
Reqs.md 15/03/2020

1 / 4

Requirements
GHC 8.6.5

base >=4.10
array >=0.5.2.0
QuickCheck ==2.13.2

Module-declaration must be present.
All type-declations must be specified according to the assignment specification, otherwise the
submission is negative due to technical reasons.

Submission
It is sufficient to submit the single file containing the solved assignment, e.g. Assignment1.hs. Note that this
file must contain a module-declaration. A module declaration can be defined as follow:

module Assignment1 where

Reference: https://www.haskell.org/onlinereport/haskell2010/haskellch5.html

The submission can be tested on the server via GHC using the command:

ghci Assignment1.hs

We want to emphasise that in the new submission system it is still necessary to use the exact type-signature
from the assignment in your submission, otherwise, if the signature does not match the assignment's the
submission will be negative due to technical reasons. Therefore write the type-signature above each function,
required in the assignment.

Project Template Overview
The project template has the following structure:

./
│ .gitignore
│ cabal.project
│ Setup.hs
│ stack.yaml
│ template-ffp.cabal
│
├───src
│ Assignment1.hs
│ Assignment2.hs

Reqs.md 15/03/2020

2 / 4

│ Assignment3.hs
│ Assignment4.hs
│ Assignment5.hs
│ Assignment6.hs
│ Assignment7.hs
│
└───test
 TestMain.hs

To solve your assignments, it is sufficient to edit and submit only the files in the src directory.

Tests

You can define automated tests in test/Main.hs. The folder is not collected for grading. Therefore, there are
no restrictions on how to write or structure your tests. We recommend the hspec library and this tutorial for it:
https://hspec.github.io/getting-started.html

Project Files

The following files may not be edited nor submitted for grading.

cabal.project is used by the tool cabal-install. It contains an index-state to ensure a
reproducible build.
template-fpp.cabal describes the dependencies of a single project. It contains compiler options and
other meta-data. It is comparable to a pom.xml for maven.
stack.yaml is similar to cabal.project and serves the same purpose, but is specific to the Stack
tool.
.gitignore is a file for git-project that defines which files should not be tracked for changes.
Setup.hs defines how a project is actually built. This file must not be altered and you do not have to
submit it.

Supported Tools
The project template can be built and executed using multiple project management tools. If you decide to use
a project management tool, it is sufficient to use only one of them,

Stack
Version: 2.1.3.1

cabal-install
Version: 3.0.0.0

If you do not want to use either of these tools, you can use a plain GHC installation with ghci.

Basic Introduction

cabal-install

The project management tool cabal-install only takes care of building the project. You have to perform the
GHC installation yourself. Some ways to install GHC:

https://hackage.haskell.org/package/hspec
https://www.haskell.org/cabal/users-guide/developing-packages.html

Reqs.md 15/03/2020

3 / 4

Linux

Package Manager (e.g. Ubuntu eoan (19.10))
apt install ghc

ghcup

MacOs

Brew
brew install ghc

ghcup

Windows

Chocolatey
Recommendation: https://hub.zhox.com/posts/introducing-haskell-dev/

ghcup

Basic Commands

Build the project:

> cabal build

To open the project in an interactive shell, similar to hugs:

> cabal repl src/Assignment1.hs

If you write any tests, you can execute them via:

> cabal run tests

Stack

The project management tool Stack takes care of the GHC installation. Therefore, it is sufficient to only install
Stack, which takes care of the GHC installation for you. Afterwards, the following commands can be used:

Basic Commands

Build the project:

> stack build

https://www.haskell.org/ghcup/
https://www.haskell.org/ghcup/
https://chocolatey.org/
https://www.haskell.org/ghcup/
https://docs.haskellstack.org/en/stable/README/

Reqs.md 15/03/2020

4 / 4

To open the project in an interactive shell, similar to hugs:

> stack repl src/Assignment1.hs

If you write any tests, you can execute them via:

> stack test

