
185.A05 Advanced Functional Programming SS 2020
Wednesday, 18 March 2020

Assignment 1
on Chapter 1 and Chapter 2

Topics: Streams, Generate/Prune Programming, Memoization
Submission deadline: Monday, 20 April 2020, 12am (at the earliest)

(In case of need, this deadline will be extended (details posted via TISS))

Regarding the deadline for the second submission: Please, refer to „Hinweise zu
Organisation und Ablauf der Übung“ available at the homepage of the course.

Important:

1. Carefully read and follow the instructions outlined in the complementary files
provided with assignment 1. If you have any questions regarding these inst-
ructions, ask your questions in the TISS forum. Following these instructions is
paramount to ensure a smooth processing of your submitted file with the test
system.

2. Store all functions to be written for this assignment in a top-level file named

Assignment1.hs

of your group directory. Comment your program meaningfully; use auxiliary
functions and constants, where reasonable. The very same file name will be
used for the second submission of assignment 1.

3. Do not use self-defined modules! If you want to re-use functions (written for
other assignments), copy them to Assignment1.hs. Import declarations for self-
defined modules will fail: Only Assignment1.hs will be copied for the (semi-
automatical) evaluation procedure, no other ones.

Programming tasks:

1. The Stirling numbers S(n, k) give the number of ways to partition a set S of
n elements into k pairwise disjoint non-empty subsets, whose union equals S.
E.g., for S=df {a, b, c} we get:

S(3, 1) = 1 // { {a, b, c} }
S(3, 2) = 3 // { {{a, b}, {c}}, {{a}, {b, c}}, {{a, c}, {b}} }
S(3, 3) = 1 // { {a}, {b}, {c} }

Stirling numbers can nicely be ordered in triangle shape:
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An entry of the Stirling triangle can be computed using the following (informal-
ly given) recurrence relation, which applies to rows with index 3 and beyond:

• A number of the triangle in row i, i ≥ 3, evolves from the two numbers
sitting immediately on top of it by adding to the left of these two numbers
the product of the right of the two numbers and the column number for
the new Stirling number to be computed.

For an example, consider number 10 located at row 5, column 4 of the prefix
of the Stirling triangle shown above. On top of this entry in row 4 are sitting
the numbers 6 (to the left) and 1 (to the right). The value of 6 + 1 ∗ 4 equals
10, the value of the entry in row 5, column 4.
Formally, the recurrence relation is given by:

S(n+ 1, k) = S(n, k − 1) + k ∗ S(n, k) for n = 1, 2, 3, . . .

Implement a corecursive 0-ary Haskell function st :: [[Integer]] yielding
the stream of rows of the Stirling triangle, i.e., the stream of lists starting with:

[ [1],[1,1],[1,3,1],[1,7,6,1],. . .

Examples:

take 5 st ->> [[1],[1,1],[1,3,1],[1,7,6,1],[1,15,25,10,1]]
head (drop 3 st) ->> [1,7,6,1]
[rs | rs <- st, mod (length rs) 2 /= 0] ->> [[1],[1,3,1],[1,15,25,10,1],...



2. Adding the numbers of the rows of the Stirling triangle, we get the Bell numbers.
The Bell numbers give the number of ways to partition a set into pairwise
disjoint non-empty subsets.
Implement a corecursive 0-ary Haskell function bn :: [Integer] yielding the
stream of Bell numbers by transforming the stream of rows of the Stirling
triangle, i.e., the stream of numbers starting with:

[1,2,5,15,52,. . .

Examples:

take 5 bn ->> [1,2,5,15,52]
head (drop 3 bn) ->> 15
[n | n <- bn, mod (length n) 2 /= 0] ->> [5,15,203,877,...

Without submission: Which instance of the generate/prune pattern did you
make use of for implementing bn?

3. Let map g be defined by:

g(x, k) =df x+
x3

3!
+

x5

5!
+ · · · =

k∑
n=0

x2n+1

(2n+ 1)!

Implement two Haskell functions:

3.1 f :: Integer -> Integer -> Double
3.2 f_mt :: Integer -> Integer -> Double

computing g with (function f_mt) and without memo-tables (function f), re-
spectively. Both f und f_mt may utilize a function implementing map h defined
by:

h(x, i) =df
xi

i!

which allows to express g as:

g(x, k) =
k∑

i=0

h(x, 2i+ 1)

Note, f_mt may use one or more memo-tables, e.g., a memo-table for the values
of argument x, a memo-table for the values of the factorial function, a memo-
table storing the images of g for argument pairs x and k, etc.

Without submission: Compare the run-times of f and f_mt for arguments
of increasing size. Is there a performance difference? Is it a significant one?



4. The binomial coefficients (0 ≤ k ≤ n) are linked by the recurrence relation:(
n

k

)
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)
which suggests the following implementation:

binom :: (Integer,Integer) -> Integer
binom (n,k)
| k==0 || n==k = 1
| True = binom (n-1,k) + binom (n-1,k-1)

Implement two (more efficient) variants binom_stpg and binom_memo compu-
ting the binomial coefficients using stream programming combined with (a)
Münchhausen principle (generalizing the idea underlying the Münchhausen
style computation of the stream of Fibonacci numbers to a stream of streams of
bionomial coefficients (cf. Chapter 2.3.2)), and (b) memoization (generalizing
the idea of using a (1-dimensional) memo list storing computed Fibonacci num-
bers to a (2-dimensional) memo table storing computed bionomial coefficients
(cf. Chapter 2.3.3)), respectively.
(a) Münchhausen style: binom_stpg :: (Integer,Integer) -> Integer
(b) memoization: binom_memo :: (Integer,Integer) -> Integer

Without submission: Compare pairwise the run-time performances of binom,
binom_stpg, and binom_memo for argument pairs of increasing size. Are there
performance differences? Are they significant?

Important:
• Change password: You should have received your login data for the computer

g0.complang.tuwien.ac.at by 16 March 2020, which has been sent to your
generic e-mail address e<matrikelnummer>@student.tuwien.ac.at. Please,
log in as soon as possible into your account on g0 (e.g., via ssh) and set your
initial password to a new one of your own choice.

• Submitting assignments: Your programs will be (semi-automatically) eva-
luated on g0 using the there installed GHC interpreter of GHC version 8.65. If
you use a different tool or a different version of GHC for program development,
please, double-check well in time before the submission deadline that your pro-
grams behave on g0 and the there installed GHC interpreter version as you
expect.

Iucundi acti labores.
Getane Arbeiten sind angenehm.

Cicero (106 - 43 v.Chr.)
röm. Staatsmann und Schriftsteller


