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Lecture5

Lecture 5

Part llI: Quality Assurance
— (Chapter 4: Equational Reasoning... (topic of Lecture 3)
— Chapter 5: Testing
— Chapter 6: Verification
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Outline in more Detail (1)

Part Ill: Quality Assurance Detaied
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» Chap. 5: Testing
5.1 Motivation
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5.7 Implementation of QuickCheck

5.8 Summary

5.9 References, Further Reading
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Outline in more Detail (2)

» Chap. 6: Verification Detailed
. . utline
6.1 Inductive Proof Principles on Natural Numbers out

6.1.1 Natural Induction
6.1.2 Strong Induction
6.1.3 Excursus: Fibonacci and The Golden Ratio

6.2 Inductive Proof Principles on Structured Data

6.2.1 Induction and Recursion
6.2.2 Structural Induction

6.3 Inductive Proofs on Algebraic Data Types
6.3.1 Inductive Proofs on Haskell Trees
6.3.2 Inductive Proofs on Haskell Lists
6.3.3 Inductive Proofs on Partial Haskell Lists
6.4 Proving Properties of Streams
6.4.1 Inductive Proofs on Haskell Stream Approximants
6.4.2 Inductive Proofs on Haskell List and Stream
Approximants
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Outline in more Detail (3)

Detailed
Outline

» Chap. 6: Verification (cont'd)
6.5 Proving Equality of Streams

6.5.1 Approximation
6.5.2 Coinduction

6.6 Fixed Point Induction
6.7 Verified Programming, Verification Tools

6.7.1 Correctness by Construction
6.7.2 Provers, Proof-Assistents, Verified Programming

6.8 References, Further Reading
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Chap. 5

Chapter 5
Testing
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Chapter 5.1

Motivation
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Gaining Confidence in Correctness of Programs

...essentially, three means are at our disposal:

1. Correctness by Construction (a priori, cf. Chapter 4)

5.1

— Exemplified by the development of functional pearls.

2. Verification (a posteriori, cf. Chapter 6)
— Rigoros, formal correctness proofs (soundness of the spe-
cification, soundness of the implementation).

— High confidence, high effort (typically).

3. Testing (a posteriori, Chapter 5)
— Ad hoc: Controllable effort but usually no quantifiable
quality statement; hence, a questionable overall value.

— Systematically: Controllable effort, quantifiable quality
statement.
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...even if conducted systematically, we should keep in mind:

Testing can only show the presence of errors.
Not their absence.

Edsger W. Dijkstra (11.5.1930-6.8.2002)
1972 Recipient of the ACM Turing Award

...nonetheless, testing is often amazingly successful in revea-
ling errors.

5.1
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Specifications: Basis of any Kind of Testing

...specifications (shall) describe and fix the meaning of pro- s
grams:

» Informally, e.g., as commentary in the program or sepa-
rately in another document.
~~ Disadvantage: often ambiguous, open to interpretation.
» Formally, e.g., in terms of pre- and post-conditions, in a
formal specification language with a precise semantics.

~» Advantage: precise and rigorous, unambiguous.
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Requirements for Systematic Testing

‘Must’ features:

— Specification-based
— Tool-supported

— Automatic

‘Nice-to-Have' features:

— Reporting
— What has been tested?
— How thoroughly, how comprehensively has been tested?
— How was success defined?
— Reproducibility, Repeatability
— Reproducibility of tests
— Repeatability of tests after program modifications

5.1
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We consider QuickCheck

...for systematic testing, a combinator library enabling tool-
supported specification-based in Haskell.

QuickCheck

» defines a formal specification language
...allowing property definitions inside of the Haskell source
code.

5.1

» defines a test data generator language
...allowing a simple and concise description of a large
number of tests.

» allows tests to be repeated at will
...ensuring reproducibility.

» allows automatic testing of all properties specified in a
module, including the delivery of success/failure reports
...with tests and reports automatically generated.
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It is worth noting

...that QuickCheck and its property specification and test data
generator languages are

» examples of domain-specific embedded languages
...a special strength of functional programming.

» implemented as a combinator library in Haskell
...allowing us to make use of the full expressiveness of
Haskell when defining properties and test data generators.

» part of the standard distribution of Haskell (for both GHC
and Hugs; see module QuickCheck)
...ensuring easy access and immediate usability.

5.1
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Chapter 5.2

Defining Properties
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Defining Simple Properties w/ QuickCheck (1)

...simple properties can be defined in terms of Boolean valued
functions, so-called predicates.

Example:
Define inside of a Haskell program the (predicate) property:

prop_PlusAssociative :: Int -> Int -> Int -> Bool
prop_PlusAssociative x y z = (x+y)+z == x+(y+z)

Double-checking prop PlusAssociative with Hugs yields:

Main>quickCheck prop_PlusAssociative
0K, passed 100 tests
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Defining Simple Properties w/ QuickCheck (2)

. slightly varying the introductory example.

Replace Int by Float in the property definition:

5.1
5.2

prop_PlusAssociative’ :: Float -> Float -> Float -> Bool .
prop_PlusAssociative’ x y z = (x+y)+z == x+(y+z)

Double-checking prop PlusAssociative’ with Hugs might
yield:

Main>quickCheck prop_PlusAssociative’
Falsifiable, after 13 tests:

1.0

-5.16667

-3.71429
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Note

» The type signatures for prop PlusAssociative and
prop PlusAssociative’ are necessary because of the
overloading of (+).

5.2

» If the type signatures were missing, error messages on
ambiguous overloading would be issued; intuitively,
QuickCheck needs to know which test data to generate.

» Type signatures in predicate definitions allow the type-
specific generation of test data.

» Associativity of addition is falsifiable for type Float;
think e.g. of rounding errors.

» Success/error reports are automatically issued and provide
information on

— the number of tests successfully passed
— a counter example.
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A more Advanced Example

...illustrating limitations of property definitions as predicates.

Given:
— A function insert :: Int -> [Int] -> [Int]
— A predicate is ordered :: [Int] -> Bool

To be tested:
— Correctness of the insertion operation: After inserting an
element, the list shall be sorted.

Property definition as a Predicate:

prop_InsertOrdered :: Int -> [Int] -> Bool
prop_InsertOrdered x xs = is_ordered (insert x xs)

This property, however, is falsifiable: It is naive, since the
argument list xs is not required to be sorted itself, and thus

too strong.
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Advanced Features for Property Definitions (1)
...using new syntactic features for property definitions:

prop_InsertOrdered :: Int -> [Int] -> Property
prop_InsertOrdered x xs
= is_ordered xs ==> is_ordered (insert x xs)

Note:

— 'is ordered xs ==>" adds a precondition to the proper-
ty definition; generated test data, which do not match the
precondition, are discarded.

— '==>"s thus not a Boolean operator but affects the selec-
tion of test data; all such operators in QuickCheck have
the result type Property.

— Using ==> amounts to a trial-and-error approach for test
data generation: ‘Generate, then check whether the pre-
condition is matched; if not, drop; repeat.’

5.2
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Advanced Features for Property Definitions (2)

...QuickCheck provides further features for property defini-
tions to improve on this:

prop_InsertOrdered :: Int -> Property
prop_InsertOrdered x = o2
forAll orderedLists $ \xs -> is_ordered (insert x xs)

generates randomly a set of sorted lists
tested to satisfy: is_ordered (insert x xs)

Note:

— While the preceding definition of prop InsertOrdered
X xs = is_ordered xs ==>... quantifies over all lists,
the above property definition quantifies explicitly over the
subset of ordered lists (cf. Chapter 5.5).

— Quantifying over subsets of values of a domain avoids test
data generation in a trial-and-error fashion. Only ‘mea-
ningful’ test data are generated.
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Looking ahead

...QuickCheck supports also the specification of much more
sophisticated properties, e.g.:

» The list resulting from insertion coincides with the argu- ”?
ment list (except of the inserted element).

as well as testing of
» more than one property at the same time.
This is achieved by running a (small) program (also called
quickCheck) from the command line. E.g., the call:
— Main>quickCheck Module.hs

checks all properties defined in Module.hs at the same
time.
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Chapter 5.3
Testing against Abstract Models

22/246



Objective

Testing the correctness (or: soundness) of an
— implementation

against a .
— reference implementation

of a so-called

— abstract model (or: reference model).

We demonstrate this considering an extended example:

— Testing soundness of an efficient implementation of
queues against a less efficient reference implementation
of an abstract model of queues.
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The Abstract Model of Queues

...defined in terms of an:

(Executable) Specification:

53

type Queue a = [a]

emptyQ =[]

en x q = q ++ [x] -- Inefficient dueto (++)!
is_emptyQ q = null q -- Costof enQ proportional
frontQ (x:q) = x -- tonumber of list elements.
deQ (x:q) =q

...in the following, this executable specification of ‘first-in-first-
out (FIFO)' queues serves as the reference implementation for
queues; an implementation, which is simple but inefficient.
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Implementing Queues more Efficiently

...than by the reference implementation of the abstract model:

Key idea (due to F. Warren Burton, 1982):

— Split a queue into two portions (a queue front and a
queue back).
— Store the back of the queue in reverse order.

53

This queue representation ensures:
— Efficient access to both queue front and queue back:
(4++) is replaced by (:) (so-called strength reduction).
Example:

o~

— Queue representations: [7,2,9,4,1,6,8,3] =
([7,2,9,4],(3,8,6,11), ([7,2],[3,8,6,1,4,91),
([7,2,9,4,11,13,8,61),...

— Abstract model enqueuing, (++): [7,2,9,4,1,6,8,3]++[5]

— Implementation enqueuing, (:): ([7,2,9,4]1,5:[3,8,6,11),
(t7,21,5:103,8,6,1,4,91), (17,2,9,4,11,5:[3,8,6]),...
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Implementing the Abstract Model of Queues

Implementation:

type Queuel a = ([lal,[al)

emptyQI = ([J,[D .

enQI x (f,b) = (f,x:b) --(:) instead of (++)! ™
—- Therefore, more -
——efficient!

is_emptyQI (f,b) = null f

frontQI (x:f,b) = x

deQI (x:f,b) = f1ipQI (f,b)

where
f1ipQI ([],b) = (reverse b,[]) -- ‘back’ be-
f1ipQI q =q -- comes ‘front’

-— when ‘front’
-- gets empty.
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Relating Implementation and Abstract Model
...by means of the function retrieve:

retrieve :: Queuel a -> Queue a
retrieve (f,b) = f ++ reverse b

53

Note, retrieve transforms each of the (usually many)

— ‘concrete’ representations of an ‘abstract’ queue into their
unique canonical representation as an ‘abstract’ queue,
i.e., it transforms values of (Queuel a) into their unique
matching value of (Queue a).

Example:

retrieve ([7,2,9,4]1,[5,3,8,6,1]) ->> [7,2,9,4,1,6,8,3,5]
retrieve ([7,2],[5,3,8,6,1,4,9]1) ->> [7,2,9,4,1,6,8,3,5]
retrieve ([7,2,9,4,1],[5,3,8,6]1) ->> [7,2,9,4,1,6,8,3,5]

H
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Now

...we want to test whether operations defined on (Queuel a)
behave in the same way as their specifying counterparts de-
fined on (Queue a).

53

For convenience, we focus on queues of integer values (i.e.,
(QueueI Int) and (Queue Int)). For this reason, we omit
giving (the actually required) type signatures in property defi-
nitions.

Using retrieve :: Queuel Int -> Queue Int we can
check, whether the results of applying

— the efficient operations on (QueueI Int) match the ones
of their abstract counterparts on (Queue Int).
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Soundness Properties: Initial Definitions
Defining five soundness properties:

prop_emptyQ = retrieve emptyQI == emptyQ
prop_enQ x q retrieve (enQI x q)

== enQ x (retrieve q) o
prop_isemptyQ q = is_emptyQI q -
== is_emptyQ (retrieve q)
frontQI q == frontQ (retrieve q)
retrieve (deQI q)
== deQ (retrieve q)

prop_frontQ q
prop_deQ q

...which can reasonably be expected to hold, if the implemen-
tation of queues over (Queuel Int) is correct wrt their ab-
stract model over (Queue Int).

However, this is not true! Three (out of five) properties can be
falsified!
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Falsifiability of prop_isemptyQ
Testing prop_isemptyQ using QuickCheck, e.g., yields:

Main>quickCheck prop_isemptyQ
Falsifiable, after 4 tests: .
(a1, -1 s

Cause of failure: The definition of is_emptyQI implicitly
assumes that the following invariant holds:

— (Silently assumed) invariant: The front of a list is only
empty, if its back is empty, too:

is_emptyQI (f,b) = null b
since is_emptyQI (f,b) =null f, emptyQI= (], []).

This invariant, however, is not enforced by the implementation!
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Falsifiability of frontQI and deQI

...the definitions of frontQI and deQI rely on the very same
assumption as the one of is _emptyQI that the front of a
queue is only empty, if its back is empty, too. .

Thus, in addition to prop_isemptyQ the properties
— prop_frontQ
— prop-deQ
are falsifiable, too!
Remedy: The silently made assumption on the invariant,

which we took care of when defining deQI, must be made
explicit in the property definitions.
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Soundness Properties: 1st Refinement (1)
We define the invariant as follows:

invariant :: Queuel Int -> Bool
invariant (f,b) = (not (null f)) || null b

53

...and adjust the property definitions accordingly:

prop_emptyQ = retrieve emptyQI == emptyQ
prop_enQ x q = invariant q ==>
retrieve (enQI x q) == enQ x (retrieve q)

prop_isemptyQ q = invariant q ==>
is_emptyQI q == is_emptyQ (retrieve q)

prop_frontQ q = invariant q ==>
frontQI q == frontQ (retrieve q)
prop_deQ q = invariant q ==>

retrieve (deQI q) == deQ (retrieve q)
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Soundness Properties: 1st Refinement (2)

Now, testing prop isempty(Q using QuickCheck yields:

Main>quickCheck prop_isempty(Q .
0K, passed 100 tests ”

However, testing prop frontQ still fails:

Main>quickCheck prop_frontQ
Program error: front ([],[])

Cause of failure: frontQI (as well as deQI) may only be
applied to non-empty lists.

...so far, we did not take care of this.
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Soundness Properties: 2nd Refinement

...to fix this, add not (is_emptyQI q) to the precondition of
the challenged properties.

This leads to:
prop_emptyQ = retrieve emptyQI == emptyQ
prop_en x q = invariant q ==>

retrieve (enQI x q) == enQ x (retrieve q)

prop_isemptyQ q = invariant q ==>
is_emptyQI q == is_emptyQ (retrieve q)
prop_frontQ q = invariant q && not (is_emptyQI q) ==>
frontQI q == frontQ (retrieve q)
prop_deQ q = invariant q && not (is_emptyQI q) ==>
retrieve (deQI q) == deQ (retrieve q)

53
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Soundness Issues Reconsidered

After this 2nd refinement, all five properties pass now the
QuickCheck test successfully!

However, we are not yet done. So far we only tested that

» operations on queues behave correctly on queues which
satisfy the invariant:

invariant :: Queuel Int -> Bool
invariant (f,b) = (not (null f)) || null b

Additionally, we need to check that

» operations producing a queue do only produce queues
which satisfy the invariant.

53
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Additional Soundness Properties

...for operations producing queues:

53

prop_inv_emptyQ invariant emptyQI
prop_inv_en] x q = invariant q ==>
invariant (enQI x q)
invariant q &&
not (is_emptyQI q) ==>
invariant (deQI q)

prop_inv_deQ q
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Testing the Additional Soundness Properties
Testing the additional properties with QuickCheck yields:

Main>quickCheck prop_inv_en(
Falsifiable, after 0 tests:
O 53

(1,

Cause of failure: The implementation of enQI does not ensure
the validity of the invariant when applied to the empty list:

— Adding to the back of the empty queue breaks the
invariant!

This means:

— The implementation of enQI by enQI x (f,b) =
(f,x:b) is faulty and needs to be fixed!
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Fixing the Faulty Implementation of enQI

...by replacing the faulty implementation of enQI:
enQI x (f,b) = (f,x:b) .
by the sound one:

enQI x (f,b) = flipQ (f,x:b)

where
f1ipQI ([J,b) = (reverse b, [])
f1ipQI q =q

Now, all 8 properties pass the QuickCheck test successfully!
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Summary

...reconsidering the development of the example, testing re-
vealed

» (only) one bug in the implementation (this was in func-
tion enQI; for deQI, we were keen to get handling empty
back queues right from the very beginnings)

» several missing preconditions and one missing invariant in
the initial property definitions.

This is typical, and both revealing flaws in implementations
and property definitions is valuable:

» The initially missing preconditions and the invariant are
now explicitly given in the program text as part of the
property definitions.

» They add to understanding the program and are valuable
as documentation, both for the program developer and
for future users (think of program maintainance!).
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Chapter 5.4

Testing against Algebraic Specifications
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Objective

Testing the correctness (or: soundness) of an
— implementation
against
— equational constraints ;
the operations ought to satisfy, a so-called

— algebraic specification.
...testing against an algebraic specification is (often) a useful

alternative to testing against an abstract model. In the follow-
ing, we demonstrate this considering queues as an example.
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Algebraic Specification of Queue Operations

...any proper definition of queue operations can be expected to
satisfy the following equational constraints:

prop_isemptyQ q =
invariant q ==> isEmptyQIl q == (q == emptyQI)

5.4

prop_front_emptyQ x = frontQI (enQI x emptyQI) ==x
prop_front_enQ x q =
invariant q &% not (is_emptyQI q) ==>

frontQI (enQI x q) == frontQI q

prop_deQ_emptyQ x = deQI (enQI x emptyQI) ==emptyQI
prop_deQ_enQ x q =
invariant q && not (is_emptyQI q) ==>

deQI (enQI x q) == enQI x (deQI q)

Compare these property definitions with the behaviour specification
of the abstract data type (ADT) queue in Chapter 8.3!
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Testing against the Algebraic Specification

...testing the equational constraint prop_deQ_enQ using
QuickCheck yields:

Main>quickCheck prop_de(_en(Q

Falsifiable, after 1 tests:
0 -
(11, [0D)

Cause of failure: Evaluating

— the left hand side expression yields:
deQI (enQI 0 ([1],[0])) ->> deQI ([1],[0,0])
->> f1ipQI ([]1,[0,0]1) ->> ([0,01,[1)
— the right hand side expression yields:
enQI 0 (deQI ([1],[0]1)) ->> enQI O (f1lipQI
([1,001)) ->> enQI 0 ([0, []) —>> ([0],[0])
— ([0,0],[1) and ([0],[0]) are equivalent (they repre-

sent the abstract queue [0,0]) but are not exactly equal!
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Refining the Algebraic Specification
...by replacing testing for equality by testing for equivalence:

q 'equiv’ g = invariant q && invariant q &&
retrieve q == retrieve ¢

5.4

Replacing the initial formulation of:

prop_deQ_enQ x q =
invariant q &% not (is_emptyQI q) ==>
deQI (enQI x q) == enQI x (deQI q)

by the new one:

prop_deQ_enQ x q =
invariant q && not (is_emptyQI q) ==>
deQI (enQI x q) ‘equiv’ enQI x (deQI q)

the QuickCheck test of prop de) en(] passes successfully!

44 /246



Testing further Equational Constraints

Analogously to Chapter 5.3, we also need to check that

— operations producing a queue do only produce queues
which are equivalent, if the arguments are.
To this end, we introduce additional soundness properties for
the operations enQI and deQI:

prop_enQ_equivQ q q’ x =
q ‘equiv’ q ==> enQI x q ‘equiv’ enQI x ¢

prop_deQ_equivQ q q' =
q ‘equiv’ q’ && not (null q) &% not (null q') ==>
deQI q ‘equiv’ deQI ¢
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Note

...though mathematically sound, the usability of the property
definitions prop_enQ equiv and prop _deQ equiv for testing
with QuickCheck is limited.

Testing them with QuickCheck, we might observe, e.g.:

Main>quickCheck prop_en(_equiv
Arguments exhausted after 58 tests.

...which is due to an implementation feature of QuickCheck:

— QuickCheck generates the two lists g und g’ randomly.

— Most of the generated pairs of lists will thus not be equi-
valent, and hence be discarded as test cases.

— QuickCheck makes a maximum number of tries of gene-
rating test cases (default: 1.000); afterwards, it stops,
possibly before the number of 100 test cases is reached.
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Looking ahead

...QuickCheck provides features to cope with such problems
of test case generation; providing especially support for

5.4

» Quantifying over subsets of value domains by means of

— filters
— generators (type-based, weighted, size controlled,...)

> ...

» Test case monitoring

...which we are going to illustrate next, mostly driven by exam-
ples.
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Chapter 5.5

Controlling Test Data Generation
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Controlling Test Data Domains and Sizes (1)

...or: How to shape the 1) value domains test data are drawn
from, and 2) the size of individual test data generated?

1) Value Domains of Test Data and Quantifying over Them o

— By default, the parameters of QuickCheck properties are
quantified over all values of the underlying data type
(e.g., all integers, all lists of integers; not: all even inte-
gers, all sorted lists of integers, etc.).

As we have seen, however, it is often preferable or even
necessary to only quantify over subsets of a value domain
(e.g., all sorted lists of integers).
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Controlling Test Data Domains and Sizes (2)

2) Size of Individual Test Data

— A set of test data drawn from a value domain should be a
‘fair mix of smaller and larger values’' avoiding the gene-
ration of extremely large values as well as of (too many)
duplicates, in particular, of ‘trivial’ values (e.g., empty 55
list, lists of length 1, empty trees, etc.).

Meeting the ‘fairness’ requirement is especially challeng-
ing for data domains whose values are recursively defined
(e.g., trees, lists, etc.).

QuickCheck offers several means for controlling

» quantification over sets and subsets of sets of value do-
mains (cf. Chapter 5.5.1).

» the size of generated values (cf. Chapter 5.5.2).
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Chapter 5.5.1

Controlling Quantification over Value
Domains
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Controlling Quantification over Value Domains

Discussed so far (cf. Chapter 5.3, 5.4):

1. Boolean functions: Used as preconditions in property
definitions act as test case filters selecting useful ones:
» Works well, if most elements of the underlying value do-
main are members of the relevant subset, too.
» Works poorly, if only a few elements of the underlying
domain are members of the relevant subset.

Discussed next:

2. Generators: Used for targeted generation of test data of
the subset of interest:

P Generators of the monadic type (Gen a) generate ran-
dom values of type a; conceptually, generators can be
identified with the set of values they can generate.

» Generators are used together with the property forall
set p, which tests property p for all randomly generated
elements of the set set.
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Note

...Boolean functions as test case filters and generators differ in
their strengths and limitations for particular tasks, e.g., repre-

senting relations of values like equivalence of values. Represen-
ting value equivalence by a

» Boolean function makes it easy to check whether two
values are equivalent, but difficult to generate values
which are equivalent.

» Generator, i.e., a function mapping a value to a set of
related (e.g., equivalent) values, makes it easy to gene-
rate equivalent values, but difficult to check if two given
values are equivalent.

...we now continue with the generator approach.
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The 1-Ary Type Constructor Gen

...values generated by QuickCheck are of type Gen a.

The type constructor Gen is an instance of the type construc-
tor class Monad (cf. Chapter 13), which eases the definition of
concrete data generators.

Consider e.g. the two generator expressions return a and
do {x <- s; e} of type Gen a:
» return a can be thought of to represent the singleton
set {a}, and to generate value a.

» do {x <- s; e} can be thought of to represent the set
{elx € s}
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The Function choose

...for random element generation.

choose is the most basic function of QuickCheck supporting
to make a choice:

choose :: Random a => (a,a) -> Gen a

Note:

» Random denotes a type class provided by the library mo-
dule Random of Haskell; its operations support the gene-
ration of pseudo-random numbers.

» choose generates a ‘random’ element of domain a of the
specified range.

» Conceptually, choose (1,n), e.g., represents the set
{1,...,n}, and randomly selects one element of it.
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Defining Generators using choose

...illlustrated by defining the generator equivQ, which, given a
queue value g, generates a new queue value g’ equivalent to g:

equivQ :: Queuel a -> Gen (Queuel a)
equivQ q =
do k <- choose (0,0 ‘max’ (n-1))
return (take (n-k) els,reverse (drop (n-k) els))
where els = retrieve q
n = length els

55.1

Note:

» Given a (Queuel a)-value g, equiv(Q] generates random-
ly a queue g with the same elements as q.

» The number k of elements in the back queue of ¢’ is
chosen properly smaller than the total number of elements
of g’ (supposed this total number is different from 0).

56/246



Property Definitions with Generators (1)

...using equivQ, we define soundness property:

prop_equivQ) q = invariant q ==>
forAll (equiv@ q) $ \q -> q ‘equiv’ ¢

...allowing to test, whether equiv() produces in fact queues,
which are equivalent to the argument it is applied to.

Note:

» ($) means function application allowing the omission of
parentheses (see the anonymous \-expression in the defi-
nition of prop_equivQ).

» The property dual to prop _equivQ, whether all queues
equivalent to some queue can be generated by equivQ,
cannot in general be established by testing.

55.1

57/246



Property Definitions with Generators (2)

...using equiv(, we can define counterparts of the properties
prop_en_equivQ and prop_deQ_equivQ allowing to test,
whether enQ) and deQ map equivalent queues to equivalent
queues:

prop_enQ_equivQ g x = invariant q ==> i
forAll (equivQ q) $\q'->enQI x q ‘equiv’ enQI x q' *=
prop_deQ_equivQ q = invariant q && not (null q) ==>
forAll (equivQ q) $\q ->deQI q ‘equiv’ deQI ¢ |

For comparison, we recall the initial definitions (cf. Chapter 5.4):

prop_enQ_equivQ q q’ x =

q ‘equiv' q ==> enQI x q ‘equiv’ enQI x ¢

prop_deQ_equivQ q q' =

q ‘equiv' q && not (null q) &% not (null ¢') ==>
deQI q ‘equiv’ deQI ¢
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Type-based Generation of Value Sets

...Is enabled by the overloaded generator arbitrary, e.g., for
generating the argument values of properties:

Example: Generating (and testing) over unrestriced sets of
numerical values:

prop_max_le =
forAll arbitrary $ \x ->
forAll arbitrary $§ \y -> x <= x ‘max’ y

This definition is equivalent to the short-hand form:

prop_max_le x y = x <= X ‘max' y
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Type-based Generation of Subsets of Value Sets

...can be achieved by arbitrary followed by a suitable value
modification:

Example: The generator atLeast defined on top of
arbitrary generates the set of numerical values { y |y > x }:

atLeast x = do diff <- arbitrary
return (x + abs diff)

Note, the definition of atLeast makes use of the equality of
the sets:

{yly>x}={x+absd|dec Z}

which is valid for numerical values (note, the idea underlying
the definition of atLeast can be adapted to types other than

numerical ones).
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Selecting a Generator

...Is enabled by the generator oneof which can conceptually
be thought of as set union operator.

Example: The generator orderedLists (cf. Chapter 5.2) for
generating sorted lists is based on the idea that a sorted list is
either 1) empty or 2) the result of attaching a new head ele-
ment to a sorted list of larger elements:

orderedLists = do x <- arbitrary
listsFrom x

where
listsFrom x
= oneof [return [], -- either: empty

do y <- atLeast x -- or:a listofelems > x
1iftM (x:) (listsFrom y)] -- extended

-- by x as new head element
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Note

...the oneof generator picks alternatives with

» equal probability.

This can impact the generation of test data unduly. E.g., the
generator orderedLists will produce

» the empty list far too often
questioning its usability as an adequate test data generator for

ordered lists.

QuickCheck offers thus means for a weighted selection of ge-
nerators.
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Weighted Selection of a Generator

...Is enabled by the generator frequency, which allows assign-
ing weights to a set of selectable generators controlling their
relative likelihood of being actually selected:

frequency :: [(Int,Gen a)] -> Gen a

Example:

listsFrom x
= frequency [(1,return []),
(4,do y <- atleast x
1iftM (x:) (listsFrom y)) ]

Note:
» QuickCheck generators correspond actually to a probabi-
lity distribution over a set, rather than just the set itself.
» The assignment of weights above gives the cons case a
weight of 4; generated lists will thus have an average
length of 4 elements. 63/246



Pragmatics: Generators as Default Generators

...if a generator like orderedLists is used frequently, this
generator should be made the default generator for values of
the generated type. To this end, define a new type for the
value type generated and make this new type an instance of
the type class Arbitrary as shown below:

newtype OrderedList a = OL [a]

instance (Num a, Arbitrary a) =>
Arbitrary (OrderedList a) where
arbitrary = 1iftM OL orderedLists

Example: Redefining insert with the new type OrderedList

insert :: Ord a => a -> OrderedList a
-> OrderedlList a

ensures that arguments generated for insert will automati-
cally be ordered.
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Chapter 5.5.2
Controlling the Size of Test Data
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Controlling the Size of Test Data

...Is usually necessary in order to avoid the generation of un-
reasonably large test cases; QuickCheck provides support for
this.

QuickCheck generators are parameterized on an

» integer valued parameter size, which is gradually in-
creased during testing (first tests explore small cases,
later tests larger and larger ones).

The interpretation of the size parameter is up to the

» implementor of a test case generator (the default gene-
rator for lists, e.g., interpretes size as an upper bound
on the length of lists).

Generators depending on size are defined using function:

sized :: (Int -> Gen a) -> Gen a
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Example

...the default generator vector for list values:
vector n = sequence [arbitrary | i <- [1..n]]

...calling vector with argument length generates lists of
random values of length length.

vector in concert with function sized:

sized $ \n -> do length <- choose (0,n)
vector length
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The Function resize

...allows to supply an explicit size argument to a generator:

resize :: Int -> Gen a -> Gen a

Example: Generating a list of lists while bounding the total
number of elements by the size parameter:

sized$\n -> resize (round (sqrt (fromInt n))) arbitrary

Note: The definition uses the default generator but replaces
the size parameter by its square root. The list of lists is gene-
rated by the default generator arbitrary but with a smaller
size parameter.
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Chapter 5.5.3

Example: Test Data Generators at Work
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Generators for Built-in and User-defined Types

Note, test data generators for

» predefined (‘built-in") types of Haskell
— are provided by QuickCheck.

» user-defined types
— must be provided by the user in terms of defining sui-
table instances of the type class Arbitrary.
— require usually measures to control the size of generated
test data, especially for values of inductively defined
types.

This is illustrated next considering binary trees as example:

data Tree a = Leaf | Branch (Tree a) a (Tree a)
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A User-defined Generator for Binary Trees

...we make the type (Tree a) straightforwardly an instance of
the type class Arbitrary:

instance Arbitrary a => Arbitrary (Tree a) where
arbitrary =
frequency [(1,return Leaf),
(3,1iftM3 Branch
arbitrary arbitrary arbitrary)]

Note: Assigning the weights (1 resp. 3) to the two subgenera-
tors shall ensure that not too many trivial trees of size 1 are
generated.
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Analyzing the Arbitrary Instance (Tree a)

Fact:

» The likelihood that a finite tree is generated, is only one
third because termination is only possible, if all subtrees
which are generated are finite.

Problem:

» With increasing breadth of the tree under generation, the
requirement of selecting the ‘terminating’ branch must be
satisfied simultaneously at ever more places pushing the
likelihood for this towards 0.

Remedy: Using the size parameter in order to ensure
» termination.

» generation of ‘reasonably’ sized trees.
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The Refined Generator for Binary Trees

...replace the initial instance-declaration for (Tree a) by:

instance Arbitrary a => Arbitrary (Tree a) where
arbitrary = sized arbTree

arbTree 0 = return Leaf
arbTree n | n>0 =
frequency [(1,return Leaf),
(3,1iftM3 Branch shrub arbitrary shrub)]
where shrub = arbTree (n ‘div' 2)

553

Note:

» shrub is a generator for ‘'small(er)’ trees. It is not bound to a
special tree; the two occurrences of shrub will usually gene-
rate different trees.

» Since the size limit for subtrees is halved, their total size is
bounded by the argument value of arbTree.

» Generators for values of recursive types must usually be
handled like in this example. s



A Note on Lift Functions

...lift functions used throughout Chapter 5.5 are provided by
the library module Monad (cf. Chapter 13):

1liftM :: Monad m => (a -> b) -> (m a -> m b)
1iftM2 :: Monad m => (a > b > c¢c) > (ma ->mb ->m c)
1iftM3 :: Monad m => (a -=> b -> c > d) —>
(ma->mb->mc ->md)
1iftM4 :: Monad m => (a > b > c > d -> e) —>
(ma->mb->mc->md ->me)
1iftM5 :: Monad m => (a -=> b ->¢c ->d > e -> f) —>
ma->mb->mc->md >me ->m f)

553
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Chapter 5.6

Monitoring, Reporting, and Coverage
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Why is Test-Data Monitoring Useful?

...reconsider the example of inserting into a sorted list:

prop_InsertOrdered :: Int -> [Int] -> Property
prop_InsertOrdered x xs o
= is_ordered xs ==> is_ordered (insert x xs)

QuickCheck checks prop_InsertOrdered by
» randomly generating lists

and checking each of them being sorted (used as a test case)
or not (discarded).
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Analyzing Potential Risks

Fact:

» The likelihood that a randomly generated list is sorted
decreases with its length.

Conversely: The likelihood of being sorted is the higher
the shorter the list is.

Risk:
» Property prop InsertOrdered is likely to be mostly
tested with lists of length one or two.

» Even QuickCheck runs run to completion are not mean-
ingful.

5.6
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Test Data Monitoring and Reporting

...can thus provide useful hints on the

» quality and coverage of the test cases
of a QuickCheck run.

QuickCheck provides a variety of "
» monitoring and reporting possibilities

for this purpose.

Instrumental are the QuickCheck combinators:

1. trivial
2. classify
3. collect
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The QuickCheck Combinator trivial

...allows monitoring and reporting the percentage of test cases
which are considered trivial, where the meaning of

» ‘trivial’ is user-definable, e.g., lists up to a length of 2.

Example:

5.6

prop_InsertOrdered :: Int -> [Int] -> Property
prop_InsertOrdered x xs = is_ordered xs ==>
trivial (length xs <= 2) $ is_ordered (insert x xs)

Double-checking the property with Hugs might yield:

Main>quickCheck prop_InsertOrdered
OK, passed 100 tests (917 trivial).
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Analyzing the QuickCheck Run

...reveals:
» 91% of the test cases were trivial checking lists of length

2 or shorter.
» These are far too many in order to ensure that the test

run is meaningful.
» This shows again that the operator ==> must be used 56
with care in test case generators.

Remedy:
» Replacing the default means of test case generation by a
user-defined generator, e.g., by proper quantification as
sketched in Chapter 5.2.

Note:
» The combinator trivial is defined in terms of the more
general combinator classify:

trivial p = classify p "trivial"
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The QuickCheck Combinator classify

...supports a more refined test-case monitoring and reporting
than trivial by allowing to define sets of interesting test
case classes:

Example:

prop_InsertOrdered x xs = is_ordered xs ==>

classify (null xs) "empty lists" $
classify (length xs == 1) "unit lists" §
is_ordered (insert x xs)

Double-checking this property might yield:

Main>quickCheck prop_InsertOrdered
0K, passed 100 tests.

42% unit lists.

40% empty lists.

5.6
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The QuickCheck Combinator collect

...goes beyond the monitoring and reporting capabilities of
even classify by delivering histograms of test case values.

Example:

prop_InsertOrdered x xs = is_ordered xs ==> ‘
collect (length xs) $ is_ordered (insert x xs) >

Double-checking this property might yield:

Main>quickCheck prop_InsertOrdered
0K, passed 100 tests.

46% 0.

34% 1.

15% 2.

5% 3.
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Chapter 5.7

Implementation of QuickCheck
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QuickCheck: Facts and Figures

QuickCheck

— consists in total of about 300 lines of code.

— has been developed by Koen Claessen and John Hughes.
— was initially presented in:

— Koen Claessen, John Hughes. QuickCheck: A Light-
weight Tool for Random Testing of Haskell Programs. In
Proceedings of the 5th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2000),
268-279, 2000.

— This chapter is mostly based on:

— Koen Claessen, John Hughes. Specification-based
Testing with QuickCheck. In Jeremy Gibbons, Oege de
Moor (Eds.), The Fun of Programming. Palgrave
MacMillan, 17-39, 2003.
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A Glimpse of the QuickCheck Code

newtype Property = Prop (Gen Result)

class Testable a where
property :: a —> Property

instance Testable Bool where

property b = Prop (return (resultBool b)) o
instance Testable Property where

property p = p

instance (Arbitrary a, Show a, Testable b) =>
Testable (a ->b) where
property f = forAll arbitrary £

quickCheck :: Testable a => a -> I0 ()
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For further Details

...including applications, refer to e.g.:

— Koen Claessen, John Hughes. QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs. In Procee-
dings of the 5th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2000), 268-279, 2000.

— Koen Claessen, John Hughes. Testing Monadic Code with
QuickCheck. In Proceedings of the ACM SIGPLAN 2002
Haskell Workshop (Haskell 2002), 65-77, 2002.

5.7
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Chapter 5.8

Summary
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On the Relevance and Value

...of specifications, testing, and tools like QuickCheck.

Specifications: Experience shows
» Formalizing specifications is meaningful (even if they are
not used for a formal proof of soundness).
» Specifications provided are (initially) often faulty them-
selves.

58

Testing: Investigations of Richard Hamlet reported in

— Richard Hamlet. Random Testing. Encyclopedia of
Software Engineering, Wiley, 970-978, 1994.

indicate that
» results from a high number of test cases are meaningful
even if test cases are randomly generated.

» random test case generation is often ‘cheap.’
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On the Value of Tools like QuickCheck

Together, the findings on specifications and testing provide
good reasons for using tools like QuickCheck on a

> routine basis.

Experience actually shows that QuickCheck is effective for

» disclosing bugs in programs and specifications with little
effort.

» reducing test costs while at the same time testing more
thoroughly.

58

Note that there is a range of other combinator libraries sup-
porting the lightweight testing of Haskell programs, e.g.:

— EasyCheck

— SmallCheck

— Lazy SmallCheck

— Hat (for tracing Haskell programs)
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In Closing: Another Independent Confirmation

...of the relevance of testing:

...the success of tests is that they test

the programmer, not the program.

Rigorous testing regimes rapidly persuade

error-prone programmers (like me) to remove
themselves from the profession.

]

...programmers who have survived the rigors of

testing are what make programs of the present day
useful, efficient, and (nearly) correct.

C. Antony Hoare (* 1934)

Recipient of the 1980 ACM A.M. Turing Award:

For his fundamental contributions to the definition and

design of programming languages.

58
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Background: An Influential Work

...of Tony Hoare, advocating rigor and correctness from the
very beginnings in software development:

— Charles A.R. Hoare. An Axiomatic Basis for Computer
Programming. Communications of the ACM 12(10):
576-580, 1969.

58

and a retrospective written 40 years later:

— Charles A.R. Hoare. Retrospective: An Axiomatic Basis
for Computer Programming. Communications of the
ACM 52(10):30-32, 2009.
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Ext. Quote from Hoare's Retrospective Article

“One thing | got spectacularly wrong. | could see that programs were
getting larger, and | thought that testing would be an increasingly in-
effective way of removing errors from them. | did not realize that the
success of tests is that they test the programmer, not the program. Rigo-
rous testing regimes rapidly persuade error-prone programmers (like me)
to remove themselves from the profession. Failure in test immediately
punishes any lapse in programming concentration, and (just as impor-
tant) the failure count enables implementers to resist management pres-
sure for premature delivery of unreliable code [...]. The experience,
judgment, and intuition of programmers who have survived the rigors of
testing are what make programs of the present day useful, efficient, and
(nearly) correct. Formal methods for achieving correctness must support
the intuitive judgment of programmers, not replace it. My basic mistake
was to set up proof in opposition to testing, where in fact both of them
are valuable and mutually supportive ways of accumulating evidence of
the correctness and serviceability of programs.”

58

92/246



Chapter 5.9

References, Further Reading
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This software comes “without warranty
of any kind, expressed or implied,
including but not limited to, the implied
warranties of merchantability and
fitness for a particular purpose.”

Chapter 6

Verification

Chap. 6
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...[both] proof [and] testing [...] are valuable and
mutually supportive ways of accumulating evidence

of the correctness and serviceability of programs.
C. Antony Hoare (*1934)
Recipient of the 1980 ACM A.M. Turing Award:
For his fundamental contributions to the definition and
design of programming languages.

Chap. 6

...while coinciding in their overall goal, testing and verifica-
tion (proof!) are of different rigor.

Testing, even if it can be amazingly effective, is limited to

» showing the presence of errors; it can not show their
absence (except of the most simple scenarios).

while verification can

» prove the absence of errors!
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Important Proof Techniques

...for proving properties of functional programs so far:

» Equational reasoning (cf. Chapter 4)

In this chapter, we complement equational reasoning with Chap. 6
proof techniques based on important inductive proof principles
(not limited to functional programs) which may operate on:

» Unstructured data

— integers

— chars

— Booleans
» Structured data
lists (finite by definition)
streams (infinite by definition)
trees (finite or infinite)
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Outline of Inductive Proof Principles

...we will consider:

» Inductive proof principles on natural numbers
— Natural (or: mathematical) induction
(dtsch. vollstandige Induktion)
— Strong induction (dtsch. verallgemeinerte Induktion)
» Inductive proof principles on structured data
— Structural induction (dtsch. strukturelle Induktion)
In particular:
— Structural induction on lists
— Structural induction on stream approximants
» Coinduction
» Fixed point induction

Chap. 6

Ohne Mathematik tappt man doch immer im Dunkeln.

Werner von Siemens (1816-1892)

dt. Erfinder und Unternehmer
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Chapter 6.1

Inductive Proof Principles on Natural
Numbers
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Chapter 6.1.1

Natural Induction
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The Principle of Natural Induction

Let IN be the set of natural numbers, and P be a property of
natural numbers.

The Principle of Natural (or: Mathematical) Induction

Inductive Case

P(1) A[¥neIN. P(n) = P(n+1)] = VnelIN. P(n)
—~— —~— —— —_——
Base Induction Induction Conclusion

Case Hypothesis ~ Step

(dtsch. Prinzip der vollstandigen Induktion)
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Example: lllustrating Natural Induction

Lemma 6.1.1.1 Gfl'f'i

VneIN. > (2k—1)=n?
k=1

Proof (by means of natural (mathematical) induction).
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Proof of Lemma 6.1.1.1 (1)

Base case: Let n = 1. In this case we obtain the equality of
the left and right hand side expression straightforwardly by

equational reasoning:

n

> (2k—1)

k=1

1 6.1.1

> (2k-1)

k=1
2x1—1

2-1
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Proof of Lemma 6.1.1.1 (2)

Inductive case: Let n € IN. By means of the induction hypo-
thesis (IH) we can assume Y (2k — 1) = n?. This allows us
to complete the proof by equational reasoning:

n+1

> (2k-1)

b (IH)

6.1.1

2(n+1)—1+i(2k—1)

k=1
2(n+1) — 1+ n?
2n 42 — 1+ n?
2n+1+n?
" +2n+1
" +n+n+1
(n+1)(n+1)
(n+1)

[
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Chapter 6.1.2

Strong Induction
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The Principle of Strong Induction

Let IN be the set of natural numbers, and P be a property of
natural numbers.

The Principle of Strong Induction

(Inductive) Case

A\

VneIN. [(Vm < n.P(m)) = P(n)] = VnelIN.P(n)
~ ~~ ~—— ——
Induction Induction Conclusion
Hypothesis Step

(dtsch. Prinzip der verallgemeinerten Induktion)

Note: For the smallest natural number /i (INg vs. INy), the induction hy-
pothesis boils down to ‘true’, i.e., P(/i) has to be proven without relying

on anything special.
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Example: lllustrating Strong Induction

The Fibonacci function fib : INg — INg is defined by:

0 ifn=20
V¥ n € INg. f/b(n) =Jf 1 ifn=1
fib(n — 1) + fib(n —2) if n>2

Lemma 6.1.2.1

YV n € INo. fib(n) = (

Proof (by means of strong induction).
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Key for Proving Lemma 6.1.2.1 for n > 2
...is to assume for m = n — 1 and m = n — 2 the equality:
1+\/S)m B (17\/5)'"
2 2
V5

according to the induction hypothesis (IH).

fib(m) = (

(Note: For n > 2, the induction hypothesis would allow us to use
this equality even for all m < n (not just for m = n — 1 and
m = n—2). This, however, is not required to complete the proof.)
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Proof of Lemma 6.1.2.1 (1)

Case 1: Let n = 0. Equational reasoning yields straightfor-
wardly the desired equality:
>0

o 11 () -(
Y A

(Note: For proving Case 1, the induction hypothesis allows nothing to as-

£

fib(0) =0

sume on the validity of the statement. Fortunately, nothing is required.)

Case 2: Let n = 1. Again, equational reasoning yields directly
the desired equality:

Goyrsogop (%) (%)
VG

S

NG N NG

(Note: For proving Case 2, we could have used the statement for n =0

by means of the induction hypothesis. This, however, is not required.)
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Proof of Lemma 6.1.2.1 (2)

Case 3: Let n > 2. Using the Ind. Hypothesis for n—2, n—1 we obtain:

fib(n) = fib(n—2) 4+ fib(n — 1)
() () () ()
(2x IH) = 5 + NG
e ) ) (97
- V5
(1+2x/§) -2 [1+ 1+2\/§} _ (172\@) -2 {14_ 172\/5}
B V5
o (1+2\/§) <1+2\/§> _ (172\/5) (172\/§>
5
) <1+2J§>” -~ (17!5)”
5 I:l
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Proof of (%)

Equality () follows from equalities (1) and (2):

1++5 ? 1++5
( 5 ) = 1+ (1)
VA 15
( . ) = 1+ (2)

...which can be proved by equational reasoning and the bino-
mial formulae (BF):

2
(H\/E) ) 14+2V54+5 6425 3+5 1+V5
2 B 4 42 2

2
(1—\/§> EH1-2v6+45 6-2V5 3-v6 15
2 a 4 T4 T2 2
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Chapter 6.2

Inductive Proof Principles on Structured
Data
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Chapter 6.2.1

Induction and Recursion
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Induction and Recursion

...two closely related notions.

Induction

» describes things starting from something very simple, and
building up from there: A bottom-up principle.

Recursion
» starts from the whole thing, working backward to the
simple case(s): A top-down principle.
Induction and recursion can thus be considered

» the two sides of the same coin.
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The Context-Dependent Preferred Usage

...of induction over recursion resp. vice versa

» e.g., defining data structures (induction)

» e.g., defining algorithms (recursion)
is often mostly due to historical reasons.
Data types (inductive view):

data Tree = Leaf Int | Node Tree Int Tree
Algorithms (recursive view):

fac :: Int -> Int
fac n = if n == 0 then 1 else n * fac (n-1)
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[[lustration

» Inductive definition of arithmetic expressions:
(r1) Each numeral n and variable v is an (atomic) arithmetic
expression.
(r2) If e; and e, are arithmetic expressions, then also
(e1 + &), (e1 — &), (e1 x e2), and (e1/e2).
(r3) Every arithmetic expression is inductively constructed by
means of rules (r1) and (r2).

» Recursive definition of the merge sort algorithm:
A list of integers / is sorted by the following 3 steps:

(ms1) Split / into two sublists /; and .

(ms2) Sort the sublists /; and /, recursively obtaining their sor-
ted counterparts sii and sk, respectively.

(ms3) Merge sl and sk into the sorted list s/ of /.
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In Closing

Data structures often follow an

» inductive definition pattern, e.g.:

— A list is either empty or a pair consisting of an element
and another list.

— A (binary) tree is either a leaf or it is composed of a
node and a left and a right subtree.

— An arithmetic expression is either a numeral or a vari-
able, or it is composed of (two) arithmetic expressions by
means of a (binary) arithmetic operator.

6.2.1

Algorithms (functions) on data structures often follow a

» recursive definition pattern, e.g.:
— The function length computing the length of a list.
— The function depth computing the depth of a tree.
— The function evaluate computing the value of an arith-
metic expression (given a valuation of its variables).
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Chapter 6.2.2

Structural Induction
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The Principle of Structural Induction

Let A and O be a set of atoms and operators, respectively; let
S be the set of elements inductively constructed from A and
O. Let sub(s) C S, s€ S, denote the set of elements s is
composed of, and let P be a property of the elements of S.

The Principle of Structural Induction

(Inductive) Case

VseS. [(Vs € sub(s). P(s')) = P(s)] VseS. P(s)
~ ~ s N—— N————
Induction Induction
Hypothesis Step

(dtsch. Prinzip der strukturellen Induktion)

Note: For the atoms § of S, the ‘simplest’ elements of S, we have
sub(8) =1). For these elements the induction hypothesis boils down to

true,’ i.e., P(8) has to be proven without relying on anything special. 122/246



Example: Illustrating Structural Induction

...the set of (simple) arithmetic expressions AE is defined by
the BNF rule:

e = n|v|(ate)|(a—e)l(axe)|(a/e)
where n and v stand for (integer) numerals and variables, re- “"’;2'2
spectively.

Lemma 6.2.2.1

Let p. and op., e € AE, denote the number of parentheses
and operators of e, respectively. Then:

Veec AE. p. = 2 * ope

Proof (by means of structural induction).
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Proof of Lemma 6.2.2.1 (1)

(Base) case: Let e = n, n a numeral, or e = v, v a variable.

In both cases e is free of parentheses and operators, i.e.:

Pe = 0= OPe (*)

Using (x), equational reasoning yields directly the desired
equality:
Pe
(x) = 0
2x0
(x) = 2%o0pe
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Proof of Lemma 6.2.2.1 (2)

(Inductive) case: Let e = (e; 0 &), 0o € {+,—, %, /}, and
e, € AE. By means of the induction hypothesis (IH), we
can assume p,, =2 * op,, and p., =2 * op.,. The equality of
pe and 2 x op, follows then by equational reasoning:

Pe
(e=(aoe)) = P(eroer) ,
= 1+ pe +pe,+1
(2xIH) = 2% 0pe +2+ 2% ope,

2% Ope, + 2% 1+ 2% 0p,,
2% (0pe + 1+ 0pe,)
2*Op(61062)
((eroe)=e) = 2xop.
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Note

...the principles of

» natural (math.) induction (dtsch. vollstandige Induktion)
P(1) A [Vne IN.P(n) = P(n+1)] = V¥neIN.P(n)

» strong induction (dtsch. verallgemeinerte Induktion)

Vn e IN. [(Vm < n.P(m)) = P(n)] = VnelIN.P(n)

» structural induction (dtsch. strukturelle Induktion)
Vse S [(Vs €sub(s).P(s')) = P(s)] = VseS. P(s)

are equally expressive.
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Chapter 6.3
Inductive Proofs on Algebraic Data Types
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Chapter 6.3.1

Inductive Proofs on Haskell Trees
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Inductive Proofs on Finite Trees

A tree is called

— finite, if every path originating at its root has finite length.

— maximum, if it is finite and all paths from a leaf to its
root have the same length.

Let 63.1

data Tree = Leaf Int | Node Tree Tree

Lemma 6.3.1.1

Let depth(t) and leaves(t) denote the depth and the number
of leaves of any finite tree value t :: Tree, respectively. Then:

Vt :: Tree. t maximum = leaves(t) = ndepth(t)

Proof (by means of structural induction).

129/246



Proof of Lemma 6.3.1.1 (1)

Base case: Let t = (Leaf k) for some integer value k.

Here, we have depth(t) =0 and leaves(t)= 1. Equational rea-
soning yields the desired equality of /eaves(t) and 29rhs(t):;

leaves(t)
(t = (Leaf k)) = leaves(Leaf k)
=1
= 20
2depths(t)
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Proof of Lemma 6.3.1.1 (2)

Inductive case: Let t = (Node t1 t2) maximum. This im-
plies t1, t2 are maximum themselves, depth(t1l) = depth(t2),
and depth(t) = depth(tl) + 1= depth(t2) + 1. By means of
the inductive hypothesis (IH) we can assume leaves(t1) =
2depth(*1) and Jeaves(t2) = 29%Pt"(*2)  This allows us to com-

plete the proof as follows:
(t = (Node t1 t2))

(2x IH)
(depth(t1) = depth(t2))

leaves(t)
leaves(Node t1 t2)
(

leaves(t1) + leaves(t2)
2depth(t1) + 2depth(t2)
2depth(t1) + 2depth(t1)

2 % 2depth(t1)

2depﬂmt1+1)

2depth(t) 0
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Lists

...can contain
— defined values only, e.g.:
0, (1:2:3:[1), (1:4 'div' 2:3:[1),...
— defined and undefined values, e.g.:
(1:4 'div' 0:3:fac(-1):[1),...
head (1:4 ‘div' 0:3:fac(-1):[1) ->> 1 632
head (tail (1 :4 ‘div' 0:3:fac (-1) : [1)) ->> ‘error’
head (tail (tail (tail (1:4 ‘div' 0:3:fac (-1) : [1))))
->> ‘non-termination’
We thus consider
— defined and undefined values
in more detail and distinguish structural induction on lists with

— (only) defined values.

— defined and undefined values.
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Chapter 6.3.2.1
Defined and Undefined Values
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Defined and Undefined Values

A computation is

» faulty, if it
— produces an error.
— does not (regularly) terminate.
The value of a faulty computation is called o
— undefined (or: the undefined value)

and usually denoted by the symbol L (read: ‘bottom’).

» non-faulty if its value
— is different from L.

The value of a non-faulty computation is called
— defined (or: a defined value).
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Example

The function

buggy_div :: Int -> Int
buggy_div n = div n O

...produces an error for every argument called with. 632
The function

buggy_fac :: Int -> Int
buggy_fac n = (n-1) * buggy_fac n
buggy_fac 0 = 1

...does not (regularly) terminate for any argument called with.
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Simple Haskell Terms

...with value L:

» Error: The Prelude definition
undefined :: a —-- polymorphic
undefined | False = undefined

undefined ->> ‘error’ = |

is an expression (of arbitrary type) whose evaluation leads
to an error due to case exhaustion.

» Non-termination: The co-recursive definition

loop :: a —-- polymorphic
loop = loop
loop ->> loop ->> loop —->> ... = |

is an expression (of arbitrary type) whose evaluation does
not (regularly) terminate.

137/246



The Undefined Value L

— is an element of every Haskell data type, i.e.: L :: a.
— is the value of faulty or non-terminating computations.

— can be considered an approximation (the ‘least accurate’
one) of any ordinary value of a data type. 632

This gives rise to:

Definition 6.3.2.1.1 (Defined, Undefined Values)

The value of any data type representing the result of a faulty
or non-terminating computation is called undefined and deno-
ted by |; all other values of a data type are called defined.
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Lists

...are finite sequences of values built from the empty list.

Definition 6.3.2.1.2 (List)

A list is a possibly empty finite sequence of
— (defined or undefined) values of the same type
— built from the empty list [].

It is called
— defined, if none of its values equals |.

— a list with possibly undefined values, if some of its values
can equal L.
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[[lustration

Haskell lists are
— possibly empty finite sequences of values of the same type.
Examples: [1, (1:[01), (1:2:3:[1),...

— built from the empty list.
Examples: [1, (1:[1), (1:2:3:[1),...
— composed of defined and undefined values.
Examples: [J, (1:2:01), (1:1:3:[1), (L:1:3:0[1),...

Haskell lists are
— defined, if all their values are defined.
Examples: [J, (1:[01), (1:2:3:[1),...

— lists with undefined values, if some of their values equal
the undefined value.
Examples: (L:[1),(1: L:[1), (L:2:1:1),...
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Structural Induction over Defined Lists

Let P be a property of defined lists.

Proof pattern of structural induction over defined lists
1. Base case: Prove that P([]) is true. eaz

2. Inductive case: Assuming that P(xs) is true (induction
hypothesis), prove that P(x:xs) is true (induction step).

Note: This pattern is an instance of the more general pattern
of structural induction, specialized here for defined lists.
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Example: Induction over Defined Lists

Let

length :: [a] -> Int
length [] 0
length (_:xs) = 1 + length xs

Lemma 6.3.2.2.1
V xs,ys defined :: [a].
length (xs++ys) = length xs + length ys

Proof (by induction on the structure of xs).
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Proof of Lemma 6.3.2.2.1 (1)

Let ys :: [a] be a defined list.

Base case: Let xs = []. As desired, we obtain by means of
equational reasoning:

length (xs ++ ys)
length ([] ++ ys)
= length ys
= 0 + length ys
= length [] + length ys
= length xs + length ys
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Proof of Lemma 6.3.2.2.1 (2)

Inductive case: Let xs = (x:xs’), xs defined. This implies xs’
(and x) is defined, too. By means of the induction hypothesis
(IH), we can thus assume length (xs’++ys) = (length xs’
+ length ys). This allows to complete the proof as follows:

length (xs ++ ys)

= length ((x:xs) ++ ys)

= length (x:(xs' ++ys))

= 1 + length (xs'++ys)
(IH) = 1 + (length xs’ + length ys)

= (1 + length xs') + length ys

= length (x:xs’) + length ys

= length xs + length ys

O
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Chapter 6.3.2.3

Structural Induction over Lists with

Undefined Values
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Structural Induction for Lists w/ Undef. Values

Let P be a property of lists with possibly undefined values.
Proof pattern of structural induction over lists with possibly
undefined values:

1. Base case: Prove that P([]) is true. 032

2. Inductive case: Assuming that P(xs) is true (induction
hypothesis), prove that P(L:xs) and P(x:xs), x a de-
fined value, are true (induction step).

Note: This pattern is an instance of the more general pattern
of structural induction, specialized here for lists with possibly
undefined values.
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Example: Induct. over Lists w/ Undef. Values

Let

length :: [a] -> Int
length [] =0
length (_:xs) = 1 + length xs

Lemma 6.3.2.3.1

V xs,ys with possibly undefined values :: [a].
length (xs++7ys) = length xs + length ys

Proof (by induction over the structure of xs).
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Proof of Lemma 6.3.2.3.1 (1)

Let ys :: [a] be a list with possibly undefined values.

Base case: Let xs = []. As desired, we obtain by means of
equational reasoning:

length (xs ++ ys)
length ([] ++ ys)
= length ys
= 0 + length ys
= length [] + length ys
= length xs + length ys
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Proof of Lemma 6.3.2.3.1 (2)

Inductive case 1: Let xs = (L :xs’). By means of the induc-
tion hypothesis (IH), we can assume length (xs’++ys) =

(length xs’ + length ys). This allows to complete the
proof as follows:

length (xs ++ ys)
= length ((L:xs') ++ ys)
= length (L:(xs'++ys))
1 + length (xs’'++ys)

(IH) = 1 + (length xs’ + length ys)
= (1 + length xs’) + length ys
= 1length (l:xs’) + length ys

length xs + length ys
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Proof of Lemma 6.3.2.3.1 (3)

Inductive case 2: Let xs = (x:xs'), x defined. By means of
the induction hypothesis (IH), we can assume

length (xs’ ++ys) = (length xs’ + length ys). This
allows to complete the proof as follows:

length (xs ++ ys)

= length ((x:xs) ++ ys)

= length (x:(xs' ++ys))

= 1 + length (xs'++ys)
(IH) = 1 + (length xs’ + length ys)

= (1 + length xs') + length ys

= length (x:xs’) + length ys

= length xs + length ys

O
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Chapter 6.3.3.1

Partial Lists
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Partial Lists

...are finite sequences of values built from the undefined list.

Definition 6.3.3.1.1 (Partial List)

A partial list is a possibly empty finite sequence of
— (defined or undefined) values of the same type
— built from the undefined list L.

It is called

— defined, if none of its values equals | (and there is at
least one).

— a partial list with possibly undefined values, if some of its
values can equal |.
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[[lustration

Partial Haskell lists are

— possibly empty finite sequences of values built from the
undefined list.

Examples: L, (1:1), (1:2:1), (1:2:3:1),...

— partial lists with undefined values, if some of their values
equal the undefined value.
Examples: (1:1:3:1), (4:L: L), C(L:l:l:1),..

6.33

Note the different types of | and L in the above examples:
1 :: Int
L :: [Int]
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Chapter 6.3.3.2

Computing with Lists and Partial Lists
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Some Examples of Lists and Partial Lists

...with and without undefined values:

(]

empty =

ns = 2

ms = 2 :

pempty
=2

ys = 2

1 3
loop :

loop ::
: 3
loop :

5

5

-- Empty list

7 —-- Defined list

5:7 : [] -- List w/ undefined
-- values

[Int] -— Empty partial list

: 7 : loop —-— Def. partial list

5 : 7 : loop -- Partial list w/
—-- undefined values

Note: All occurrences of 1oop in ns, ms, xs, ys, and pempty
have value | but of different type:

— loop
— loop

1
1

Int in ms and ys.

[Int] in pempty, xs, and ys .

6.3.1
6.3.2

6.33
6.4
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Using the Definitions (1)
...introduced before, we get:

reverse ns ->> [7,5,3,2]

reverse ms ->> [7,5 ...followed by an infinite wait
reverse xs ->> ...infinite wait 61
reverse ys ->> ...infinite wait :
head (reverse ms) ->> 7 -- thanks to lazy eval.
head (tail (reverse ms)) ->> 5 -- thanks to lazy eval.
head (tail (tail (reverse ms))) ->> ...infinite wait

head (tail (reverse xs)) ->> ...infinite wait

last ms ->> 7
last xs ->> ...infinite wait

reverse (reverse ms) ->> [2 ...followed by an
infinite wait
head (reverse (reverse ms)) ->> 2
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Using the Definitions (2)

...introduced before, we also get:

length ns ->> 4
length ms —>> 4
length xs ->> ...infinite wait
length ys ->> ...infinite wait

length (take 4 ns) ->> 4
length (take 3 ms) ->>
length (take 2 xs) ->>

4
3
2
length (take 3 ys) ->>
5
4
5

length (take
length (take
length (take

ns) ->>
xs) ->>
xs) ->> ...infinite wait

SO W NN W
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The Different Evaluation Behaviour

...of length and reverse is due to requiring or not-requiring
a pattern match on the values of the argument:

length :: [a] -> Int

length [] =0

length (_:xs) = 1 + length xs -- No pattern match
—-- on the head of the
-- argument list!

6.33

reverse :: [a] -> [a]

reverse [] =[]

reverse (x:xs) reverse xs ++ [x] -- Pattern match on
-— the head of the
-- argument list!

reverse :: [a] -> [a]
reverse = foldl (flip (:)) [ -- Same here, even if
—-- pointfree defined!
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Inductive Proof Patterns for Partial Lists
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The Inductive Proof Patterns

...introduced in Chapter 6.3.2.2 and 6.3.2.3 apply to lists (pos-
sibly with undefined values), which (by definition) are built
from the empty list [].

By contrast, partial lists (possibly with undefined values, too)
are built from the undefined list L.

We thus need to adapt the inductive proof principles for lists
to work for partial lists (with possibly undefined values).
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Inductive Proofs on Partial Lists

Let P be a property of partial lists.

A) Proof pattern for defined partial lists:
1. Base case: Prove that P(L) is true.

2. Inductive case: Assuming that P(xs) is true (induction
hypothesis), prove that P(x:xs) is true (induction step).

B) Proof pattern for partial lists w/ possibly undefined values:
1. Base case: Prove that P(L) is true.

2. Inductive case: Assuming that P(xs) is true (induction
hypothesis), prove that P(L:xs) and P(x:xs), x a de-
fined value, are true (induction step).
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Inductive Proofs on Lists and Partial Lists

Let P be a property defined of lists and partial lists.
C) Proof pattern for lists and partial lists w/ possibly unde-
fined values:

1. Base case: Prove that P(_L) and P([]) are true.

2. Inductive case: Assuming that P(xs) is true (induction
hypothesis), prove that P(L:xs) and P(x:xs), x a de-
fined value, are true (induction step).
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Chapter 6.4

Proving Properties of Streams
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Chapter 6.4.1

Inductive Proofs on Haskell Stream
Approximants
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Streams

...are infinite sequences of values of the same type.

Definition 6.4.1.1 (Stream)

A stream is an infinite sequence of (defined or undefined)
values of the same type.

Definition 6.4.1.2 (Def. Stream, S. w/ Undef. Values)
A stream is called

1. defined, if all its values are defined.

2. a stream with possibly undefined values, if some of its
values can be equal to |.

Homework: Does it make sense to say, a stream were built
from the empty stream or the undefined stream?
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Comparing Partial Lists: Approximation Order

...intuitively, a partial list xs approximates a partial list ys, if
xs is ‘equal to but less defined’ than ys, xs C ys:

0 :

1L

0 : L
0:1: L
0:1:1 L
L

0 : L

0O:1:2: 1

Streams can be approximated by infinite sequences of
— increasingly more accurate partial lists, called PL-approxi-

mants.

M ArT 1T 1

M 1M |r|§

o O

0 :
0 :
0

L

_

1
1:
1

L
1 : L

6.4.1

l_
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lllustrating Stream Approximation

...the stream of natural numbers
1..]=1:2:3:4:5:6:7:8:9: ...

is approximated by the infinite sequence of more and more

accurate PL-approximants, whose limit is the stream itself:

1 ‘
Co1cL o
C1:2: 1
C1:2:3: 1L

C1:2:3:4: 1

C1:2:3:4:5: 1
C1:2:3:4:5:6: 1
Cc1:2:3:4:5:6:7: 1
Cc1:2:3:4:5:6:7:8:1

L1 2:3:4:5:6:7:8:9 = [1..]
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Intuitively

...the undefined list L is the ‘least defined’ partial list; hence,
the ‘least accurate’ approximant of a stream. Sequences of
more and more ‘defined’ approximants are getting more and
more ‘accurate.’

...considering partial lists (which are finite by definition) o

» approximations of streams equals in spirit the approach of
outputting/printing a stream prefix by interrupting the
printing of the stream after some period of time by
hitting Ctr1-C.

Extending this period of time further and further yields

» more and more accurate approximants of the stream.
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Partial Orders, Chains

...towards formalizing the idea of approximation:

Definition 6.4.1.3 (Partially Ordered Set)

A set M with a binary relation R is called a partially ordered 16_4_1
set iff R is reflexive, transitive, and anti-symmetric; the pair
(M. R) is called a partial order, and R a partial order on M.

Definition 6.4.1.4 (Chain)

A subset C C P of a partial order (P, ) is called a chain, if
C is totally ordered.
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Domains

Definition 6.4.1.5 (Domain)

A partial order (D, ) is called a domain (or: complete partial
order (CPO)), if

1. D has a least element L.

2. | | C exists for every chain C in D.

The relation L is then called approximation order of (D, ).

Example: Let P(IN) be the power set of IN. Then: (P(IN), C),
C =4 C, is a domain with:

— least element ()
— | | C=JC for every chain C C P(IN)
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Approximation Order on Partial Lists, Streams

..let Sipr sty =ar {5 | s partial list or stream} be the set of par-
tial lists and streams.

Lemma 6.4.1.6 (Partial Order on Sp; s¢))
The relation T on Sp; s¢) defined by:
x:xs L y:ys <=4 x=y A xsLys ‘

is a partial order on 5(p; s;), where = denotes equality on list
resp. stream entries.

Lemma 6.4.1.7 (Domain ((S(pL.st), E))

(S(pL,st), &) with £ as in Lemma 6.4.1.6 is a domain with
least element | and approximation order L.
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Partial Lists as Stream Approximants

Definition 6.4.1.8 (PL-Approximants)

Let xs be a defined stream. The set of PL-approximants of xs
is the set PL-Approx(xs) =4 { take’ n xs | n€ INg }, where

take’ :: Integer -> [a] -> [a]
take’ n _ | n <= 0 = undefined
take’ n (x:xs) x : take’ (n-1) xs

Note: PL-approximants are built from the undefined list, not
the empty list; they all have finite length.
Examples:

— PL-Approx([1..1)={L,1:1,1:2:1,1:2:3:1,...}
- PL-Approx([1,1..1)={L,1: L,1:1: 1 ,1:1:1:1,...}
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Main Result: Approximation

Lemma 6.4.1.9 (PL-Approximants Chain)

The set PL-Approx(xs), xs a defined stream, is a chain.

Theorem 6.4.1.10 (Approximation)

Let xs be a defined stream. Then xs is equal to the least 60
upper bound of its PL-approximants set, its so-called limit:

xs = |_| PL-Approx(xs) = |_| take' n xs
n=0

Note: Refer to Appendix A for the definition of technical terms and illu-
strating examples, if required.
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Streams as Limit of their PL-Approximants Sets

...the set of PL-approximants of a defined stream is a chain
with the stream itself as its least upper bound (cf. Approxima-
tion Theorem 6.4.1.10) as illustrated below:

1

C1: L

C1:2: L o
C1:2:3: 1L

C1:2:3:4: 1L

C1:2:3:4:5: 1
C1:2:3:4:5:6:.1
C1:2:3:4:5:6:7: 1L
£1:2:3:4:5:6:7:8: 1L

I
[
N
w
IaN
(03]
(o]
~
(09}
o]
I
—
—
—
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Finite and Infinite Sequences of Values

...are quite diverse objects enjoying different properties.

Properties valid for lists (i.e., finite sequences) might hold or
might not hold for streams (i.e., infinite sequences) and vice )
versa, e.g.: a1

- VzeZ. take n xs ++ drop n xs = Xs
...does hold for defined lists and streams.

— reverse (reverse xs)) = XS
...does hold for defined lists but not for streams.

- VnelIN. drop n xs # []
...does hold for streams but not for lists.
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Finite PL-Approximants and Streams
...are quite diverse objects, too.

Properties which are valid for every partial list of the infinite
set of finite PL-approximants of a stream might hold or might
not hold for its limit, the stream itself, and vice versa, e.g.:

—map (f . g) xs = (map £ . map g) xs o
does hold for all PL-approximants of a defined stream and
the stream itself.
— 'This sequence is partial’
...does hold for all PL-approximants of a stream but not
for the stream itself.

— tail xs ‘is a stream’
...does hold for a stream but not for any of its PL-ap-
proximants.
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Reconsidering the Induction Principles
...considered so far.

The induction principles of Chapter 6.3.2 and 6.3.3 apply to
» finite sequences of (possibly undefined) values

This allows proving properties for all finite lists and /or all finite
partial lists (with possibly undefined values).

Streams, however, are by definition

» infinite sequences of values.

The induction principles of Chapter 6.3.2 and 6.3.3 are thus
not directly applicable for proving properties on streams, espe-
cially in the light of the fact that properties being valid for
every PL-approximant of a stream need not hold for the

stream itself.
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Fortunately

...the induction principle for partial lists (with and without
possibly undefined values) of Chapter 6.3.3 can be used to
prove so-called (in analogy to Definition 6.4.4.1)

— admissible properties of approximant sets

for streams.

A property of a PL-approximants set is admissible if it holds
for its limit, if it holds for each of its elements.

Equational properties are admissible.

Together with Approximation Theorem 6.4.1.10, this justifies
the inductive proof principles considered next.
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Inductive Proofs on PL-Approximants Sets

...for proving ‘admissible’ properties of streams.

Let P be an equational property defined on PL-approximants
and streams.

A) Proof pattern for defined PL-approximants:
1. Base case: Prove that P(_L) is true. oer

2. Inductive case: Assuming that P(xs) is true (induction
hypothesis), prove that P(x:xs) is true (induction step).

B) Proof pattern for PL-approximants w/ possibly undef. values:

1. Base case: Prove that P(_L) is true.

2. Inductive case: Assuming that P(xs) is true (induction
hypothesis), prove that P(L:xs) and P(x:xs), x a de-
fined value, are true (induction step).
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Example: Induction on PL-Approximants

Lemma 6.4.1.11
We have:

(Vxs elal. xs defined stream) Vne IN.
take n xs ++ drop n xs = xs

Proof by cases and induction on the structure of xs.
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Proof of Lemma 6.4.1.11 (1)

Case 1: Letn€ IN, n=0, and xs be some defined stream.
Equational reasoning yields the desired equality:

take n xs ++ drop n xs
— take 0 xs ++ drop O xs
(Def. take) =[] ++ xs
= Xs
Case 2: Let ne IN, n>1 be some natural number. We now

proceed by induction on the structure of xs.

Base case: Let xs = |. Equational reasoning yields as de-

sired: take n xs ++ drop n xs
= take n | ++ drop n L
(Def. take, case exh.) = L ++ L
= 1
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Proof of Lemma 6.4.1.11 (2)

Inductive case: Let xs = (x:xs’) be a defined PL-approxi-

mant. Then x is defined and xs’ is a defined PL-approximant,

too. By means of Case 1 (if n=1) and the induction hypothe-

sis (IH) (if n>1), we can assume for all n € IN the equality

(take (n-1) xs’ ++ drop (n-1) xs’) = xs’. This allows

us to complete the proof as follows: o1

take n xs ++ drop n xs
= take n (x:xs') ++ drop n (x:xs’)
= x: (take (n-1) xs’ ++ drop (n-1) xs’)
(Case 1, IH) = x:xs
= (x:x8)

= XS ]
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Chapter 6.4.2

Inductive Proofs on Haskell List and Stream
Approximants
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Approximation Order on Lists, Part. Lists, Streams

Let S(. pr sty =ar {s | s list or partial list or stream} be the set
of lists, partial lists and streams.

Lemma 6.4.2.1 (Partial Order)
The relation C on 5, p; s defined by:

X8 o

J_ E 6.4.2
[] C xs o xs =[] :
x: xs L y: ys <=4 x =y A xslL ys

is a partial order on 5 p; s+, where = denotes equality on list
resp. stream entries.

Lemma 6.4.2.2 (Domain (S p1 st)))

(S(L.pLse), &) with C as in Lemma 6.4.2.1 is a domain with
least element L and approximation order L.
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Partial Lists as List and Stream Approximants

Definition 6.4.2.3 (LPL-Approximants)

Let xs be a defined list or a defined stream. The set of LPL-
approximants of xs is the set

LPL-Approx(xs) =4r { approx n xs | n€ INg }

where
approx :: Integer -> [a] -> [al]
approx (n+1) [] =[]

approx (n+1) (x:xs) = X : approx n xs

Note: There are LPL-approximants built from the undefined
list and others built from the empty list; all of them are of
finite length.
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Notes on approx

approx :: Integer -> [a] -> [a]
approx (n+1) [] =[]
approx (n+1) (x:xs) = X : approx n xs

Pattern n+1 matches only positive integers > 1. Thus:

1. approx m ys ->> ys, 042
ifm > len ys.
2. approx m ys —>> yo : Y1 i ... : Ym-1 @ 1,
ifm < len ys
(i.e., approx will cause an error after generating the first
m elements of ys).

Thus, approx being similar to take’ used in Definition 6.4.1.8
behaves differently when applied to lists (which, by definition,
are built from the empty list, not the undefined list).
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Examples: Applying

approx 0 [1,2]  ->>
11,21 ->>
->>

->>

approx

=->>
->>
->>
->>
->>

approx 2 [1,2]

3 [1,2] ->>
->>
->>
->>
->>

->>
7 [1,2..] —>>

approx

approx

approx
1

approx (0+1) [1,2]

1 : approx 0 [2]

1: 1

approx (1+1) [1,2]

1 : approx 1 [2]

1 : approx (0+1) [2]

6.4.1
6.4.2

1 : 2 : approx 0 []
1:2: L
approx (2+1) [1,2]

1 : approx 2 [2]

1 : approx (1+1) [2]

1 : 2 : approx 1 []

1 : 2 : approx (0+1) []
1:2:[]
1:2:3:4:5:6:7:.1
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Examples: PL-Approximants Sets

Lists:

LPL-Approx(L)={L1}

LPL-Approx([1)={L, [1}
LPL-Approx([1,2])={Ll,1:1,1:2:1,1:2:[]}

6.3

6.4.2

Streams:

LPL-Approx([1..])={Ll,1:1,1:2:1,1:2:3:1,...}
LPL-Approx([1,1..1)={L, 1:1,1:1:1, 1:1:1:1,...}
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Main Result: Approximation

Lemma 6.4.2.4 (LPL-Approximants Chain)

The set LPL-Approx(xs), xs a defined list or a defined
stream, is a chain.

Theorem 6.4.2.5 (Approximation) s

Let xs be a defined list or a defined stream. Then xs is equal
to the least upper bound of its LPL-approximants set, its
so-called limit:

Xs = |_| LPL-Approx(xs) = |_| approx n xs

n=0
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Proof Sketch of Theorem 6.4.2.5 for Lists

Let xs = (X0 X1 : X2 :...: Xien(xs)-1 : []) be a defined list.

| | approx n xs

n=0

= U{L (n=0)
Xt L, (n=1) s
Xo:Xp: L, (n=2) L
X0 :IXyi... iXpq: L, (n = len(xs))
X0 :X1 ... :Xpq: [, (n = len(xs)+1)
Xo:X1i...:Xpqo L, (n = len(xs)+2)
}

= Xp:X1:Xo:i...:Xpq: L[]

= X0:X1:X2'...:!ZXlen(xs)-1: L]

= Xxs
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Proof Sketch of Theorem 6.4.2.5 for Streams

Let xs = (%9 : X1 :X9:...: %, :...) be a defined stream.
(o)

| | approx n xs

n=0

= L (n = 0)

xg 1L, (n = 1)
X0 : %1 : L, (n = 2) ves
Xo XKy i... Xpq: L, (n=m)
XXy ... %L, (n = mt+l)
Xo K] ... Xt L, (n= mt+2)
}

= Xp:X{:Xp:i...iXpi...

= xs
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Inductive Proofs on LPL-Approximants Sets

...for proving ‘admissible’ properties of streams.

Let P be an equational property defined on LPL-approximants
and streams.

A) Proof pattern for defined LPL-approximants:
1. Base case: Prove that P(L) and P([]) are true.

2. Inductive case: Assuming that P(xs) is true (induction
hypothesis), prove that P(x:xs) is true (induction step).

B) Proof pattern for LPL-approximants w/ possibly undefined
values:

1. Base case: Prove that P(L) and P([]) are true.
2. Inductive case: Assuming that P(xs) is true (induction
hypothesis), prove that P(L:xs) and P(x:xs), x a de-

fined value, are true (induction step).
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Chapter 6.5

Proving Equality of Streams
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Chapter 6.5.1

Approximation
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Approximants, Approximants Sets

...allow to reduce proving the equality of streams to proving

1. the equality of sets (cf. Approximation Theorem 6.5.1.7)

2. equivalent statements amenable to mathematical induc- 051
tion (cf. Approximation Theorem 6.5.1.8)

and provide this way an important proof principle for proving
the equality of streams.
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L-Approximants of Defined Lists and Streams
Definition 6.5.1.1 (L-Approximants)

Let xs be a defined list or a defined stream. The set of L-ap-
proximants of xs is the set

L-Approx(xs) =4 { take n xs | n€ INg }, where
take :: Int -> [a] -> [a]
take n _ | n <=0 =[] o
take _ [] =[]
take n (x:xs) X : take (n-1) xs

Note, L-approximants are built from the empty list (not the
undefined list); every L-approximant is finite.

Examples:
— L-Approx([1)={[1}
— L-Approx([1,2,3])={[1,1:[1,1:2:[1,1:2:3:[1}
- L-Approx([1..1)={[1,1:[1,1:2:[1,1:2:3:[1,...}
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Finiteness, Infinity of Sequences

...in terms of L-approximants sets.

Definition 6.5.1.2 (Finite, Infinite Sequences)
A sequence of defined values xs is

1. finite (i.e., a list), if L-Approx(xs) is finite.

2. infinite (i.e., a stream), if L-Approx(xs) is infinite.

6.5.1

Lemma 6.5.1.3 (Finite, Infinite Sequences)
A sequence of defined values xs is

L. finite, if: 3Im€ IN.(Vn€ IN.n>m). take n xs =
take (n+1) xs

2. infinite, if: Vn€ IN. take n xs /= take (n+l) xs

Corollary 6.5.1.4 (Finite Sequences)
A sequence of defined values xs is finite, if:
dme IN.(Vne IN.n>m). take m xs = take (n+1) xs 190/246



Equality of Sequences and Streams

...in terms of L-approximant sets.

Definition 6.5.1.5 (Equality of Sequences)

Let xs and ys be two sequences of defined values. xs and ys

are equal, if their sets of L-approximants are equal:

L-Approx(xs) = {take n xs|n€lIN} o5
= {take n ysIn€IN} = L-Approx(ys)

Lemma 6.5.1.6 (Equality of Sequences)

Let xs and ys be two sequences of defined values. xs and ys
are equal, if for every natural number their L-approximants are

equal:
Vne IN. take n xs = take n ys
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Main Results: Stream Equality by Set Equality

...reducing the proof of stream equality to proving set equality.

Theorem 6.5.1.7 (Stream Equality, Approximation 1)

Let xs, ys be defined streams. Then the following statements
are equivalent: o

1. xs=ys

2. LPL-Approx(xs) = LPL-Approx(ys)
3. PL-Approx(xs) = PL-Approx(ys)
4. L-Approx(xs) = L-Approx(ys)
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Main Results: Stream Equality by Nat. Induct.

...reducing the proof of stream equality to an equivalent state-
ment amenable to natural (or: mathematical) induction.

Theorem 6.5.1.8 (Stream Equality, Approximation 2)
Let xs, ys be defined streams. Then the following statements
are equivalent:
l. xs= ys o
2. Vn € IN. approx n xs = approx n ys
3. Vn € IN. take’ n xs = take’ n ys
4. Vn € IN. take n xs = take n ys
5. Vn € INg. xs!!n = ys!!n

Note: Proving stream equality is usually technically more con-
venient using Theorem 6.5.1.8(5) than any of the statements
of Theorem 6.5.1.7.
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Example: Applying Theorem 6.5.1.8

Consider the factorial function:

fac :: Int -> Int
fac O 1
fac n = n * fac (n-1)

and the two stream functions facs mp and facs zw:
facs_mp = map fac [0..]
facs_zw = 1 : zipWith (%) [1..] facs_zw

which generate the stream of factorials: 1,1,2,6,24,. ..

According to Theorem 6.5.1.8(5), proving the equality of
facs mp and facs_zw boils down to proving Lemma 6.5.1.9,
which we prove by natural induction:

Lemma 6.5.1.9

Vn € INg. facs mp!!n=~facs zw!!n
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Proof by Lemma 6.5.1.9 (1)

Base case: Let n=0. Equational reasoning yields the desired

equality in this case:

(n=0)
(Def. facs mp)
(L. 6.5.1.10(1))

(Def. fac)
(Def. (1D)
(Def. facs_zw)
(n=0)

facsmp!!n

facsmp!!0

(map fac [0..1)!!0 osi
fac ([0..1'10)
fac O

1

(1:zipWith (%) [1..] facs_zw)!!0
facs_zw!!0

facs zw!!n
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Proof by Lemma 6.5.1.9 (2)

Inductive case: Let ne INg. By means of the induction hypo-
thesis (IH), we can assume facs mp! 'n=facs zw!!n. As

desired we get:

(Def. facs mp)
(L. 6.5.1.10(1))
(Def. [0..7, (11D)
(Def. fac)

(L. 6.5.1.10(3))
(1H)

(Def. (1))
(Def. (%))

(L. 6.5.1.10(2))
(Def. (1))

)

(Def. facs_zw

facsmp!!(n+1)

(map fac [0..]1)!!(n+1)

fac ([0..]1!'!(n+1))

fac (n+1) ;1
(n+1) * fac n s
(n+1) * (facsmp!!n)

(n+1) * (facs_zw!!n)

([1..1!'tn) * (facs_zw!!n)

(x) ([1..]1!''n) (facs_zw!!n)

(zipWith (%) [1..] facs_zw)!!n

(1 : zipWith (%) [1..] facs_zw)!!(n+1)

facs_zw!! (n+1)
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Supporting Statement

Lemma 6.5.1.10

For all natural numbers n € INg, we have:

1. (map f xs)!!n=£f (xs!!n) o
2. (zipWith g xs ys)!ln=g (xs!!'n) (ys!!n)

3. fac n=facsmp!!n

Proof. Homework.
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Chapter 6.5.2

Coinduction
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Proof by Coinduction

...another useful principle for proving equality of infinite ob-
jects such as streams which

— complements the principle of proof by approximation of
Chapter 6.5.1.

— reduces proving equality of two objects to proving they Y‘é-‘?-z
exhibit the same ‘observational behaviour.’ 7

For streams, this boils down to proving

— the heads of the streams are the same.

— their tails exhibit the same ‘observational behaviour.’
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Equality of Streams

.let

— [A] denote the set of streams over a set of elements A.
— f,g € [A] be written as f = [fy, f1, f, 3, f4, 5, .. .] and
= [g(): 81,82,83,84,85; - - ']' respectively.

Definition 6.5.2.1 (Equality of Streams)
f, g € [A] are equal iff Vi € INg. f; =g, i.e., f and g have

the same ‘observational behaviour.’

...in accordance with Theorem 6.5.1.8.
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Reducing Equality of Streams

...to their bisimilarity.

This requires to introduce: .

— Labelled transition systems (LTS) for stream representa-
tion

— Stream bisimulation relations for capturing the notion of
‘same’ behaviour of streams

and some supporting notions:

— Expansions of LTS states

— Bisimilar states

210/246



Labelled Transition Systems

Definition 6.5.2.2 (Labeled Transition System)

A labelled transition system (LTS) is a tripel (Q, A, T) with
— (@ a set of states.
— A a set of action labels.
- T C Q x Ax Q aternary transition relation.

Note: For (g, a,p) € T we write more conveniently: g —— p.
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Example: Representing Streams as LTSs

The decimal representation of % has numerous representations
as streams of digits, e.g.:

— 0.142857, 0.1428571, 0.14285714, 0.142857142857142, ...

LTS, LTS, are LTS representations of the 2nd and 3rd one:
LTS, @

0
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Expansion of LTS States

Let (Q,A, T) bean LTS, and g € Q.

Definition 6.5.2.3 (Expansion of an LTS State)

1. A finite expansion of q is a finite sequence of actions i
[20, @1, a0, a3, ..., a,] such that

(VielNo. i <n).3¢,q:1€Q. qo=qAq — gi1.

2. An infinite expansion of g is an infinite sequence of
actions [ag, a1, a5, a5, ...] such that

VI.€|N0.E|C],',C],'\1€ Q qO:q/\q,-i>q,-~1.
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Example: Expansion of Digit Stream States
Consider LTS; representing digit stream 0.1428571:

The (unique) infinite expansion of state (i.e., node)
— sis 01428571, 0 is 1428571, 1 is 428571, 2 is 857142,...
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Bisimulation Relations, Bisimilar States

Let (Q,A, T) bean LTS, let p,q € Q.

Definition 6.5.2.4 ((Greatest) Bisimulation Relation)

A bisimulation on (Q, A, T) is a binary relation R on Q, which
satisfies: If g R p and a € A then:

-qg->q = 3P Q. p-pP AgRY -
-p-p = 3¢d€Q.qg-¢ ANgRY

The largest bisimulation on Q (wrt C) is denoted by ~.

Definition 6.5.2.5 (Bisimilar States)

p and g are called bisimilar, if there is a bisimulation R on @
with g R p.
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Example: A Bisimulation for Digit Streams
Consider LTS = (Q, A, T) defined as union of LTS;, LTS,.
We define relation B on @ as follows:

Vq,q9 € Q. gB{q iff g, ¢ have the same infinite expansion

LTS = L'I'S‘ U LI'SJ @

Note: B is the largest bisimulation on @, i.e.: B= ~.
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Streams as Labeled Transition Systems

Lfor fF=[fy, A, h, 1, ...] €[A] astream, let

— fy denote the head
— f denote the tail

of f,ie., f=fy:f.

Using this notation, f is represented by the below labelled
transition system (which unfolds f partially):

fy B
f @ ® i

LTS representation of f
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Stream Bisimulation

Definition 6.5.2.6 (Stream Bisimulation)

A stream bisimulation on [A] is a binary relation R on the set
of streams [A], which satisfies:

Vf,g€[Al. fRg = fo=g A ng

=<
1
(]

Let ~ denote the largest stream bisimulation on [A].
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Reducing Stream Equality

...to largest stream bisimulation.

Let f=[fo, i, fo, 5, fa,...], & =80, 81,82, 83, 84, - - | € [A] be
two streams with

f— f g—°>§.

Then:

Theorem 6.5.2.7 (Stream Equality as Stream Bisim.)
f and g are equal iff f ~g (i.e., fy = go and f ~ 7).
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Reducing Stream Equality

...further to stream bisimulation.

Since ~ is the largest stream bisimulation, we get:
Lemma 6.5.2.8

f~g < 3B. B stream bisimulation on [A] A fBg

6.5.2

Together, Theorem 6.4.3.7 and Lemma 6.4.3.8 imply:

Corollary 6.5.2.9
f and g are equal iff

3B. B stream bisimulation on [A] A fBg
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The Coinductive Proof Pattern

...using Corollary 6.5.2.9, proving the equality of two streams f
and g of [A] requires:

1. Finding a relation B on [A].
2. Proving that B is a stream bisimulation and f B g.

...considering Haskell streams, this means proving the equality
of two Haskell streams xs and ys requires:

1. Finding a relation B on the set of Haskell streams.

2. Proving that B is a stream bisimulation and xs B ys.
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Example: Stream Bisimulation B C ~
...for the two streams 0.1428571 and 0.14285714:

LTS representation of

stream 0.1428571

...0.1428571, 0.14285714 are stream bisimilar and hence equal.

LTS representation of @
stream 0.14285714...-"

0

(o

1

6.5.2
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Chapter 6.6

Fixed Point Induction
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Fixed Point Induction

...a useful proof principle allowing us to prove properties of the

— least fixed point of continuous functions

on complete partial orders or stronger complete lattices, which
are both specific partially ordered sets (refer to Appendix A for
definitions of terms, if required).
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Admissible Predicates

Let (C.C) be a complete partial order (CPO) (or :domain),
and 1) be a predicate on C, i.e., v : C — IB.

Definition 6.6.1 (Admissible Predicate)

1) is called admissible iff for every chain D C C holds: -
(vd € D. v(d)) = ¥(| |D)

Lemma 6.6.2

1) is admissible, if it is expressible as an equation.
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Example: Streams, Sequences of Approximants

Recalling that (S(p; s, C) with
— S(pr,st): Set of partial lists and streams

— L: Approximation order on S(p; s¢) (cf. Lemma 6.4.1.6)

is a domain (or: complete partial order) (cf. Lemma 6.4.1.7),
we get:

Corollary 6.6.3

Let 1/ be a predicate on the set of partial lists and streams
S(pL,st) expressible as an equation, let s be a stream, and
S’ C S the infinite chain of its PL-approximants (cf. Defi-
nition 6.4.1.8) with | | S"=s. Then:

(Vs' €S u(s)) = o] |S) (eu(s))

6.6
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Monotonic and Continuous Functions on CPOs

Let (C,C¢) and (D,Cp) be CPOs, and let f € [C — D] be a
map from C to D.

Definition 6.6.4 (Monotonic, Continuous Maps)
f is called o
1. monotonic (or: order preserving) iff
Ve,ddeC.cCed = f(c) Cp f(c)
(Preservation of the ordering of elements)
2. continuous iff f is monotonic and
(VC CC.C"#DNC chain). f( - C") =p Lp F(C)
(Preservation of least upper bounds)
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Fixed Points, Least Fixed Points

...of continuous functions on complete partial orders (CPOs).

Definition 6.6.5 (Fixed Point, Least Fixed Point)

Let (C,C) be a complete partial order, let £ € [C ¥ C] be a

continuous function on C, and let ¢ € C be an element of C.

Then: o
1. cis a fixed point of f iff f(c) = c.

2. c is the least fixed point of f, denoted by puf,
iffVde C. f(d)y=d=cCd

Note: The Fixed Point Theorem A.5.1.3 of Knaster, Tarski,
and Kleene ensures the existence of least fixed points of con-
tinuous functions on CPOs.
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Fixed Point Induction

...the general pattern of fixed point induction:

Theorem 6.6.6 (Fixed Point Induction)

Let (C.,C) be a complete partial order (CPO), let f : C — C
be a continuous function on C, and let v : C — /B be an ad-
missible predicate on C. Then:

6.6

(Vee C.o(c) = ©(f(c))) = d(uf)

where ;f denotes the least fixed point of f.
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Chapter 6.7

Verified Programming, Verification Tools
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Chapter 6.7.1

Correctness by Construction
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Correctness by Construction

...strives for ensuring correctness of a program on the fly of
developing it by proving the result of every step of the
development process correct.

Conceptually, correctness by construction is an

» 2 priori (or: on-the-fly) approach.

This is dual to testing and verification, which conceptually are
» a posteriori approaches

as they are applied to a program after its development is
finished.
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Techniques for Correctness by Construction

...in principle, every proof technique can be made use of by
approaches aiming at correctness by construction, among
these 1

— (inductive) proof principles (cf. Chapter 6)

— equational reasoning, sometimes also called proof by ‘
program calculation (cf. Chapter 4). o

Particularly important, however, are approaches based on
— transformation rules

which are proven correct and ensure equivalence of the pro-
gram they are applied to and the one resulting from them.
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Example: Functional Pearls

...developing functional pearls starting with a program being
— obviously correct (but usually inefficient)
by a sequence of transformation steps into a program being
— still correct and (hopefully) more efficient o

where (ideally) every transformation step is proved correct (cp.
Chapter 4), can be considered an approach in the spirit of

— correctness by construction.
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Chapter 6.7.2

Provers, Proof-Assistents, Verified
Programming
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Provers, Proof-Assistents, Verified Prog. (1)

Provers, proof-assistents for verifying

» Equational properties of functional programs (Sonnex et
al., TACAS 2012)
— Tool Zeno: Proof search is based on induction and equa-
lity reasoning which are driven by syntactic heuristics.

» First-order and call-by-value recursive functional programs
(Suter et al., SAS 2011)
— Tool Leon: Based on extending SMT to recursive pro-
grams.

» Higher-order functional programs (Unno et al., POPL

2013)

— Tool MoCHi-X: Prototype implementation of a type
inference algorithm as extension of the software model
checker MoChi (Kobayashi et al., PLDI 2011).
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Provers, Proof-Assistents, Verified Prog. (2)

» Lazy Haskell (Mitchell et al., Haskell 2008)

— Tool Catch: Based on static analysis; can prove absence
of pattern matching failures; evaluated on ‘real’ pro-
grams.

> ...

Language integrated approaches:
» Programming by contracts (Vytiniotis et al., POPL 2013)
» Verified functional programming in Agda (see next slide)

> ...
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Verified Functional Programming in Agda

[d Aaron Stump. Verified Functional Programming in Agda. ACM
Books Series, No. 9, 2016.

...a text snippet from the book:

‘Agda is an advanced programming language based on Type Theo-
ry. Agda’s type system is expressive enough to support full func-
tional verification of programs, in two styles.

In external verification, we write pure functional programs and then
write proofs of properties about them. The proofs are separate external o2
artifacts, typically using structural induction.

In internal verification, we specify properties of programs through rich
types for the programs themselves. This often necessitates including proofs
inside code, to show the type checker that the specified properties hold.

The power to prove properties of programs in these two styles is a pro-
found addition to the practice of programming, giving programmers the
power to guarantee the absence of bugs, and thus improve the quality of

software more than previously possible. o
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Final Note

...for additional information and details refer to

Final
Note

» full course notes

available at the homepage of the course at:

http:://www.complang.tuwien.ac.at/knoop/
ffp185A05_ss2020.html

246/246



	Lecture 5
	Detailed Outline
	5 Testing
	5.1 Motivation
	5.2 Defining Properties
	5.3 Testing against Abstract Models
	5.4 Testing against Algebraic Specifications
	5.5 Controlling Test Data Generation
	5.6 Monitoring, Reporting, and Coverage
	5.7 Implementation of QuickCheck
	5.8 Summary
	5.9 References, Further Reading

	6 Verification
	6.1 Inductive Proof Principles on Natural Numbers
	6.2 Inductive Proof Principles on Structured Data
	6.3 Inductive Proofs on Algebraic Data Types
	6.4
	6.5 Proving Equality of Streams
	6.6Fixed Point Induction
	6.7 Verified Programming, Verification Tools
	6.8 References, Further Reading

	Final Note

