
Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

Note

Fortgeschrittene funktionale

Programmierung
LVA 185.A05, VU 2.0, ECTS 3.0

SS 2020

(Stand: 18.05.2020)

Jens Knoop

Technische Universität Wien
Information Systems Engineering

Compilers and Languages

compilers
languages

1/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

NoteLecture 6

Part V: Applications

– Chapter 15: Parsing

– Chapter 16: Logic Programming Functionally

2/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

Note

Outline in more Detail (1)
Part V: Applications
I Chap. 15: Parsing

15.1 Motivation
15.2 Combinator Parsing

15.2.1 Primitive Parsers
15.2.2 Parser Combinators
15.2.3 Universal Combinator Parser Basis
15.2.4 Structure of Combinator Parsers
15.2.5 Writing Combinator Parsers: Examples

15.3 Monadic Parsing
15.3.1 The Parser Monad
15.3.2 Parsers as Monadic Operations
15.3.3 Universal Monadic Parser Basis
15.3.4 Utility Parsers
15.3.5 Structure of a Monadic Parser
15.3.6 Writing Monadic Parsers: Examples

15.4 Summary
15.5 References, Further Reading

3/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

Note

Outline in more Detail (2)

I Chap. 16: Logic Programming Functionally
16.1 Motivation

16.1.1 On the Evolution of Programming Languages
16.1.2 Functional vs. Logic Languages
16.1.3 A Curry Appetizer
16.1.4 Outline

16.2 The Combinator Approach
16.2.1 Introduction
16.2.2 Diagonalization
16.2.3 Diagonalization with Monads
16.2.4 Filtering with Conditions
16.2.5 Indicating Search Progress
16.2.6 Selecting a Search Strategy
16.2.7 Terms, Substitutions, Unification, and Predicates
16.2.8 Combinators for Logic Programs
16.2.9 Writing Logic Programs: Two Examples

16.3 In Closing
16.4 References, Further Reading

4/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Chapter 15

Parsing

5/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Parsing: Lexical and Syntactical Analysis

Parsing

– basic task of a compiler.

– umbrella term for the lexical and syntactical analysis of
the structure of text, e.g., source code text of programs.

– enjoys a long history, see e.g.

– William H. Burge. Recursive Programming Techniques.
Addison-Wesley, 1975.

as an example of an early text book concerned with par-
sing.

Last but not least

– an application often used for demonstrating the power
and elegance of functional programming.

6/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Functional Approaches for Parsing

...two different but conceptually related approaches are:

1. Combinator parsing

– Graham Hutton. Higher-Order Functions for Parsing.
Journal of Functional Programming 2(3):323-343, 1992.

2. Monadic parsing

– Graham Hutton, Erik Meijer. Monadic Parser Combi-
nators. Technical Report NOTTCS-TR-96-4, Dept. of
Computer Science, University of Nottingham, 1996.

– Graham Hutton, Erik Meijer. Monadic Parsing in Has-
kell. Journal of Functional Programming 8(4):437-444,
1998.

which are both well-suited for building recursive descent par-
sers.

7/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Chapter 15.1

Motivation

8/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Informally

...the parsing problem is the following:

1. Read a sequence of objects/values of a type a.

2. Yield an object/value or a sequence of objects/values of a
type b.

Illustration:

1. Read a sequence of values of type Char:

〈 if n mod = 0 then 2*n else 2*n+1 fi 〉
2. Yield a sequence of pairs of tokens and strings:

〈 (if_token,""),(var_token,"n"),(op_token,"mod"),
(rel_token,"="),(cst_token,"0"),(then_token,""),

(cst_token,"2"),(op_token,"*"),(var_token,"n"),

(else_token""),...,(fi_token,"") 〉

9/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Parsing Arithmetic Expressions

...a parser p for arithmetic expressions could be assumed to

1. read strings representing well-formed arithmetic expres-
sion

2. yield the Exp values matching the strings read with:

data Exp = Lit Int | Var Char | Op Ops Exp Exp

data Ops = Add | Sub | Mul | Div | Mod

Example:

p "((2+b)*5)"

->> Op Mul (Op Add (Lit 2) (Var ‘b‘)) (Lit 5)

10/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Note

...such a parser p for arithmetic expressions were

I the reverse of the show function:

show Op Mul (Op Add (Lit 2) (Var ‘b‘)) (Lit 5)

->> "((2+b)*5)"

p "((2+b)*5)"

->> Op Mul (Op Add (Lit 2) (Var ‘b‘)) (Lit 5)

I similar to the automatically derived read function for Exp
values, differing, however, in the kind of arguments they
accept

– p: Strings of the form "((2+b)*5)":

p "((2+b)*5)"

->> Op Mul (Op Add (Lit 2) (Var ‘b‘)) (Lit 5)

– read: Strings of the form "Op Mul (Add (Lit ...)":

read "Op Mul (Add (Lit 2) (Var ‘b‘)) (Lit 5)"

->> Op Mul (Op Add (Lit 2) (Var ‘b‘)) (Lit 5)

11/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Towards the Type of Parser Functions (1)

...considering parsing as

1. reading of sequences of objects of some type a

2. yielding objects or sequences of objects of some type b

suggests naively the type of parser functions should be:

type Parse_naive a b = [a] -> b

This, however, raises some questions. Assume, bracket and
number are parser functions recognizing brackets and num-
bers, respectively:

Parser Input What shall be the output?

bracket "(xyz" ->> ‘(‘? If so, what to do w/ "xyz"?

number "234" ->> 2? Or: 23? Or: 234?

bracket "234" ->> No result? Failure?

12/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Towards the Type of a Parser Function (2)

...this means, we have to answer:

How shall a parser function behave if

(i) the input is not completely read?

(ii) there are multiple results?

(iii) there is a failure?

The latter two questions suggest the following type refinement:

type Parse_refined a b = [a] -> [b]

which allows for the previous example the following output:

Parser Input Output

bracket "(xyz" ->> [‘(‘]
number "234" ->> [2,23,234]

bracket "234" ->> []

13/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Towards the Type of a Parser Function (3)
...we are left with answering:

(i) What a parser function shall do with the part of the input
that is not read?

Answering this question leads finally to the definite definition
of the type of parser functions:

output type︸ ︷︷ ︸
type Parse a b = [a] -> [(b,[a])]︷ ︸︸ ︷

input type

...which enables as output lists of pairs of recognized objects
and left-over inputs:

Parser Input Output

bracket "(xyz" ->> [(‘(‘,"xyz")]
number "234" ->> [(2,"34"),(23,"4"), (234,"")]

bracket "234" ->> []
14/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Informally

...if a parser function delivers

– the empty list, this signals failure of the analysis.

– a non-empty list, this signals success of the analysis: Eve-
ry list element represents the result of a successful parse.

In the success case, every list element is a pair, whose

– first component is the identified object (token)

– second component is the remaining input which must still
be analyzed.

Note, delivering multiple results by means of lists

– is known as the so-called list of successes technique
(Philip Wadler, 1985).

– enables parsers to also analyze ambiguous grammars.

15/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Reference

...the following presentation is based on:

– Simon Thompson. Haskell – The Craft of Functional Pro-
gramming, Addison-Wesley/Pearson, 2nd edition, 1999,
Chapter 17.

– Graham Hutton, Erik Meijer. Monadic Parsing in Haskell.
Journal of Functional Programming 8(4):437-444, 1998.

16/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Chapter 15.2

Combinator Parsing

17/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Objective

...developing a combinator library for parsing composed of

– Four primitive parser functions

1.&2. Two input-independent ones (none, succeed)
3.&4. Two input-dependent ones (token, spot)

– Three parser combinators for

1. Alternatives (alt)
2. Sequencing ((>*>))
3. Transforming (build)

...forming a universal parser basis, which allows to construct
parser functions at will, i.e., according to what is required by a
parsing problem.

18/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Chapter 15.2.1

Primitive Parsers

19/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

The two Input-independent Primitive Parsers
Recall:

type Parse a b = [a] -> [(b,[a])]

1. none, the always failing parser
none :: Parse a b

none _ = []

2. succeed, the always succeeding parser
succeed :: b -> Parse a b

succeed val inp = [(val,inp)]

Note:

– Parser none always fails. It does not accept anything.
– Parser succeed always succeeds without consuming its

input or parts of it. In BNF-notation this corresponds to
the symbol ε representing the empty word.

20/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

The two Input-dependent Primitive Parsers

3. token, the parser recognizing single objects (so-called
tokens):

token :: Eq a => a -> Parse a a

token t (x:xs)

| t == x = [(t,x)]

| otherwise = []

token t [] = []

4. spot, the parser recognizing single objects enjoying some
property:

spot :: (a -> Bool) -> Parse a a

spot p (x:xs)

| p x = [(x,xs)]

| otherwise = []

spot p [] = []

21/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Example: Using the Primitive Parsers

...for constructing parsers for simple parsing problems:

bracket = token ‘(‘
dig = spot isDigit

isDigit :: Char -> Bool

isDigit ch = (‘0‘ <= ch) && (ch <= ‘9‘)

Note: The parser functions token and bracket could also be
defined using spot:

token :: Eq a => a -> Parse a a

token t = spot (== t)

bracket :: Char -> Parse Char Char

bracket = spot (== ‘(‘)

22/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Chapter 15.2.2

Parser Combinators

23/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Parser Combinators

...to write more complex and powerful parser functions, we
need in addition to primitive parsers

– parser-combining functions (or parser combinators)

which are re-usable higher-order polymorphic functions.

24/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

The Parser Combinator for Alternatives

Combining parsers as alternatives:

1. alt, the parser combining parsers as alternatives:

alt :: Parse a b -> Parse a b -> Parse a b

alt p1 p2 input = p1 input ++ p2 input

Intuitively: alt combines the results of the parses of p1 and
p2. The success of either of them is a success of their com-
bination.

25/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Example: Alternatively Combining Parsers

(bracket ‘alt‘ dig) "234" ->> [] ++ [(2,"34")]

->> [(2,"34")]

...reflecting that numbers might start with a bracket or a digit.

(lit ‘alt‘ var ‘alt‘ opexp) "(234+7)" ->> ...

...reflecting that expressions are either literals, or variables or
complex expressions starting with an operator.

26/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

The Parser Combinator for Sequential Comp.

Combining parsers sequentially:

2. (>*>), the parser combining parsers sequentially:

infixr 5 >*>

(>*>) :: Parse a b -> Parse a c -> Parse a (b,c)

(>*>) p1 p2 input

= [(y,z),rem2) | (y,rem1) <- p1 input,

(z,rem2) <- p2 rem1]

Note:

– The values (y,rem1) run through the results of parser p1
applied to input. Parser p2 is applied to the part rem1
of the input that is unconsumed by p1 in every particular
case. The results of the successful parses of p1 and p2, y
and z, are returned as a pair.

27/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Example: Sequentially Composing Parsers

...evaluating number "24(" yields a list of two parse results
[(2,"4("), (24,"(")]. We thus get for the composition of
the parsers number and bracket applied to input "24(":

(number >*> bracket) "24("

->> [((y,z),rem2) | (y,rem1) <- [(2,"4("), (24,"(")],

(z,rem2) <- bracket rem1]

->> [((2,z),rem2) | (z,rem2) <- bracket "4("] ++

[((24,z),rem2) | (z,rem2) <- bracket "("]

->> [] ++ [((24,z),rem2) | (z,rem2) <- bracket "("]

->> [((24,z),rem2) | (z,rem2) <- bracket "("]

->> [((24,z),rem2) | (z,rem2) <- [(‘(‘,"")]]

->> [((24,‘(‘),"")]

28/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

The Parser Combinator for Transformations

Combining a parser with a map transforming the parse results:

3. build, the parser transforming obtained parse results:

build :: Parse a b -> (b -> c) -> Parse a c

build p f input = [(f x,rem) | (x,rem) <- p input]

Intuitively: The map argument f of build transforms the
items returned by its parser argument: It builds something
from it.

29/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Example: Transforming Parse Results

...the parser digList is assumed to return a list of digit lists,
whose elements are transformed by digsToNum into the num-
bers whose values they represent:

(digList ‘build‘ digsToNum) "21a3"

->> [(digsToNum x,rem) | (x,rem) <- digList "21a3"]

->> [(digsToNum x,rem) | (x,rem) <-

[("2","1a3"),("21","a3")]]

->> [(digsToNum "2","1a3"), (digsToNum "21","a3")]

->> [(2,"1a3"),(21,"a3")]

30/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Chapter 15.2.3

Universal Combinator Parser Basis

31/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Universal Combinator Parser Basis

...together, the four primitive parsers

1.,2.,3.,4.: none, succeed, token, spot

and the three parser combinators

1.,2.,3.: alt, (>*>), build

form a universal combinator parser basis, i.e., they allow us to
build any parser we might be in need of.

32/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

The Universal Parser Basis at a Glance (1)

The priority of the sequencing operator:

infixr 5 >*>

The type of parser functions:

type Parse a b = [a] -> [(b,[a])]

Two input-independent primitive parser functions:

1. The always failing parser function:

none :: Parse a b

none _ = []

2. The always succeeding parser function:

succeed :: b -> Parse a b

succeed val input = [(val,input)]
33/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

The Universal Parser Basis at a Glance (2)

Two input-dependent primitive parser functions:

3. The parser for recognizing single objects:

token :: Eq a => a -> Parse a a

token t = spot (==t)

4. The parser for recognizing single objects satisfying some
property:

spot :: (a -> Bool) -> Parse a a

spot p (x:xs)

| p x = [(x,xs)]

| otherwise = []

spot p [] = []

34/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

The Universal Parser Basis at a Glance (3)

Three parser combinators:

5. Alternatives

alt :: Parse a b -> Parse a b -> Parse a b

alt p1 p2 input = p1 input ++ p2 input

6. Sequencing

(>*>) :: Parse a b -> Parse a c -> Parse a (b,c)

(>*>) p1 p2 input

= [((y,z),rem2) | (y,rem1) <- p1 input,

(z,rem2) <- p2 rem1]

7. Transformation

build :: Parse a b -> (b -> c) -> Parse a c

build p f input = [(f x,rem) | (x,rem) <- p input]

35/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Chapter 15.2.4

Structure of Combinator Parsers

36/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

The Structure of Combinator Parsers
...is usually as follows:

type Parse a b = [a] -> [(b,[a])]

none :: Parse a b

succeed :: b -> Parse a b

token :: Eq a => a -> Parse a a

spot :: (a -> Bool) -> Parse a a

alt :: Parse a b -> Parse a b -> Parse a b

(>*>) :: Parse a b -> Parse a c -> Parse a (b,c)

build :: Parse a b -> (b -> c) -> Parse a c

list :: Parse a b -> Parse a [b]

topLevel :: Parse a b -> [a] -> b -- see Exam. 2,

-- Chap. 15.2.5

37/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Combinator Parsers

...are well-suited for writing so-called recursive descent parsers.

This is because the parser functions (summarized on the pre-
vious slide)

– are structurally similar to grammars in BNF-form.

– provide for every operator of the BNF-grammar a corres-
ponding (higher-order) parser function.

These (higher-order) parser functions allow

– combining simple(r) parsers to (more) complex ones.

– are therefore called combining forms, or, as a short hand,
combinators (cf. Graham Hutton. Higher-order Functions
for Parsing. Journal of Functional Programming 2(3),
323-343, 1992).

38/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Chapter 15.2.5

Writing Combinator Parsers: Examples

39/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Using the Parser Basis

...for constructing (more) complex parser functions.

A parser

1. recognizing a list of objects (example 1).

2. transforming a string expression into a value of a suitable
algebraic data type for expressions (example 2).

40/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Example 1: Parsing a List of Objects

...let p be a parser recognizing single objects. Then list ap-
plied to p is a parser recognizing lists of objects:

list :: Parse a b -> Parse a [b]

list p = (succeed []) ‘alt‘
((p >*> list p) ‘build‘ (uncurry (:)))

Intuitively

– A list of objects can be empty: This is recognized by the
parser succeed called with [].

– A list of objects can be non-empty, i.e., it consists of an
object followed by a list of objects: This is recognized by
the sequentially composed parsers p and (list p):
(p >*> list p).

– The parser build, finally, is used to turn a pair (x,xs)
into the list (x:xs).

41/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Example 2: Parsing Arithm. Expressions (1)
...parsing arithmetic expressions like "(234+∼42)*b", we shall
construct the corresponding value of the algebraic data type:

data Expr = Lit Int | Var Char | Op Ops Expr Expr

data Ops = Add | Sub | Mul | Div | Mod

Parsing "(234+∼42)*b", e.g., shall yield the Exp-value:

Op Mul (Op Add (Lit 234) (Lit -42)) (Var ‘b‘)

...according to the below assumptions for string expressions:

– Variables are the lower case characters from ’a’ to ’z’.

– Literals are of the form 67, ∼89, etc., where ∼ is used for
unary minus.

– Binary operators are +, ∗,−, /,%, where / and % repre-
sent integer division and modulo operation, respectively.

– Expressions are fully bracketed.

– White space is not permitted.
42/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Example 2: Parsing Arithm. Expressions (2)

The parser for string expressions:

parser :: Parse Char Expr

parser = nameParse ‘alt‘ litParse ‘alt‘ opExpParse

...is composed of three parsers reflecting the three kinds of
expressions:

– variables (or variable names)

– literals (or numerals)

– fully bracketed operator expressions.

43/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Example 2: Parsing Arithm. Expressions (3)

Parsing variable names:

nameParse :: Parse Char Expr

nameParse = spot isName ‘build‘ Var

isName :: Char -> Bool -- A variable name

isName x = (‘a‘ <= x && x <= ‘z‘) -- must be a lower

-- case character

Parsing literals (numerals):

litParse :: Parse Char Expr

litParse -- A literal starts

= ((optional (token ‘~‘)) >*> -- optionally with ‘~‘

(neList (spot isDigit)) -- followed by a non-

‘build‘ (charlistToExpr . uncurry (++))) -- empty

-- list of digits

44/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Example 2: Parsing Arithm. Expressions (4)

Parsing fully bracketed operator expressions:

optExpParse :: Parse Char Expr

opExpParse -- A non-trivial expression

= (token ‘(‘ >*> -- must start with an opening bracket,

parser >*> -- must be followed by an expression,

spot isOp >*> -- must be followed by an operator,

parser >*> -- must be followed by an expression,

token ‘)‘) -- must end with a closing bracket.

‘build‘ makeExpr

45/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Example 2: Parsing Arithm. Expressions (5)

...required supporting parser functions:

neList :: Parse a b -> Parse a [b]

optional :: Parse a b -> Parse a [b]

where

– neList p recognizes a non-empty list of the objects
recognized by p.

– optional p recognizes an object recognized by p or
succeeds immediately.

Note: neList, optional, and some other supporting func-
tions including

– isOp

– charlistToExpr

are still be defined, left here as an exercise.
46/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.2.1

15.2.2

15.2.3

15.2.4

15.2.5

15.3

15.4

15.5

Chap. 16

Note

Example 2: Parsing Arithm. Expressions (6)
...we are left with defining a top-level parser function, which
converts a string into an expression when called with parser:

Converting a string into the expression it represents:

topLevel :: Parse a b -> [a] -> b

topLevel p input

= case results of

[] -> error "parse unsuccessful"

_ -> head results

where

results = [found | (found, []) <- p input]

Note:

– The parse of an input is successful, if the result contains
at least one parse, in which all the input has been read.

– topLevel parser "(234+∼42)*b)" ->>

Op Mul (Op Add (Lit 234) (Lit -42)) (Var ‘b‘) 47/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Chapter 15.3

Monadic Parsing

48/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Monadic Parsing
...complements the concept of combining forms underlying
combinator parsing with the one of monads.

Since monads are 1-ary type constructors, the type of parser
functions must be adjusted accordingly:

newtype Parser a = Parse (String -> [(a,String)])︷ ︸︸ ︷
output type

︷ ︸︸ ︷
input type

At the same time, we re-use the convention of Chapter 13.2
that delivery of the

– empty list signals failure of a parsing analysis.

– non-empty list signals success of a parsing analysis: each
element of the list is a pair, whose first component is the
identified object (token) and whose second component
the input which is still to be parsed.

49/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Chapter 15.3.1

The Parser Monad

50/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

The Parser Monad
Recalling the definition of type class Monad:

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b -- (>>), failure are

return :: a -> m a -- not needed: Their de-

-- fault implement. apply.

...making Parser, a 1-ary type constructor, an instance of
Monad:

instance Monad Parser where

p >>= f = Parse (\cs -> concat [(parse (f a)) cs′ |

(a,cs′) <- (parse p) cs])

return a = Parse (\cs -> [(a,cs)])

where

parse :: (Parser a) -> (String -> [(a,String)])

parse (Parse p) = p

51/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Remarks on the Parser Monad

instance Monad Parser where

p >>= f = Parse (\cs -> concat [(parse (f a)) cs′ |

(a,cs′) <- (parse p) cs])

return a = Parse (\cs -> [(a,cs)])

Intuitively:

– The parser (return a) succeeds without consuming any
of the argument string, and returns the single value a.

– parse denotes a deconstructor function for parsers de-
fined by parse (Parse p) = p.

– The parser sequence p >>= f applies first parser (parse
p) to the argument string cs yielding a list of results of
the form (a,cs′), where a is a value and cs′ is a string.
For each such pair the parser (parse (f a)) is applied
to the unconsumed input string cs′. The result is a list of
lists which is concatenated to give the final list of results.

52/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Proof Obligation: The Monad Laws

...Parser satisfies the monad laws and is thus a valid instance
of Monad. We have:

Lemma 15.3.1.1 (Soundness of Parser Monad)
1. return a >>= f = f a

2. p >>= return = p

3. p >>= (\a -> (f a >>= g)) = (p >>= (\a -> f a)) >>= g

Note:

– (>>=) being associative allows suppression of parentheses
when parsers are applied sequentially.

– return being left-unit and right-unit for (>>=) allows
some parser definitions to be simplified.

53/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Chapter 15.3.2

Parsers as Monadic Operations

54/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Monadic Operations as Parsers

...Parser as an instance of Monad provides us already with
two important parser functions, a primitive parser and a (mo-
nadic) parser combinator:

1. return, the always succeeding parser

6. (>>=), a combinator for sequentially combining parsers

which are the monadic counterparts of the combinator parsers

1. succeed

6. (>*>)

of Chapter 15.2.1 and 15.2.2, respectively.

The MonadPlus instance of Parser will give us two more par-
ser functions...

55/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

In more Detail

...the MonadPlus (cf. Chapter 12.6) instance of Parser:

class Monad m => MonadPlus m where

mzero :: m a

mplus :: m a -> m a -> m a

will provide us with the parser functions:

2. mzero, the always failing parser

5. mplus (via (++)), the parser for alternatives (or non-det-
erministic choice)

which are the monadic counterparts of the parser combinators

2. none

5. alt

of Chapter 15.2.1 and 15.2.2, respectively.
56/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

The Parser Monad-Plus

...yields the new parser functions mzero and mplus:

instance MonadPlus Parser where

-- The always failing parser

mzero = Parse (\cs -> [])

-- The parser combinator for alternatives:

p ‘mplus‘ q = Parse (\cs -> parse p cs ++ parse q cs)

Note: mplus can yield more than one result; the value of
(parse p cs ++ parse q cs) can be a list of any length.
In this sense mplus is considered to explore parsers alterna-
tively (or, in this sense, non-deterministically).

57/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Proof Obligations: The Monad-Plus Laws

...we can prove that Parser satisfies the Monad-Plus laws:

Lemma 15.3.2.1 (Soundness of Parser Monad-Plus)

1. p >>= (_ -> mzero) = mzero

2. mzero >>= p = mzero

3. mzero ‘mplus‘ p = p

4. p ‘mplus‘ mzero = p

This means:

– mzero is left-zero and right-zero for (>>=).

– mzero is left-unit and right-unit for mplus.

58/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Moreover

...we can prove the following laws:

Lemma 15.3.2.2
1. p ‘mplus‘ (q ‘mplus‘ r) = (p ‘mplus‘ q) ‘mplus‘ r

2. (p ‘mplus‘ q) >>= f = (p >>= f) ‘mplus‘ (q >>= f)

3. p >>= (\a -> f a ‘mplus‘ g a) = (p >>= f) ‘mplus‘ (p >>= g)

This means:

– mplus is associative.

– (>>=) distributes through mplus.

59/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Chapter 15.3.3

Universal Monadic Parser Basis

60/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Towards a Universal Monadic Parser Basis

...in order to arrive at a universal monadic parser basis as in
Chapter 15.2.3 we are left with defining monadic counterparts
of the

3.,4. primitive parsers token and spot.

6. parser combinator build.

61/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

The Monadic Counterpart of Parser spot

...parser sat recognizes single characters satisfying a given
property:

sat :: (Char -> Bool) -> Parser Char

sat p =

do {c <- item; if p c then return c else zero}

sat is the monadic counterpart of the parser function spot of
Chapter 15.2.1.

62/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

The Monadic Counterpart of Parser token

...parser char recognizes single characters; it is defined in
terms of parser sat:

char :: Char -> Parser Char

char c = sat (== c)

char is the monadic counterpart of the parser function token

of Chapter 15.2.1.

63/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

The Universal Monadic Parser Basis (1)

The type of parser functions:

newtype Parser a = Parse (String -> [(a,String)])

Two input-independent primitive parser functions:

1. The always succeeding parser function:

return :: a -> Parser a

return a = Parse (\cs -> [(a,cs)])

2. The always failing parser function:

mzero :: Parser a

mzero = Parse (\cs -> [])

64/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

The Universal Monadic Parser Basis (2)

Two input-dependent primitive parser functions:

3. The parser for recognizing single objects:

char :: Char -> Parser Char

char c = sat (== c)

4. The parser for recognizing single objects satisfying some
property:

sat :: (Char -> Bool) -> Parser Char

sat p =

do {c <- item; if p c then return c else zero}

65/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

The Universal Monadic Parser Basis (3)

Three parser combinators:

5. Alternatives

mplus :: Parser a -> Parser a -> Parser a

p ‘mplus‘ q =

Parse (\cs -> parse p cs ++ parse q cs)

6. Sequencing

(>>=) :: Parser a -> (a -> Parser b) -> Parser b

p >>= f =

Parse (\cs -> concat [(parse (f a)) cs′ |

(a,cs′) <- (parse p) cs])

7. Transformation

mbuild :: Parser a -> (a -> b) -> Parser b

mbuild p f inp = ... (completion left as homework)

66/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Chapter 15.3.4

Utility Parsers

67/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Utility Parsers (1)

Consuming the first character of an input string, if it is non-
empty, and failing otherwise:

item :: Parser Char

item = Parse (\cs -> case cs of

"" -> []

(c:cs) -> [(c,cs)])

Parsing a specific string:

string :: String -> Parser String

string "" = return ""

string (c:cs) = do char c; string cs; return (c:cs)

68/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Utility Parsers (2)

The deterministically selecting parser:

(+++) :: Parser a -> Parser a -> Parser a

p +++ q

= Parse (\cs -> case parse (p ‘mplus‘ q) cs of

[] -> []

(x:xs) -> [x])

Note:

– (+++) shows the same behavior as mplus, but yields at
most one result (in this sense ‘deterministically’), whereas
mplus can yield several ones (in this sense ‘non-determi-
nistically’)

– (+++) satisfies all of the previously listed properties of
mplus.

69/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Utility Parsers (3)

Applying a parser p repeatedly:

-- zero or more applications of p

many :: Parser a -> Parser [a]

many p = many1 p +++ return []

-- one or more applications of p

many1 :: Parser a -> Parser [a]

many1 p = do a <- p; as <- many p; return (a:as)

Note: As above, useful parsers are often recursively defined.

70/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Utility Parsers (4)

A variant of the parser many with interspersed applications of
parser sep, whose result values are thrown away:

sepby :: Parser a -> Parser b -> Parser [a]

p ‘sepby‘ sep = (p ‘sepby1‘ sep) +++ return []

sepby1 :: Parser a -> Parser b -> Parser [a]

p ‘sepby1‘ sep = do a <- p

as <- many (do sep; p)

return (a:as)

71/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Utility Parsers (5)

Repeated applications of a parser p separated by applications
of a parser op, whose result value is an operator which is
assumed to associate to the left, and used to combine the
results from the p parsers in chainl and chainl1:

chainl :: Parser a -> Parser (a -> a -> a)

-> a -> Parser a

chainl p op a = (p ‘chainl1‘ op) +++ return a

chainl1 :: Parser a -> Parser (a -> a -> a)

-> Parser a

p ‘chainl1‘ op = do a <- p; rest a

where rest a = (do f <- op

b <- p

rest (f a b))

+++ return a

72/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Utility Parsers (6)
Handling white space, tabs, newlines, etc.

– Parsing a string with blanks, tabs, and newlines:

space :: Parser String

space = many (sat isSpace)

– Parsing a token by means of a parser p skipping any
‘trailing’ space:

token :: Parser a -> Parser a

token p = do {a <- p; space; return a}

– Parsing a symbolic token:

symb :: String -> Parser String

symb cs = token (string cs)

– Applying a parser p and throwing away any leading space:

apply :: Parser a -> String -> [(a,String)]

apply p = parse (do {space; p})
73/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Note

...parsers handling comments or keywords can be defined in a
similar fashion allowing together avoidance of a dedicated lexi-
cal analysis (for token recognition), which typically precedes
parsing.

74/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Chapter 15.3.5

Structure of a Monadic Parser

75/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

The Typical Structure of a Monadic Parser
...using the sequencing operator (>>=) or the syntactically
sugared do-notation:

p1 >>= \a1 -> do a1 <- p1

p2 >>= \a2 -> a2 <- p2

... ...

pn >>= \an -> an <- pn

f a1 a2 ... an f a1 a2 ... an

...the latter one equivalently expressed in just one line, if so
desired:

do {a1 <- p1; a2 <- p2;...; an <- pn; f a1 a2...an}

Recall: The expressions ai <- pi are called generators (since they

generate values for the variables ai). Generators of the form ai

<- pi can be replaced by pi, if the generated value will not be

used afterwards.
76/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Note

...the intuitive, natural operational reading of such a monadic
parser:

– Apply parser p1 and call its result value a1.

– Apply subsequently parser p2 and call its result value a2.

– ...

– Apply subsequently parser pn and call its result value an.

– Combine finally the intermediate results by applying an
appropiate function f.

Note, most typically f = return (g a1 a2 ... an); for an
exception see parser chainl1 in Chapter 15.3.4, which needs
to parse ‘more of the argument string’ before it can return a
result.

77/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Chapter 15.3.6

Writing Monadic Parsers: Examples

78/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Example 1: A Simple Parser

...writing a parser p which

– reads three characters,

– drops the second character of these, and

– returns the first and the third character as a pair.

Implementation:

p :: Parser (Char,Char)

p = do c <- item; item; d <- item; return (c,d)

79/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Example 2: Parsing Arithm. Expressions (1)

...built up from single digits, the operators +, -, *, /, and
parentheses, respecting the usual precedence rules for additive
and multiplicative operators.

Grammar for arithmetic expressions:

expr ::= expr addop term | term

term ::= term mulop factor | factor

factor ::= digit | (expr)

digit ::= 0 | 1 | ... | 9

addop ::= + | -

mulop ::= * | /

80/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Example 2: Parsing Arithm. Expressions (2)

The Parsing Problem:

Parsing expressions and evaluating them on-the-fly (yielding
their integer values) using the chainl1 combinator of Chapter
15.3.4 to implement the left-recursive production rules for
expr and term.

81/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Example 2: Parsing Arithm. Expressions (3)
The implementation of the parser expr:

expr :: Parser Int

addop :: Parser (Int -> Int -> Int)

mulop :: Parser (Int -> Int -> Int)

expr = term ‘chainl1‘ addop

term = factor ‘chainl1‘ mulop

factor =

digit +++ do {symb "("; n <- expr; symb ")"; return n}

digit =

do {x <- token (sat isDIgit); return (ord x - ord ‘0‘)}

addop = do {symb "+"; return (+)}

+++ do {symb "-"; return (-)}

mulop = do {symb "*"; return (*)}

+++ do {symb "/"; return (div)}

82/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.6

15.4

15.5

Chap. 16

Note

Example 2: Parsing Arithm. Expressions (4)

...using the parser.

Parsing and evaluating the string " 1 - 2 * 3 + 4 " on-
the-fly by calling:

apply expr " 1 - 2 * 3 + 4 "

yields the singleton list:

[(-1,"")]

which is the desired result.

83/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Chapter 15.4

Summary

84/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

In Conclusion

...combinator and monadic parsing rely (in part) on different
language features but are quite similar in spirit as becomes
obvious when opposing their primitives and combinators:

Combinator Parsing Monadic Parsing
Primitive none mzero

Parsers succeed return

token char

spot sat

Parser alt mplus

Combinators (>*>) (>>=)

build mbuild

85/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Invaluable

...for combinator (as well as monadic) parsing are:

I Higher-order functions: Parse a b (like Parser a) is of
a functional type; all parser combinators are thus higher-
order functions.

I Polymorphism: The type Parse a b is polymorphic: We
do need to be specific about either the input or the out-
put type of the parsers we build. Hence, the parser com-
binators mentioned above can immediately be reused for
tokens of any other data type (in the examples, these
were lists and pairs, characters, and expressions).

I Lazy evaluation: ‘On demand’ generation of the possible
parses, automatical backtracking (the parsers will back-
track through the different options until a successful one
is found).

86/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Chapter 15.5

References, Further Reading

87/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Chapter 15.2: Basic Reading

Steve Hill. Combinators for Parsing Expressions. Journal of
Functional Programming 6(3):445-464, 1996.

Graham Hutton. Higher-Order Functions for Parsing.
Journal of Functional Programming 2(3):323-343, 1992.

Simon Thompson. Haskell – The Craft of Functional Pro-
gramming. Addison-Wesley/Pearson, 3rd edition, 2011.
(Chapter 17.5, Case study: parsing expressions)

Philip Wadler. How to Replace Failure with a List of
Successes. In Proceedings of the 4th International Confe-
rence on Functional Programming and Computer Architec-
ture (FPCA’85), Springer-V., LNCS 201, 113-128, 1985.

88/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Chapter 15.3: Basic Reading

Graham Hutton. Programming in Haskell. Cambridge
University Press, 2007. (Chapter 8, Functional parsers)

Graham Hutton, Erik Meijer. Monadic Parsing in Haskell.
Journal of Functional Programming 8(4):437-444, 1998.

Graham Hutton, Erik Meijer. Monadic Parser Combi-
nators. Technical Report NOTTCS-TR-96-4, Dept. of
Computer Science, University of Nottingham, 1996.

89/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Chapter 15: Selected Further Reading (1)

Richard Bird. Introduction to Functional Programming
using Haskell. Prentice-Hall, 2nd edition, 1998. (Chapter
11, Parsing)

Jeroen Fokker. Functional Parsers. In Johan Jeuring, Erik
Meijer (Eds.), Advanced Functional Programming, First
International Spring School on Advanced Functional Pro-
gramming Techniques. Springer-V., LNCS 925, 1-23, 1995.

Pieter W.M. Koopman, Marinus J. Plasmeijer. Efficient
Combinator Parsers. In Proceedings of the 10th Inter-
national Workshop on the Implementation of Functional
Languages (IFL’98), Selected Papers, Springer-V., LNCS
1595, 120-136, 1999.

90/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Chapter 15: Selected Further Reading (2)

Andy Gill, Simon Marlow. Happy – The Parser Generator
for Haskell. University of Glasgow, 1995.
www.haskell.org/happy

Daan Leijen. Parsec, a free Monadic Parser Combinator
Library for Haskell, 2003.
legacy.cs.uu.nl/daan/parsec.html

S. Doaitse Swierstra. Combinator Parsing: A Short Tuto-
rial. In Language Engineering and Rigorous Software
Development, International LerNet ALFA Summer School
2008, Revised Tutorial Lectures. Springer-V., LNCS 5520,
252-300, 2009.

91/200

Lecture 6

Detailed
Outline

Chap. 15

15.1

15.2

15.3

15.4

15.5

Chap. 16

Note

Chapter 15: Selected Further Reading (3)

S. Doaitse Swierstra, P. Azero Alcocer. Fast, Error Correc-
ting Parser Combinators: A Short Tutorial. In Proceedings
SOFSEM’99, Theory and Practice of Informatics, 26th
Seminar on Current Trends in Theory and Practice of
Informatics, Springer-V., LNCS 1725, 111-129, 1999.

Matthew Might, David Darais, Daniel Spiewak. Parsing
with Derivatives – A Functional Pearl. In Proceedings of
the 16th ACM International Conference on Functional
Programming (ICFP 2011), 189-195, 2011.

92/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.3

16.4

Note

Chapter 16

Logic Programming Functionally

93/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.3

16.4

Note

Logic Programming Functionally

Declarative programming

– Characterizing: Programs are declarative assertions about
a problem rather than imperative solution procedures.

– Hence: Emphasizes the ‘what,’ rather than the ‘how.’

– Important styles: Functional and logic programming.

If each of these two styles is appealing for itself

– (features of) functional and logic programming

uniformly combined in just one language should be even more
appealing.

Question

– Can and shall (features of) functional and logic program-
ming be uniformly combined?

94/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.3

16.4

Note

Yes, they can and should

...a recent article highlights important benefits of combining
the paradigm features of functional and logic programming

– Sergio Antoy, Michael Hanus. Functional Logic Program-
ming. Communications of the ACM 53(4):74-85, 2010.

shedding thereby some light on this question.

...part of it is summarized in Chapter 16.1.

95/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.1.1

16.1.2

16.1.3

16.1.4

16.2

16.3

16.4

Note

Chapter 16.1

Motivation

96/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.1.1

16.1.2

16.1.3

16.1.4

16.2

16.3

16.4

Note

Chapter 16.1.1

On the Evolution of Programming Languages

97/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.1.1

16.1.2

16.1.3

16.1.4

16.2

16.3

16.4

Note

The Evolution of Programming Languages (1)
...a continous and ongoing process of hiding the computer
hardware and the details of program execution by the stepwise
introduction of abstractions.

Assembly languages
– introduce mnemonic instructions and symbolic labels for

hiding machine codes and addresses.

FORTRAN
– introduces arrays and expressions in standard mathemati-

cal notation for hiding registers.

ALGOL-like languages
– introduce structured statements for hiding gotos and

jump labels.

Object-oriented languages
– introduce visibility levels and encapsulation for hiding the

representation of data and the management of memory.
98/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.1.1

16.1.2

16.1.3

16.1.4

16.2

16.3

16.4

Note

Evolution of Programming Languages (2)
Declarative languages, most prominently functional and logic
languages

– remove assignment and other control statements for
hiding the order of evaluation.

– A declarative program is a set of logic statements de-
scribing properties of the application domain.

– The execution of a declarative program is the computa-
tion of the value(s) of an expression wrt these properties.

This way:

– The programming effort in a declarative language shifts
from encoding the steps for computing a result to struc-
turing the application data and the relationships between
application components.

– Declarative languages are similar to formal specification
languages but executable.

99/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.1.1

16.1.2

16.1.3

16.1.4

16.2

16.3

16.4

Note

Chapter 16.1.2

Functional vs. Logic Languages

100/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.1.1

16.1.2

16.1.3

16.1.4

16.2

16.3

16.4

Note

Functional vs. Logic Languages

Functional languages

– are based on the notion of mathematical function.

– programs are sets of functions that operate on data
structures and are defined by equations using case
distinction and recursion.

– provide efficient, demand-driven evaluation strategies that
support infinite structures.

Logic languages

– are based on predicate logic.

– programs are sets of predicates defined by restricted forms
of logic formulas, such as Horn clauses (implications).

– provide non-determinism and predicates with multiple
input/output modes that offer code reuse.

101/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.1.1

16.1.2

16.1.3

16.1.4

16.2

16.3

16.4

Note

Functional Logic Languages (1)

...there are many: Curry, TOY, Mercury, Escher, Oz, HAL,...

Some of them in more detail:

– Curry

Michael Hanus, Herbert Kuchen, Juan Jose Moreno-
Navarro. Curry: A Truly Functional Logic Language. In
Proceedings of the ILPS’95 Workshop on Visions for the
Future of Logic Programming, 95-107, 1995.

See also: Michael Hanus (Ed.). Curry: An Integrated
Functional Logic Language (vers. 0.8.2, 2006).
http://www.curry-language.org/

102/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.1.1

16.1.2

16.1.3

16.1.4

16.2

16.3

16.4

Note

Functional Logic Languages (2)

– TOY

Francisco J. López-Fraguas, Jaime Sánchez-Hernández.
TOY: A Multi-paradigm Declarative System. In Procee-
dings of the 10th International Conference on Rewriting
Techniques and Applications (RTA’99), Springer-V.,
LNCS 1631, 244-247, 1999.

– Mercury

Zoltan Somogyi, Fergus Henderson, Thomas Conway.
The Execution Algorithm of Mercury: An Efficient Purely
Declarative Logic Programming Language. Journal of
Logic Programming 29(1-3):17-64, 1996.

See also: The Mercury Programming Language
http://www.mercurylang.org

103/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.1.1

16.1.2

16.1.3

16.1.4

16.2

16.3

16.4

Note

Chapter 16.1.3

A Curry Appetizer

104/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.1.1

16.1.2

16.1.3

16.1.4

16.2

16.3

16.4

Note

A Curry Appetizer (1)
Two important Curry operators:

– ?, denoting nondeterministic choice.
– =:=, indicating that an equation is to be solved rather

than an operation to be defined.

Example: Regular expressions and their semantics

data RE a = Lit a

| Alt (RE a) (RE a)

| Conc (RE a) (RE a)

| Star (RE a)

sem :: RE a -> [a]

sem (Lit c) = [c]

sem (Alt r s) = sem r ? sem s

sem (Conc r s) = sem r ++ sem s

sem (Star r) = [] ? sem (Conc r (Star r))
105/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.1.1

16.1.2

16.1.3

16.1.4

16.2

16.3

16.4

Note

A Curry Appetizer (2)

– Evaluating the semantics of the regular expression
abstar:

non-deterministically︸ ︷︷ ︸
sem abstar ->> ["a","ab","abb"]

where abstar = Conc (Lit ‘a‘) (Star (Lit ‘b‘))

– Checking whether some word w is in the language of a re-
gular expression re:

sem re =:= w

– Checking whether some string s contains a word genera-
ted by a regular expression re (similar to Unix’s grep uti-
lity):

xs ++ sem re ++ ys =:= s

Note: xs and ys are free!

106/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.1.1

16.1.2

16.1.3

16.1.4

16.2

16.3

16.4

Note

Chapter 16.1.4

Outline

107/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.1.1

16.1.2

16.1.3

16.1.4

16.2

16.3

16.4

Note

Combining Functional and Logic Programming

...some principal approaches for combining their features:

– Ambitious: Designing a new programming language en-
joying features of both programming styles (e.g., Curry,
Mercury, etc.).

– Less ambitious: Implementing an interpreter for one style
using the other style.

– Even less ambitious: Developing a combinator library
allowing us to write logic programs in Haskell.

108/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.1.1

16.1.2

16.1.3

16.1.4

16.2

16.3

16.4

Note

Here

...we follow the last approach as proposed by Michael Spivey
and Silvija Seres in:

– Michael Spivey, Silvija Seres. Combinators for Logic Pro-
gramming. In Jeremy Gibbons, Oege de Moor (Eds.),
The Fun of Programming. Palgrave MacMillan, 177-199,
2003.

Central are:

– Combinators

– Monads

– Combinator and monadic programming.

109/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.1.1

16.1.2

16.1.3

16.1.4

16.2

16.3

16.4

Note

Benefits and Limitations

...of this combinator approach compared to approaches stri-
ving for fully functional/logic programming languages:

– Less costly

but also

– less expressive and (likely) less performant.

110/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Chapter 16.2

The Combinator Approach

111/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Chapter 16.2.1

Introduction

112/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Three Key Problems

...are to be solved in the course of developing this approach:

Modelling

1. logic programs yielding (possibly) multiple answers
 using the lists of successes technique

2. the evaluation/search strategy inherent to logic programs
 encapsulating the search strategy in ‘search monads’

3. logical variables (no distinction between input and output
variables)
 realizing unification

113/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Key Problem 1: Multiple Answers

...can easily be handled (re-) using the technique of

– lists of successes (lazy lists) (Philip Wadler, 1985)

Intuitively

– Any function of type (a -> b) can be replaced by a
function of type (a -> [b]).

– Lazy evaluation ensures that the elements of the result
list (i.e., the list of successes) are provided as they are
found, rather than as a complete list after termination of
the computation.

114/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Key Problem 2: Evaluation/Search Strategies

...dealt with investigating an illustrating running example.

This is factoring of natural numbers: Decomposing a positive
integer into the set of pairs of its factors, e.g.:

Integer Factor pairs
24 (1,24), (2,12), (3,8), (4,6), . . . , (24,1)

Obviously, this problem (instance) is solved by:

factor :: Int -> [(Int,Int)]

factor n = [(r,s) | r<-[1..n], s<-[1..n], r*s == n]

In fact, we get:

factor 24 ->>

[(1,24),(2,12),(3,8),(4,6),(6,4),(8,3),(12,2),(24,1)]

115/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Note

When implementing the ‘obvious’ solution we exploit explicit
domain knowledge:

I Most importantly the domain fact:
– r ∗ s = n ⇒ r ≤ n ∧ s ≤ n

which allows us to restrict our search to a finite space:

[1..24]×[1..24]

Often, however, such knowledge is not available:

I Generally, the search space cannot be restricted a priori!

In the following, we thus consider the factoring problem as a

I search problem over the infinite 2-dimensional search
space:

[1..]×[1..]
116/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Illustrating the Search Space [1..]×[1..]

1 2 3 4 5 6 7 8 9 ...

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (1,9) ...
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (2,9) ...
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8) (3,9) ...
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8) (4,9) ...
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8) (5,9) ...
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8) (6,9) ...
7 (7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7) (7,8) (7,9) ...
8 (8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7) (8,8) (8,9) ...
9 (9,1) (9,2) (9,3) (9,4) (9,5) (9,6) (9,7) (9,8) (9,9) ...
...

117/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Back to the Running Example

...adapting function factor straightforward to the infinite
search space [1..]×[1..] yields:

factor :: Int -> [(Int,Int)]

factor n = [(r,s) | r<-[1..]︸ ︷︷ ︸, s<-[1..]︸ ︷︷ ︸, r*s == n]

infinite infinite

Applying factor to the argument 24 yields:

factor 24

->> [(1,24)

...followed by an infinite wait.

This is useless and of no practical value!

118/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

The Problem: Unfair Depth-first Search

...the two-dimensional space is searched in a depth-first order:

1 2 3 4 5 6 7 8 9 ...

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (1,9) ...
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (2,9) ...
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8) (3,9) ...
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8) (4,9) ...
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8) (5,9) ...
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8) (6,9) ...
7 (7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7) (7,8) (7,9) ...
8 (8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7) (8,8) (8,9) ...
9 (9,1) (9,2) (9,3) (9,4) (9,5) (9,6) (9,7) (9,8) (9,9) ...
...

This search order is unfair: Pairs in rows 2 onwards will never
be reached and considered for being a factor pair.

119/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Chapter 16.2.2

Diagonalization

120/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Diagonalization to the Rescue (1)
...searching the infinite number of finite diagonals ensures fairness, i.e.,
every pair will deterministically be visited after a finite number of steps:

1 2 3 4 5 6 7 8 9 ...

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (1,9) ...
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (2,9) ...
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8) (3,9) ...
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8) (4,9) ...
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8) (5,9) ...
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8) (6,9) ...
7 (7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7) (7,8) (7,9) ...
8 (8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7) (8,8) (8,9) ...
9 (9,1) (9,2) (9,3) (9,4) (9,5) (9,6) (9,7) (9,8) (9,9) ...
...

– Diagonal 1: [(1,1)]

– Diagonal 2: [(1,2),(2,1)]

– Diagonal 3: [(1,3),(2,2),(3,1)]
– Diagonal 4: [(1,4),(2,3),(3,2),(4,1)]

– Diagonal 5: [(1,5),(2,4),(3,3),((4,2),(5,1)]

– ... 121/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Diagonalization to the Rescue (2)

In fact, on visiting the infinite number of finite diagonals, every pair (i , j)
of the infinite 2-dimensional search space [1..]× [1..] is deterministically
reached after a finite number of steps as illustrated below:

1 2 3 4 5 6 7 ...

1 (1,1)1 (1,2)2 (1,3)4 (1,4)7 (1,5)11 (1,6)16 (1,7)22 ...
2 (2,1)3 (2,2)5 (2,3)8 (2,4)12 (2,5)17 (2,6)23 (2,7)30 ...
3 (3,1)6 (3,2)9 (3,3)13 (3,4)18 (3,5)24 (3,6)31 (3,7)39 ...
4 (4,1)10 (4,2)14 (4,3)19 (4,4)25 (4,5)32 (4,6)40 (4,7)49 ...
5 (5,1)15 (5,2)20 (5,3)26 (5,4)33 (5,5)41 (5,6)50 (5,7)60 ...
6 (6,1)21 (6,2)27 (6,3)34 (6,4)42 (6,5)51 (6,6)61 (6,7)72 ...
7 (7,1)28 (7,2)35 (7,3)43 (7,4)52 (7,5)62 (7,6)73 (7,7)85 ...
8 (8,1)36 (8,2)44 (8,3)53 (8,4)63 (8,5)74 (8,6)86 (8,7)99 ...
9 (9,1)45 (9,2)54 (9,3)64 (9,4)75 (9,5)87 (9,6)100 (9,7)114 ...
...

122/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Implementing Diagonalization (1)

...function diagprod realizes the diagonalization strategy: It
enumerates the cartesian product of its argument lists in a fair
order, i.e., every element is enumerated after some finite
amount of time:

diagprod :: [a] -> [b] -> [(a,b)]

diagprod xs ys =

[(xs!!i, ys!!(n-i)) | n<-[0..]︸ ︷︷ ︸, i<-[0..n]︸ ︷︷ ︸]
infinite finite

E.g., applied to the infinite 2-dimensional space [1..]× [1..],
diagprod ejects every pair (x,y) of [1..]× [1..] in finite time:

[(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),

(3,2),(4,1),(1,5),(2,4),(3,3),(4,2),(5,1),(1,6),

(2,5),...,(6,1),(1,7),(2,6),...(7,1),...

123/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Implementing Diagonalization (2)
diagprod :: [a] -> [b] -> [(a,b)]

diagprod xs ys = [(xs!!i, ys!!(n-i)) | n<-[0..], i<-[0..n]]

n i n-i (xs!!i, ys!!(n-i)) ([1..]!!i, [1..]!!(n-i)) # Diag. #

0 0 0 (xs!!0,ys!!0) (1,1) 1 1
1 0 1 (xs!!0,ys!!1) (1,2) 2 2
1 1 0 (xs!!1,ys!!0) (2,1) 3
2 0 2 (xs!!0,ys!!2) (1,3) 4 3
2 1 1 (xs!!1,ys!!1) (2,2) 5
2 2 0 (xs!!2,ys!!0) (3,1) 6
3 0 3 (xs!!0,ys!!3) (1,4) 7 4
3 1 2 (xs!!1,ys!!2) (2,3) 8
3 2 1 (xs!!2,ys!!1) (3,2) 9
3 3 0 (xs!!3,ys!!0) (4,1) 10
4 0 4 (xs!!0,ys!!4) (1,5) 11 5
4 1 3 (xs!!1,ys!!3) (2,4) 12
4 2 2 (xs!!2,ys!!2) (3,3) 13
4 3 1 (xs!!3,ys!!1) (4,2) 14
4 4 0 (xs!!4,ys!!0) (5,1) 15
...

124/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Back to the Running Example

...let’s adjust factor in a way such that it explores the search
space of pairs in a fair order using diagonalization:

factor :: Int -> [(Int,Int)]

factor n = infinite

[(r,s) | (r,s) <- diagprod [1..]︸ ︷︷ ︸ ︷ ︸︸ ︷
[1..], r*s == n]

infinite

Applying now factor to the argument 24, we obtain:

factor 24 ->>

[(4,6),(6,4),(3,8),(8,3),(2,12),(12,2),(1,24),(24,1)

...i.e., we obtain all results, followed by an infinite wait.

Of course, this is not surprising, since the search space is in-
finite.

125/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Chapter 16.2.3

Diagonalization with Monads

126/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Finite Lists, Infinite Streams, Monads

...in the following we conceptually distinguish between:

– [a]: Finite lists.

– Stream a: Infinite lists defined as type alias by:

type Stream a = [a]

Note: Distinguishing between (Stream a) for infinite lists and
[a] for finite lists is conceptually and notationally only as is
made explicit by defining (Stream a) as a type alias of [a].

Like [], Stream is a 1-ary type constructor and can thus be
made an instance of type class Monad:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

127/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

The Stream Monad

...since (Stream a) is a type alias of [a], the stream and the
list monad coincide; the bind (>>=) and return operation of
the stream monad

– (>>=) :: Stream a -> (a -> Stream b) -> Stream b

– return :: a -> Stream a

are thus defined as in Chapter 12.4.2:

instance Monad Stream where

xs >>= f = concat (map f xs)

return x = [x] -- yields the singleton list

Note: The monad operations (>>) and fail are not relevant
in the following, and thus omitted.

128/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Notational Benefit (1)
...the monad operations return and (>>=) for lists and
streams allow us to avoid or replace list comprehension:

E.g., the expression

[(x,y) | x <- [1..], y <- [10..]]

using list comprehension is equivalent to the expression

[1..] >>= (\x -> [10..] >>= (\y -> return (x,y)))

using monad operations; this is is made explicit by stepwise
unfolding the monadic expression yielding first the equivalent
expression:

concat (map (\x -> [(x,y) | y <- [10..]])[1..])

and second the equivalent expression:

concat

(map (\x -> concat (map (\y -> [(x,y)])[10..]))[1..])

129/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Notational Benefit (2)

By exploiting the general rule that

do x1 <- e1; x2 <- e2; ... ; xn <- en; e

is a shorthand for

e1 >>= (\x1 -> e2 >>= (\x2 -> ... >>= (\xn -> e)...))

...Haskell’s do-notation allows an even more compact equiva-
lent representation:

do x <- [1..]; y <- [10..]; return (x,y)

130/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Note

...exploring the pairs of the search space using the stream mo-
nad is not yet fair.

E.g., the expression:

do x <- [1..]; y <- [10..]; return (x,y)

yields the infinite list (i.e., stream):

[(1,10),(1,11),(1,12),(1,13),(1,14),..

..the fairness issue is only handled by defining another monad.

131/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Towards a Fair Binding Operation (>>=)

...idea: Embedding diagonalization into (>>=).

To this end, we introduce a new polymorphic type Diag:

newtype Diag a = MkDiag (Stream a) deriving Show

together with a utility function for stripping off the data con-
structor MkDiag:

unDiag :: Diag a -> a

unDiag (MkDiag xs) = xs

132/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

The Diag(onalization) Monad

...making Diag an instance of the type constructor class
Monad:

instance Monad Diag where

return x = MkDiag [x]

MkDiag xs >>= f =

MkDiag (concat (diag (map (unDiag . f) xs)))

where diag rearranges the values into a fair order:

diag :: Stream (Stream a) -> Stream [a]

diag [] = []

diag (xs:xss) =

lzw (++) [[x] | x <- xs] ([] : diag xss)

133/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Utility Function lzw

...using itself the utility function lzw (‘like zipWith.’):

lzw :: (a -> a -> a) -> Stream a ->

Stream a -> Stream a

lzw f [] ys = ys

lzw f xs [] = xs

lzw f (x:xs) (y:ys) = (f x y) : (lzw f xs ys)

Note: lzw equals zipWith except that the non-empty remain-
der of a non-empty argument list is attached, if one of the arg-
ument lists gets empty.

134/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Note

...for monad Diag holds:

– return yields the singleton list.

– undiag strips off the constructor added by the function
f :: a -> Diag b.

– diag arranges the elements of the list into a fair order
(and works equally well for finite and infinite lists).

135/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Illustrating

...the idea underlying the map diag:

Transform an infinite list of infinite lists:

[[x11,x12,x13,x14,..],[x21,x22,x23,..],[x31,x32,..],..]

into an infinite list of finite diagonals:

[[x11],[x12,x21],[x13,x22,x31],[x14,x23,x32,..],..]

This way, we get:

do x <- MkDiag [1..]; y <- MkDiag [10..]; return (x,y)

->> MkDiag [(1,10),(1,11),(2,10),(1,12),(2,11),

(3,10),(1,13),..

which means, we are done:

– The pairs are delivered in a fair order!

136/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Back to the Factoring Problem

...the current status of our approach:

I Generating pairs (in a fair order): Done.

I Selecting the pairs being part of the solution: Still open.

Next, we are going to tackle the selection problem, i.e., filter-
ing out the pairs (r , s) satisfying the equality r × s = n, by:

I Filtering with conditions!

To this end, we introduce a new type constructor class Bunch.

137/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Chapter 16.2.4

Filtering with Conditions

138/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

The Type Constructor Class Bunch

...is defined by:

class Monad m => Bunch m where

-- Empty result (or no answer)

zero :: m a

-- All answers in xm or ym

alt :: m a -> m a -> m a

-- Answers yielded by ‘auxiliary calculations’

-- (for now, think of wrap in terms of the

-- identity, i.e., wrap = id)

wrap :: m a -> m a

Note: zero allows to express that a set of answers is empty;
alt allows to join two sets of answers.

139/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Making [] and Diag Instances of Bunch
...making (lazy) lists and Diag instances of Bunch:

instance Bunch [] where

zero = []

alt xs ys = xs ++ ys

wrap xs = xs

instance Bunch Diag where

zero = MkDiag []

alt (MkDiag xs) (MkDiag ys) -- shuffle in the

= MkDiag (shuffle xs ys) -- interest of

wrap xm = xm -- fairness

shuffle :: [a] -> [a] -> [a]

shuffle [] ys = ys

shuffle (x:xs) ys = x : shuffle ys xs

Note: wrap will only be used be used in Chapter 16.2.5 on-
wards.

140/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Filtering with Conditions using test

Using zero, the function test, which might not look useful at
first sight, yields the key for filtering:

test :: Bunch m => Bool -> m () -- () type idf.

test b = if b then return () else zero -- () value idf.

In fact, all do-expressions filter as desired, i.e., the multiples of
3 from the streams [1..] and MkDiag [1..], respectively:

do x <- [1..]; () <- test (x ‘mod‘ 3 == 0); return x

->> [3,6,9,12,15,18,21,24,27,30,33,..

do x <- [1..]; test (x ‘mod‘ 3 == 0); return x

->> [3,6,9,12,15,18,21,24,27,30,33,..

do x <- MkDiag [1..]; test (x ‘mod‘ 3 == 0); return x

->> MkDiag [3,6,9,12,15,18,21,24,27,30,33,..

141/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

A note on test

In more detail:

do x <- [1..];︷ ︸︸ ︷
:: Int

︷ ︸︸ ︷
:: [] Int

() <- test (x ‘mod‘ 3 == 0);︷ ︸︸ ︷
:: ()

︷ ︸︸ ︷
[()] :: [] (), if true︷ ︸︸ ︷
[] :: [] (), if false

return x︷ ︸︸ ︷
:: [] Int

...if test evaluates to true, it returns the value (), and the
rest of the program is evaluated. If it evaluates to false, it
returns zero, and the rest of the program is skipped for this
value of x. This means, return x is only reached and evalu-
ated for those values of x with x ‘mod‘ 3 equals 0.

142/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Nonetheless

...we are not yet done as the below example shows:

do r <- MkDiag [1..]; s <- MkDiag [1..];

test (r*s==24); return (r,s)

->> MkDiag [(1,24)

...followed again by an infinite wait.

Why is that?

The above expression is equivalent to:

do x <- MkDiag [1..]

(do y <- MkDiag [1..]; test(x*y==24);

return (x,y))

143/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Why is that? (1)

...this means the generator for y is merged with the sub-
sequent test to the (sub-) expression:

do y <- MkDiag [1..]; test(x*y==24); return (x,y)

Intuitively

– This expression yields for a given value of x all values of y
with x ∗ y = 24.

– For x = 1 the answer (1, 24) will be found, in order to
then search in vain for further fitting values of y .

– For x = 5 we thus would not observe any output, since an
infinite search would be initiated for values of y satisfying
5 ∗ y = 24.

144/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Why is that? (2)

...the deeper reason for this (undesired) behaviour:

The bind operation (>>=) of Diag is not associative, i.e.,

xm >>= (\x -> f x >>= g) = (xm >>= f) >>= g

...does not hold! Or, equivalently expressed using do:

do x <- xm; y <- f x; g y

= xm >>= (\x -> f x >>= (\y -> g y))

= xm >>= (\x -> f x >>= g)

= (xm >>= f) >>= g

= (xm >>= (\x -> f x)) >>= (\y -> g y)

= do y <- (do x <- xm; f x); g y

...does not hold.

145/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Overcoming the Problem

...frankly, Diag is not a valid instance of Monad, since it fails
the monad law of associativity for (>>=). The order of apply-
ing generators is thus essential.

For taking this into account, the generators are explicitly pair-
wise grouped together to ensure they are treated fairly by dia-
gonalization:

do (x,y) <- (do u <- MkDiag [1..];

v <- MkDiag [1..]; return (u,v))

test (x*y==24); return (x,y)

->> MkDiag [(4,6),(6,4),(3,8),(8,3),(2,12),(12,2),

(1,24),(24,1)

...yields now all results, followed, of course, by an infinite wait
(due to an infinite search space).

This means, the problem is fixed. We are done.
146/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Note

Getting all results followed by an infinite wait is

I the best we can hope for if the search space is infinite.

Explicit grouping is

I only required because Diag is not a valid instance of
Monad since its bind operation (>>=) fails to be asso-
ciative. If it were, both expressions would be equivalent
and explicit grouping unnecessary.

Next, we will strive for

I avoiding/replacing infinite waiting by indicating search
progress, i.e., by indicating from time to time that
a(nother) result has not (yet) been found.

147/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Chapter 16.2.5

Indicating Search Progress

148/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Indicating Search Progress

...to this end, we introduce a new type Matrix together with
a cost-guided diagonalization search, a true breadth search.

Intuitively

– Values of type Matrix: Infinite lists of finite lists.

– Goal: A program which yields a matrix of answers, where
row i contains all answers which can be computed with
costs c(i) specific for row i .

– Indicating progress: If the list returned as row k is the
empty list, this means ‘nothing found,’ i.e., the set of
solutions which can be computed with costs c(k) is
empty.

149/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

The Type Matrix

The new type Matrix:

newtype Matrix a =

MkMatrix (Stream [a]) deriving Show

...and a utility function for stripping off the data constructor:

unMatrix :: Matrix a -> a

unMatrix (MkMatrix xm) = xm

150/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Towards Matrix an Instance of Bunch (1)

...preliminary reasoning about the required operations and
their properties:

-- Matrix with a single row

return x = MkMatrix [[x]]

-- Matrix without rows

zero = MkMatrix []

-- Concatenating corresponding rows

alt (MkMatrix xm) (MkMatrix ym) =

MkMatrix (lzw (++) xm ym)

-- Taking care of the cost management!

wrap (MkMatrix xm) = MkMatrix ([]:xm)

151/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Towards Matrix an Instance of Bunch (2)

{- (>>=) is essentially defined in terms of bindm; it

handles the data constructor MkMatrix which is not

done by bindm. -}

(>>=) :: Matrix a -> (a -> Matrix b) -> Matrix b

(MkMatrix xm) >>= f = MkMatrix (bindm xm (unMatrix . f))

{- bindm is almost the same as (>>=) but without bother-

ing about MkMatrix; it applies f to all the values

in xm and collects together the results in a matrix

according to their total cost: these are the costs

of the argument of f given by xm plus the cost of

computing its result. -}

bindm :: Stream[a] -> (a -> Stream[b]) -> Stream [b]

bindm xm f = map concat (diag (map (concatAll . map f) xm))

{- A variant of the concat function using lzw. -}

concatAll :: [Stream [b]] -> Stream [b]

concatAll = foldr (lzw (++)) []
152/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Making Matrix an Instance of Bunch
...now we are ready to make Matrix an instance of the type
constructor classes Monad and Bunch:

instance Monad Matrix where

return x = MkMatrix [[x]]

(MkMatrix xm) >>= f = MkMatrix (bindm xm (unMatrix . f))

instance Bunch Matrix where

zero = MkMatrix []

alt(MkMatrix xm) (MkMatrix ym) =

MkMatrix (lzw (++) xm ym)

wrap (MkMatrix xm) = -- ‘wrap xm’ yields a matrix w/

MkMatrix ([]:xm) -- the same answers but each

-- with a cost one higher than

-- its cost in ‘xm’

intMat = MkMatrix [[n] | n <- [1..]] -- intMat replaces

-- stream [1..]

153/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Using intMat and Matrix
...consider the expression:

do r <- intMat; s <- intMat; test(r*s==24); return (r,s)

->> MkMatrix [[],[],[],[],[],[],[],[],[(4,6),(6,4)],

[(3,8),(8,3)],[],[],[(2,12),(12,2)],[],[],[],

[],[],[],[],[],[],[],[(1,24),(24,1)],[],[],[],..

Intuitively

– Diagonals 1 to 8: No factor pairs of 24 were found (indicated by []).

– Diagonal 9: The factor pairs (4,6) and (6,4) were found.

– Diagonal 10: The factor pairs (3,8) and (8,3) were found.

– Diagonals 11 to 12: No factor pairs of 24 were found (ind’d by []).

– Diagonal 13: The factor pairs (2,12) and (12,2) were found.

– ...

...if a diagonal d does not contain a valid factor pair, we get [];
otherwise we get the list of valid factor pairs located in d .

I.e., we are done: Infinite waiting is replaced by progress indication!
154/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Illustrating the Location

...of the factor pairs of 24 in the diagonals of the search space by !(·, ·)!:

1 2 3 4 5 6 7 8 9 ...

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (1,9) ...
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (2,9) ...
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) !(3,8)! (3,9) ...
4 (4,1) (4,2) (4,3) (4,4) (4,5) !(4,6)! (4,7) (4,8) (4,9) ...
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8) (5,9) ...
6 (6,1) (6,2) (6,3) !(6,4)! (6,5) (6,6) (6,7) (6,8) (6,9) ...
7 (7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7) (7,8) (7,9) ...
8 (8,1) (8,2) !(8,3)! (8,4) (8,5) (8,6) (8,7) (8,8) (8,9) ...
9 (9,1) (9,2) (9,3) (9,4) (9,5) (9,6) (9,7) (9,8) (9,9) ...
...

155/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Chapter 16.2.6

Selecting a Search Strategy

156/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

An Array of Search Strategies

...is now at our disposal, namely

1. Depth search ([1..])

2. Diagonalization (MkDiag [[n]| n<-[1..]])

3. Breadth search (MkMatrix [[n]| n<-[1..]])

...and we can choose each of them at the very last moment,
just by picking the right monad when calling a function:

-- Picking the desired search strategy by choos-

-- ing m accordingly at the time of calling factor

factor :: Bunch m => Int -> m (Int, Int)

factor n = do r <- choose [1..]; s <- choose [1..];

test (r*s==n); return (r,s)

choose :: Bunch m => Stream a -> m a

choose (x:xs) = wrap (return x ‘alt‘ choose xs)

157/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Picking a Search Strategy at Call Time
...specifying the result type of factor when calling it selects
the search monad and thus the search strategy applied.

Illustrated in terms of our running example:

-- Depth Search: Picking Stream

factor 24 :: Stream (Int,Int)

->> [(1,24)

-- Diagonalization Search: Picking Diag

factor 24 :: Diag (Int, Int)

->> MkDiag [(4,6),(6,4),(3,8),(8,3),(2,12),(12,2),

(1,24),(24,1)

-- Breadth Search w/ Progress Indication: Picking Matrix

factor 24 :: Matrix (Int, Int)

->> MkMatrix [[],[],[],[],[],[],[],[],[(4,6),(6,4)],

[(3,8),(8,3)],[],[],[(2,12),(12,2)],[],[],[],

[],[],[],[],[],[],[],[(1,24),(24,1)],[],[],[],..

158/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Summarizing our Progress so Far

...recall the 3 key problems we have or had to deal with.

Modelling

1. logic programs yielding (possibly) multiple answers: Done
(using lazy lists).

2. the evaluation strategy inherent to logic programs: Done.

– The search strategy implicit to logic programming
languages has been made explicit. The type constructors
and type classes of Haskell allow even different search
strategies and to pick one conveniently at call time.

3. logical variables (i.e., no distinction between input and
output variables): Still open!

159/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Next

...we tackle this third problem, i.e.:

Modelling

I logical variables (i.e., no distinction between input and
output variables).

Common for evaluating logic programs

I ...not a pure simplification of an initially completely given
expression but a simplification of an expression containing
variables, for which appropriate values have to be deter-
mined. In the course of the computation, variables can be
replaced by other subexpressions containing variables
themselves, for which then appropriate values have to be
found.

Fundamental: Substitution, unification.
160/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Chapter 16.2.7

Terms, Substitutions, Unification, and
Predicates

161/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Terms (1)

...towards logical variables — we introduce a type for terms:

Terms

data Term = Int Int

| Nil

| Cons Term Term

| Var Variable deriving Eq

...will describe values of logic variables.

Named variables and generated variables

data Variable = Named String

| Generated Int deriving (Show, Eq)

...will be used for formulating queries, respectively, evolve in
the course of the computation.

162/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Terms (2)

Utility functions for transforming

I a string into a named variable:

var :: String -> Term

var s = Var (Named s)

I a list of integers into a term:

list :: [Int] -> Term

list xs = foldr Cons Nil (map Int xs)

163/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Substitutions (1)

Substitutions

newtype Subst = MkSubst [(Var,Term)]

...essentially mappings from variables to terms.

Support functions for substitutions:

unSubst :: Subst -> [(Var,Term)]

unSubst (MkSubst s) = s

idsubst :: Subst

idsubst = MkSubst []

extend :: Var -> Term -> Subst -> Subst

extend x t (MkSubst s) = MkSubst ((x:t):s)

164/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Substitutions (2)

Applying a substitution:

apply :: Subst -> Term -> Term

apply s t = -- Replace each variable

case deref s t of -- in t by its image under s

Cons x xs -> Cons (apply s x) (apply s xs)

t′ -> t′

where

deref :: Subst -> Term -> Term

deref s (Var v) =

case lookup v (unSubst s) of

Just t -> deref s t

Nothing -> Var v

deref s t = t

165/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Term Unification (1)
...unifying terms:

unify :: (Term, Term) -> Subst -> Maybe Subst

unify (t,u) s =

case (deref s t, deref s u) of

(Nil, Nil) -> Just s

(Cons x xs, Cons y ys) ->

unify (x,y) s >>= unify (xs, ys)

(Int n, Int m) | (n==m) -> Just s

(Var x, Var y) | (x==y) -> Just s

(Var x, t) -> if occurs x t s

then Nothing

else Just (extend x t s)

(t, Var x) -> if occurs x t s

then Nothing

else Just (extend x t s)

(_,_) -> Nothing

166/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Term Unification (2)

where

occurs :: Variable -> Term -> Subst -> Bool

occurs x t s =

case deref s t of

Var y -> x == y

Cons y ys -> occurs x y s || occurs x ys s

_ -> False

167/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Predicates: Modelling Logic Programs (1)
...in our scenario m is of type bunch.

Logic programs are of type:

type Pred m = Answer -> m Answer

...intuitively, applied to an ‘input’ answer which provides the
information that is already decided about the values of variab-
les, an array of new answers is computed, each of them satis-
fying the constraints expressed in the program.

Answers are of type:

newtype Answer = MkAnswer (Subst,Int)

...intuitively, the substitution carries the information about the
values of variables; the integer value counts how many variab-
les have been generated so far allowing to generate fresh vari-
ables when needed.

168/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Predicates: Modelling Logic Programs (2)
Initial ‘input’ answer:

initial :: Answer

initial = MkAnswer (idsubst, 0)

Logical program run: Predicate p as query is applied to the
initial ‘input’ answer:

run :: Bunch m => Pred m -> m Answer

run p = p initial

Example: Choosing Stream for m allows evaluating the predi-
cate append (defined later):

run (append (list [1,2],list [3,4],var "z"))

:: Stream Answer

->> [{z=[1,2,3,4]}] -- an appropriate show

-- function is assumed

169/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Chapter 16.2.8

Combinators for Logic Programs

170/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Combinator (=:=): Equality
...combinator (=:=) (‘equality’ of terms) allows us to build
simple predicates, e.g.:

run (var "x" =:= Int 3) :: Stream Answer

->> [{x=3}]

Implementation of (=:=) by means of unify:

(=:=) :: Bunch m => Term -> Term -> Pred m

(t =:= u) (MkAnswer (s,n)) = -- Pred m = (Answer -> m Answer)

case unify (t,u) s of

Just s′ -> return (MkAnswer (s′,n))

Nothing -> zero

Intuitively: If the argument terms t and u can be unified wrt
the input answer MkAnswer (s,n), the most general unifier is
returned as the output answer; otherwise there is no answer.

171/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Combinator (&&&): Conjunction
...combinator (&&&) allows us to connect predicates conjunc-
tively, e.g.:

run (var "x" =:= Int 3 &&& var "y" =:= Int 4)

:: Stream Answer

->> [{x=3,y=4}]

run (var "x" =:= Int 3 &&& var "x" =:= Int 4)

:: Stream Answer

->> []

Implementation of (&&&) by means of the bind operation
(>>=) of monad bunch:

(&&&) :: Bunch m => Pred m -> Pred m -> Pred m

(p &&& q) s = p s >>= q

-- or equivalently using the do-notation:

do t <- p s; u <- q t; return u

172/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Combinator (|||): Disjunction

...combinator (|||) allows us to connect predicates disjunc-
tively, e.g.:

run (var "x" =:= Int 3 ||| var "x" =:= Int 4)

:: Stream Answer

->> [{x=3,x=4}]

Implementation of (|||) by means of the alt operation of
monad bunch:

(|||) :: Bunch m => Pred m -> Pred m -> Pred m

(p ||| q) s = alt (p s) (q s)

173/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Assigning Priorities to (=:=), (&&&), (|||)

...is done as follows:

infixr 4 =:=

infixr 3 &&&

infixr 2 |||

174/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Combinator exists: Existential Quantificat.
...a combinator allowing the introduction of new variables in
predicates (exploiting the Int component of answers).

Existential quantification: Introducing local variables in recur-
sive predicates

exists :: Bunch m => (Term -> Pred m) -> Pred m

exists p (MkAnswer (s,n)) =

p (Var (Generated n)) (MkAnswer (s,n+1))

Note:

– The term exists (\x -> ...x...) has the same mean-
ing as the predicate ...x... but with x denoting a fresh
variable which is different from all the other variables used by
the program; n+1 in MkAnswer (s,n+1) ensures that never
the same variable is introduced by nested calls of exists.

– The function exists thus takes as its argument a function,
which expects a term and produces a predicate; it invents a
fresh variable and applies the given function to that variable. 175/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Named vs. Generated Variables
...illustrating the difference:

1) run (var "x" =:= list [1,2,3]

&&& exists (\t -> var "x" =:= Cons (var "y") t))

:: Stream Answer

->> [{x=[1,2,3], y=1}]

2) run (var "x" =:= list[1,2,3]

&&& var "x" =:= Cons (var "y") (var "t"))

:: Stream Answer

->> [{t=[2,3], x=[1,2,3], y=1}]

Note

– Example 1): The named variable y is set to the head of the
list, which is the value of x. The value of the generated vari-
able t is not output.

– Example 2): The same as above but now t denotes a named
variable, whose value is output.

176/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Cost Management of Recursive Predicates

...ensuring that in connection with the bunch type Matrix the
costs per unfolding of the recursive predicate increase by 1
using wrap:

step :: Bunch m => Pred m -> Pred m

step p s = wrap (p s)

Illustrating the usage and effect of step:

run (var "x" =:= Int 0) :: Matrix Answer

->> MkMatrix [[{x=0}]] -- Without step: Just

-- the result.

run (step (var "x" =:= Int 0)) :: Matrix Answer

->> MkMatrix [[],[{x=0}]] -- With step: The result

-- plus the notification that

-- there are no answers of cost 0.

177/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Chapter 16.2.9

Writing Logic Programs: Two Examples

178/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Writing Logic Programs: Two Examples

We consider two examples:

1. Concatenating lists: The predicate append.

2. Testing and constructing ‘good’ sequences: The predicate
good.

179/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Example 1: List Concatenation (1)

...implementing a predicate append (a,b,c), where a, b de-
note lists and c the concatenation of a and b.

The implementation of predicate append:

append :: Bunch m => (Term, Term, Term) -> Pred m

append (p,q,r) =

step (p =:= Nil &&& q =:= r

||| exists (\x -> exists (\a -> exists (\b ->

p =:= Cons x a

&&& r =:= Cons x b

&&& append (a,q,b)))))

180/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Example 1: List Concatenation (2)
...in more detail:

append :: Bunch m => (Term, Term, Term) -> Pred m

append (p,q,r) =

-- Case 1

step (p =:= Nil &&& q =:= r

|||

-- Case 2

exists (\x -> exists (\a -> exists (\b ->

p =:= Cons x a &&& r =:= Cons x b &&& append (a,q,b)))))

Intuitively

– Case 1: If p is Nil, then r must be the same as q.
– Case 2: If p has the form Cons x a, then r must have

the form Cons x b, where b is obtained by recursively
concatenating a with the unchanged q.

– Termination: Is ensured since the third argument is get-
ting smaller in each recursive call of append.

181/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Example 1: List Concatenation (3)

...as common for logic programs, there is no difference bet-
ween input and output variables. Hence, multiple usages of
append are possible, e.g.:

a) Using append for concatenating two lists:

run (append (list [1,2], list [3,4], var "z"))

:: Stream Answer

->> [{z=[1,2,3,4]}]

-- An appropriate implementation of show

-- generating the above output is assumed.

-- More closely related to the internal structure

-- of the value of z would be an output like:

->> Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil)))

182/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Example 1: List Concatenation (4)

Using append for computing the set of lists which equal a
given list

b) ...when concatenated:

run (append (var "x", var "y", list [1,2,3]))

:: Stream Answer

->> [{x = Nil, y = [1,2,3]},

{x = [1], y = [2,3]},

{x = [1,2], y = [3]},

{x = [1,2,3], y = Nil}]

c) ...when concatenated with another given list:

run (append (var "x", list [2,3], list [1,2,3]))

:: Stream Answer

->> [{x = [1]}]

183/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Example 2: ‘Good’ Sequences (1)

...implementing a predicate good allowing to

– generate sequences of 0s and 1s, which are considered
‘good.’

– check, if a sequence of 0s and 1s is ‘good.’

We define:

1. The sequence [0] is good.

2. If the sequences s1 and s2 are good, then also the
sequence [1] ++ s1 ++ s2.

3. There is no other good sequence except of those formed
in accordance to the above two rules.

184/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Example 2: ‘Good’ Sequences (2)

Examples:

I ‘Good’ sequences

[0]

[1]++[0]++[0] = [100]

[1]++[0]++[100] = [10100]

[1]++[100]++[0] = [11000]

[1]++[100]++[10100] = [110010100]

...

I ‘Bad’ sequences

[1], [11], [110], [000], [010100], [1010101],...

185/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Example 2: ‘Good’ Sequences (3)

Lemma 16.2.9.1 (Properties of ‘Good’ Sequences)

If a sequence s is good, then

1. the length of s is odd

2. s = [0] or there is a sequence t with s = [1] ++ t ++ [00]

Note: The converse implication of Lemma 16.2.9.1(2) does
not hold: the sequence [11100] = [1]++[11]++[00], e.g., is
bad.

186/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Example 2: ‘Good’ Sequences (4)

The implementation of predicate good:

good :: Bunch m => Term -> Pred m

good (s) =

step (s =:= Cons (Int 0) Nil

||| exists (\t -> exists (\q -> exists (\r ->

s =:= Cons (Int 1) t

&&& append (q,r,t)

&&& good (q)

&&& good (r)))))

187/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Example 2: ‘Good’ Sequences (5)
...in more detail:

good :: Bunch m => Term -> Pred m

good (s) =

step (

-- Case 1

s =:= Cons (Int 0) Nil

|||

-- Case 2

exist (\t -> exists (\q -> exists (\r ->

s =:= Cons (Int 1) t

&&& append (q,r,t) &&& good (q) &&& good (r)))))

Intuitively

– Case 1: Checks if s is [0].

– Case 2: If s has the form [1]++t for some sequence t, all ways are
checked of splitting t into two sequences q and r with q++r==t

and q and r are good sequences themselves.

– Termination: Is ensured, since t gets smaller in every recursive call
and the number of its splittings is finite.

188/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Example 2: ‘Good’ Sequences (6)

Using predicate good.

1) Checking if a sequence is good using Stream:

run (good (list [1,0,1,1,0,0,1,0,0]))

:: Stream Answer

->> [{}] -- Returning the empty set as answer,

-- if the argument list is good.

run (good (list [1,0,1,1,0,0,1,0,1]))

:: Stream Answer

->> [] -- Returning no answer, if the argument

-- list is bad.

Note: The “empty answer” and the “no answer” correspond
to the answers “yes” and “no” of a Prolog system.

189/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Example 2: ‘Good’ Sequences (7)

2a) Constructing good sequences using Stream:

run (good (var "s")) :: Stream Answer

->> [{s=[0]},

{s=[1,0,0]},

{s=[1,0,1,0,0]},

{s=[1,0,1,0,1,0,0]},

{s=[1,0,1,0,1,0,1,0,0]},..

...some answers will not be generated, since the depth search
induced by Stream is not fair. The computation is thus likely
to get stuck at some point.

190/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Example 2: ‘Good’ Sequences (8)
2b) Constructing good sequences using Diag:

run (good (var "s")) :: Diag Answer

->> Diag [{s=[0]},

{s=[1,0,0]},

{s=[1,0,1,0,0]},

{s=[1,0,1,0,1,0,0]},

{s=[1,1,0,0,0]},

{s=[1,0,1,0,1,0,1,0,0]},

{s=[1,1,0,0,1,0,0]},

{s=[1,0,1,1,0,0,0]},

{s=[1,1,0,0,1,0,1,0,0]},..

...eventually all answers will be generated, since the diagonali-
zation search induced by Diag is fair. However, the output or-
der can hardly be predicted due to the interaction of diagonali-
zation and shuffling.

191/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Example 2: ‘Good’ Sequences (9)

2c) Constructing good sequences using Matrix:

run (good (var "s")) :: Matrix Answer

->> MkMatrix [[],

[{s=[0]}],[],[],[],

[{s=[1,0,0]}],[],[],[],

[{s=[1,0,1,0,0]}],[],

[{s=[1,1,0,0,0]}],[],

[{s=[1,0,1,0,1,0,0]}],[],

[{s=[1,0,1,1,0,0,0]},{s=[1,1,0,0,1,0,0]}],[],

..

...using the cost-guided ‘true’ breadth search induced by
Matrix, the output order of results seems more ‘predictable’
than for the search induced by Diag. Additionally, we get ‘pro-
gress notifications.’

192/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.2.7

16.2.8

16.2.9

16.3

16.4

Note

Exercise 16.2.9.2: Adding Missing Code

Note, code for

1. pretty printing terms and answers

2. making the types Term, Subst, and Answer instances of
the type class Show

is missing and must be provided before using the approach.

Add the missing code.

193/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.3

16.4

Note

Chapter 16.3

In Closing

194/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.3

16.4

Note

In Closing

Current functional logic languages aim at balancing

– generality (in terms of paradigm integration).

– efficiency of implementations.

Functional logic programming offers

– support of specification, prototyping, and application
programming within a single language.

– terse, yet clear, support for rapid development by avoiding
some tedious tasks, and allowance of incremental refine-
ments to improve efficiency.

Overall: Functional logic programming is

– an emerging paradigm with appealing features.

195/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.3

16.4

Note

Chapter 16.4

References, Further Reading

196/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.3

16.4

Note

Chapter 16: Basic Reading
Michael Spivey, Silvija Seres. Combinators for Logic Pro-
gramming. In Jeremy Gibbons, Oege de Moor (Eds.), The
Fun of Programming. Palgrave MacMillan, 177-199, 2003.

Silvija Seres, Michael Spivey. Embedding Prolog in Has-
kell. In Proceedings of the 1999 Haskell Workshop (Has-
kell’99), Technical Report UU-CS-1999-28, Department of
Computer Science, University of Utrecht, 25-38, 1999.

Norbert Eisinger, Tim Geisler, Sven Panne. Logic Imple-
mented Functionally. In Proceedings of the 9th Internati-
onal Symposium on Programming Languages: Implemen-
tations, Logics, and Programs (PLILP’97), Springer-V.,
LNCS 1292, 351-368, 1997.

Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung. Springer-V., 2006. (Kapitel 22, Integration von Kon-
zepten anderer Programmiersprachen)

197/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.3

16.4

Note

Chapter 16: Selected Further Reading (1)

Hassan Ait-Kaci, Roger Nasr. Integrating Logic and Func-
tional Programming. Lisp and Symbolic Computation
2(1):51-89, 1989.

Sergio Antoy, Michael Hanus. Compiling Multi-Paradigm
Declarative Languages into Prolog. In Proceedings of the
International Workshop on Frontiers of Combining Systems
(FroCoS 2000), Springer-V., LNCS 1794, 171-185, 2000.

Sergio Antoy, Michael Hanus. Functional Logic Program-
ming. Communications of the ACM 53(4):74-85, 2010.

Michael Hanus. Functional Logic Programming: From
Theory to Curry. In Programming Logics – Essays in
Memory of Harald Ganzinger. Springer-V., LNCS 7797,
123-168, 2013.

198/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

16.1

16.2

16.3

16.4

Note

Chapter 16: Selected Further Reading (2)

Michael Hanus. Multi-paradigm Declarative Languages. In
Proceedings of the 23rd International Conference on Logic
Programming (ICLP 2007), Springer-V., LNCS 4670,
45-75, 2007.

John W. Lloyd. Programming in an Integrated Functional
and Logic Language. Journal of Functional and Logic
Programming 1999(3), 49 pages, MIT Press, 1999.

199/200

Lecture 6

Detailed
Outline

Chap. 15

Chap. 16

Note

Note

...for additional information and details refer to

I full course notes

available at the homepage of the course at:

http:://www.complang.tuwien.ac.at/knoop/

ffp185A05 ss2020.html

200/200

	Lecture 6
	Detailed Outline
	15 Parsing
	15.1 Motivation
	15.2 Combinator Parsing
	15.3 Monadic Parsing
	15.4 Summary
	15.5 References, Further Reading

	16 Logic Programming Functionally
	16.1 Motivation
	16.2 The Combinator Approach
	16.3 In Closing
	16.4 References, Further Reading

	Note

