
185.A05 Advanced Functional Programming SS 2020
Monday, 27 April 2020

Assignment 4
on Chapter1 thru Chapter 3, Chapter 8

Topics: Algorithm Patterns (Generate/Select, Greedy, Backtracking), Abstract
Data Types (used by some algorithm patterns)

Submission deadline: Monday, 11 May 2020, 12am

Regarding the deadline for the second submission: Please, refer to „Hinweise zu
Organisation und Ablauf der Übung“ available at the homepage of the course.

Important:

1. Carefully read and follow the instructions outlined in the complementary files
provided with assignment 1. If you have any questions regarding these inst-
ructions, ask your questions in the TISS forum. Following these instructions is
paramount to ensure a smooth processing of your submitted file with the test
system.

2. Store all functions to be written for this assignment in a top-level file named

Assignment4.hs

of your group directory starting with the module declaration

module Assignment4 where

Comment your program meaningfully; use auxiliary functions and constants,
where reasonable. The very same file name shall be used for the second sub-
mission of assignment 4.

3. Do not use self-defined modules! If you want to re-use functions (written for
other assignments), copy them to Assignment4.hs. Import declarations for self-
defined modules will fail: Only Assignment4.hs will be copied for the (semi-
automatical) evaluation procedure, no other ones.

4. Your programs will be (semi-automatically) evaluated on g0 using the there
installed GHC interpreter of GHC version 8.65. If you use a different tool or
a different version of GHC for program development, please, double-check well
in time before the submission deadline that your programs behave on g0 and
the there installed GHC interpreter version as you expect.

Programming tasks:

In ancient Egypt, fractional numbers a
b
, a < b, were written as sums of pairwise

disjoint unit fractions (Stammbrüche), i.e., as sums of pairwise disjoint fractional



numbers where the numerators (Zähler) are 1 and the denominators (Nenner) are
strictly positive integers, e.g.:

2

3
=

1

2
+

1

6
,

2

5
=

1

3
+

1

15
,

3

7
=

1

3
+

1

11
+

1

231

Usually, the representation of a fractional number as a sum of pairwise disjoint unit
fractions is not unique, e.g.:

9

20
=

1

4
+

1

5

=
1

3
+

1

9
+

1

180

5

31
=

1

8
+

1

30
+

1

372
+

1

3720

=
1

7
+

1

55
+

1

3979
+

1

23744683
+

1

1127619917796295

=
1

7
+

1

56
+

1

1736

The two examples show that different representations of a fractional number as sums
of pairwise disjoint unit fractions can be differently appealing.

Intuitively, the smaller the number of summands and the smaller the denomina-
tors of the unit fractions are, the more appealing a representation is but the longer
it might take to find some.

The examples show that these goals are conflicting and can usually not met at
the same time. Therefore, we want to implement and experiment with different
strategies for computing representations of a given fractional number as sums of
pairwise disjoint unit fractions.

Note: Values of type MaxDenominator are used to constrain the search space to
ensure termination of the strategies, where necessary. MaxDiff and MaxSummands
values will be used to define some of the selection criteria for representations. Rep-
resentations of fractional numbers, finally, i.e., sums of unit fractions are represented
by ascending lists of natural numbers being the denominators of the unit fractions
of the representation.
type Nat1 = Integer -- Natural numbers starting with 1: [1..]
type Numerator = Nat1
type Denominator = Nat1
type FracNum = (Numerator,Denominator) -- Only pairs with numerator < denominator
type MaxDenominator = Nat1
type MaxDiff = Nat1
type MaxSummands = Nat1
type Representation = [Denominator]

1. Greedy search. Greedy search picks in each step the largest unit fraction smaller
than or equal to the fractional number it is applied to in the current step. Use
the algorithm pattern for greedy search of Chapter 3 to implement greedy:



greedy :: FracNum -> Representation
greedy ...

greedy (5,31) ->> [7,55,3979,23744683,1127619917796295]

(Note: The greedy pattern of Chapter 3 yields a list of results. Here, however,
this list will always be singleton, i.e., you will have to unpack the one and only
entry from this list to get the result of greedy.)

2. Generate/select search. gs1 and gs2 shall first generate all candidate represen-
tations (using a generator), picking then the one (or: the ones) matching the
selection criterion under consideration (using a selector). In detail:

2.2 The generator gen generates all representations of a given fractional num-
ber as sums of unit fractions, where the size of denominators occurring is
limited (i.e., smaller or equal to) by the value of the MaxDenominator ar-
gument. These are called the candidate representations or just candidates.
Note: Due to constraining the search space, there might be no valid repre-
sentation at all. In this case, the result list of gen shall be the empty list.
If there is more than one representation matching the selection criterion,
no particular order of the entries of the result list is required.
gen :: FracNum -> MaxDenominator -> [Representation]

2.2 gs1 picks among all candidates (cf. 2.1) those with the smallest number
of summands. If there is more than one candidate matching this criterion,
no particular order of the entries of the result list is required. Note: Due
to constraining the search space, there might be no solution at all. In this
case, the result shall be the empty list:
gs1 :: FracNum -> MaxDenominator -> [Representation]

2.3 gs2 picks among all candidates (cf. 2.1) the one (and only one) with the
largest denominator occuring being the smallest one of the largest ones of
all candidates. Note: Due to constraining the search space, there might be
no solution at all. In this case, the result shall be the value Nothing:
gs2 :: Frac -> MaxDenominator -> Maybe Representation
gs2 ...

gs2 (5,31) 4200 ->> Just [7,56,1736]
gs2 (5,31) 42 ->> Nothing

3. Backtracking search. Backtracking search systematically explores the search
space until all solutions are found. Use the algorithm pattern for backtracking
search of Chapter 3 to implement bt1 and bt2. In detail:

3.1 bt1 picks among all representations of the search space those where the
largest denominator occuring in the representation is smaller or equal to
the MaxDenominator value and the difference of the largest and the smal-
lest denominator occuring in the representation is smaller or equal to the



MaxDiff value. If there is no such representation, the result list shall be
the empty list.
bt1 :: FracNum -> MaxDenominator -> MaxDiff -> [Representation]

3.2 bt2 picks among all representations of the search space those where the
largest denominator is smaller or equal to the MaxDenominator value and
the number of summands is smaller or equal to the MaxSummands value. If
there is no such representation, the result list shall be the empty list.
bt2 :: FracNum -> MaxDenominator -> MaxSummands ->[Representation]

4. Without submission:

4.1 Test all implementations with values of your own choice.
4.2 Compare the performance and scalability of all implementations.
4.3 (Re-) implement bt1 and bt2 using generate/select search.
4.4 Is backtracking an appropriate algorithm pattern to (re-) implement gs1

and gs2? Why? Or, why not?
4.5 From a cognitive point of view, do you have a preference for the genera-

te/select or the backtracking implementations regarding ease of implemen-
tation, comprehensibility, etc.? Why? (Note, there is no ‘right’ or ‘wrong’
to this question in an absolute sense).

4.6 Does one of the strategies yield ‘on average’ the most appealing represen-
tation(s)?

4.7 How is the ‘technique’ called used for defining the range type of gs1, bt1
and bt2? (Cf. Chapter 15 and 16).

4.8 Are their fractional numbers allowing gs1 to yield nontrivial result lists
with two or more entries? Try to find such fractional numbers, or to prove
that there are none.

4.9 What could be other reasonable and worthwhile search strategies to find
appealing representations or selection criteria to pick particular represen-
tations as solution?

4.10 Implement (some of) these strategies and selection criteria you consider
particularly promising. Do they meet your expectations when experimen-
ting with their implementations? If not, can you explain why they possibly
fail to meet your expectations? Based on your analysis, can you improve
the implementations to meet your expectations? If not, why?

4.11 Think about the computational complexity of all strategies both in theory
(in terms of ‘big-O’ O(...)) and practice (in terms of performance and
scalability for given fractional numbers getting more and more complex to
decompose; how can ‘getting more and more complex’ be formalized?).

4.12 Generate/select search. Consider implementing and experimenting with
gs3 and gs4. Do they work?



4.12.1 gs3 picks among all candidates (cf. 2.1) the one greedy search would
deliver. Note: Due to constraining the search space, there might be no
solution at all. In this case, the result shall be the value Nothing:
gs3 :: FracNum -> MaxDenominator -> Maybe Representation
gs3 ...

gs3 (5,31) 127619917796295
->> [7,55,3979,23744683,1127619917796295]

gs3 (5,31) 42 ->> Nothing
4.12.2 gs4: Same as gs4 but without constraining the search space; it is im-

portant that the generator used by gs4 is fair, i.e., every possible re-
presentation candidate must be computed within a finite amount of
time/steps.
gs4 :: FracNum -> Representation
gs4 ...

gs4 (5,31) ->> [7,55,3979,23744683,1127619917796295]
(Note: If working, the performances of gs3 and gs4 might be too bad
to compute the result of gs3 (5,31) 127619917796295 and gs4 (5,31),
respectively, in reasonable time.)

Iucundi acti labores.
Getane Arbeiten sind angenehm.

Cicero (106 - 43 v.Chr.)
röm. Staatsmann und Schriftsteller


