
185.A05 Advanced Functional Programming SS 2020
Wednesday, 25 March 2020

Assignment 2
on Chapter 2, Chapter 7, and Chapter 3

Topics: Streams, Functional Arrays, Backtracking
Submission deadline: Monday, 27 April 2020, 12am (at the earliest)

(In case of need, this deadline will be extended (details posted via TISS))

Regarding the deadline for the second submission: Please, refer to „Hinweise zu
Organisation und Ablauf der Übung“ available at the homepage of the course.

Important:

1. Carefully read and follow the instructions outlined in the complementary files
provided with assignment 1. If you have any questions regarding these inst-
ructions, ask your questions in the TISS forum. Following these instructions is
paramount to ensure a smooth processing of your submitted file with the test
system.

2. Store all functions to be written for this assignment in a top-level file named

Assignment2.hs

of your group directory. Comment your program meaningfully; use auxiliary
functions and constants, where reasonable. The very same file name shall be
used for the second submission of assignment 2.

3. Do not use self-defined modules! If you want to re-use functions (written for
other assignments), copy them to Assignment2.hs. Import declarations for self-
defined modules will fail: Only Assignment2.hs will be copied for the (semi-
automatical) evaluation procedure, no other ones.

4. Your programs will be (semi-automatically) evaluated on g0 using the there
installed GHC interpreter of GHC version 8.65. If you use a different tool or
a different version of GHC for program development, please, double-check well
in time before the submission deadline that your programs behave on g0 and
the there installed GHC interpreter version as you expect.

Programming tasks:

1. We consider the Stirling numbers introduced in assignment 1. This time, how-
ewer, we want to implement a corecursive 0-ary Haskell function

sta :: [Array Integer (Maybe Integer)]
yielding the stream of rows of the Stirling triangle as array values, i.e., the
stream of array values starting with:



[array (0,0) [(0,Just 1)],
array (-1,1) [(-1,Just 1),(0,Nothing),(1,Just 1)],
array (-2,2) [(-2,Just 1),(-1,Nothing),(0,Just 3),(1,Nothing),(2,Just 1)],
array (-3,3) [(-3,Just 1),(-2,Nothing),(-1,Just 7),(0,Nothing),

(1,Just 6),(2,Nothing),(3,Just 1)],
array (-4,4) [...],...

1

1

1
1

1
1

1
1 1

1 1
1

1
1

3
7 6

25
15

21
28

15
90 65

10

127
63

966

31
301

1701
350

1050
140

266

1

Stirling Triangle
(exercise 1)

1 1 2 4 58229 164

(exercise 4)
Knight Numbers

sum of diagonals

Examples:

take 2 sta ->> [array (0,0) [(0,Just 1)],
array (-1,1) [(-1,Just 1),(0,Nothing),(1,Just 1)]]

head (drop 3 sta) ->> array (-3,3) [(-3,Just 1),(-2,Nothing),(-1,Just 7),
(0,Nothing),(1,Just 6),
(2,Nothing),(3,Just 1)]

2. Implement a conversion function from arrays to lists, which strips off the con-
structor of Just values and drops Nothing values.

conv :: Array Integer (Maybe Integer) -> [Integer]

Examples:

conv (array (0,0) [(0,Just 1)]) ->> [1]
conv (array (-1,1) [(-1,Just 1),(0,Nothing),(1,Just 1)]) ->> [1,1]
conv (array (-3,3) [(-3,Just 1),(-2,Nothing),(-1,Just 7),

(0,Nothing),(1,Just 6),
(2,Nothing),(3,Just 1)]) ->> [1,7,6,1]

3. Using conv implement a function pretty_print for [Array Integer (Maybe
Integer)] values:

pretty_print :: [Array Integer (Maybe Integer)] -> [[Integer]]



Examples:

pretty_print (take 5 sta) ->> [[1],[1,1],[1,3,1],[1,7,6,1],[1,15,25,10,1]]
pretty_print [head (drop 3 sta)] ->> [1,7,6,1]
pretty_print [rs | rs <- sta, mod (length (conv rs)) 2 /= 0]
->> [[1],[1,3,1],[1,15,25,10,1],...

4. Adding the numbers in the diagonals of the Stirling triangle, we get a stream
of numbers, which we call the stream of knight numbers because proceeding to
the next number in a diagonal resembles the move of a knight in the chess game
(Note: if we were to use the Pascal triangle instead of the Stirling triangle we
would get the tail of the stream of Fibonacci numbers this way).
Implement a corecursive 0-ary Haskell function kns :: [Integer] computing
the stream of knight numbers as suggested by the above figure, i.e., evaluating
kns shall yield the stream of numbers starting with:

kns ->> [1,1,2,4,9,22,58,164,. . .

Examples:

take 5 kns ->> [1,1,2,4,9]
head (drop 3 kns) ->> 4
[n | n <- kns, mod (length n) 2 /= 0] ->> [1,1,9,...

5. The Modified Post’s Correspondence Problem (MPCP) is the following: Given
two arbitrary lists A and B, each of k nonempty strings si, ti, 0 ≤ i ≤ k − 1,
each string in the regular set of strings {0,1}+, say:

A = ⟨s0, s1, s2, . . . , sk−1⟩ B = ⟨t0, t1, t2, . . . , tk−1⟩

Does there exist a sequence of integers i1, i2, . . . , ir such that the concatenation
of s0, si1 , si2 , . . . sir equals the one of t0, ti1 , ti2 , . . . , tir , i.e.:

s0si1si2 . . . sir = t0ti1ti2 . . . tir ?

If there is no upper limit on the value of r, then MPCP is undecidable. If,
however, there is such a limit it is decidable.
For q ∈ IN0, we introduce the problems MPCP=q and MPCP≤q, which are
simplermversions of MPCP imposing a limit on the length of the sequence of
integers, i.e., on r.
We say that

(a) MPCP=q has a solution if there is a sequence of integers i1, i2, . . . , iq of
length q such that: s0si1si2 . . . siq = t0ti1ti2 . . . tiq .
(Note: For q = 0, this requirement boils down to s0 = t0.)

(b) MPCP≤q has a solution if there is a sequence of integers i1, i2, . . . , ip, p ≤ q,
such that: s0si1si2 . . . sip = t0ti1ti2 . . . tip .



Implement two Haskell functions mcpc_eq and mcpc_le as decision procedures
of MPCP=q and MPCP≤q, respectively:

type Nat0 = Int
type NullsOnes = String -- Only nonempty strings over {`0`,`1`}

mcpc_eq :: ([NullsOnes],[NullsOnes]) -> Nat0 -> Maybe [Int]
mcpc_le :: ([NullsOnes],[NullsOnes]) -> Nat0 -> Maybe [Int]

If an instance of MPCP=q or MPCP≤q does not have a solution, then mcpc_eq
and mcpc_le shall yield Nothing. If there is more than one solution then
mcpc_eq and mcpc_le shall yield a solution of minimum length. If there is
more than one solution of minimum length then mcpc_eq and mcpc_le shall
yield among those the one which is lexicographically the smallest one.
Use backtracking to implement mcpc_eq and mcpc_le.

Examples:

mcpc_eq (["00","11","010"],["11","00","010"]) 0 ->> Nothing
mcpc_eq (["00","11","010"],["00","11","010"]) 0 ->> Just []

(because: "00" == "00"
mcpc_eq (["00","11","010"],["0","1011","00"]) 2 ->> Just [2,1]

(because: "00"++"010"++"11" == "0"++"00"++"1011"

mcpc_le (["00","11","010"],["0","1011","00"]) 1 ->> Nothing
mcpc_le (["00","11","010"],["0","1011","00"]) 2 ->> Just [2,1]
mcpc_le (["00","11","010"],["0","1011","00"]) 3 ->> Just [2,1]

mcpc_le (["00","1","1"],["0","01","01"]) 2 ->> Just [1]
(because: "00"++"1" == "0"++"01"
note: Just [2] is a solution, too, but [2] is lexicographically

larger than [1])
mcpc_le (["00","1","1","11"],["0","01","1","011"]) 2 ->> Just [1]
mcpc_le (["00","1","1","11"],["0","0","11","011"]) 2 ->> Just [3]

(because: "00"++"11" == "0"++"011"
note: Just [1,2] is a solution, too, but [3] is shorter than [1,2]

notwithstanding of being lexicographically larger; Just [1]
is not a solution as in the example before).

Iucundi acti labores.
Getane Arbeiten sind angenehm.

Cicero (106 - 43 v.Chr.)
röm. Staatsmann und Schriftsteller


