : (3 : (4 : (5 : (...)))))

Application: Generate-Select pattern

take 10 reqs ->> [1,2,3,4,5,6,7,8,9,10]︷ ︸︸ ︷
Selector

︷ ︸︸ ︷
Generator

139/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

The Stream Diagram
...representing the stream of client/server interactions

reqs = client resps

resps = server reqs

as a stream diagram:

1

resps

reqs

server

client

(:)

(+1)

= 1

= 2,3,4,5,...

,2,3,4,5,...

140/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Chapter 2.5

Pitfalls, Remedies

141/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Chapter 2.5.1

Livelocks, Lazy Patterns

142/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Reconsider

...the client/server application of Chapter 2.4.

Suppose, the client wants to check the first response before a
new action. To this end, we replace its implementation:

client :: [Response] -> [Request]

client ys = 1 : ys

by:

client′ :: [Response] -> [Request]

client′ (y:ys) = if ok y then 1 : (y:ys)

else error "Faulty Server"

where ok y = True

introducing a trivial check: a check which always succeeds!

143/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Technically
...we replace as part of the shift from client to client′ the

– irrefutable pattern ys in: client ys = 1 : ys

by the

– refutable pattern (y:ys) in:
client′ (y:ys) = if ok y...

This modification looks harmless but evaluating:

reqs ->> client′ resps
->> client′ (server reqs)

->> client′ (server (client′ resps))
->> client′ (server (client′ (server reqs)))

->> ...

...does not terminate because of a livelock! Neither client nor
server can be unfolded: Pattern matching for the refutable
pattern (y:ys) requires verifying that the argument is not
empty causing the pattern match being ‘too eager!’

144/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Stepwise evaluating client/server

reqs ->> client resps

| ->> { client ys = 1 : ys

| (pattern ys is irrefutable, thus expand!) }

---> (*) 1 : resps

(**) (implying: resps == tail reqs)

->> 1 : (server reqs)

->> { server xs = map (+1) xs

(pattern xs is irrefutable, thus expand!) }

1 : (map (+1) reqs)
(∗)
->> 1 : (map (+1) (1 : resps))
(∗∗)
->> 1 : (map (+1) (1 : tail (reqs)))

->> 1 : (2 : (map (+1) (tail (reqs))))

->> ...

->> 1 : (2 : (3 : (4 : (5 : (...))))

145/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Stepwise evaluating client′/server (1)
reqs ->> client′ resps

pm
->> { client′ (y:ys) = if ok y then ...

Pattern (y:ys) is refutable; thus, we have

to verify that resps has at least a head

element! This requires to look inside of

resps. Hence, unfold resps! }
pm
->> client′ (server reqs)
pm
->> { Now we have to look inside of server reqs

for a head element, where

server xs = map (+1) xs

Pattern xs is irrefutable, thus unfold! }

client′ (map (+1) reqs)
pm
->> { Now we have to look inside of map (+1) reqs

for a head element; this in turn requires

to look inside of reqs. Hence, unfold reqs! }
pm
->> client′ (map (+1) (client′ resps))

146/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Stepwise evaluating client′/server (2)

reqs ->> client′ resps
pm
->>...
pm
->> client′ (map (+1) (client′ resps))
pm
->> { Now we have to look inside of

(map (+1) (client′ resps))
for a head element; this in turn requires

to look inside of resps. Thus unfold

resps! }

client′ (map (+1) (client′ (server reqs))
pm
->> ...

...and so on. We never see a head element of the argument of
client′; hence, pattern matching does not terminate...

Livelock!
147/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Remedy A: Moving the Test plus Selector

Replace the refutable pattern expression (y:ys), whose check
turned out to be too eager, by (i) the irrefutable pattern
expression ys, (ii) pushing the test inside of the list, and (iii)
using a selector function for accessing the head element of the
argument ys of client′ (i.e., head ys):

client′ ys = 1 : if ok (head ys) then ys

else error "Faulty Server"

Disadvantage: The ’fix’ works but requires the selector
function head, and looks less naturally and less functionally
than the original implementation using the ‘list decomposing’
pattern (y:ys):

client′ (y:ys) = if ok y then 1 : (y:ys)

else error "Faulty Server"

148/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Remedy B: Moving the Test plus Lazy Pattern
Replace the refutable pattern (y:ys) by its irrefutable lazy
counterpart ∼(y:ys):

client′ ~(y:ys) = 1 : if ok y then (y:ys)

else error "Faulty Server"

Since ∼(y:ys) is irrefutable, evaluating the right-hand side
expression starts w/out that pattern matching must have been
completed.

Advantages:

1. The selector function head is not required any longer.
2. The ‘fix’ is more declarative and readable as that of

Remedy A, even though the test must still be moved
inside of the list.

Note, in practice lazy patterns allow saving very many calls of
selector functions while making programs at the same time
more declarative and readable, and thus more appealing.

149/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Illustrating

...the effect of the lazy pattern by stepwise evaluation:

client′ ~(y:ys) = 1 : if ok y then (y:ys)

else error "Faulty Server"

reqs ->> client′ resps

->> 1 : if ok y then (y:ys)

else error "Faulty Server"

where (y:ys) = resps

->> 1 : (y:ys)

where (y:ys) = resps

->> 1 : resps

->> ...

->> 1 : (2 : (3 : (4 : (5 : (...))))

150/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Excursus: Irrefutable vs. Refutable Patterns (1)

Haskell (like other functional languages) distinguishes between

– irrefutable (by default: variable names, wild card)

– refutable (by default: all others, e.g. [],(x:xs),...)

patterns.

Intuitively, any value passed (for pattern matching) to an

– irrefutable pattern expression matches it (e.g. [],
[1,2,3] both match pattern expression ys and pattern
expression).

whereas values passed to a

– refutable pattern expression match it only if they fit
(e.g. [] matches pattern expression [] but not pattern
expression (y:ys), whereas [1,2,3] matches pattern
expression (y:ys) but not pattern expression []).

151/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Excursus: Irrefutable vs. Refutable Patterns (2)

Illustrating the impact of refutability and irrefutability of a
pattern (expression):

f :: [a] -> Int g :: [a] -> Int

f (x:xs) = 99 g ys = 99

f [] = 42 g [] = 42

The empty list does not match the refutable pattern (x:xs)

but the irrefutable pattern ys. Hence, calling f and g with the
empty list, the second defining equation of f and the first one
of g determine the result of f and g, respectively:

f [] ->> 42 g [] ->> 99

152/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Excursus: Lazy Patterns (3)

In Haskell, refutable pattern expressions can be made irre-
futable by preceding them with a tilde ∼:

h :: [a] -> Int

h ~(x:xs) = 99

h [] = 42

Pattern expressions made irrefutable this way like ∼(x:xs) are
also called lazy pattern expressions or lazy patterns.

Calling h with the empty list yields:

h [] ->> 99

153/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Excursus: The Effect of Laziness of Patterns (4)

For lazy patterns, the check if a value matches the pattern is
postponed until it is really required, i.e., until the pattern com-
ponents are refered to in the course of evaluating the right-
hand side term. This is not the case for calling h with what-
ever list value but it is the case for k. Hence, calling h with
the empty list returns 99 as result, whereas calling k with the
empty list crashes.

h :: [a] -> Int k :: [a] -> Int

h ~(x:xs) = 99 k ~(x:xs) = 99 + x * sum xs

h [] = 42 k [] = 42

h [] ->> 99 k [] ->> ‘run-time error’

While the above example is superficial and pathological, lazy
patterns are quite useful in other ones like the client/server
example.

154/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Chapter 2.5.2

Lifting, Undecidability

155/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Functional Lifting

...compare the definition of the stream fibs (cp. Chapter
2.3.1):

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

with the definition of the stream FibsFn:

fibsFn :: () -> [Int]

fibsFn x = 0 : 1 : zipWith (+) (fibsFn ()) (tail (fibsFn ()))

which, intuitively, lifts the definition of fibs to a functional
level.

156/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Note

...evaluating

– fibs

is fast and efficient, whereas evaluating

– fibsFn

shows an

I exponential run-time and storage (memory leak) usage.

Intuitively, this is because:

I The ability of recognizing common structures is limited.

Memory leak: The memory space is consumed so fast that the
performance of a program is severely impacted.

157/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

For Illustration

...consider:

fibsFn ()

->> 0 : 1 : add (fibsFn ()) (tail (fibsFn ()))

->> 0 : tf

where

tf = 1 : add (fibsFn ()) (tail (fibsFn ()))

The equality of tf and tail(fibsFn()) remains undetected
by compilers. Hence, the below simplification remains undone:

->> 0 : tf

where tf = 1 : add (fibsFn ()) tf

Note: While for special cases like the one here, this were pos-
sible, there is no general means for detecting such equalities.

158/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Chapter 2.5.3

Termination, Domain-specific Knowledge

159/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

Note

...lazy evaluation is

– necessary

to ensure termination of generate-select programs but

– not sufficient!

160/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.5.1

2.5.2

2.5.3

2.6

2.7

Concluding
Note

Assignment

For IIlustration

...consider the below naive prime number test:

member :: Eq a => [a] -> a -> Bool

member [] y = False

member (x:xs) y = (x==y) || member xs y

where member can be considered a transformer/selector
(a-value to Bool-value).

Then:

a) member primes 7 ->> True ...does terminate!︷ ︸︸ ︷
Transformer/Selector: ...works properly!

b) member primes 8 ->>does not terminate!︷ ︸︸ ︷
Transformer/Selector: ...fails!

161/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2.6

Summary, Looking ahead

162/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Summary
...stream programming together with lazy evaluation enables:

I Higher abstraction: Constraining oneself to finite lists is
often more complex, and – at the same time – unnatural.

I Modularization: Streams together with lazy evaluation
allow for elegant possibilities of decomposing a compu-
tational problem. Most important is the

– Generate-Prune Pattern
of which the

– Generate-select
– Generate-filter
– Generate-transform pattern

and combinations thereof are specific instances.
I Boosting performance: Avoiding recomputations and re-

cursion using stream programming combined with:
– Münchhausen principle (cf. Chapter 2.3.2)
– memoization (cf. Chapter 2.3.3)

163/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Looking ahead

We will occasionally return to

– stream programming

in later chapters, e.g., in Chapter 16 on

– ‘Logic Programming Functionally’

in the context of exploring (conceptually) infinite search spa-
ces in a fair order ensuring that every item of the search space
is visited within a finite amount of time.

164/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2.7

References, Further Reading

165/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2: Basic Reading

Kees Doets, Jan van Eijck. The Haskell Road to Logic,
Maths and Programming. Texts in Computing, Vol. 4,
King’s College, UK, 2004. (Chapter 10, Corecursion)

Paul Hudak. The Haskell School of Expression – Learning
Functional Programming through Multimedia. Cambridge
University Press, 2000. (Chapter 14, Programming with
Streams; Chapter 14.3, Stream Diagrams; Chapter 14.4,
Lazy Patterns; Chapter 14.5, Memoization)

Simon Thompson. Haskell – The Craft of Functional Pro-
gramming. Addison-Wesley/Pearson, 3rd edition, 2011.
(Chapter 17, Lazy programming; Chapter 17.6, Infinite
lists; Chapter 17.7, Why infinite lists? Chapter 20.6,
Avoiding recomputation: memoization)

166/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2: Selected Advanced Reading (1)

Antonie J.T. Davie. An Introduction to Functional Pro-
gramming Systems using Haskell. Cambridge University
Press, 1992. (Chapter 7.3, Streams; Chapter 7.6,
Irrefutable Patterns; Chapter 7.8, Memo Functions)

Anthony J. Field, Peter G. Harrison. Functional Program-
ming. Addison-Wesley, 1988. (Chapter 4.2, Processing
‘infinite’ data structures; Chapter 4.3, Process networks;
Chapter 19, Memoization)

John Hughes. Lazy Memo Functions. In Proceedings of
the IFIP Symposium on Functional Programming
Languages and Computer Architecture (FPCA’85),
Springer-V., LNCS 201, 129-146, 1985.

167/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concluding
Note

Assignment

Chapter 2: Selected Advanced Reading (2)

Donald Michie. ‘Memo’ Functions and Machine Learning.
Nature, 218:19-22, 1968.

Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung. Springer-V., 2006. (Kapitel 14.2.1, Memoization;
Kapitel 15.5, Maps, Funktionen und Memoization)

Fethi Rabhi, Guy Lapalme. Algorithms – A Functional
Programming Approach. Addison-Wesley, 1999. (Chapter
10.1, Process networks)

Simon Peyton Jones (Ed.). Haskell 98: Language and
Libraries. The Revised Report. Cambridge University Press,
2003. (Chapter 3.12, Let Expressions – irrefutable pat-
terns; Chapter 3.17.2, Informal Semantics of Pattern Mat-
ching – irrefutable, refutable patterns; Chapter 4.4.3.2,
Pattern bindings – ‘lazily’ matching patterns)

168/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

Concluding
Note

Assignment

Concluding Note

...for additional information and details refer to

I full course notes

available in TUWEL and at the homepage of the course at:

http:://www.complang.tuwien.ac.at/knoop/

ffp185A05 ss2021.html

169/170

Lecture 1

Detailed
Outline

Chap. 1

Chap. 2

Concluding
Note

Assignment

Assignment for Thursday, 11 March 2021
...independent study of Part I, Chapter 1, and Part II, Chapter 2 and of
Central and Control Questions I for self-assessment and as a basis of the
flipped classroom session on 03/11/2021:

Lecture, Flipped Classroom Topic Lecture Topic Flip. Classr.

P. I, Ch. 1
Thu, 03/04/2021, 4.15-6.00 pm

P. II, Ch. 2
n.a. / Prel.Mtg.

P. IV, Ch. 7, 8 P. I, Ch. 1
Thu, 03/11/2021, 4.15-6.00 pm

P. II, Ch. 3 P. II, Ch. 2
P. II, Ch. 4 P. IV, Ch. 7, 8

Thu, 03/25/2021, 4.15-6.00 pm
P. IV, Ch. 9–11, 14 P. II, Ch. 3

P. II, Ch. 4
Thu, 04/15/2021, 4.15-6.00 pm P. IV, Ch. 12, 13

P. IV, Ch. 9–11, 14

Thu, 04/22/2021, 4.15-6.00 pm P. III, Ch. 5, 6 P. IV, Ch. 12, 13

Thu, 04/29/2021, 4.15-6.00 pm P. V, Ch. 15, 16 P. III, Ch. 5, 6

P. V, Ch. 17, 18
Thu, 05/20/2021, 4.15-6.00 pm

P. VI, Ch. 19, 20
P. V, Ch. 15, 16

170/170

	Lecture 1
	Detailed Outline
	1 Why Functional Programming Matters
	1.1 Reconsidering Folk Knowledge
	1.2 Glueing Functions Together: Higher-Order Functions
	1.3 Glueing Programs Together: Lazy Evaluation
	1.4 Summary, Looking ahead
	1.5 References, Further Reading

	2 Programming with Streams
	2.1 Streams, Stream Generators
	2.2 The Generate-Prune Pattern
	2.3 Boosting Performance
	2.4 Stream Diagrams
	2.5 Pitfalls, Remedies
	2.6 Summary, Looking ahead
	2.7 References, Further Reading

	Concluding Note
	Assignment

