
185.A05 Advanced Functional Programming SS 2020

Monday, 11 May 2020

Assignment 5
on Chapter 5, Chapter 6, Chapter 12, Chapter 8

Topics: Testing, Verification, Monadic Programming, Abstract Data Types

Submission deadline: Monday, 18 May 2020, 12am

Regarding the deadline for the second submission: Please, refer to
”
Hinweise zu Or-

ganisation und Ablauf der Übung“ available at the homepage of the course.

Important:

1. Carefully read and follow the instructions outlined in the complementary files
provided with assignment 1. If you have any questions regarding these instruc-
tions, ask your questions in the TISS forum. Following these instructions is
paramount to ensure a smooth processing of your submitted file with the test
system.

2. Store all functions to be written for this assignment in a top-level file named

Assignment5.hs

of your group directory starting with the module declaration

module Assignment5 where

Comment your program meaningfully; use auxiliary functions and constants,
where reasonable. The very same file name shall be used for the second sub-
mission of assignment 5.

3. Do not use self-defined modules! If you want to re-use functions (written for
other assignments), copy them to Assignment5.hs. Import declarations for self-
defined modules will fail: Only Assignment5.hs will be copied for the (semi-
automatical) evaluation procedure, no other ones.

4. Your programs will be (semi-automatically) evaluated on g0 using the there
installed GHC interpreter of GHC version 8.65. If you use a different tool or
a different version of GHC for program development, please, double-check well
in time before the submission deadline that your programs behave on g0 and
the there installed GHC interpreter version as you expect.

Programming tasks:

1. The Fibonacci numbers Fi, i ≥ 0, are given by the recursion:

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn for n ≥ 0

Consider claim C:

∀n > 1. Fn+1Fn−1 − F 2
n = (−1)n (C)



1.1 Without submission: Check manually for some values, if claim C could
hold.

1.2 Implement QuickCheck properties allowing to challenge the validity of
claim C automatically and more thoroughly than manually using an ef-
ficient implementation of the Fibonacci function of your choice:

fib :: Integer -> Integer

fib ...

Using your implementation of fib, define properties prop ccc ... for te-
sting, if claim C can be valid, where ‘ccc’ shall remind to ‘checking claim
c.’ In detail, the property with postfix

– 1 shall do this in the most straightforward way supported by Quick-
Check, i.e., every integer generated by QuickCheck shall be used as a
test input.

– 2 shall consider only positive integers greater than 1 as test inputs using
a precondition for filtering test case candidates generated by Quick-
Check accordingly.

– 3 shall use a generator to ensure that only positive integers greater than
1 are generated as test inputs by QuickCheck.

– 4 shall ensure that only test data n within the range of 1000 ≤ n ≤ 2000
are used as test inputs by filtering generated test data accordingly by
means of an appropriate precondition.

– 5 shall ensure that only test data n within the range of 1000 ≤ n ≤ 2000
are generated by QuickCheck.

prop_ccc_1 :: Integer -> Bool

prop_ccc_1 n = ...

prop_ccc_2 :: Integer -> Property

prop_ccc_2 n = ...

prop_ccc_3 :: Integer -> Property

prop_ccc_3 n = ...

prop_ccc_4 :: Integer -> Property

prop_ccc_4 n = ...

prop_ccc_5 :: Integer -> Property

prop_ccc_5 n = ...

1.3 Use the reporting features of QuickCheck to get more detailed information
about the test data generated and used. To this end extend the implementa-
tion of prop ccc 3 using the QuickCheck combinators trivial, classify,
and collect, respectively. Using the combinator

– trivial, prop ccc 3 trivial shall report the percentage of trivial test
inputs. As trivial we consider test inputs smaller or equal to 10. A
possible report could thus be:

OK, passed 100 tests (26% trivial).



– classify, prop ccc 3 classify shall report the percentages of test
inputs in the ranges 2 ≤ test input ≤ 10, 11 ≤ test input ≤ 100, and
101 ≤ test input . A possible report could thus be:

OK, passed 100 tests.

29% of test inputs in the range [2..10].

33% of test inputs in the range [11..100].

38% of test inputs in the range [101..].

– collect, prop ccc 3 collect shall report the percentages of all test
inputs, i.e., the histogram of test inputs. An excerpt of a possible report
could thus be:

OK, passed 100 tests.

4% 2.

1% 3.

2% 4.

6% 5.

...

1% 34.

...

1.4 Without submission: Did you gain sufficient confidence that claim C
could actually be valid thanks to manual and automatic testing? If so, start
proving claim C formally. What proof principle seems (most) appropriate
for this purpose? Why?

1.5 Consider claim D, where t denotes some threshold value:

Fn+1Fn−1 − F 2
n = (−1)n if 2 ≤ n ≤ t

Fn−1Fn − F 2
n+1 = (−1)n if t + 1 ≤ n

(D)

Modify prop ccc 2 for checking claim D. The new property shall be named
prop ccd and ensure by test case filtering that only threshold values and
test data greater than 1 are used as test inputs.

type Threshold = Integer

prop_ccd :: Threshold -> Integer -> Property

prop_ccd t n = ...

Experiment with the new property prop ccd.

2. Intuitively, greedy search is supposed to yield short unit fractions of a fractional
number, i.e., unit fractions consisting of a small number of summands. As we
have seen in assignment 4, this is not always true. In order to get a better
feeling for the length of unit fractions generated by greedy search, we want to
use QuickCheck.

2.1 Define a property prop greedy which shall be falsified if the number of
summands of the unit fraction of a fractional number yielded by greedy
search properly exceeds some maximum number. Use generators to ensure
that the generated MaxNumberOfSummands values are in the range of 2 ≤
max ≤ 5 and the generated Numerator and Denominator values are greater



than 1. Filter additionally the generated pairs of (Numerator,Denominator)
values for those where the numerator value is properly smaller than the de-
nominator value.

type MaxNumberOfSummands = Integer

type Numerator = Integer

type Denominator = Integer

prop_greedy :: MaxNumberOfSummands -> (Numerator,Denominator) -> Property

prop_greedy max (n,d) = ...

Experiment with pop greedy.

Note: Do not use a module import for reusing your greedy search imple-
mentation of assignment 4; instead, copy the required parts to the submis-
sion file Assignment5.hs.

2.2 Without submission: Does the check more often fail questioning the in-
tuition about greedy search based unit fraction decomposition of fractional
numbers or more often succeed supporting it? If the property can be falsi-
fied, how many test data does it take on average to find a counterexample?
Experiment also with other value ranges for MaxNumberOfSummands values.

3. Integer stacks can (naively) be implemented in terms of lists:

type Stack = [Integer]

empty = []

is_empty [] = True

is_empty _ = False

push x xs = (x:xs)

pop [] = error "Stack is empty"

pop (_:xs) = xs

top [] = error "Stack is empty"

top (x:_) = x

The above implementation is a correct implementation of integer stacks iff the
operations satisfy the laws 3.1,...,3.6:

3.1 is_empty empty == True

3.2 is_empty (push v s) == False

3.3 top empty == undefined

3.4 top (push v s) == v

3.5 pop empty == undefined

3.6 pop (push v s) == s

Obviously, the implementations of top and pop satisfy law 3.3 and 3.5, respec-
tively. Implement properties prop 31, prop 32, prop 34, and prop 36 allowing
to test that the operations in charge obey the laws 3.1, 3.2, 3.4, and 3.6, too:

prop_31 :: Bool

prop_31 = ...



prop_32 :: Integer -> Stack -> Property

prop_32 n ns = ...

prop_34 :: Integer -> Stack -> Property

prop_34 n ns = ...

prop_36 :: Integer -> Stack -> Property

prop_36 n ns = ...

Self-defined generators for integer or stack values are not required but differently
detailed reports. Property

– prop 31 shall just deliver the default report.

– prop 32 shall indicate the percentage of trivial test inputs. A test input is
considered trivial, if it involves the empty stack or a stack with a single
entry. A report could thus be:

OK, passed 100 tests (24% trivial).

– prop 34 shall indicate the percentages of test inputs involving the empty
stack, one-entry stacks, two-entry stacks, and stacks with more than two
entries. A report could thus be:

OK, passed 100 tests.

37% of test inputs: the empty stack.

28% of test inputs: a one-entry stack.

12% of test inputs: a two-entry stack.

23% of test inputs: a non-trivial stack.

– prop 36 shall yield a histogram of the number of entries of the stacks
involved in the test inputs. A report could thus be:

OK, passed 100 tests.

34% 0.

25% 1.

18% 2.

12% 4.

11% 6.

Without submission: Why should the implementation of stacks in this ex-
cercise be considered ‘naive?’ Why should it be considered inadequate and
inappropriate for usage in ‘real-world’ Haskell programs?

4. Testing monadic and non-monadic programs: We consider the problem of node
label renaming of Chapter 12.5.3:

data Tree a = Nil | Node a (Tree a) (Tree a) deriving Show

4.1 Monadic programming: Implement the renaming function

number :: Eq a => Tree a -> Tree Int



as shown in Chapter 12.5.3 using the state monad. Make sure that you
understand how it works. Note that number replaces a node label by the
smallest free number, i.e., not yet used number when the label is first rea-
ched in the course of a prefix traversal of the tree. For illustration consider
the below figure:

0

0

1 4

4

4

2

2

2

6

6

3

3

3

"Schubert"

"Beethoven"

"Bach" "Beethoven"

"Mozart"

"Bach"

"Chopin"

"Chopin"

"Haydn""Mozart"

"Haydn"

"Schubert"

"Bach""Beethoven"

"Haydn"

"Salieri" 1 5

number (Chap. 12.5.3)

number1

4.2 Non-monadic programming: Implement a renaming function

number1 :: Eq a => Tree a -> Tree Int

which is functionally equivalent to number but does not use monadic pro-
gramming.

4.3 Define a property

prop_rename :: Tree String -> Property

prop_rename ...

allowing to test, if number and number1 are indeed functionally equivalent
when applied to trees labelled with strings. Make sure that trees gene-
rated as test data do not become too large. To this end use weights 1
and 3 for generating the trivial tree Nil or a nontrivial tree starting with
constructor Node, respectively, when making Tree a an instance of type
class Arbitrary. The report generated by prop rename shall include the
information on the percentage of trivial test cases, where a test case is
considered trivial iff it is equal to the trivial tree Nil.

4.4 Without submission: Experiment with different values for the weights
used in the Arbitrary instance declaration of Tree a. Can you get more
detailed information on the size of trees generated and used as test cases?

Iucundi acti labores.

Getane Arbeiten sind angenehm.

Cicero (106 - 43 v.Chr.)

röm. Staatsmann und Schriftsteller


