
185.A05 Advanced Functional Programming SS 2020

Monday, 18 May 2020

Assignment 6
on Chapter 15 (and related chapters, especially Chapter 12)

Topics: Monadic Parsing (as an example of monadic programming), Combinator
Parsing (as an example of higher-order functions programming)

Submission deadline: Monday, 25 May 2020, 12am

Regarding the deadline for the second submission: Please, refer to
”
Hinweise zu Or-

ganisation und Ablauf der Übung“ available at the homepage of the course.

Important:

1. Carefully read and follow the instructions outlined in the complementary files
provided with assignment 1. If you have any questions regarding these instruc-
tions, ask your questions in the TISS forum. Following these instructions is
paramount to ensure a smooth processing of your submitted file with the test
system.

2. Store all functions to be written for this assignment in a top-level file named

Assignment6.hs

of your group directory starting with the module declaration

module Assignment6 where

Comment your program meaningfully; use auxiliary functions and constants,
where reasonable. The very same file name shall be used for the second sub-
mission of assignment 6.

3. Do not use self-defined modules! If you want to re-use functions (written for
other assignments), copy them to Assignment6.hs. Import declarations for self-
defined modules will fail: Only Assignment6.hs will be copied for the (semi-
automatical) evaluation procedure, no other ones.

4. Your programs will be (semi-automatically) evaluated on g0 using the there
installed GHC interpreter of GHC version 8.65. If you use a different tool or
a different version of GHC for program development, please, double-check well
in time before the submission deadline that your programs behave on g0 and
the there installed GHC interpreter version as you expect.

Programming tasks:

We consider the imperative programming language Mini. The concrete syntax of
Mini programs is given by the below context-free grammar, where non-terminals are

enclosed in acute brackets (spitze Klammern), and terminal symbols are denoted by
(sequences of) uppercase letters:

<program> ::= PROGRAM <program name><statement seq> .

<program name> ::= <upper char>< chardig seq>

<upper char> ::= A | B | C | ... | Z
<statement seq> ::= <statement> | <statement>;<statement seq>

<statement> ::= <assignment> | <if > | <while> | <repeat>

| BEGIN <statement seq> END

<assignment> ::= <variable> = <expr>

<if > ::= IF <pred expr> THEN <statement> ELSE <statement>

| IF <pred expr> THEN <statement>

<while> ::= WHILE <pred expr> DO <statement>

<repeat> ::= REPEAT <statement> UNTIL <pred expr>

<expr> ::= <variable> | <integer> | <float> | <operator><expr><expr>

<operator> ::= + | - | * | /
<pred expr> ::= <relator><expr><expr>

<relator> ::= == | /= | >= | <=
<variable> ::= <char><chardig seq>

<char> ::= a | b | c | ... | z
<chardig seq> ::= ε | <char><chardig seq> | <digit><chardig seq>

<integer> ::= <digit><digit seq> | - <digit><digit seq>

<digit> ::= 0 | 1 | 2 | ... | 9
<digit seq> ::= ε | <digit><digit seq>

<float> ::= <integer> . <digit><digit seq>

Variables are contiguous non-empty sequences of the lowercase letters a, b, c,..., z
and digits 0, 1,...,9 starting with a character. Program names must start with an
uppercase character optionally followed by lowercase characters and digits. Integers
are contiguous non-empty sequences of digits 0, 1,..., 9 possibly with leading zeros,
and optionally proceeded with the character - for negative integers. White space
and line breaks might freely occur in Mini programs (except of course in reserved
words, program names, variables, integers, floats, and relator symbols). Expressions
and predicate expressions are in Polish (prefix) notation (i.e., operator precedes its
operands).

Next, we introduce some Haskell types for programs, statements, expressions, and
predicate expressions of Mini programs allowing a tree-like representation of Mini
programs, called abstract syntax trees :

type Identifier = String

type Program_Name = Identifier

type Variable = Identifier

type PN = Program_Name

data P = P PN [S] deriving (Eq,Show) -- P for program

data S = Ass E E -- S for statement

| If PE [S] [S]

| While PE [S]

| Repeat [S] PE deriving (Eq,Show)

data E = I Integer -- E for expression

| F Float

| V Variable

| Plu E E

| Min E E

| Mul E E

| Div E E deriving (Eq,Show)

data PE = Equal E E -- PE for predicate expression

| NEqual E E

| GEqual E E

| LEqual deriving (Eq,Show)

Add instance declarations in case of need.

1. Combinator parsing (cf. Chapter 15.2). Implement a combinator parser parser1

type Parse1 a b = [a] -> [(b,[a])]

parser1 :: Parse1 Char P

topLevel1 :: Parse1 a b -> [a] -> b

such that topLevel1 transforms well-formed Mini programs into abstract syn-
tax trees, when called with parser1 and some input string. If the input string is
not a well-formed Mini program, topLevel1 shall terminate with calling error

"parse unsuccessful" (cf. function topLevel, Example 2, Chapter 15.2.5).

2. Monadic parsing (cf. Chapter 15.3). Implement a monadic parser parser2

newtype Parse2 a = Parse (String -> [(a,String)])

parser2 :: Parse2 P

topLevel2 :: Parse2 a -> String -> a

such that topLevel2 transforms well-formed Mini programs into abstract syn-
tax trees, when called with parser2 and some input string. If the input string is
not a well-formed Mini program, topLevel2 shall terminate with calling error

"parse unsuccessful" (cf. function topLevel, Example 2, Chapter 15.2.5).

3. Without submission: Write a few (well-formed and not well-formed) Mini
programs and test both parsers with them. Do you have a preference for the
combinator parser or the monadic parser? If so, why?

Iucundi acti labores.

Getane Arbeiten sind angenehm.

Cicero (106 - 43 v.Chr.)

röm. Staatsmann und Schriftsteller

