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Lecture 3

Part II: Programming Principles

– Chapter 4: Equational Reasoning for Functional Pearls

Part IV: Advanced Language Concepts

– Chapter 9: Monoids

– Chapter 10: Functors

– Chapter 11: Applicative Functors

– Chapter 14: Kinds
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Outline in more Detail (1)

Part II: Programming Principles

I Chap. 4: Equational Reasoning for Functional Pearls

4.1 Equational Reasoning
4.2 Application: Functional Pearls

4.2.1 Functional Pearls: The Very Idea
4.2.2 Functional Pearls: Origin, Background

4.3 The Smallest Free Number

4.3.1 The Initial Algorithm
4.3.2 An Array-based Algorithm and Two Variants
4.3.3 A Divide-and-Conquer Algorithm
4.3.4 In Closing

4.4 Not the Maximum Segment Sum

4.4.1 Two Initial Algorithms
4.4.2 The Linear Time Algorithm
4.4.3 In Closing
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Outline in more Detail (2)
I Chap. 4: Equational Reasoning for Funct. Pearls (cont’d)

4.5 A Simple Sudoku Solver
4.5.1 Two Initial Algorithms
4.5.2 Pruning the Initial Algorithm
4.5.3 In Closing

4.6 References, Further Reading

Part IV: Advanced Language Concepts
I Chap. 9: Monoids

9.1 Motivation
9.2 The Type Class Monoid
9.3 Monoid Examples

9.3.1 The List Monoid
9.3.2 Numerical Monoids
9.3.3 Boolean Monoids
9.3.4 The Ordering Monoid

9.4 Summary, Looking ahead
9.5 References, Further Reading
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Outline in more Detail (3)

I Chap. 10: Functors

10.1 Motivation
10.2 The Type Constructor Class Functor
10.3 Functor Examples

10.3.1 The Identity Functor
10.3.2 The List Functor
10.3.3 The Maybe Functor
10.3.4 The Either Functor
10.3.5 The Map Functor
10.3.6 The Input/Output Functor

10.4 References, Further Reading
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Outline in more Detail (4)

I Chap. 11: Applicative Functors

11.1 The Type Constructor Class Applicative
11.2 Applicative Examples

11.2.1 The Identity Applicative
11.2.2 The List Applicative
11.2.3 The Maybe Applicative
11.2.4 The Either Applicative
11.2.5 The Map Applicative
11.2.6 The Ziplist Applicative
11.2.7 The Input/Output Applicative

11.3 References, Further Reading

I Chap. 14: Kinds

14.1 Kinds of Types
14.2 Kinds of Type Constructors
14.3 References, Further Reading
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Chapter 4

Equational Reasoning for Functional Pearls
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Chapter 4.1

Equational Reasoning
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Equational Reasoning

...a well-known mathematical means for reasoning about and
proving the validity of e.g. arithmetical statements:

Proposition 4.1.1

(a + b) ∗ (a − b) = a2 − b2

Proof. Equational reasoning yields:

(a + b) ∗ (a − b)

(Distributivity of ∗, +) = a ∗ a − a ∗ b + b ∗ a − b ∗ b
(Commutativity of ∗) = a ∗ a − a ∗ b + a ∗ b − b ∗ b

= a ∗ a − b ∗ b
= a2 − b2 �
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Equational Reasoning

...carries over to functional programming because in functional
programming the equality symbol ‘=’ means:

I ‘equal by definition:’

The value of the left-hand side expression is defined as
the value of the right-hand side expression.

An equation of the form

f x y = x+y

as (part of the) definition of a function f is thus a

I genuine mathematical equation:

The expression on the left hand side and the right hand
side of = have the same value.
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Illustrating Equational Reasoning
...in a functional programming context:

Proposition 4.1.2
The Haskell functions f and g:

f :: Int -> Int -> Int

f a b = (a+b) * (a-b)

g :: Int -> Int -> Int

g a b = a^2 - b^2

denote the same function.

Proof. Using Proposition 4.1.1 and equational reasoning we
obtain:

f a b

(Definition of f, unfolding f) = (a+b) * (a-b)

(Proposition 4.1.1) = a2 - b2

(Definition of g, folding g) = g a b �
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Folding, Unfolding of Functional Definitions

...can be applied from

I left-to-right (called unfolding)

I right-to-left (called folding)

in equational reasoning as shown in the proof of Proposition
4.1.2
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Note

...however, that some care on folding/unfolding must be taken
because the Haskell semantics implicitly imposes an ordering
on the equations.

For illustration consider:

isZero :: Int -> Bool

isZero 0 = True

isZero n = False

The first equation isZero 0 = True can be viewed as a logi-
cal property. It can

– freely be applied in both directions.

The second equation isZero n = False can not. It can

– only be applied, if n is different from 0.
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Towards Functional Pearls (1)
Consider functions reverse, fast reverse for list reversal:

reverse :: [a] -> [a]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

fast_reverse :: [a] -> [a]

fast_reverse xs = fr xs []

where fr [] ys = ys

fr (x:xs) ys = fr xs (x:ys)

Note:

– reverse requires n(n+1)
2

calls of the concatenation func-
tion (++) with n denoting the length of the argument list.

– fast reverse does not rely on list concatenation (++)

but on list construction (:); it is thus much more effi-
cient.
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Towards Functional Pearls (2)
If we could prove Theorem 4.1.5 stating that reverse and
fast reverse actually denote the same function, replacing
reverse by fast reverse would yield a significant speed-up
of programs:

Theorem 4.1.5 (Equality)

The functions reverse and fast reverse denote the same
function, i.e.,

∀ ls ∈ a-List. reverse ls = fast_reverse ls

Proving Theorem 4.1.5: The Functional Pearl!

Equational reasoning (in concert with other techniques like in-
duction) will be instrumental to conduct this proof showing
that reverse and fast reverse are equal and hence, the
optimization of replacing reverse by fast reverse correct!
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Proving Theor. 4.1.5: The Functional Pearl (1)

Proof of Theorem 4.1.5 by structural induction on the struc-
ture of the list argument and equational reasoning.

Induction base: Let ls = []. We obtain:

reverse ls

(ls = []) = reverse []

(Unfolding reverse) = []

(Folding fr) = fr [] []

(Folding fast reverse) = fast reverse []

([] = ls) = fast reverse ls
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Proving Theor. 4.1.5: The Functional Pearl (2)

Induction step: Let ls = (v:ls′). We obtain:

reverse ls

(lst = (v:ls′)) = reverse (v:ls′)

(Unfolding reverse) = reverse ls′ ++ [v]

(IH) = fast reverse ls′ ++ [v]

(Unfolding fast reverse) = (fr ls′ []) ++ [v]

(Lemma 4.1.7) = fr ls′ [v]

(Folding fr) = fr ls′ (v:[])

(Folding fr) = fr (v:ls′) []

(Folding fast reverse) = fast reverse (v:ls′)

((v:lst′) = ls) = fast reverse ls �
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Proving the Supporting Results (1)

Lemma 4.1.6
∀ ls1,ls2 ∈ a-List ∀ v ∈ a-Value.

(fr ls1 ls2) ++ [v] = fr ls1 (ls2 ++ [v])

Proof. by structural induction on the structure of the list
argument ls1 and equational reasoning.

Induction base: Let ls1 = [], let ls2 ∈ a-List, and let
v ∈ a-Value. We obtain:

(fr ls1 ls2) ++ [v]

(ls1=[]) = (fr [] ls2) ++ [v]

(Unfolding fr) = ls2 ++ [v]

(Folding fr) = fr [] (ls2 ++ [v])

([]=ls1) = fr ls1 (ls2 ++ [v])
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Proving the Supporting Results (2)

Induction step: Let ls1= (v′:ls1′), let ls2∈ a-List, and
let v∈ a-Value. We obtain:

(fr ls1 ls2) ++ [v]

(ls1 = (v′:ls1′)) = (fr (v′:ls1′) ls2) ++ [v]

(Unfolding fr) = (fr ls1′ (v′:ls2)) ++ [v]

(ls3 =df (v
′:ls2)) = (fr ls1′ ls3) ++ [v]

(IH) = fr ls1′ (ls3 ++ [v])

((v′:ls2) = ls3) = fr ls1′ ((v′:ls2) ++ [v])

(Def. of (:) and (++)) = fr ls1′ (v′:(ls2 ++ [v]))

(Folding fr) = fr (v′:ls1′) (ls2 ++ [v])

((v′:ls1′) = ls1) = fr ls1 (ls2 ++ [v]) �
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Proving the Supporting Results (3)

Lemma 4.1.7
∀ ls′ ∈ a-List ∀ v∈ a-Value.

(fr ls′ []) ++ [v] = fr ls′ [v]

Proof. Let ls′ ∈ a-List and let v∈ a-Value. Setting ls1 = ls′

and ls2 = [], we obtain by equational reasoning and Lemma 4.1.6:

(fr ls′ []) ++ [v]

(ls′=ls1,[]=ls2) = (fr ls1 ls2) ++ [v]

(Lemma 4.1.6) = fr ls1 (ls2 ++ [v])

(ls1=ls′, ls2=[]) = fr ls′ ([] ++ [v])

([]++[v]=[v]) = fr ls′ [v] �
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Application: Program Optimization

...equational reasoning together with inductive proof principles
(structural induction) allowed us to prove Theorem 4.1.5:

– For all finite lists xs, the Haskell expressions reverse xs,
fast reverse xs are equal, i.e., have the same value:

∀ xs∈ a-List. reverse xs == fast_reverse xs

Replacing reverse by fast reverse is thus safe:

Corollary 4.1.8 (Optimization)

Replacing every call of reverse by a call of fast reverse in
a program is a safe optimization of the program.
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Comparing the Suitability

...of functional and imperative programming for equational
reasoning.

Functional definitions are

I genuine mathematical equations.

This enables reasoning about functional programs by means of
equational reasoning as is known from mathematics and
standard (algebraic) reasoning.

Reasoning about functional programs is thus a lot easier as
about imperative programs where equational reasoning does
not apply (as easily).
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Note
...in imperative programming, the equality symbol ‘=’ means:

I ‘equal by assignment:’

The contents of the memory cell named by the left-hand
side variable is replaced by the value of the right-hand
side expression.

An ‘equation’ of the form
x = x+y

thus does not represent a mathematical equation meaning that
x and x+y have the same value but a command, an instruc-
tion, a destructive assignment statement meaning that

– the sum of the values stored in the memory cells named x

and y is used for overwriting the value stored so far in the
memory cell named x, destroying thereby this value.

Note: To avoid confusion some imperative languages thus use a different
symbol, e.g. := such as in Pascal, to denote the assignment operator (in-
stead of the conceptually misleading symbol =).
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Illustrating the Difference

...consider the definition-like symbol sequence S :

x = 1

y = 2

x = x + y

In functional languages like Haskell, S is an

– invalid sequence of definitions raising an error that x is
defined multiple times. Since = means ‘equal by defi-
nition’, redefinition is forbidden. S can not be evaluated.

In imperative languages like C, Java, etc., S is a

– valid sequence of destructive assignment statements mea-
ning that after executing S the memory cells named x and
y store the values 3 and 2, respectively. No error is raised.
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Summing up
Functional definitions are

– genuine mathematical equations.

This allows us to prove

– equality and other relations among functional expressions

applying standard mathematical reasoning.

Proven equality of functions can be used e.g. for optimization
by replacing a

– less efficient implementation (called initial algorithm, ini-
tial program) by a more efficient one (called final algor-
ithm, final program).

Example:

– Initial program: reverse

– Final program: fastReverse

Next, we are going to consider this approach in the realm of
combinatorially complex problems of functional pearls.
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Chapter 4.2

Application: Functional Pearls
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Chapter 4.2.1

Functional Pearls: The Very Idea
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Functional Pearls: The Very Idea

1. Pick a combinatorially (highly) complex problem P .
2. Solve P by a conceptually straightforward, simple, and

intuitive algorithm, the so-called initial algorithm (IA)
implemented by some initial program IP, which is

– obviously correct
– typically (hopelessly) inefficient.

3. The Functional Perl:
3.1 Transform IP step by step into some final program (FP)

which may be
– conceptually more complex, less intuitive, not at all ob-

viously correct but (much more) efficient than IP (e.g.,
feasible instead of practically infeasible, logarithmic
instead of quadratic, linear instead of quasi linear,...)

3.2 Prove that every transformation step preserves the se-
mantics of the program it is applied to (ensuring overall
equivalence of the initial and the final program and
hence the correctness of the latter).
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The Beauty of a Functional Pearl

It is important to note: The functional pearl is

I not the finally resulting (efficient) implementation

I but the calculation and proof process leading to it!

The elegance of the calculation and proof process makes the

I beauty of a functional pearl!

The transformation of

– reverse into fast reverse together with the proof of
the two functions’ equality

can be considered a most simple example of a functional pearl.

29/214



Lecture 3

Detailed
Outline

Chap. 4

4.1

4.2

4.2.1

4.2.2

4.3

4.4

4.5

4.6

From
Type to
Higher-
Order
Type
Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Final
Note

Chapter 4.2.2

Functional Pearls: Origin, Background
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Functional Pearls: Origin, Background

In 1990, in the course of founding the

I Journal of Functional Programming

Richard Bird was asked by the then designated editors-in-chief
Simon Peyton Jones and Philip Wadler to contribute a regular
column to the journal entitled

I Functional Pearls.

In spirit, this column should follow and emulate the successful
series of essays written by Jon Bentley in the 1980s under the
title

I Programming Pearls

and published in the

I Communications of the ACM.
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Functional Pearl Examples

From 1990 to (roughly) 2011 some

I 80 functional pearls have been published in the Journal of
Functional Programming dealing with

– Divide-and-conquer
– Greedy
– Exhaustive search
– ...

and other problems.

Some more were published in proceedings of conferences inclu-
ding editions of the series of the

I International Conference of Functional Programming

I Mathematics of Program Construction

Roughly a quarter of these pearls have been written by Richard
Bird.
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A Major Resource of Functional Pearls
In 2011, Richard Bird presented a collection of 30 “revised,
polished, and re-polished functional pearls” written by him and
others in his monograph:

I Richard Bird. Pearls of Functional Algorithm Design.
Cambridge University Press, 2011

Here, we consider three of them with a particular focus on the
use of equational reasoning for proving the transformation
steps correct leading from the initial programs being

I obviously correct but (hopelessly) inefficient

into their final versions being

I much more efficient (but possibly less intuitive):

– Pearl 1: The Smallest Free Number Problem

– Pear 2: Not the Maximum Segment Sum Problem

– Pearl 3: A Simple Sudoku Solver
33/214
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Go for Equational Reasoning!

...the name of the GoFER language, which is both acronym
and name of a functional programming language standing for:

Go F(or) E(quational) R(easoning)

might be considered an indication of the relevance and impor-
tance of equational reasoning in the realm of functional pro-
gramming.

Looking ahead

– In spirit, the program transformation processes follow a
correctness by construction approach (cf. Chapter 6.7.1),
where correctness of a program constructed by a trans-
formation is ensured by equational reasoning (and other
techniques especially inductive reasoning).
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Chapter 4.3

The Smallest Free Number
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The Smallest Free Number (SFN) Problem

The SFN Problem:

– Let X be a finite set of natural numbers.

– Compute the smallest natural number y that is not in X .

Examples:

The smallest free number of set

– {0, 1, 5, 9, 2} is 3.

– {0, 1, 2, 3, 18, 19, 22, 25, 42, 71} is 4.

– {8, 23, 9, 12, 11, 1, 10, 0, 13, 7, 41, 4, 21, 5, 17, 3, 19, 2, 6} is
not immediately obvious!
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Chapter 4.3.1

The Initial Algorithm
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The SFN Problem

...can easily be solved, if

– X is represented as an increasingly ordered list xs of
numbers without duplicates.

– If so, it suffices to look for the first gap in xs.

Illustration:

– Let X be set:
{8, 23, 9, 12, 11, 1, 10, 0, 13, 7, 41, 4, 21, 5, 17, 3, 19, 2, 6}

– After sorting (and removing duplicates) we obtain list:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 19, 21, 23, 41]

– Looking for the first gap yields:
The smallest free number of X is 14!
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IA: The Initial SFNP Algorithm

...based on the previous observation, the initial algorithm IA
(for ‘Initial Algorithm’) for the SFNP problem is the following:

IA: Initial SFNP Algorithm

1. Represent X as a list of integers xs.

2. Sort xs increasingly, while removing all duplicates.

3. Compute the first gap in the list obtained from step 2.
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IP1: The 1st Initial SFNP Program

IA can easily be implemented by a system of two functions
called:

– ssfn (for ‘simple sfn’)

– sap (for ‘search and pick’).

IP1: 1st Initial SFNP Program

ssfn :: [Integer] -> Integer

ssfn = (sap 0) . removeDuplicates . quickSort

sap :: Integer -> [Integer] -> Integer

sap n [] = n

sap n (x:xs)

| n /= x = n

| otherwise = sap (n+1) xs
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IP2: The 2nd Initial SFNP Program

Note, function minfree implements IA, too, giving us a
second initial program IP2 solving the SFN problem.

IP2: 2nd Initial SFNP Program

minfree :: [Nat] -> Nat

minfree xs = head $ ([0..]) \\ xs

where

(\\) :: Eq a => [a] -> [a] -> [a]

xs \\ ys = filter (‘notElem‘ ys) xs

denotes difference on sets (i.e., xs\\ys is the list of those ele-
ments of xs that remain after removing any elements in ys)
and

type Nat = Int

the type of natural numbers starting from 0.
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Looking at IA, IP1 and IP2 in More Detail

...the initial algorithm IA and its implementing programs IP1

and IP2 for the SFN problem are (obviously) sound but in-
efficient:

– IA1, IP1: Sorting is not of linear time complexity.

– IP2: Evaluating minfree for a list of length n requires
O(n2) steps in the worst case.

(Note: Evaluating minfree [n-1,n-2 .. 0] requires
doublechecking that “i , 0 ≤ i ≤ n, is not an element of
list [n-1,n-2 .. 0]” and thus n(n + 1)/2 equality tests.)
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The SFN Problem as a Functional Pearl

...starting from IP2

– develop a new SFNP Algorithm LinSFNP which is of
linear time complexity (i.e., linear in the number of ele-
ments of the inital set X of natural numbers)

– prove that all steps transforming IA2 into LinSFNP are
correct (i.e., preserve the semantics of IA2).
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Outline

Starting from IP2, i.e., from minfree, we will develop:

1. an array based

2. a divide-and-conquer based

linear time algorithm for the SFN problem.

Both algorithms rely on the following Key Fact (KF):

KF: In [0..length xs], there is a number which is not in xs

where xs denotes the argument list of natural numbers.

KF implies: The smallest number not in xs is given by

– the smallest number not in filter (<=n) xs, where
n == length xs!
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Chapter 4.4

Not the Maximum Segment Sum

45/214



Lecture 3

Detailed
Outline

Chap. 4

4.1

4.2

4.3

4.4

4.4.1

4.4.2

4.4.3

4.5

4.6

From
Type to
Higher-
Order
Type
Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Final
Note

The Maximum Segment Sum (MSS) Problem
A segment of a list

– is a contiguous subsequence.

The MSS Problem:

– Let L be a list of (positive and negative) integers.

– Compute the maximum of the sums of all possible
segments of L.

Example:

Let L be the list

– [-4,-3,-7,2,1︸︷︷︸,-2,-1,-4].

segment [2,1]

The maximum segment sum of L is

– 3, the sum of the elements of the segment [2,1].
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The MSS Problem: Background, Motivation

The MSS Problem

– was considered quite often in the late 1980s mostly as a
show- case by programmers to illustrate and demonstrate
their favorite style of program development or their
particular theorem prover.

In this chapter, however, we consider

– the ‘Maximum Non-Segment Sum (MNSS) Problem’

in the spirit of a functional pearl problem.
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The Max. Non-Segment Sum (MNSS) Problem
A non-segment of a list

– is a subsequence that is not a segment, i.e., a
non-segment has one or more ‘holes’ in it.

The MNSS Problem:

– Let L be a list of (positive and negative) integers.
– Compute the maximum of the sums of all possible

non-segments of L.

Example:

Let L be the list segment [2,1,-2,−1]

– [-4,-3,-7,
︷ ︸︸ ︷
2,1︸︷︷︸ ,-2, -1︸︷︷︸,-4].

non-segment [2,1]++[−1]

The maximum non-segment sum of L is
– 2, the sum of the elements from the non-segment
[2,1,-1].
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What does MNSS qualify a Pearl Problem?

...let L be a list of length n.

– There are O(n2) segments of L.

– There are O(2n) subsequences of L.

This means there are

– many more non-segments of a list than segments.

This raises the problem:

– Can the maximum non-segment sum be computed in
linear time?

This (pearl) problem will be tackled in this chapter.
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The Initial Algorithm
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IA: The Initial MNSS Algorithm

...the MNSS problem can easily be solved by a three-stage
process matching the generate/transform/select pattern:

IA: Initial MNSS Algorithm

1. Generate: Compute a list of all non-segments of the
argument list.

2. Transform: Compute the sum of all these non-segments.

3. Select: Pick a non-segment whose sum is maximum.
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IP : The Initial MNSS Program

IA can straightforwardly be implemented in Haskell as compo-
sition of three functions.

IP : Initial MNSS Program

mnss :: [Int] -> [Int]

mnss = maximum . map sum . nonsegs

where

– nonsegs computes a list of all non-segments of the
argument list,

– map sum computes the sum of all these non-segments,

– maximum picks those whose sum is maximum.
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Chapter 4.4.2

The Linear Time Algorithm
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Work Plan to Derive the Linear Time Alg.

Recall the initial algorithm for the MNSS problem with
nonsegs replaced by its supporting functions:

mnss = maximum . map sum .

extract . filter nonseg . markings

extract = map (map fst . filter snd)

nonseg = (== N) . foldl step E . map snd

Work plan:

– Express extract . filter nonseg . markings as an
instance of foldl.

– Apply then the fusion law of foldl to arrive at a better
algorithm.
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Transforming, transforming, transforming

...and proving semantics preservation of every transformation
step.
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The Linear Time Algorithm

...for the MNSS Problem:

mnss xs

= fourth (foldl h (start (take 3 xs)) (drop 3 xs))

start [x,y,z]

= (0, max [x+y+z,y+z,z], max [x,x+y,y], x+z)

...less obviously sound for itself compared to the initial algor-
ithm for the MNSS Problem:

mnss :: [Int] -> [Int]

mnss = maximum . map sum . nonsegs

but efficient and proven correct on the fly of its construction.
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Chapter 4.4.3

In Closing
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Background

The MSS Problem goes back to Jon R. Bentley:

– Jon R. Bentley. Programming Pearls. Addison-Wesley,
1987.

David Gries and Richard Bird later on presented an invariant
assertions and algebraic approach, respectively.

– David Gries. The Maximum Segment Sum Problem. In
Formal Development of Programs and Proofs. Edsger W.
Dijkstra (Ed.), Addison-Wesley, 43-45, 1990.

– Richard Bird. Algebraic Identities for Program Calcula-
tion. Computer Journal 32(2):122-126, 1989.
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Recent Results

...on the MSS Problem have been presented in:

– Shin-Cheng Mu. The Maximum Segment Sum is Back.
In Proceedings of the ACM SIGPLAN Symposium on
Partial Evaluation and Program Manipulation (PEPM
2008), 31-39, 2008.
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Chapter 4.5

A Simple Sudoku Solver
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Sudoku Puzzles

6

5 32

73

1

4

8

9

7

3 5 6 8

5

2

5

7

7 8

4

3

2 1

6

5 6

2 1

3

5

2 4

5

Fill in the grid so that every row, every column,
and every 3× 3 box contains the digits 1− 9.

There’s no maths involved. You solve the
puzzle with reasoning and logic.

The Independent Newspaper
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Chapter 4.5.1

Two Initial Algorithms
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IA1, IA2: Two Initial Soduko Algorithms

There are two straightforward (brute force) approaches to
solving a Sudoku puzzle:

IA1: 1st Initial Soduko Algorithm:

– Construct a list of all correctly completed grids.
– Subsequently, test the input grid against them to identify

those whose non-blank entries match the given ones.

IA2: 2nd Initial Sodudo Algorithm:

– Start with the input grid and construct all possible
choices for the blank entries.

– Then compute all grids that arise from making every
possible choice and filter the result for the valid ones.

In the following we proceed with IA2 for solving the Sudoku
problem.
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Preliminaries

...data types for modelling Soduko puzzles:

– m × n-matrix: A list of m rows of the same length n.

type Matrix a = [Row a]

type Row a = [a]

– Grid: A 9× 9-matrix of digits.

type Grid = Matrix Digit

type Digit = Char

– Valid digits: ‘1‘ to ‘9‘; ‘0‘ stands for a blank.

digits = [‘1‘..‘9‘]
blank = (== ‘0‘)

In the following, we assume that the input grid is valid, i.e.,

– it contains only digits and blanks

– no digit is repeated in any row, column or box.
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IP : The Initial Soduko Program
...IA2 can straightforwardly be implemented in Haskell as a
composition of three functions matching the generate/filter
pattern:

IP : Initial Sudoku Program

solve = filter valid . expand . choices

choices :: Grid -> Matrix Choices

expand :: Matrix Choices -> [Grid]

valid :: Grid -> Bool

where

– Generate:
– choices constructs all choices for the blank entries of

the input grid,
– expand computes all grids that arise from making every

possible choice,

– Filter: filter valid selects all the valid grids.
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Completing the Initial Program (1)

...we start with introducing the type synonym

type Choices = [Digit]

whose values will represent the set of choices.

Based on this, we next define the subsidiary functions of
solve, i.e., the functions

– choices

– expand

– valid
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Completing the Initial Program (2)

Implementing choices:

choices :: Grid -> Matrix Choices

choices = map (map choice)

choice d = if blank d then digits else [d]

Intuitively

– If the cell is blank, then all digits are installed as possible
choices.

– Otherwise there is no choice and a singleton is returned.
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Completing the Initial Program (3)

Implementing expand:

expand :: Matrix Choices -> [Grid]

expand :: cp . map cp

cp :: [[a]] -> [[a]] (cp =̂ cartesian product)

cp [] = [[]]

cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]

Intuitively

– Expansion is a Cartesian product, i.e., a list of lists
yielded by the function cp, e.g., cp[ [1,2],[3],[4,5] ]
->> [ [1,3,4],[1,3,5],[2,3,4],[2,3,5] ]

– map cp returns a list of all possible choices for each row.

– cp . map cp, finally, installs each choice for the rows in
all possible ways.

68/214



Lecture 3

Detailed
Outline

Chap. 4

4.1

4.2

4.3

4.4

4.5

4.5.1

4.5.2

4.5.3

4.6

From
Type to
Higher-
Order
Type
Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Final
Note

Completing the Initial Program (4)

Implementing valid:

valid :: Grid -> Bool

valid g = all nodups (rows g) &&

all nodups (cols g) &&

all nodups (boxs g)

nodups :: Eq a => [a] -> Bool (nodups =̂
nodups [] = True no duplicates)

nodups (x:xs) = all (x/=) xs && nodups xs

Intuitively

– A grid is valid, if no row, column or box contains
duplicates.
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Completing the Initial Program (5)

Implementing rows and columns:

rows :: Matrix a -> Matrix a

rows = id

cols :: Matrix a -> Matrix a

cols [xs] = [ [x] | x <- xs]

cols (xs:xss) = zipWith (:) xs (cols xss)

Intuitively

– rows is the identity function, since the grid is already
given as a list of rows.

– columns computes the transpose of a matrix.
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Completing the Initial Program (6)
Implementing boxs:

boxs :: Matrix a -> Matrix a

boxs = map ungroup . ungroup . map cols .

group . map group

group :: [a] -> [[a]]

group [] = []

group xs = take 3 xs : group (drop 3 xs)

ungroup :: [[a]] -> [a]

ungroup = concat

Intuitively

– group splits a list into groups of three.
– ungroup takes a grouped list and ungroups it.
– group . map group produces a list of matrices; transpo-

sing each matrix and ungrouping them yields the boxes.
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Completing the Initial Program (7)

...illustrating the effect of boxs for the (4× 4)-case, when
group splits a list into groups of two:


a b c d
e f g h
i j k l
m n o p

→

(

ab cd
ef gh

)
(

ij kl
mn op

)
→


(

ab ef
cd gh

)
(

ij mn
kl op

)


Note: Eventually, the elements of the 4 boxes show up as the
elements of the 4 rows, where they can easily be accessed.
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Wholemeal Programming

Instead of

– thinking about matrices in terms of indices, and

– doing arithmetic on indices to identify rows, columns, and
boxes

the preceding approach has gone for functions which

– treat a matrix as a complete entity in itself.

Geraint Jones coined the notion

– wholemeal programming

for this style of programming.

Wholemeal programming

– helps avoiding indexitis and

– encourages lawful program construction.
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Lawful Programming

Lemma 4.5.1.1
The laws (A), (B), and (C) hold on arbitrary (N × N)-matri-
ces, in particular on (9× 9)-grids:

rows . rows = id (A)

cols . cols = id (B)

boxs . boxs = id (C)

This means, all 3 functions are involutions.

Lemma 4.5.1.2
The laws (D), (E), and (F) hold on (N2 × N2)-matrices:

map rows . expand = expand . rows (D)

map cols . expand = expand . cols (E)

map boxs . expand = expand . boxs (F)
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A Quick Analysis of the Initial Program

...suppose that half of the entries (cells) of the input grid are
fixed.

Then there are about 940, or

147.808.829.414.345.923.316.083.210.206.383.297.601

grids to be constructed and checked for validity!

This is hopeless!
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Chapter 4.5.2

Pruning the Initial Algorithm
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Optimizing the Initial Algorithm

1st Optimization: Pruning the matrix of choices:

Idea

– Remove any choices from a cell c that occurs as a
singleton entry in the row, column or box containing c.

Hence, we are seeking for a function

prune :: Matrix Choices -> Matrix Choices

which satisfies

filter valid . expand

= filter valid . expand . prune

and implements the above idea.
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Pruning a Row

Pruning a row

pruneRow :: Row Choices -> Row Choices

pruneRow row = map (remove fixed) row

where fixed = [d | [d] <- row]

remove xs ds

= if singleton ds then ds else ds \\ xs

Intuitively

– remove removes choices from any choice that is not fixed.
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Laws for pruneRow, nodups, and cp

– The function pruneRow satisfies law (G):

filter nodups . cp

= filter nodups . cp . pruneRow (G)

– The functions nodups and cp satisfy laws (H) and (I):

If f is an involution, i.e., f . f = id, then

filter (p.f) = map f . filter p . map f (H)

filter (all p) . cp = cp . map (filter p) (I)
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Rewriting filter valid . expand

...using nodups, boxs, cols, and rows.

We can prove:

Lemma 4.5.2.1
filter valid . expand

= filter (all nodups . boxs) .

filter (all nodups . cols) .

filter (all nodups . rows) . expand

(Note: The order of the 3 filters on the right hand side above
is not relevant.)

Work plan: Apply each of the filters to expand.

...doing this requires some reasoning which we exemplify for
the boxs case.
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Proof Sketch of Lemma 4.5.2.1: boxs Case (1)

filter (all nodups . boxs) . expand

= {(H), since boxs . boxs = id}
map boxs . filter (all nodups) . map boxs . expand

= {(F)}
map boxs . filter (all nodups) . expand boxs

= {definition of expand}
map boxs . filter (all nodups) . cp . map cp . boxs

= {(I), and map f . map g = map (f . g)}
map boxs . cp . map (filter nodups . cp) . boxs

= {(G)}
map boxs . cp . map (filter nodups . cp . pruneRow) . boxs

81/214



Lecture 3

Detailed
Outline

Chap. 4

4.1

4.2

4.3

4.4

4.5

4.5.1

4.5.2

4.5.3

4.6

From
Type to
Higher-
Order
Type
Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Final
Note

Proof Sketch of Lemma 4.5.2.1: boxs Case (2)

= {(I)}
map boxs . filter (all nodups) . cp .

map cp . map pruneRow . boxs

= {definition of expand}
map boxs . filter (all nodups) . expand .

map pruneRow . boxs

= {(H) in the form map f . filter p =

filter (p . f) . map f}
filter (all nodups . boxs) . map boxs . expand .

map pruneRow . boxs

= {(F)}
filter (all nodups . boxs) . expand . boxs .

map pruneRow . boxs
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Summing up

Overall, we have shown:

Lemma 4.5.2.2
filter (all nodups . boxs) . expand

= filter (all nodups . boxs) .

expand . pruneBy boxs , where

pruneBy f = f . map pruneRow . f

Repeating the same calculation for rows and cols we get:

Lemma 4.5.2.3
filter valid . expand

= filter valid . expand . prune , where

prune

= pruneBy boxs . pruneBy cols . pruneBy rows
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Implementation of solve after the 1st Opt.

Implementation of solve after the 1st Optimization (pruning-
improved):

solve = filter valid . expand . prune . choices

Note: Pruning can be done more than once.

– After each round of pruning some choices might be
resolved into singletons allowing the next round of
pruning to remove even more impossible choices.

– For simple Sudoku problems repeated rounds of pruning
will eventually yield the solution of the input Sudoku
problem.
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Tuning the Solver Further

...based on the following idea:

– Combine pruning with expanding the choices for a single
cell only at a time, called single-cell expansion.

Which cell to expand?

– Any cell with the smallest number of choices for which
there are at least 2 choices.

Note: If there is a cell with no choices then the Sudoku pro-
blem is unsolvable (from a pragmatic point of view, such cells
should be identified quickly).
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Empowering the Function expand

...we replace the function expand by a new version

expand = concat . map expand . expand1 (J)

where expand1 expands the choices of a single cell only, which
is defined next.
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Defining expand1

Think of a cell containing cs choices as sitting in the middle of
a row row, i.e., row = row1 ++ [cs] ++ row2, in the matrix
of choices, with rows rows1 above it and rows rows2 below it:

expand1 :: Matrix Choices -> [Matrix Choices]

expand1 rows

= [rows1 ++ [row1 ++ [c] : row2] ++ rows2 | c<-cs]

where

(rows1,row:rows2) = break (any smallest) rows

(row1, cs:row2) = break smallest row

smallest cs = length cs == n

n = minimum (counts rows)

counts = filter (/=1) . map length . concat

break p xs

= (takeWhile (not . p) xs, dropWhile (not . p) xs)
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Remarks on expand1

– The value n is the smallest number of choices, not equal
to 1 in any cell of the matrix of choices.

– If the matrix contains only singleton choices, then n is the
minimum of the empty list, which is not defined.

– The standard function break p splits a list into two.

– break (any smallest) rows thus breaks the matrix
into two lists of rows with the head of the second list
being some row that contains a cell with the smallest
number of choices.

– Another application of break then breaks this row into
two sub-rows, with the head of the second being the
element cs with the smallest number of choices.

– Each possible choice is installed and the matrix recon-
structed.

– If there are no choices, expand1 returns an empty list.
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Completeness and Safety of a Matrix

The definition of n implies that (J) only holds when

– applied to matrices with at least one non-singleton choice.

This suggests: A matrix is

– complete, if all choices are singletons,

– unsafe, if the singleton choices in any row, column or box
contain duplicates.

Note:

– Incomplete and unsafe matrices can never lead to valid
grids.

– A complete and safe matrix of choices determines a
unique valid grid.
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Testing Completeness and Safety

Completeness and safety can be tested as follows:

– Completeness Test:

complete = all (all single)

where single is the test for a singleton list.

– Safety Test:

safe m = all ok (rows m) &&

all ok (cols m) &&

all ok (boxs m)

ok row = nodups [d | [d] <- row]

90/214



Lecture 3

Detailed
Outline

Chap. 4

4.1

4.2

4.3

4.4

4.5

4.5.1

4.5.2

4.5.3

4.6

From
Type to
Higher-
Order
Type
Classes

Chap. 9

Chap. 10

Chap. 11

Chap. 14

Final
Note

Equational Reasoning
...allows us to show: If a matrix is safe but incomplete, we
have:

filter valid . expand

= {since expand = concat . map expand . expand1

on incomplete matrices}
filter valid . concat . map expand . expand1

= {since filter p . concat = concat . map (filter p)}
concat . map (filter valid . expand) . expand1

= {since filter valid . expand =

filter valid . expand . prune}
concat . map (filter valid . expand . prune) .

expand1
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Implementation of solve after the 2nd Opt.
Defining search by

search = filter valid . expand . prune

we have for safe but incomplete matrices the equality

search . prune = concat . map search . expand1

This leads us to the final

Implementation of solve, after the 2nd Optimization (single
cell-improved):

solve = search . choices

search m

| not (safe m) = []

| complete m′ = [map (map head) m′]

| otherwise = concat (map search (expand1 m′))

where m′ = prune m
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Chapter 4.5.3

In Closing
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Quality and Performance Assessment
The final version of the Sudoku solver has been tested on
various Sudoku puzzles available at

– haskell.org/haskellwiki/Sudoku

It is reported that the solver

– turned out to be most useful, and

– competitive to (many) of the about a dozen different
Haskell Sudoku solvers available at this site.

While many of the other solvers use arrays and monads, and
reduce or transform the problem to

– Boolean satisfiability, constraint satisfaction, model-
checking, etc.

the solver presented here seems unique in terms of length,
conceptual simplicity and that it has been derived in part by
I equational reasoning!
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Chapter 4.6

References, Further Reading
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Chapter 4: Basic Reading

Richard Bird. Fifteen Years of Functional Pearls. In Pro-
ceedings of the 11th ACM SIGPLAN International Con-
ference on Functional Programming (ICFP 2006), 215,
2006.

Richard Bird. How to Write a Functional Pearl. Invited
presentation at the 11th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2006),
2006. http://icfp06.cs.uchicago.edu/bird-talk.pdf

Richard Bird. Pearls of Functional Algorithm Design.
Cambridge University Press, 2011. (Chapter 1, The
smallest free number; Chapter 11, Not the maximum
segment sum; Chapter 19, A simple Sudoku solver)

Jeremy Gibbons. Functional Pearls – An Editor’s Per-
spective. www.cs.ox.ac.uk/people/jeremy.gibbons/pearls/
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Chapter 4: Selected Further Reading (1)

Jon R. Bentley. Programming Pearls. Addison-Wesley,
1987.

Jon R. Bentley. Programming Pearls. Addison-Wesley, 2nd
edition, 2000. (Excerpt of the book online available from
www.cs.bell-labs.com/cm/cs/pearls)

Richard Bird. Algebraic Identities for Program Calculation.
Computer Journal 32(2):122-126, 1989.

Richard Bird. Thinking Functionally with Haskell.
Cambridge University Press, 2015. (Chapter 5, A simple
Sudoku solver; Chapter 6.6, The maximum segment sum)
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Chapter 4: Selected Further Reading (2)

Antonie J.T. Davie. An Introduction to Functional Pro-
gramming Systems using Haskell. Cambridge University
Press, 1992. (Chapter 10, Applicative Program Transfor-
mations)

Kees Doets, Jan van Eijck. The Haskell Road to Logic,
Maths and Programming. Texts in Computing, Vol. 4,
King’s College, UK, 2004. (Chapter 1.9, Haskell Equations
and Equational Reasoning)

Graham Hutton. Programming in Haskell. Cambridge
University Press, 2007. (Chapter 13, Reasoning about
programs)
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From Type to Higher-Order Type Classes

I Type Classes like

– Eq, Ord, Num, Enum, Show, Monoid,...

have types as instances, e.g.,

– String, Int, [Int], Maybe Int, Either Int Bool,...

which must satisfy a set of laws.

I Higher-Order Type Classes like

– Functor, Applicative, Monad, Arrows,...

have type constructors as instances, e.g.,

– [], (->), ((->) Int), Maybe, Either, Either Int,
(,), (,,), (,,,),...

which must satisfy a set of laws.
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Example
Compare:
I Type class Monoid:

class Monoid m where

mempty :: m

mappend :: m -> m -> m

mconcat :: [m] -> m

-- Default implementation

mconcat = foldr mappend mempty

plus monoid laws.

Note: Usage of m implies: m must be a type!

I Type constructor class Functor:
class Functor f where

fmap :: (a -> b) -> f a -> f b

plus functor laws.

Note: Usage of f implies: f must be a type constructor!
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Type Classes, Type Constructor Classes

...as part of the Haskell’98 type class hierarchy:

(>>=)

(>>)

return

fail

mZero

mPlus

(,) (<=) (>=) (>)

compare

max min

showsPrec

show

showList

succ pred

toEnum

fromEnum

enumFrom

enumFromThen

enumFromTo

enumFromThenTo

Num
(+) (−) (*)

negate

abs signum

fromInteger

Functor
fmap

Monad

MonadPlus

Applicative
pure

(<*>)

mempty

mappend

mconcat

Arrow
pure

(>>>)

first

Fethi Rabhi, Guy Lapalme.

Addison−Wesley, 1999, Figure 2.4, p.46

Algorithms.

(extended)

Ord

(==) (/=)

Show EnumEq

Monoid
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Type Classes, Type Constructor Classes
...a larger section of the Haskell’98 type class hierarchy:

range

index

inRange

rangeSize

(/)

recip

fromRational

fromDouble

succ pred

toEnum

fromEnum

enumFrom

enumFromThen

enumFromTo

enumFromThenTo

properFraction

truncate round

ceiling floor

quot rem div mod

quotRem divMod

even odd

toInteger

pi

exp log sqrt

(**) logBase

sin cos tan

sinh cosh tanh

asinh acosh atanh

floatRadix

floatDigits

floatRange

decodeFloat

encodeFloat

exponent

significand

scaleFloat

isNaN isInfinite

isDenormalized

isNegativeZero

isIEEE

atan2

(>>=)

(>>)

return

fail

mZero

mPlus

pure

(>>>)

first

showsPrec

show

showList

(,) (<=) (>=) (>)

compare

max min

readsPrec

readList

Fethi Rabhi, Guy Lapalme.

Addison−Wesley, 1999, Figure 2.4, p.46

(extended)

Algorithms.

Num

Ix Real
toRational

Fractional

FloatingRealFracEnum

Integral
RealFloat Bounded

minBound maxBound

(+) (−) (*)

negate

abs signum

fromInteger

Monad

MonadPlus

Arrow

Applicative
pure

(<*>)

Functor
fmap

Monoid
mempty

mappend

mconcat

Eq
(==) (/=)

Show

Ord

Read
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Type (Constr.) Classes w/ Predef. Instances
...of a section of the Haskell’98 type class hierarchy:

Functor
IO, [], Maybe

Monad

MonadPlus

IO, [], Maybe

IO, [], Maybe

Paul Hudak.

Cambridge University Press, 2000, p.156

(extended)

The Haskell School of Expression.

Num

Real
Int, Integer,

Fractional

FloatingRealFracEnum

Eq

Ord
All except (−>), Int, Integer,

Float, Double

(), Bool, Char, 

Ordering, Int,

Integer,

Float, Double

IO, IOError

Float, Double

Float, Double

Float, Double Float, Double

Show

Ix
Int, Integer,

Char, Bool,

Tuples of Ix types

Integral
Int, Integer

RealFloat
Float, Double

Bounded
Int, Char, Bool, (),

Ordering, tuples

Read
All except IO, (−>)

Monoid
All Prelude TypesAll except IO, (−>)

IO, [], Maybe,

Arrow
(−>)

[], Ordering

Applicative

((−>) d)
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Haskell: A Research Vehicle & Moving Target
...therefore, an update on the Haskell’98 Type Class Hierarchy:

(>>=)
(>>)
return
fail

mZero
mPlus

Functor
fmap

Applicative
pure

(<*>)

(>>=)
(>>)
return
fail

mZero
mPlus

Monad

MonadPlus

Monad

MonadPlus

Arrow
pure

(>>>)

first

Haskell’98 Haskell’98 Onwards

fmap

(<$) :: a −> f b −> f a

Category

(.) :: cat b c −> cat a b −> cat a c

id :: cat a a

Functor

Arrow
arr :: (b −> c) −> (b ‘arr‘ c)

first :: (b ‘arr‘ c) −> ((b,d) ‘arr‘ ((c,d))

second :: (b ‘arr‘ c) −> ((d,b) ‘arr‘ (d,c))

(***) :: (b ‘arr‘ c) −> (b’ ‘arr‘ c’) −> ((b,b’) ‘arr‘ (c,c’))

(&&&) :: (b ‘arr‘ c) −> (b ‘arr‘ c’) −> (c,c’))

(<$) = fmap . const

Applicative
pure

(<*>)

(*>) :: f a −> f b −> f b

a1 *> a2 = (id <$ a1) <*> a2

(<*) :: f a −> f b −> f a

(<*) = liftA2 const

where ‘arr‘ is a two−ary type variable

...for more information, check out:

https://wiki.haskell.org/Typeclassopedia
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...in medias res.

Chapter 9.2

The Type Class Monoid
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The Type Class Monoid
...monoids are instances of type class Monoid obeying the
monoid laws.

Type Class Monoid

class Monoid m where

mempty :: m

mappend :: m -> m -> m

mconcat :: [m] -> m

-- Default implementation

mconcat = foldr mappend mempty

Monoid Laws

mempty ‘mappend‘ x = x (MonoL1)

x ‘mappend‘ mempty = x (MonoL2)

(x ‘mappend‘ y) ‘mappend‘ z =

x ‘mappend‘ (y ‘mappend‘ z) (MonoL3)
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Informally

Monoids are types with

– a binary operation mappend.

– a value mempty.

– a unary operation mconcat reducing a list of monoid
values to a single monoid value using mappend.

The monoid laws

– MonoL1 and MonoL2 require that mempty is a left-unit
and a right-unit of mappend, hence a unit.

– MonoL3 requires that mappend is associative.

Programmer obligation:

– Programmers must prove that their instances of Monoid
satisfy the monoid laws.
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Note

– The value mempty can be considered a nullary function or
a polymorphic constant.

– The name mappend is often misleading; for most monoids
the effect of mappend cannot be thought in terms of
“appending” values.

– Usually, it is wise to think of mappend in terms of a func-
tion that takes two m values and maps them to another m
value.

– Commutativity of mappend is not required by the monoid
laws.
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Chapter 9.3

Monoid Examples
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Chapter 9.3.1

The List Monoid
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The List Monoid

...making [a] an instance of type class Monoid:

instance Monoid [a] where

mempty = []

mappend = (++)

Proof obligation: The monoid laws

Lemma 9.3.1.1 (Soundness of List Monoid)

For every instance of type variable a, the [a] instance of
Monoid satisfies the three monoid laws MonoL1, MonoL2, and
MonoL3.

...[a] is thus a proper instance of Monoid, the so-called list
monoid.
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Example: Applying the List Monoid Operations

mempty ->> []

[1,2,3] ‘mappend‘ [4,5,6] ->> [1,2,3,4,5,6]

[1,2,3] ‘mappend‘ mempty ->> [1,2,3] ++ [] ->> [1,2,3]

"Advanced " ‘mappend‘ "Functional " ‘mappend‘
"Programming"

->> "Advanced Functional Programming"

"Advanced " ‘mappend‘ ("Functional " ‘mappend‘
"Programming"

->> "Advanced Functional Programming")

("Advanced " ‘mappend‘ "Functional ") ‘mappend‘
"Programming"

->> "Advanced Functional Programming"
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Chapter 9.3.2/9.3.3

Numerical/Boolean Monoids
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Numerical/Boolean Monoids

Numerical types and the Boolean type Bool are equipped with
more than one associative operation and corresponding unit.
E.g.:

Associative operations:

– Addition (+), multiplication (*) for numerical types

– Disjunction (||), conjunction (&&) for Bool

with units:

– 0 for (+), 1 for (*)

– False for (||), True for (&&)

Hence, these types allow different instances; check-out full
course notes for details.
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Chapter 9.3.4

The Ordering Monoid
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The Ordering Monoid

...making type Ordering an instance of type class Monoid:

instance Monoid Ordering where

mempty = EQ

LT ‘mappend‘ _ = LT

EQ ‘mappend‘ x = x

GT ‘mappend‘ _ = GT

Proof obligation: The monoid laws

Lemma 9.3.4.1 (Soundness of Ordering Monoid)

The Ordering instance of Monoid satisfies the three monoid
laws MonoL1, MonoL2, and MonoL3.

...Ordering is thus a proper instance of Monoid, the so-called
ordering monoid.
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Note

The mappend operation of the Ordering instance of Monoid:

– is not commutative:

LT ‘mappend‘ GT ->> LT

GT ‘mappend‘ LT ->> GT

– induces a ‘lexicographical’ comparison of two list argu-
ments.

...we will make use of the latter observation in the following
example.
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Example: Applying the Monoid Operations (1)

The two definitions of lengthCompare without and with
mappend:

lengthCompare :: String -> String -> Ordering

lengthCompare x y

= let a = length x ‘compare‘ length y -- 1st priority

b = x ‘compare‘ y -- 2nd priority

in if a == EQ then b else a

lengthCompare :: String -> String -> Ordering

lengthCompare x y = (length x ‘compare‘ length y)

‘mappend‘ (x ‘compare‘ y)

...are equivalent what can be proved using the properties of
mappend.
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Example: Applying the Monoid Operations (2)

...as suggested both versions of lengthCompare yield:

lengthCompare "his" "ants" ->> LT

(since string “his” is shorter than string “ants”) and

lengthCompare "his" "ant" ->> GT

(since string “his” is lexicographically larger than “ant”).
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Example: Applying the Monoid Operations (3)
...additional comparison criteria can easily be added and prio-
ritirized.

The below extension of lengthCompare, e.g., takes the num-
ber of vowels as second most important comparison criterion:

lengthCompareExt :: String -> String -> Ordering

lengthCompareExt x y

= (length x ‘compare‘ length y) -- 1st priority

‘mappend‘ (vowels x ‘compare‘ vowels y)

-- 2nd priority

‘mappend‘ (x ‘compare‘ y) -- 3rd priority

where vowels = length . filter (‘elem‘ "aeiou")

As suggested we get:

lengthCompareExt "songs" "abba" ->> GT

lengthCompareExt "song" "abba" ->> LT

lengthCompareExt "sono" "abba" ->> GT

lengthCompareExt "sono" "sono" ->> EQ
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Chapter 9.4

Summary, Looking ahead
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Summary: Commutativity of mappend

...unlike associativity, commutativity of the mappend operation
is not required by the monoid laws for monoids.

For some monoids, commutativity of mappend holds, e.g., the:

– sum, product, any, all monoids.

For other instances it does not hold, e.g., the:

– list, ordering monoids.
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Summary: Using Monoids

Monoids are most useful for defining

– folds over values of structured data

since folding requires an associative operation.

Folding seems obviousand natural for

– lists

but is possible, too, for the values of many other structured
data, e.g.:

– trees

This motivates the introduction of the type (constructor) class
Foldable as collection of all type constructors whose values
can be folded (cf. module Data.Foldable; qualified import
because of name clashes with the standard prelude).
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Looking ahead: Type Constructor Classes
...type classes of a new kind:

class Foldable f where

foldr :: (a -> b -> b) -> b -> f a -> b

foldl :: (a -> b -> a) -> a -> f b -> a

foldMap :: (Monoid m, Foldable t) =>

(a -> m) -> t a -> m
...

Note:

– f and t are applied to type variables, here a and b. This
means, f and t are (1-ary) type constructors, not types.

– Foldable is thus a type constructor class, a special type
class.

– The foldl, foldr operations of Foldable extend fol-
ding of lists to folding of values of other ‘foldable’ struc-
tured data while allowing to reuse the operation names.
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Looking ahead: The List Type Constructor []

...is one important instance of Foldable:

foldr :: (a -> b -> b) -> b -> [] a -> b

foldl :: (a -> b -> a) -> a -> [] b -> a

where Data.Foldable.foldl and Data.Foldable.foldr

are defined in terms of their counterparts foldl and foldr

introduced in Chapter 10.5, LVA 185.A03 Funktionale Pro-
grammierung.

Foldable is the first example of this new kind of higher-order
type classes called type constructor classes of which we con-
sider more examples next: Functor, Applicative, Monad,
and Arrow (cf. Chapters 10, 11, 12, and 13).
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Chapter 9.5

References, Further Reading
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Chapter 9: Basic Reading

Miran Lipovača. Learn You a Haskell for Great Good! A
Beginner’s Guide. No Starch Press, 2011. (Chapter 12,
Monoids)

Bryan O’Sullivan, John Goerzen, Don Stewart. Real World
Haskell. O’Reilly, 2008. (Chapter 13, Data Structures –
Monoids)
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Chapter 9: Selected Further Reading

Paul Hudak. The Haskell School of Expression – Learning
Functional Programming through Multimedia. Cambridge
University Press, 2000. (Chapter 13.4.3, Defining New
Type Classes for Behaviors)
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Chapter 10

Functors
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Chapter 10.1

Motivation
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Mapping

...over values is a typical and recurring task, e.g., over:

– Lists

mapL :: (a -> b) -> ([] a) -> ([] b)

mapL g [] = []

mapL g (l:ls) = g l : mapL g ls

– Trees

data Tree a = Leaf a | Node a (Tree a) (Tree a)

mapT :: (a -> b) -> Tree a -> Tree b

mapT g (Leaf v) = Leaf (g v)

mapT g (Node v l r)

= Node (g v) (mapT g l) (mapT g r)
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Higher-Order Type (Constructor) Classes

..the conceptual similarity of tasks performed by functions like

– mapL, mapT

suggests bundling all types whose values can be mapped over
in a unique type class:

– Functor

offering an (over-loaded) function:

– fmap

having mapL, mapT, and many more as specific instance imple-
mentations.

Note: Functor is a representative of a new kind of type clas-
ses, a higher-order type class, a so-called:

– type constructor class
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This means
...types, whose values can be mapped over compositionally,
with a neutral element, like e.g.:

– Lists with mapL and id
g :: a -> b, h :: b -> c

mapL g [] = []

mapL g (x:xs) = (g x) : mapL g xs

mapL (h . g) xs = mapL h (mapL g xs) (compositional)

mapL id xs = xs (neutral element)

– Trees with mapT and id
g :: a -> b, h :: b -> c

data Tree a = Leaf a | Node a (Tree a) (Tree a)

mapT g (Leaf v) = Leaf (g v)

mapT g (Node v l r) = Node (g v) (mapT g l) (mapT g r)

mapT (h . g) t = mapT h (mapT g t) (compositional)

mapT id t = t (neutral element)

should be made instances of type constructor class Functor.
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Chapter 10.2

The Type Constructor Class Functor
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The Type Constructor Class Functor

...functors are instances of the type constructor class Functor

obeying the functor laws.

Type Constructor Class Functor

class Functor f where

fmap :: (a -> b) -> f a -> f b

Functor Laws

fmap id = id (FL1)

fmap (h . g) = fmap h . fmap g (FL2)

Programmer obligation

– Programmers must prove that their instances of Functor
satisfy the functor laws.
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Note

...argument f of Functor is applied to type variables, i.e.:

– f is a 1-ary type constructor variable (that is applied to
type variables a and b), not a type variable.

...instances of Functor (like of other type constructor classes)
are thus type constructors, not types.

The functor laws ensure:

– fmap preserves the “shape of the container type.”

– fmap does not regroup the contents of the container.
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The Functor Laws in more Detail

...with added type information:

Type Constructor Class Functor

class Functor f where

fmap :: (a -> b) -> f a -> f b

Functor Laws

fmap id = id (FL1)︷ ︸︸ ︷
:: a -> a︷ ︸︸ ︷

:: f a -> f a
︷ ︸︸ ︷
:: f a -> f a (id over-loaded!)

fmap (h . g) = fmap h . fmap g (FL2)︷ ︸︸ ︷
:: c -> b

︷ ︸︸ ︷
:: a -> c

︷ ︸︸ ︷
:: c -> b

︷ ︸︸ ︷
:: a -> c︷ ︸︸ ︷

:: a -> b
︷ ︸︸ ︷
:: f c -> f b

︷ ︸︸ ︷
:: f a -> f c︷ ︸︸ ︷

:: f a -> f b
︷ ︸︸ ︷

:: f a -> f b
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The Curried and Uncurried View of fmap
Curried view: fmap takes

– a polymorphic function g :: a -> b and yields a poly-
morphic function g′ :: f a -> f b.

Example: newtype Month a = M a

instance Functor Month where

fmap g (M v) = M (g v)

g :: Int -> String g′ :: Month Int -> Month String

g 1 = "January" g′ (M 1) = M "January"
. . . . . .
g 12 = "December" g′ (M 12) = M "December"

fmap g ->> g′︷ ︸︸ ︷
:: Int -> String

︷ ︸︸ ︷
:: Month Int -> Month String

Uncurried view: fmap takes
– a polymorphic function g :: a -> b and a functor value
va :: f a and yields a new functor value vb :: f b.

Example: fmap g (M 8) ->> fmap (M (g 8)) ->> M "August"︷ ︸︸ ︷
:: Month Int

︷ ︸︸ ︷
:: Month String139/214
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Chapter 10.3

Functor Examples
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Chapter 10.3.1

The Identity Functor
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The Identity Functor

...making the 1-ary type constructor Id an instance of
Functor (conceptually the simplest functor):

newtype Id a = Id a

instance Functor Id where

fmap g (Id x) = Id g x

Proof obligation: The functor laws

Lemma 10.3.1.1 (Soundness of Identity Functor)

The Id instance of Functor satisfies the two functor laws FL1
and FL2.

...Id is thus a proper instance of Functor, the so-called iden-
titiy functor.
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Chapter 10.3.2

The List Functor
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The List Functor

...making the 1-ary type constructor [] an instance of
Functor:

instance Functor [] where

fmap g [] = []

fmap g (l:ls) = g l : fmap g ls

Proof obligation: The functor laws

Lemma 10.3.2.1 (Soundness of List Functor)

The [] instance of Functor satisfies the two functor laws FL1
and FL2.

...[] is thus a proper instance of Functor, the so-called list
functor.
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Chapter 10.3.3

The Maybe Functor
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The Maybe Functor

...making the 1-ary type constructor Maybe an instance of
Functor:

data Maybe a = Nothing | Just a

instance Functor Maybe where

fmap g (Just x) = Just (g x)

fmap g Nothing = Nothing

Proof obligation: The functor laws

Lemma 10.3.3.1 (Soundness of Maybe Functor)

The Maybe instance of Functor satisfies the two functor laws
FL1 and FL2.

...Maybe is thus a proper instance of Functor, the so-called
maybe functor.

146/214



Lecture 3

Detailed
Outline

Chap. 4

From
Type to
Higher-
Order
Type
Classes

Chap. 9

Chap. 10

10.1

10.2

10.3

10.3.1

10.3.2

10.3.3

10.3.4

10.3.5

10.3.6

10.4

Chap. 11

Chap. 14

Final
Note

Example: Applying the Functor Operation

fmap (++ "Programming") (Just "Functional")

->> Just "Functional Programming"

fmap (++ "Programming") Nothing

->> Nothing
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Chapter 10.3.4

The Either Functor
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The Either Functor

...making the 1-ary type constructor (Either a) an instance
of Functor:

data Either a b = Left a | Right b

instance Functor (Either a) where

fmap g (Right x) = Right (g x)

fmap g (Left x) = Left x

Note: The type constructor Either has two arguments, i.e., is
a 2-ary type constructor. Hence, only the partially evaluated
1-ary type constructor (Either a) can be made an instance
of Functor.
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Proof Obligation: The Functor Laws

Lemma 10.3.4.1 (Soundness of Either Functor)

The (Either a) instance of Functor satisfies the two
functor laws FL1 and FL2.

...(Either a) is thus a proper instance of Functor, the
so-called either functor.
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Example: Applying the Functor Operation

fmap length (Right "Programming")

->> Right 11

fmap length (Left "Programming")

->> Left "Programming"
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Chapter 10.3.5

The Map Functor
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The Map Functor

...making the 1-ary type constructor ((->) d) an instance of
Functor:

instance Functor ((->) d) where -- d reminding

fmap g h = (\x -> g (h x)) -- to domain

Note: Like Either, also (->) is a 2-ary type constructor, i.e.,
has two arguments. Hence, only the partially evaluated type
constructor ((->) d) can be made an instance of Functor,
since it is a 1-ary type constructor.
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Proof Obligation: The Functor Laws

Lemma 10.3.5.1 (Soundness of Map Functor)

The ((->) d) instance of Functor satisfies the two functor
laws FL1 and FL2.

...((->) d) is thus a proper instance of Functor, the so-
called map functor.
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The Map Functor in more Detail

...with added type information:

class Functor f where

fmap :: (a -> b) -> f a -> f b

instance Functor ((->) d) where

fmap g h = (\x -> g (h x))︷ ︸︸ ︷
:: (a -> b)

︷ ︸︸ ︷
:: ((->) d) a

︷︸︸︷
:: d

︷︸︸︷
:: d︷ ︸︸ ︷
:: a︷ ︸︸ ︷

:: b︷ ︸︸ ︷
:: ((->) d) b

Note: fmap defined (as above) by

fmap g h = (\x -> g (h x))

means just function composition: fmap g h = (g . h)
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The Instance Declaration of the Map Functor

...reconsidered.

The observation on the meaning of fmap allows us to define
the instance declaration of ((->) d) directly as ordinary
functional composition:

instance Functor ((->) d) where

fmap = (.)
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Notes on the Map Functor
...for the map functor ((->) d) the type of the generic opera-
tion fmap of the type constructor class Functor

fmap :: (Functor f) => (a -> b) -> f a -> f b

specializes to:

fmap :: (a -> b) -> (((->) d) a) -> (((->) d) b)

Using infix notation for (->), this can equivalently be written
as:

fmap :: (a -> b) -> (d -> a) -> (d -> b)

where fmap can be implemented by:

fmap g h = (g . h)︷ ︸︸ ︷
:: a -> b

︷ ︸︸ ︷
:: d -> a

︷ ︸︸ ︷
:: a -> b

︷ ︸︸ ︷
:: d -> a︷ ︸︸ ︷

:: (a -> b) -> (d -> a) -> (d -> b)︷ ︸︸ ︷
:: d -> b
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Example: Applying the Functor Operation (1)

Main>:t fmap (*3) (+100)

fmap (*3) (+100) :: (Num a) => a -> a

fmap (*3) (+100) 1 ->> 303

(*3) ‘fmap‘ (+100) $ 1 ->> 303

(*3) . (+100) $ 1 ->> 303

fmap (show . (*3)) (+100) 1 ->> "303"

Note: Using fmap as an infix operator emphasizes the equali-
ty of fmap and functional composition (.) for the map func-
tor ((->) d).
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Example: Applying the Functor Operation (2)
...recalling the generic type of fmap:

fmap :: (Functor f) => (a -> b) -> f a -> f b

we get:

Main>:t fmap (*2)

fmap (*2) :: (Num a, Functor f) => f a -> f a

Main>:t fmap (replicate 3)

fmap (replicate 3) :: (Functor f) => f a -> f [a]

where

replicate :: Int -> a -> [a]

replicate n x

| n <= 0 = []

| otherwise = x : replicate (n-1) x
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Example: Applying the Functor Operation (3)

fmap (replicate 3) [1,2,3,4]

->> [[1,1,1],[2,2,2],[3,3,3],[4,4,4]]

fmap (replicate 3) (Just 4)

->> Just [4,4,4]

fmap (replicate 3) (Right "fun")

->> Right ["fun","fun","fun"]

fmap (replicate 3) Nothing

->> Nothing

fmap (replicate 3) (Left "fun")

->> Left "fun"
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Example: Applying the Functor Operation (4)

Applying fmap to n-ary maps (e.g., (*), (++), \x y z ->...,
...) instead of 1-ary maps (e.g., replicate 3, (*3), (+100),
...) as so far, we get:

fmap (*) (Just 3) ->> Just ((*) 3)

fmap (++) (Just "fun") :: Maybe ([Char] -> [Char])

fmap compare (Just ‘a‘) :: Maybe (Char -> Ordering)

fmap compare "A list of chars" :: [Char -> Ordering]

fmap (\x y z -> x + y / z) [3,4,5,6]

:: (Fractional a) => [a -> a -> a]

a = fmap (*) [1,2,3,4] :: [Int -> Int]

fmap (\f -> f 9) a ->> [9,18,27,36]
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Note
...some of the previous examples showed

– lifting

of a map of type

– (a -> b)

to type

– (f a -> f b)

by fmap. This again shows that fmap

fmap :: (Functor f) => (a -> b) -> f a -> f b

can be thought of in two ways. As a map which takes a map
g :: a -> b and

1. lifts g to a new function h :: f a -> f b operating on
functor values  curried view.

2. a functor value v :: f a and maps g over v  uncur-
ried view.
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Chapter 10.3.6

The Input/Output Functor
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The Input/Output Functor

...making the 1-ary type constructor IO for input/output an
instance of Functor:

instance Functor IO where

fmap g action = do result <- action

return (g result)

Proof obligation: The functor laws

Lemma 10.3.6.1 (Soundness of IO Functor)

The IO instance of Functor satisfies the two functor laws FL1
and FL2.

...IO is thus a proper instance of Functor, the so-called in-
put/output (IO) functor.
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Example: Applying the Functor Operation (1)

...the two versions of program main

main =

do line <- fmap reverse getLine

putStrLn $ "You said " ++ line ++ " backwards!"

putStrLn $ "Yes, you said " ++ line ++ " backwards!"

main =

do line <- getLine

let line′ = reverse line

putStrLn $ "You said " ++ line′ ++ " backwards!"

putStrLn $ "Yes, you said " ++ line′ ++ " backwards!"

which differ in using and not using fmap are equivalent.
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Example: Applying the Functor Operation (2)

import Data.Char

import Data.List

The expressions

do line <- fmap (intersperse ‘-‘ . reverse .

map toUpper) getLine

putStrLn line

and

(\xs -> intersperse ‘-‘ (reverse (map toUpper xs)))

have the same input/output effect.

Applied e.g. to the input string "fun prog", the output is in both

cases the string "G-O-R-P- -N-U-F".

166/214



Lecture 3

Detailed
Outline

Chap. 4

From
Type to
Higher-
Order
Type
Classes

Chap. 9

Chap. 10

10.1

10.2

10.3

10.4

Chap. 11

Chap. 14

Final
Note

Chapter 10.4

References, Further Reading
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Chapter 10: Basic Reading

Miran Lipovača. Learn You a Haskell for Great Good! A
Beginner’s Guide. No Starch Press, 2011. (Chapter 7,
Making Our Own Types and Type Classes – The Functor
Type Class)

Paul Hudak. The Haskell School of Expression: Learning
Functional Programming through Multimedia. Cambridge
University Press, 2000. (Chapter 18.1, The Functor Class)
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Chapter 10: Selected Further Reading

Bryan O’Sullivan, John Goerzen, Don Stewart. Real World
Haskell. O’Reilly, 2008. (Chapter 10, Code Case Study:
Parsing a Binary Data Format – Introducing Functors,
Writing a Functor Instance for Parse, Using Functors for
Parsing)

Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung. Springer-V., 2006. (Kapitel 11.1, Kategorien, Funk-
toren und Monaden)

Fethi Rabhi, Guy Lapalme. Algorithms – A Functional
Programming Approach. Addison-Wesley, 1999. (Chapter
2.8.3, Type classes and inheritance)
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Chapter 11

Applicative Functors
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Chapter 11.1

The Type Constructor Class Applicative
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The Type Constructor Class Applicative
...applicatives are instances of the type constructor class
Applicative obeying the applicative laws.

Type Constructor Class Applicative

class (Functor f) => Applicative f where

pure :: a -> f a -- Value ‘lifting’:

-- Making an appli-

-- cative value

(<*>) :: f (a -> b) -> f a -> f b -- Mapping over

Applicative Laws

pure id <*> v = v (AL1)

pure (.) <*> u <*> v <*> w = u <*> (v <*> w) (AL2)

pure g <*> pure x = pure (g x) (AL3)

u <*> pure y = pure ($ y) <*> u (AL4)
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Note

...applicatives must be functors and hence 1-ary type construc-
tors.

Intuitively

– pure takes a value of any type and returns an applicative
value.

– (<*>) takes a functor value, which has a function in it,
and another functor value, which has a value in it. It ex-
tracts the function from the first functor and maps it over
the value of the second one.

Programmer obligation

– Programmers must prove that their instances of
Applicative satisfy the applicative laws.
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Selected Applicative Laws in more Detail
...with added type information:

Class Applicative

class (Functor f) => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

Applicative Laws

pure id <*> v = v (AL1)︷ ︸︸ ︷
:: a -> a︷ ︸︸ ︷

:: f (a -> a)
︷ ︸︸ ︷
:: f a︷ ︸︸ ︷

:: f a
︷ ︸︸ ︷
:: f a

pure g <*> pure x = pure (g x)(AL3)︷ ︸︸ ︷
:: a -> b

︷︸︸︷
:: a

︷ ︸︸ ︷
:: a -> b

︷︸︸︷
:: a︷ ︸︸ ︷

:: f (a -> b)
︷ ︸︸ ︷
:: f a

︷ ︸︸ ︷
:: b︷ ︸︸ ︷

:: f b
︷ ︸︸ ︷

:: f b 174/214
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Syntactic Sugar: Infix Operator <$>
...as alias for fmap for more compelling operation sequences invol-
ving both fmap and (<*>).

The infix alias (<$>) of fmap of Functor:

(<$>) :: (Functor f) => (a -> b) -> f a -> f b

g <$> x = fmap g x

Example: Using (<$>) as infix operator, we can write:

(++) <$> Just "Functional " <*> Just "Programming"

->> Just "Functional Programming"

instead of the less compelling variants using the prefix operator fmap:

(fmap (++) Just "Functional ") <*> Just "Programming"

->> Just "Functional Programming"

...or its infix variant ‘fmap‘:

((++) ‘fmap‘ Just "Functional ") <*> Just "Programming"

->> Just "Functional Programming"
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Note

...overloading f and defining (<$>) by:

(<$>) :: (Functor f) => (a -> b) -> f a -> f b

f <$> x = fmap f x

would be valid, too, since the context allows to decide if f is
used as type constructor (f) or as argument (f).
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Utility Maps for Applicatives

Utility Maps:

liftA2 :: (Applicative f) =>

(a -> b -> c) -> f a -> f b -> f c

liftA2 g a b = g <$> a <*> b

sequenceA :: (Applicative f) => [f a] -> f [a]

sequenceA [] = pure []

sequenceA (x:xs) = (:) <$> x <*> sequenceA xs

sequenceA :: (Applicative f) => [f a] -> f [a]

sequenceA = foldr (liftA2 (:)) (pure [])

Examples:

fmap (\x -> [x]) (Just 4) ->> Just [4]

liftA2 (:) (Just 3) (Just [4]) ->> Just [3,4]

(:) <$> Just 3 <*> Just 4 ->> Just [3,4]
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Chapter 11.2

Applicative Examples
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Chapter 11.2.1

The Identity Applicative
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The Identity Applicative
...making the 1-ary type constructor Id an instance of
Applicative (conceptually the simplest applicative):

newtype Id a = Id a

instance Applicative Id where

pure = Id

Id g <*> (Id x) = Id (g x)

Note: g plays the rôle of the applicative functor.

Proof obligation: The applicative laws

Lemma 11.2.1.1 (Soundness of Identity Applicative)

The Id instance of Applicative satisfies the four applicative
laws AL1, AL2, AL3, and AL4.

...Id is thus a proper instance of Applicative, the so-called
identity applicative.
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The Identity Applicative in more Detail

...with added type information:

pure :: (Applicative f) => a -> f a

(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b

instance Applicative Id where

pure = Id︷ ︸︸ ︷
:: a -> Id a

︷ ︸︸ ︷
:: a -> Id a

Id g <*> Id x = Id (g x)︷ ︸︸ ︷
:: (a -> b)

︷ ︸︸ ︷
:: a

︷ ︸︸ ︷
:: a -> b

︷ ︸︸ ︷
:: a︷ ︸︸ ︷

:: Id (a -> b)
︷ ︸︸ ︷
:: Id a

︷ ︸︸ ︷
:: b︷ ︸︸ ︷

:: Id b
︷ ︸︸ ︷

:: Id b
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Chapter 11.2.2

The List Applicative
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The List Applicative

...making the 1-ary type constructor [] an instance of
Applicative:

instance Applicative [] where

pure x = [x]

gs <*> xs = [g x | g <- gs, x <- xs]

Proof obligation: The applicative laws

Lemma 11.2.2.1 (Soundness of List Applicative)

The [] instance of Applicative satisfies the four applicative
laws AL1, AL2, AL3, and AL4.

...[] is thus a proper instance of Applicative, the so-called
list applicative.
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The List Applicative in more Detail

...with added type information:

pure :: (Applicative f) => a -> f a

(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b

instance Applicative [] where

pure x = [ x ]︷ ︸︸ ︷
:: a -> [] a

︷ ︸︸ ︷
:: a

︷ ︸︸ ︷
:: a︷ ︸︸ ︷
:: [] a

gs <*> xs = [ g x | g <- gs, x <- xs]︷ ︸︸ ︷
:: [] (a -> b)

︷ ︸︸ ︷
:: [] a

︷ ︸︸ ︷
:: a -> b

︷ ︸︸ ︷
:: a︷ ︸︸ ︷

:: b︷ ︸︸ ︷
:: [] b
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Example: Applying the Applicative Operations (1)

pure "Hallo" :: String ->> ["Hallo"]

pure "Hallo" :: Maybe String ->> Just "Hallo"

[(*0),(+100),(^2)] <*> [1,2,3]

->> [ f x | f <- [(*0),(+100),(^2)], x <- [1,2,3] ]

->> [0,0,0,101,102,103,1,4,9]

[(+),(*)] <*> [1,2] <*> [3,4]

->> [ f x | f <- [(+),(*)], x <- [1,2] ] <*> [3,4]

->> [(1+),(2+),(1*),(2*)] <*> [3,4]

->> [ f x | f <- [(1+),(2+),(1*),(2*)], x <- [3,4] ]

->> [4,5,5,6,3,4,6,8]
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Example: Applying the Applicative Operations (2)

filter (>50) $ (*) <$> [2,5,10] <*> [8,10,11]

->> filter (>50) $ (fmap (*) [2,5,10]) <*> [8,10,11]

->> filter (>50) $ [(2*),(5*),(10*)] <*> [8,10,11]

->> filter (>50) $ [ f x | f <- [(2*),(5*),(10*)],

x <- [8,10,11] ]

->> filter (>50) $ [16,20,22,40,50,55,80,100,110]

->> filter (>50) [16,20,22,40,50,55,80,100,110]

->> [55,80,100,110]
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Example: Applying the Applicative Operations (3)

The preceeding example using filter shows that expressions
using list comprehension:

[x*y | x <- [2,5,10], y <- [8,10,11]]

->> [16,20,22,40,50,55,80,100,110]

...can alternatively be written using (<$>) and <*> and vice
versa:

(*) <$> [2,5,10] <*> [8,10,11]

->> [16,20,22,40,50,55,80,100,110]
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The Maybe/Either Applicatives
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The Maybe Applicative
...making the 1-ary type constructor Maybe an instance of
Applicative:

instance Applicative Maybe where

pure = Just

Nothing <*> _ = Nothing

(Just g) <*> something = fmap g something

Note: g plays the rôle of the applicative functor.

Proof obligation: The applicative laws

Lemma 11.2.3.1 (Soundness of Maybe Applicative)

The Maybe instance of Applicative satisfies the four appli-
cative laws AL1, AL2, AL3, and AL4.

...Maybe is thus a proper instance of Applicative, the so-
called maybe applicative.
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The Maybe Applicative in more Detail
...with added type information:

pure :: (Applicative f) => a -> f a

(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b

fmap :: (Functor f) => (a -> b) -> f a -> f b

instance Applicative Maybe where

pure = Just︷ ︸︸ ︷
:: a -> Maybe a

︷ ︸︸ ︷
:: a -> Maybe a

Nothing <*> _ = Nothing︷ ︸︸ ︷
:: Maybe (a -> b)

︷ ︸︸ ︷
:: Maybe a

︷ ︸︸ ︷
:: Maybe b︷ ︸︸ ︷

:: Maybe b

(Just g) <*> something = fmap g something︷ ︸︸ ︷
:: Maybe (a -> b)

︷ ︸︸ ︷
:: Maybe a

︷ ︸︸ ︷
:: a -> b

︷ ︸︸ ︷
:: Maybe a︷ ︸︸ ︷

:: Maybe b
︷ ︸︸ ︷

:: Maybe b
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Example: Applying the Applicative Operations (1)

Just (+3) <*> Just 9

->> fmap (+3) (Just 9)

->> Just 12

Just (+3) <*> Nothing

->> fmap (+3) Nothing

->> Nothing

Just (++ "good ") <*> Just "morning"

->> fmap (++ "good ") "morning"

->> Just "good morning"

Just (++ "good ") <*> Nothing

->> fmap (++ "good ") Nothing

->> Nothing

Nothing <*> Just "good "

->> Nothing
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Example: Applying the Applicative Operations (2)

pure (+) <*> Just 3 <*> Just 5

->> Just (+) <*> Just 3 <*> Just 5

->> (fmap (+) Just 3) <*> Just 5

->> Just (3+) <*> Just 5

->> Just 8

pure (+) <*> Just 3 <*> Nothing

->> Just (+) <*> Just 3 <*> Nothing

->> fmap (+) Just 3 <*> Nothing

->> Just (3+) <*> Nothing

->> fmap (3+) Nothing

->> Nothing
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Exercise 11.2.4.1: The Either Applicative

1. Make type constructor (Either a) an instance of
Applicative.

2. Show that the defining equations of the applicative
operations pure and (<*>) of (Either a) are type
correct. Annotate the laws with the (most general) type
information applying.

3. Prove that your (Either a) instance of Applicative
satisfies the applicative laws.

193/214



Lecture 3

Detailed
Outline

Chap. 4

From
Type to
Higher-
Order
Type
Classes

Chap. 9

Chap. 10

Chap. 11

11.1

11.2

11.2.1

11.2.2

11.2.3/4

11.2.5

11.2.7

11.3

Chap. 14

Final
Note

Chapter 11.2.5

The Map Applicative
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The Map Applicative

...making the 1-ary type constructor ((-> d) an instance of
Applicative:

instance Applicative ((->) d) where

pure x = (\_ -> x)

g <*> h = \x -> g x (h x)

Proof obligation: The applicative laws

Lemma 11.2.5.1 (Soundness of Map Applicative)

The ((->) d) instance of Applicative satisfies the four
applicative laws AL1, AL2, AL3, and AL4.

...(->) d) is thus a proper instance of Applicative, the so-
called map applicative.
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The Map Applicative in more Detail
...with added type information:

pure :: (Applicative f) => a -> f a

(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b

instance Applicative ((->) d) where

pure x = (\_ -> x)︷ ︸︸ ︷
:: a

︷ ︸︸ ︷
:: d

︷ ︸︸ ︷
:: a︷ ︸︸ ︷

:: ((->) d) a

g <*> h = \x -> g x (h x)︷ ︸︸ ︷
:: ((->) d) (a -> b)

︷ ︸︸ ︷
:: ((->) d) a︷ ︸︸ ︷

:: d -> (a -> b)
︷ ︸︸ ︷
:: d -> a ︷ ︸︸ ︷

:: d
︷ ︸︸ ︷
:: d

︷ ︸︸ ︷
:: d︷ ︸︸ ︷
:: a︷ ︸︸ ︷

:: b︷ ︸︸ ︷
:: d -> b︷ ︸︸ ︷

:: ((->) d) b)
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Example: Applying the Applicative Operations

pure 3 "Hello"

->> (pure 3) "Hello" (left-assoc. of expr.)

->> (\_ -> 3) "Hello"

->> 3

(+) <$> (+3) <*> (*100) :: (Num a) => a -> a

(+) <$> (+3) <*> (*100) $ 5 :: Int

->> (fmap (+) (+3)) <*> (*100) $ 5

->> ((+) . (+3)) <*> (*100) $ 5

->> (\x -> ((+) . (+3)) x ((*100) x)) $ 5

->> ((+) . (+3)) 5 ((*100) 5)

->> (+)((+3) 5) (5*100)

->> (+)(5+3) 500

->> (+) 8 500

->> (8+) 500

->> 8+500

->> 508 :: Int
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Chapter 11.2.7

The Input/Output Applicative
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The Input/Output Applicative
...making the 1-ary type constructor IO an instance of
Applicative:

instance Applicative IO where

pure = return

a <*> b = do g <- a

x <- b

return (g x)

Proof obligation: The applicative laws

Lemma 11.2.7.1 (Soundness of IO Applicative)

TheIO instance of Applicative satisfies the four applicative
laws AL1, AL2, AL3, and AL4.

...IO is thus a proper instance of Applicative, the so-called
input/output (IO) applicative.
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The Input/Output Applicative in more Detail
...with added type information:

pure :: (Applicative f) => a -> f a

(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b

instance Applicative IO where

pure = return︷ ︸︸ ︷
:: a -> IO a

︷ ︸︸ ︷
:: a -> IO a

a <*> b = do g <- a︷ ︸︸ ︷
:: IO (a -> b)

︷ ︸︸ ︷
:: IO a

︷ ︸︸ ︷
:: a -> b

︷ ︸︸ ︷
:: IO (a -> b)

x <- b︷ ︸︸ ︷
:: a

︷ ︸︸ ︷
:: IO a

return (g x)︷ ︸︸ ︷
:: a -> b

︷ ︸︸ ︷
:: a︷ ︸︸ ︷

:: b︷ ︸︸ ︷
:: IO b
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Example: Applying the Applicative Operations

...the following two versions of myAction are equivalent:

myAction :: IO String

myAction = do a <- getLine

b <- getLine

return $ a++b

myAction :: IO String

myAction = (++) <$> getLine <*> getLine

Type and effect of myAction′ are similar but slightly different:

myAction′ :: IO ()

myAction′ =

do a <- (++) <$> getLine <*> getLine

putStrLn $ "Concatenation yields: " ++ a
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Chapter 11.3

References, Further Reading
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Chapter 11: Basic Reading

Miran Lipovača. Learn You a Haskell for Great Good! A
Beginner’s Guide. No Starch Press, 2011. (Chapter 11,
Applicative Functors)
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Chapter 14

Kinds
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Kinds

Just as values also

– types

– type constructors

have types themselves, so-called:

– kinds.

Kinds of types and type constructors are represented by
expressions over the symbol * (read as “star” or as “type”).
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Chapter 14.1

Kinds of Types
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Types
...i.e., nullary type constructors, type constructors accepting
no type arguments, have kind *. Intuitively, * indicates that
types are ‘concrete’, ‘final’.

In GHCi, kinds of types (and type constructors) can be com-
puted and displayed using the command “:k”.

Examples:
ghci> :k Int

Int :: *

ghci> :k (Char,String)

(Char,String) :: *

ghci> :k [Float]

[Float] :: *

ghci> :k (Int -> Int)

(Int -> Int) :: *
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Chapter 14.2

Kinds of Type Constructors
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Type Constructors
...take types as arguments to produce concrete types.

Examples:

The 1-ary type constructor Maybe, the 2-ary type constructor
Either, and the 3-ary type constructor Tree:

data Maybe a = Nothing | Just a

data Either a b = Left a | Right b

data Tree a b c = Leaf a b

| Node a (Tree a b c) (Tree a b c)

produce for a, b, and c chosen Int, String, and Bool, re-
spectively, the concrete types:

Maybe Int :: * -- a concrete type

Either Int String :: * -- a concrete type

Tree Int String Bool :: * -- a concrete type

...of kind *.
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Kinds of Type Constructors
Like concrete types, type constructors have kinds, too, reflec-
ting the number of their type arguments.

Examples:

ghci> :k Maybe
Maybe :: * -> * -- a type constructor accepting

-- a concrete type as argument

-- and yielding a concrete type.

ghci> :k Either
Either :: * -> * -> * -- a type constructor accepting

-- two concrete types as arguments

-- and yielding a concrete type.

ghci> :k Tree

Tree :: * -> * -> * -> * -- a type constructor accep-

-- ting three concrete types...
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Kinds of Partially Evaluated Type Constructors

Like functions, type constructors can be partially evaluated,
too, resulting in different kinds.

Examples:

ghci> :k Either
Either :: * -> * -> * -- a type constructor accepting

-- two concrete types as arguments

-- and yielding a concrete type.

ghci> :k Either Int
Either Int :: * -> * -- a type constructor accepting

-- one concrete type as argument

-- and yielding a concrete type.

ghci> :k Either Int Char

Either Int Char :: * -- a concrete type.
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Chapter 14.3

References, Further Reading
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Chapter 14: Basic Reading

Paul Hudak. The Haskell School of Expression: Learning
Functional Programming through Multimedia. Cambridge
University Press, 2000. (Chapter 18.5, Type Class Type
Errors, Kinds of Types)

Simon Peyton Jones (Ed.). Haskell 98: Language and
Libraries. The Revised Report. Cambridge University Press,
2003. (Chapter 4.1.1, Kinds; Chapter 4.6, Kind Inference)
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Final Note

...for additional information and details refer to

I full course notes

available at the homepage of the course at:

http:://www.complang.tuwien.ac.at/knoop/

ffp185A05 ss2020.html
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