
185.A05 Advanced Functional Programming SS 2020

Friday, 29 May 2020

Assignment 7
on Chapter 16 (and chapters on higher-order function computing)

Topics: Logical programming functionally, combinator programming, higher-order
functions programming

Submission deadline: Monday, 8 June 2020, 12am

Regarding the deadline for the second submission: Please, refer to
”
Hinweise zu Or-

ganisation und Ablauf der Übung“ available at the homepage of the course.

Important:

1. Carefully read and follow the instructions outlined in the complementary files
provided with assignment 1. If you have any questions regarding these instruc-
tions, ask your questions in the TISS forum. Following these instructions is
paramount to ensure a smooth processing of your submitted file with the test
system.

2. Store all functions to be written for this assignment in a top-level file named

Assignment7.hs

of your group directory starting with the module declaration

module Assignment7 where

Comment your program meaningfully; use auxiliary functions and constants,
where reasonable. The very same file name shall be used for the second sub-
mission of assignment 7.

3. Do not use self-defined modules! If you want to re-use functions (written for
other assignments), copy them to Assignment7.hs. Import declarations for self-
defined modules will fail: Only Assignment7.hs will be copied for the (semi-
automatical) evaluation procedure, no other ones.

4. Your programs will be (semi-automatically) evaluated on g0 using the there
installed GHC interpreter of GHC version 8.65. If you use a different tool or
a different version of GHC for program development, please, double-check well
in time before the submission deadline that your programs behave on g0 and
the there installed GHC interpreter version as you expect.

Programming tasks:

1. Implement the combinator library of Chapter 16 (note: the file accessible via
the link in column ‘Remarks’ on the webpage of the course contains major parts
of the code of Chapter 16).



2. Add resp. complete missing implementations of functions, especially the instan-
ce declarations for the types Term, Subst, and Answer for the type class Show

in order to render possible outputs as shown in the examples of Chapter 16 and
below.

3. Without submission: Test and validate your implementation by applying the
predicates append and good of Chapter 16 using calls like the ones below and
additional ones of your own choice:

run (append (list [1,2], list [3,4], var "z")) :: Stream Answer

->> [{z=[1,2,3,4]}]

run (append (var "x", var "y", list [1,2,3])) :: Stream Answer

->> [{x = Nil, y = [1,2,3]},

{x = [1], y = [2,3]},

{x = [1,2], y = [3]},

{x = [1,2,3], y = Nil}]

run (append (var "x", list [2,3], list [1,2,3])) :: Stream Answer

->> [{x = [1]}]

run (good (list [1,0,1,1,0,0,1,0,0])) :: Stream Answer

->> [{}]

run (good (list [1,0,1,1,0,0,1,0,1])) :: Stream Answer

->> []

run (good (var "s")) :: Stream Answer

->>[{s=[0]},

{s=[1,0,0]},

{s=[1,0,1,0,0]},

{s=[1,0,1,0,1,0,0]},

{s=[1,0,1,0,1,0,1,0,0]}

run (good (var "s")) :: Diag Answer

->> Diag [{s=[0]},

{s=[1,0,0]},

{s=[1,0,1,0,0]},

{s=[1,0,1,0,1,0,0]},

{s=[1,1,0,0,0]},

{s=[1,0,1,0,1,0,1,0,0]},

{s=[1,1,0,0,1,0,0]},

{s=[1,0,1,1,0,0,0]},

{s=[1,1,0,0,1,0,1,0,0]}

run (good (var "s")) :: Matrix Answer

->>MkMatrix [[],

[{s=[0]}],[],[],[],

[{s=[1,0,0]}],[],[],[],

[{s=[1,0,1,0,0]}],[],

[{s=[1,1,0,0,0]}],[],

[{s=[1,0,1,0,1,0,0]}],[],

[{s=[1,0,1,1,0,0,0]},{s=[1,1,0,0,1,0,0]}],[], (usw.)



4. Referring to the implementation of append of Chapter 16 for inspiration, im-
plement a predicate shuffleLP (with ‘LP’ reminding to logical programming):

shuffleLP :: Bunch m => (Term, Term, Term) -> Pred m

shuffleLP (p,q,r) = ...

For Int lists, shuffleLP shall behave like shuffle below, however, the distinc-
tion between input and output variables shall be abolished (like for append):

shuffle :: [a] -> [a] -> [a]

shuffle [] ys = ys

shuffle (x:xs) ys = x : shuffle ys xs

5. Without submission: Test and validate your implementation of shuffleLP

with appropriate calls of your own choice, e.g.:

run (shuffleLP (list [1,2,3], list [4,5,6], var "z")) :: Stream Answer

->> [{z=[1,4,2,5,3,6]}]

run (shuffleLP (var "x", list [4,5,6], list [1,4,2,5,3,6])) :: Stream Answer

->> [{x=[1,2,3]}]

run (shuffleLP (var "x", var "y", list [1,3,2,4])) :: Stream Answer

->> ...many values possible for x and y

Additionally, investigate the impact of using a different search monad (i.e., re-
placing Stream Answer by Diag Answer or Matrix Answer) on the output.

6. Finally, we consider so-called proper sequences inductively constructed from
the one-elements lists [0] and [1]. We define:

1. Atoms : The sequences [0] and [1] are proper.

2. Composition: If s1 and s2 are proper sequences, then the sequence
s1 + +[2] + +s2 is a proper sequence, too.

3. Parentheses : If s is a proper sequence, then the sequence [3] + +s + +[4]
is a proper sequence, too.

4. Rules 1 to 3 define all proper sequences; there are no other ones.

Following the implementation of the predicate good of Chapter 16, implement
a predicate proper of type:

proper :: Bunch m => Term -> Pred m

proper (s) = ...

for recognizing and generating proper sequences.



7. Without submission: Test and validate your implementation of proper with
like those below and additional ones of your own choice:

run (proper (list [3,0,2,1,4,2,3,1,4])) :: Stream Answer

->> [{}] (w/ the meaning: Argument was proper)

run (proper (list [3,1,2,1,3])) :: Stream Answer

->> [] (w/ the meaning: Argument was not proper)

run (proper (var "r")) :: Stream Answer

->> ...

run (proper (var "r")) :: Diag Answer

->> ...

run (proper (var "r")) :: Matrix Answer

->> ...

8. Last but not least, we reconsider the programming language Mini of assignment
6. Identifying the type names of the abstract syntax representation of Mini
programs of assignment 6 with the set of all programs, statements, expressions,
etc.:

P : PROG (set of all) programs

S : STMT (set of all) statements

E : EXPR (set of all) arithmetic expressions

PE : PEXPR (set of all) predicate expressions

V : IDF (set of all) (variable) identifiers

I : INT (set of all) integer representations as digit sequences

F : FLOAT (set of all) float representations as two digit sequences separated by ‘.’

and introducing additionally the notions:

State (set of all) program states (i.e., maps from (variable) identifiers to values)

Val (set of all) expression values (i.e., integer and float values)

Boolean set of Boolean values (i.e., True and False)

IdState Identity function on the set of states defined by: IdState = λσ. σ

we can define a semantics S for the abstract syntax trees of well-formed Mini
programs:

P : PROG→ (State→ State)
P [[ S ]](σ) = S[[ S ]](σ)

S : STMT→ (State→ State)
S[[ [ ] ]] = λσ. σ

S[[ S1 : [S2] ]] = S[[ [S2] ]] ◦ S[[ S1 ]]
S[[ Ass E1 E2 ]] = λσ. σ[E [[ E2 ]](σ)/E1] (Semantic substitution,

E1 must represent a variable)



S[[ If PE S1 S2 ]](σ) =

{
S[[ S1 ]](σ) if PE [[ PE ]](σ) = True
S[[ S2 ]](σ) otherwise

S[[ While PE S ]](σ) =


(S[[ While PE S ]] ◦ S[[ S ]])(σ) if PE [[ PE ]](σ)

= True
σ otherwise

S[[ Repeat S PE ]](σ) =

{
S[[ S ]](σ) if PE [[ PE ]](S[[ S ]](σ)) = True
(S[[ Repeat PE S ]] ◦ S[[ S ]])(σ) otherwise

E : EXPR→ (State→ Val)
E [[ I i ]](σ) = NaturalInterpretation(i)
E [[ F f ]](σ) = NaturalInterpretation(f)
E [[ V s ]](σ) = σ(s)

E [[ Plu E1 E2 ]](σ) = plus(E [[ E1 ]](σ), E [[ E2 ]](σ))
E [[ Min E1 E2 ]](σ) = minus(E [[ E1 ]](σ), E [[ E2 ]](σ))
E [[ Mul E1 E2 ]](σ) = times(E [[ E1 ]](σ), E [[ E2 ]](σ))
E [[ Div E1 E2 ]](σ) = divide(E [[ E1 ]](σ), E [[ E2 ]](σ))

PE : PEXPR→ (State→ Boolean)
PE [[ Equal E1 E2 ]](σ) = equal(E [[ E1 ]](σ), E [[ E2 ]](σ))
PE [[ NEqual E1 E2 ]](σ) = nequal(E [[ E1 ]](σ), E [[ E2 ]](σ))
PE [[ GEqual E1 E2 ]](σ) = greater(E [[ E1 ]](σ), E [[ E2 ]](σ))
PE [[ LEqual E1 E2 ]](σ) = smaller(E [[ E1 ]](σ), E [[ E2 ]](σ))

where equal, nequal, greater, smaller denote the equality, inequality, grea-
ter than, and smaller than relations on integers and floats, and plus, minus,
times, divide the addition, substraction, multiplication, and divide operations
on integers and floats. Operations and relations involving two integer argu-
ments resp. two float arguments are supposed to be the standard operations
and relations on integers and floats, respectively. Opperations involving both
an integer and a float argument are supposed to cast the integer argument
to its corresponding float value and to work on floats. Last but not least,
NaturalInterpretation interpretes a digit sequence (possibly proceeded by the
sign symbol - and splitted by a ‘.’) in the ‘natural sense’ as the integer resp. float
it represents.

8.1 Implement a Haskell function interpreter, which, applied to the abstract
syntax tree of a well-formed Mini program p and an initial program state σ
computes the state p is terminating in if applied to σ. If p is not well-formed,
or the initial state not defined for all variable identifiers referred to in p,
no specific behaviour of interpreter is required. Note, if an arithmetic
operator or a comparison involves both integer and float values and or
integer and float valued variables, an automatic type cast for integer values
is to be performed.

type Identifier = String

type Program_Name = Identifier

type Variable = Identifier



type PN = Program_Name

data P = P PN [S] deriving (Eq,Show) -- P for program

data S = Ass E E -- S for statement

| If PE [S] [S]

| While PE [S]

| Repeat [S] PE deriving (Eq,Show)

data E = I Integer -- E for expression

| F Float

| V Variable

| Plu E E

| Min E E

| Mul E E

| Div E E deriving (Eq,Show)

data PE = Equal E E -- PE for predicate expression

| NEqual E E

| GEqual E E

| LEqual deriving (Eq,Show)

type State = (Variable -> Either Int Float)

interpreter :: P -> State -> State

8.2 Obvioulsy, abstract syntax trees suitable as input for interpreter may
result from parsing well-formed Mini programs using the combinator or
monadic parser of Mini programs of assignment 6. Thus, copy and paste
your preferred parser of assignment 6 to submission file Assignment7.hs

and use it to implement an interpreter that directly starts from a (well-
formed) Mini program. If the argument program is not well-formed or the
argument state not defined for all variable identifiers referred to in the
program, no specific behaviour of mini interpreter is required.

type Mini_Program = String

mini_interpreter :: Mini_Program -> State -> State

mini_interpreter mp sigma = interpreter...

8.3 Without submission: Test and validate mini interpreter by means
of a sample of Mini programs of your choice, e.g., write Mini programs
computing the factorial or Fibonacci function.

Iucundi acti labores.

Getane Arbeiten sind angenehm.

Cicero (106 - 43 v.Chr.)

röm. Staatsmann und Schriftsteller


