
Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Fortgeschrittene funktionale

Programmierung
LVA 185.A05, VU 2.0, ECTS 3.0

SS 2020

(Stand: 29.04.2020)

Jens Knoop

Technische Universität Wien
Information Systems Engineering

Compilers and Languages

compilers
languages

1/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Lecture 2

Part IV: Advanced Language Concepts

– Chapter 7: Functional Arrays

– Chapter 8: Abstract Data Types

Part II: Programming Principles

– Chapter 3: Programming with Higher-Order Functions:
Algorithm Patterns

2/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Outline in more Detail (1)
Part IV: Advanced Language Concepts
I Chap. 7: Functional Arrays

7.1 Motivation
7.2 Functional Arrays

7.2.1 Static Arrays
7.2.2 Dynamic Arrays

7.3 Summary
7.4 References, Further Reading

I Chap. 8: Abstract Data Types
8.1 Motivation
8.2 Stacks
8.3 Queues
8.4 Priority Queues
8.5 Tables
8.6 Displaying ADT Values in Haskell
8.7 Summary
8.8 References, Further Reading

3/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Outline in more Detail (2)

Part II: Programming Principles

I Chap. 3: Programming with Higher-Order Functions:
Algorithm Patterns

3.1 Divide-and-Conquer
3.2 Backtracking Search
3.3 Priority-first Search
3.4 Greedy Search
3.5 Dynamic Programming
3.6 Dynamic Programming vs. Memoization
3.7 References, Further Reading

4/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Chapter 7

Functional Arrays

5/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Chapter 7.1

Motivation

6/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Imperative Arrays

...appealing:

+ Values of an array can be accessed or updated in constant
time.

+ The update operation does not need extra space.

+ There is no need for chaining the array elements with
pointers as they can be stored in contiguous memory
locations.

...distracting:

– The size is fixed (defined and fixed at declaration time).

7/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Functional Lists

...appealing:

+ The size is not fixed. Lists can get, can be arbitrarily
long, conceptually even infinitely long.

...distracting:

– Lists do not enjoy the set of favorable properties of impe-
rative arrays; most disturbing, values of a list can not be
accessed or updated in constant time:

Accessing the ith element of a list (using (!!)) takes a
number of steps proportional to i .

8/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Functional Arrays

...shall complement functional lists and be designed and imple-
mented to get as close as possible to the favorable properties
of imperative arrays, i.e., functional arrays shall be:

...appealing because:

+ Accessing the ith element of an array (using (!)) shall
take a constant number of steps, regardless of i .

...while accepting the distracting limitation applying to impe-
rative arrays, too:

– The size is fixed (defined and fixed at creation time).

9/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Note: Functional Arrays

...are not supported by the standard prelude of Haskell but by
several specialized libraries like:

– Data.Array (import Data.Array)

– Data.Array.IArray (import Data.Array.IArray)

– Data.Array.Diff (import Data.Array.Diff)

providing different kinds and implementations of functional
arrays:

– Static (or: immutable) arrays (w/out destructive update)

– Dynamic (or: mutable) arrays (w/ destructive update)

Nonetheless, how to implement functional arrays

– most adequately is a topic of ongoing research.

Consequently, libraries evolve, disappear, are replaced over time
requiring to stay tuned for updates on the Haskell homepage...

10/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Chapter 7.2

Functional Arrays

11/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Chapter 7.2.1

Static Arrays

12/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

The Library Array

I Array (import Array)

...supports static arrays and provides three functions for crea-
ting static arrays:

1. array bounds list of associations (1st mechanism)
2. listArray bounds list of values (2nd mechanism)
3. accumArray f init bounds list of associations (3rd mech-

anism)

Important: The type class Ix, whose instance types are (main-
ly) used as index types of arrays:

class (Ord a) => Ix a where

range :: (a,a) -> [a]

index :: (a,a) -> a -> Int

inRange :: (a,a) -> a -> Bool

rangeSize :: (a,a) -> Int

13/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Creating Static Arrays: 1st Mechanism
...using the function array, the most basic means:

I array :: Ix a => (a,a) -> [(a,b)] -> Array a b

array bounds list of associations

where

– a: the index type of the array; b: its entry type.

– bounds : a pair of expressions specifying the smallest and
the largest array index.

Example: The expression pair bounds
a) (0,4) and b) ((1,1),(10,10)) specify a

a) zero-origin vector of length five
b) one-origin 10 by 10 matrix, respectively.

Note: bounds can be given by any valid expression.

– list of associations : a list of pairs (i,x), so-called asso-
ciations, specifying that the array entry at index position
i has value x.

14/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Examples: array at Work
Let a′, f n, m be the expressions:

a′ = array (1,4) [(3,‘c‘),(2,‘ a‘),(1,‘f‘),(4,‘e‘)]
f n = array (0,n) [(i,i*i) | i <- [0..n]]

m = array ((1,1),(2,3))

[((i,j),(i*j)) | i <- [1..2], j <- [1..3]]

The types of these expressions are:

a′ :: Array Int Char

f :: Int -> Array Int Int

m :: Array (Int,Int) Int

Their values are:

a′ ->> array (1,4) [(1,‘f‘),(2, ‘a‘),(3,‘c‘),(4,‘e‘)]
f 3 ->> array (0,3) [(0,0),(1,1),(2,4),(3,9)]

m ->> array ((1,1),(2,3)) [((1,1),1),((1,2),2),

((1,3),3),((2,1),2),

((2,2),4),((2,3),6)]

15/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Note

If any specified index of an array is out of bounds

– the whole array is undefined.

I.e.: Function array is strict in bounds.

If two associations in an association list have the same index

– the array entry at that index is undefined.

I.e.: Function array is non-strict (or: lazy) in values.

...arrays can thus contain ‘undefined’ entries.

16/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Example: Arrays at Work

Computing Fibonacci numbers:

fibs n = a

where a = array (1,n) ([(1,0), (2,1)] ++

[(i, a!(i-1) + a!(i-2))

| i <- [3..n]])

Applications:

fibs 3 ->> array (1,3) [(1,0),(2,1),(3,1)]

fibs 5 ->> array (1,5) [(1,0),(2,1),(3,1),

(4,2),(5,3)]

fibs 12 ->> array (1,12) [(1,0),(2,1),(3,1),

(4,2),(5,3),(6,5),

(7,8),(8,13),(9,21),

(10,34),(11,55),(12,89)]

17/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

The Array Access Function (!)

...the counterpart of the list access function (!!) for arrays:

(!) :: Ix a => Array a b -> a -> b

(!) returns the value v :: b at index position i :: a.

Recall: The index type must be a member of the type class
Ix, which foresees maps for typical index operations.

18/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

The Array Access Function (!) at Work
Computing Fibonacci numbers:

fibs n = a where

a = array (1,n)

([(1,0),(2,1)] ++ [(i, a!(i-1) +,a!(i-2))

| i <- [3..n]])

Applications of (!):

fibs 5!5 ->> 3

fibs 10!10 ->> 34

fibs 100!10 ->> 34 -- Thanks to lazy evaluation,

-- the computation stops at

-- fibs 10!10

fibs 50!50 ->> 7.778.742.049

fibs 100!100 ->> 218.922.995.834.555.169.026

fibs 5!10 ->> Program error: Ix.index: index

out of range 19/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Note: Local Declarations for Performance (1)
...the where-clause in the definition of fibs defining a locally
is crucial for performance as it

I avoids the creation of new arrays during computation.

For illustration, compare the definitions of fibs and xfibs,
where a (of a slightly different type) is globally defined:

fibs n = a where

a = array (1,n)

([(1,0),(2,1)] ++ [(i, a!(i-1) +,a!(i-2))

| i <- [3..n]])

xfibs n = a n

a n = array (1,n) ([(1,0),(2,1)] ++

[(i,a n!(i-1) + a n!(i-2))

| i <- [3..n]])

20/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Note: Local Declarations for Performance (2)
While

xfibs 3 ->> array (1,3) [(1,0),(2,1),(3,1)]

xfibs 5 ->> array (1,5) [(1,0),(2,1),(3,1),(4,2),(5,3)]

xfibs 12 ->> array (1,12) [(1,0),(2,1),(3,1),

(4,2),(5,3),(6,5),

(7,8),(8,13),(9,21),

(10,34),(11,55),(12,89)]

xfibs 5!5 ->> 3

xfibs 10!10 ->> 34

xfibs 25!20 ->> 4.181 -- thanks to lazy evaluation

-- the computation stops asap

works well for small arguments, the call:

xfibs 25!25 ->> ...takes too long to be feasible!

Overall: Though correct, evaluating xfibs n is most ineffic-
ient due to creating new arrays during the evaluation.

21/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Creating Static Arrays: 2nd Mechanism

...using the function listArray, a more sophisticated means:

I listArray ::(Ix a) => (a,a) -> [b] -> Array a b

listArray bounds list of values

where

– bounds : specifies the values of the smallest and the
largest index.

– list of values : specifies the values of the array elements in
terms of a list.

Note: listArray is especially useful for the frequent case where

– where an array is constructed from a list of values given
in index order.

22/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Example: listArray at Work

a′′ :: Array Int Char

a′′ = listArray (1,8) "fun prog"

Evaluating a′′ yields:

a′′ ->> array (1,8) [(1,‘f‘),(2,‘u‘),(3,‘n‘),(4,‘ ‘),
(5,‘p‘),(6,‘r‘),(7,‘o‘),(8,‘g‘)]

23/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Creating Static Arrays: 3rd Mechanism
...using the function accumArray, the most powerful means:

I accumArray :: (Ix a) => (b -> c -> b) -> b

-> (a,a) -> [(a,c)] -> Array a b

accumArray f init bounds list of associations

where

– f : specifies an accumulation function.
– init : specifies the (default) value the entries of the array

shall be initialized with.
– bounds : specifies the values of the smallest and the

largest index.
– list of associations : specifies the values of the array in

terms of an association list.

Note: accumArray does not require that the indices occurring
in list of associations are pairwise disjoint: Values of ‘conflic-
ting’ indices are accumulated via f.

24/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Example: accumArray at Work (1)

...a histogram function defined with accumArray:

histogram :: (Ix a, Num b) =>

(a,a) -> [a] -> Array a b

histogram bounds vs =

accumArray (+) 0 bounds [(i,1) | i <- vs]

Applications:

histogram (1,5) [4,1,4,3,2,5,5,1,2,1,3,4,2,1,1,3,2,1]

->> array (1,5) [(1,6),(2,4),(3,3),(4,3),(5,2)]

histogram (-1,4) [1,3,1,1,3,1,1,3,1]

->> array (-1,4) [(-1,0),(0,0),(1,6),(2,0),(3,3),(4,0)]

histogram (1,3) [5,3,1,3,4,2,(-4),1,1,3,2,1,5,(-9)]

->> array

Program error: Ix.index: index out of range

25/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Example: accumArray at Work (2)
...a prime number test defined with accumArray:

primes :: Int -> Array Int Bool

primes n =

accumArray (\e e′ -> False) True (2,n) l

where l = concat [map (flip (,) ())

(takeWhile (<=n) [k*i|k<-[2..]])

| i<-[2..n ‘div‘ 2]]

Applications:

(primes 100)!1 ->> Program error: Ix.index: index

out of range

(primes 100)!2 ->> True

(primes 100)!4 ->> False

(primes 100)!71 ->> True

(primes 100)!100 ->> False

(primes 100)!101 ->> Program error: Ix.index: index

out of range
26/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

More Pre-Defined Operations on Arrays (1)

..pre-defined array operations:

– (!) :: (Ix a) => Array a b -> a -> b

– bounds :: (Ix a) => Array a b -> (a,a)

– indices :: (Ix a) => Array a b -> [a]

– elems :: (Ix a) => Array a b -> [b]

– assocs :: (Ix a) => Array a b -> [(a,b)]

– (//) :: (Ix a) => Array a b -> [(a,b)]

-> Array a b

– ...

27/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

More Pre-Defined Operations on Arrays (2)
Informally:

– (!): array subscripting, yields the ith element of an array.

– bounds: yields the smallest and largest index of an array.

– indices: yields a list of the indices of an array.

– elems: yields a list of the elements/values of an array.

– assocs: yields a list of index/value pairs of the elements
of an array, i.e., the list of associations of an array.

– (//): array updating – (//) takes an array (left argu-
ment) and a list of associations (right argument) and
returns a new array, which is identical to the argument
array except for the values of elements occurring in the
argument list of associations.

Note: (//) generates a modified copy of the argument
array; it does not perform a destructive update!

– ...
28/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Example: More Array Operations at Work (1)
Applications (w/ pre-defined functions on arrays):

elems (primes 10)

->> [True,True,False,True,False,True,False,False,False]

assocs (primes 10)

->> [(2,True),(3,True),(4,False),(5,True),(6,False),

(7,True),(8,False),(9,False),(10,False)]

yieldPrimes (assocs (primes 100))

->> [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,

59,61,67,71,73,79,83,89,97]

where

yieldPrimes :: [(a,Bool)] -> [a]

yieldPrimes [] = []

yieldPrimes ((v,w):t)

| w = v : yieldPrimes t

| otherwise = yieldPrimes t

29/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Example: More Array Operations at Work (2)
Let:
m = array ((1,1),(2,3)) [((i,j),i*j) | i <- [1..2],

j <- [1..3]]

:: Array (Int,Int) Int

m ->> array ((1,1),(2,3)) [((1,1),1),((1,2),2),((1,3),3),

((2,1),2),((2,2),4),((2,3),6)]

m!(1,2) ->> 2, m!(2,2) ->> 4, m!(2,3) ->> 6

Applications of array operations:

bounds m ->> ((1,1),(2,3))

indices m ->> [(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)]

elems m ->> [1,2,3,2,4,6]

assocs m ->> [((1,1),1),((1,2),2),((1,3),3),

((2,1),2), ((2,2),4), ((2,3),6)]

m // [((1,1),4), ((2,2),8)]

->> array ((1,1),(2,3)) [((1,1),4),((1,2),2),((1,3),3),

((2,1),2),((2,2),8),((2,3),6)] 30/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Example: More Array Operations at Work (3)

...illustrating the update operation (//) by means of modify-
ing the histogram function:

histogram (lower,upper) xs

= updHist (array (lower,upper)

[(i,0) | i <- [lower..upper]])

xs

updHist a [] = a

updHist a (x:xs) = updHist (a // [(x, (a!x + 1))]) xs

Application:

histogram (0,9) [3,1,4,1,5,9,2]

->> array (0,9) [(0,0),(1,2),(2,1),(3,1),(4,1),

(5,1),(6,0),(7,0),(8,0),(9,1)]

31/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Updating Arrays: accum complementing (//)

...accum, another pre-defined operation on arrays:

I accum :: (Ix a) => (b -> c -> b) -> Array a b

-> [(a,c)] -> Array a b

accum f a list of associations

...instead of replacing previously stored values as (//) does,
accum accumulates values referring to the same index using f.

Example:

accum (+) m [((1,1),4), ((2,2),8)] -- m as before

->> array ((1,1),(2,3))

[((1,1),5),((1,2),2),((1,3),3),

((2,1),2),((,2,2),12),((2,3),6)]

Note: The result of accum is a new matrix, which is identical
to m except for the entries at positions (1,1) and (2,2) to
whose values 1 and 4, 4 and 8 have been added, respectively.

32/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Higher-Order Functions on Arrays

...can be defined just as on lists, e.g.:

amap :: (b -> c) -> Array a b -> Array a c

Example: The call

amap (\x -> x*10) a

yields a new array where all elements of a are multiplied by 10.

33/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

User-defined Higher-Order Array Functions
The functions row and col return a row and a column of a
matrix, respectively:

row :: (Ix a,Ix b) =>

a -> Array (a,b) c -> Array b c

row i m = ixmap (l′,u′) (\j -> (i,j)) m

where ((l,l′),(u,u′)) = bounds m

col :: (Ix a,Ix b) =>

a -> Array (b,a) c -> Array b c

col j m = ixmap (l,u) (\i -> (i,j)) m

where ((l,l′),(u,u′)) = bounds m

where

ixmap :: (Ix a, Ix b) => (a,a) -> (a -> b)

-> Array b c -> Array a c

ixmap b f a = array b [(k,a!f k) | k <- range b]

34/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Examples: row, col at Work

...where m is assumed to be as before:

row 1 m ->> array (1,3) [(1,1),(2,2),(3,3)]

row 2 m ->> array (1,3) [(1,2),(2,4),(3,6)]

row 3 m ->> array (1,3) [(1,

Program error: Ix.index: index out of

range

col 1 m ->> array (1,2) [(1,1),(2,2)]

col 2 m ->> array (1,2) [(1,2),(2,4)]

col 3 m ->> array (1,2) [(1,3),(2,6)]

col 4 m ->> array (1,2) [(1,

Program error: Ix.index: index out of

range

35/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Chapter 7.2.2

Dynamic Arrays

36/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.2.1

7.2.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

The Library Data.Array.Diff

I Data.Array.Diff (import Data.Array.Diff)

...supports dynamic (or: mutable) arrays.

Compared to the library Data.Array, the type:

– DiffArray (for dynamic arrays)

replaces the type

– Array (for static arrays)

...everything else behaves analogously.∗)

∗) Data.Array.Diff is no longer maintained; Data.Array.IO

can be considered a substitute but offers a different monadic-based

interface.
37/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Chapter 7.3

Summary

38/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Summing up (1)

Static (Immutable) Arrays

I Access operator (!): Each array element is accessible in
constant time.

I Update operator (//): Not a destructive update; instead:
an identical copy of the argument array is created except
of those elements being ‘updated.’ Updates thus do not
take constant time.

Dynamic (Mutable) Arrays

I Update operator (//): Destructive update; update opera-
tions take constant time per index.

I Access operator (!): Access to array elements may some-
times take longer as for static arrays.

39/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Summing up (2)

Updates

I can often completely be avoided by smartly written recur-
sive array constructions (cp. the prime number test in
Chapter 7.2.1).

Dynamic arrays

I should only be used if constant time updates are crucial
for the application.

For an extended example showing

– arrays at work

refer to Chapter 18.2 dealing with an imperative robot langua-
ge for controlling robot actions.

40/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Chapter 7.4

References, Further Reading

41/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Chapter 7: Basic Reading (1)

Basics, Fundamentals of Functional Arrays

Klaus E. Grue. Arrays in Pure Functional Programming
Languages. International Journal on Lisp and Symbolic
Computation 2:105-113, Kluwer Academic Publishers,
1989.

Textbook Representations on Functional Arrays

Richard Bird. Thinking Functionally with Haskell. Cam-
bridge University Press, 2015. (Chapter 10.5, Mutable
arrays; Chapter 10.6, Immutable arrays)

Marco Block-Berlitz, Adrian Neumann. Haskell Intensiv-
kurs. Springer-V., 2011. (Chapter 10.1, Arrays)

42/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Chapter 7: Basic Reading (2)

Antonie J.T. Davie. An Introduction to Functional Pro-
gramming Systems using Haskell. Cambridge University
Press, 1992. (Chapter 4.6, Arrays)

Fethi Rabhi, Guy Lapalme. Algorithms – A Functional
Programming Approach. Addison-Wesley, 1999. (Chapter
2.7, Arrays; Chapter 4.3, Arrays)

Functional Arrays in Haskell’98

Simon Peyton Jones (Ed.). Haskell 98: Language and Li-
braries. The Revised Report. Cambridge University Press,
2003. www.haskell.org/definitions. (Chapter 16,
Arrays)

Simon Peyton Jones. Haskell 98 Libraries: Arrays. Journal
of Functional Programming 13(1):173-178, 2003.

43/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Chapter 7: Selected Further Reading (1)

(Towards) Fast Implementations of Functional Arrays

Henry G. Baker. Shallow Binding Makes Functional Arrays
Fast. ACM SIGPLAN Notices 26(8):145-147, 1991.

Manuel M.T. Chakravarty, Gabriele Keller. An Approach
to Fast Arrays in Haskell. In Johan Jeuring, Simon Peyton
Jones (Eds.) Advanced Functional Programming – Revised
Lectures. Springer-V., LNCS Tutorial 2638, 27-58, 2003.

John Hughes. An Efficient Implementation of Purely
Functional Arrays. Technical Report, Programming Metho-
dology Group, Chalmers University of Technology, 1985.

44/187

Lecture 2

Detailed
Outline

Chap. 7

7.1

7.2

7.3

7.4

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Chapter 7: Selected Further Reading (2)

Miscellaneous Aspects of Functional Arrays

Paul Hudak. Arrays, Non-determinism, Side-effects, and
Parallelism: A Functional Perspective. In Proceedings of a
Workshop on Graph Reduction (WGR’86), Springer-V.,
LNCS 279, 312-327, 1986.

Melissa E. O’Neill, F. Warren Burton. A New Method for
Functional Arrays. Journal of Functional Languages
7(5):487-513, 1997.

Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung. Springer-V., 2006. (Kapitel 14, Funktionale Arrays
und numerische Mathematik)

45/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

And now on something completely different

...towards Abstract Data Types, towards Chapter 8.

46/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Data Type Description Modes

Consider:

I A tree is either a leaf carrying a string value, or it is a
branch carrying an integer value and a right and a left
tree, so-called subtrees.

I The function

– emptystack creates a new stack, the so-called empty
stack, which does not contain any entry.

– push adds a new entry to a stack.
– pop removes the entry of a stack, which has most re-

cently been added to it; if there is none, it fails.
– top yields the entry of the stack, which has most recent-

ly been added to it; if there is none, it fails.
– isempty checks if a stack contains an entry.

There is no other way to create, access, and manipulate
stack values as by means of these functions.

47/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Exercise

Considering and comparing the two descriptions:

1. What do they tell us

2. What do they not tell us

about trees and stacks, about tree values and stack values?

Can we, based on these descriptions, provide an implemen-
tation of

1. trees

2. stacks

in, e.g., Haskell?

48/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Exercise (cont’d)
What is about the below implementations of trees and stacks?

data Tree = Leaf String

| Branch Int Tree Tree

type Stack a = [a]

emptystack = []

push x xs = (x:xs)

pop [] = error "Stack is empty"

pop (_:xs) = xs

top [] = error "Stack is empty"

top (x:_) = x

isempty [] = True

isempty _ = False

1. Are they faithful implementations of the descriptions?

2. Can they faithfully be derived from the descriptions?
49/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

The Description of Trees

...tells us

I everything about the (concrete) values of trees, about
what they look like.

I nothing about functions which allow us to create, access
and manipulate tree values.

...we call trees a concrete data type description.

Recall:

A tree is either a leaf carrying a string value, or it is a branch
carrying an integer value and a right and a left tree, so-called
subtrees.

50/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

The Description of Stacks
...tells us

I everything about the functions at our disposal for crea-
ting, accessing, and manipulating values of the data type.

I nothing about the (concrete) values of the data type,
about what they look like.

...we call stacks an abstract data type description.

Recall: Calling function

– emptystack creates a new stack, the so-called empty stack, which
does not contain any entry.

– push adds a new entry to a stack.

– pop removes the entry of a stack, which has most re- cently been
added to it; if there is none, it fails.

– top yields the entry of the stack, which has most recently been
added to it; if there is none, it fails..

– isempty checks if a stack contains an entry.

There is no other way to create, access, and manipulate stack values
than by means of these functions. 51/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Summing up

A concrete data type description (like trees) tells us

I everything about the values of the data type, about what
they look like.

I nothing about functions allowing us to create, access, and
manipulate values of the data type.

An abstract data type description like (stacks) tells us

I everything about the functions allowing us to create,
access, and manipulate values of the data type.

I nothing about the kind of values of the data type, about
what they look like.

52/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Exercise
Natural language is ambiguous, suggestive, open and inviting
to (over-) interpretation. E.g., the description of stacks:

I Calling function

– emptystack creates a new stack, the so-called empty
stack, which does not contain any entry.

– push adds a new entry to a stack.
– pop removes the entry of a stack, which has most re-

cently been added to it; if there is none, it fails.
– top yields the entry of the stack, which has most recent-

ly been added to it; if there is none, it fails.
– isempty checks if a stack contains an entry.

There is no other way to create, access, and manipulate stack
values than by means of these functions.

tells us actually only

I almost everything about functions which allow us to cre-
ate, access, and manipulate stack values.

53/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Exercise (cont’d)

What information is missing in the description of stacks or
(over-) interpreted to justify an implementation of stacks as
shown below?

type Stack a = [a]

emptystack = []

push x xs = (x:xs)

pop [] = error "Stack is empty"

pop (_:xs) = xs

top [] = error "Stack is empty"

top (x:_) = x

isempty [] = True

isempty _ = False

54/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

In the following Chapter 8

...we will show (one way of)

I how to provide precise abstract data type (ADT) descrip-
tions by decomposing their description into a

– user-visible specification.
– user-invisible implementation.
– verification obligations for specifier and implementer.

Moreover, we will show:

– What benefits and advantages ADT definitions provide.

– How ADT definitions can be be realized in Haskell.

55/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Chapter 8

Abstract Data Types

56/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Chapter 8.1

Motivation

57/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Why Abstract Data Types?

...by introducing a level of indirection between specification
and implementation of a data type, we achieve:

I Separation of concerns: Separation of specification (inter-
face and behaviour specification) and implementation of a
data type (in terms of a CDT and CDT operations mat-
ching the ADT operations).

I Information hiding: No disclosure of the internal structure
of the CDT, the representation and implementation of its
values and the operations working on them.

I Security: CDT values implementing their (only) implicitly
defined ADT counterparts can exclusively be created,
accessed, and manipulated using the ADT operations
implemented by their CDT counterparts.

58/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Defining and Implementing an ADT

...is technically a three-stage approach of specification, imple-
mentation, and verification:

I Specification (user-visible)

– Interface Specification: Signatures of ADT operations
– Behaviour Specification: Laws for ADT operations

I Implementation (user-invisible)

– Implementing the ADT values in terms of a CDT
– Implementing the ADT operations as CDT operations

I Verification

– Specification: Proving that the ADT laws are consistent
and complete (proof obligation of the ADT specificator)

– Implementation: Proving that the implemented CDT
operations are sound, i.e., satisfy the ADT laws (proof
obligation of the CDT implementor)

59/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Benefits of Abstract Data Type Definitions

...supporting programming-in-the large:

I ADTs enable modular program development by separating
the responsibilities for specifying and implementing a data
type and the operations associated with it.

...supporting reusability and maintainability:

I If non-functional requirements for an ADT implementa-
tion change or evolve over time, a current CDT imple-
mentation of the ADT and its operations can easily be
replaced by a new one fitting better to the new require-
ments as long as the new CDT implementation satisfies
the interface and behaviour specification of the ADT.

60/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

In the following

...we demonstrate how ADTs can be defined and implemented
in Haskell considering:

– Stacks

– Queues

– Priority Queues

– Tables

The Challenge:

– ADTs are not a first-class citizen in Haskell.

– Therefore, we have to pragmatically make use of Haskell
features allowing us to achieve the constituting proper-
ties of ADTs of information hiding, of separating their
user-visible specification from their user-invisible imple-
mentation as good as possible.

61/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Chapter 8.2

Stacks

62/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Interface Specification
...of the ADT stack, named Stack (user-visible):

module Stack (Stack,empty,is_empty,push,pop,top)

where

-- Interface Spec.: Signatures of stack operations

empty :: Stack a

is_empty :: Stack a -> Bool

push :: a -> Stack a -> Stack a

pop :: Stack a -> Stack a

top :: Stack a -> a

-- Behaviour Spec.: Laws for stack operations

Laws (1) thru (6)

Note, the laws must be chosen to enforce a last-in/first-out
(LIFO) behaviour of stacks; any implementation of stacks
must ensure these laws.

63/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Behaviour Specification

...of the stack operations of the ADT stack (user-visible):

Behaviour Spec.: Laws for stack operations

1) is_empty empty == True

2) is_empty (push v s) == False

3) top empty == undef

4) top (push v s) == v

5) pop empty == undef

6) pop (push v s) == s

Homework: Prove that the above laws enforce a last-in/first-
out (LIFO) behaviour of stacks.

64/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Implementation A

...of the ADT stack as an algebraic data type (user-invisible):

data Stack a = Empty | Stk a (Stack a)

empty = Empty

is_empty Empty = True

is_empty _ = False

push x s = Stk x s

pop Empty = error "Stack is empty"

pop (Stk _ s) = s

top Empty = error "Stack is empty"

top (Stk x _) = x

65/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Implementation B

...of the ADT stack as a new type (user-invisible):

newtype Stack a = Stk [a]

empty = Stk []

is_empty (Stk []) = True

is_empty (Stk _) = False

push x (Stk xs) = Stk (x:xs)

pop (Stk []) = error "Stack is empty"

pop (Stk (_:xs)) = Stk xs

top (Stk []) = error "Stack is empty"

top (Stk (x:_)) = x

66/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

“Implementation” C

...of the ADT stack as an alias type (user-invisible):

type Stack a = [a]

empty = []

is_empty [] = True

is_empty _ = False

push x xs = (x:xs)

pop [] = error "Stack is empty"

pop (_:xs) = xs

top [] = error "Stack is empty"

top (x:_) = x

67/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Verification

Specifier and implementer of the ADT stack can prove, res-
pectively:

Lemma 8.2.1 (Consistency, Completeness)

The 6 laws of the behaviour specification of the ADT stack
are consistent and complete.

Lemma 8.2.2 (Soundness)

The implementations A and B (and C) satisfy the 6 laws of
the behaviour specification of the ADT stack.

68/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

A Critical Note on “Implementation” C

...of stacks as an

– alias type of predefined lists: type Stack a = [a]

Obvious (but actually only apparent) benefit of implementing
stacks as predefined lists:

– Even less conceptual overhead than for stacks implemen-
ted as a new type newtype Stack a = Stk [a]

where the constructor Stk needs to be handled by the
implementations of the stack operations.

69/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

But

Security is broken and lost!

I All predefined operations on lists are available on stacks
(not just the 5 ADT operations of stack).

Worse

I Many of the predefined operations on lists (reversal, ele-
ment picking, etc.) are not even meaningful for stacks.

I Even hiding the implementation in a module can not
prevent the application of such meaningless operations to
stacks but requires to explicitly abstain from them.

Hence

I “Implementation” C violates the spirit of an ADT imple-
mentation and should not be considered a reasonable and
valid implementation of the ADT stack.

70/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Chapter 8.3

Queues

71/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Interface Specification
...of the ADT queue, named Queue (user-visible):

module Queue (Queue,emptyQ,is_EmptyQ,

enQ,deQ,frontQ) where

-- Interface Spec.: Signatures of queue operations

emptyQ :: Queue a

is_emptyQ :: Queue a -> Bool

enQ :: a -> Queue a -> Queue a

deQ :: Queue a -> Queue a

frontQ :: Queue a -> a

-- Behaviour Spec.: Laws for queue operations

Laws (1) thru (6)

Note, the laws must be chosen to enforce a first-in/first-out
(FIFO) behaviour of queues; any implementation of queues
must ensure these laws.

72/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Behaviour Specification
...of the queue operations of the ADT queue (user-visible):

Behaviour Spec.: Laws for queue operations:

1) is_emptyQ emptyQ == True

2) is_emptyQ (enQ v q) == False

3) frontQ emptyQ == undef

4) frontQ (enQ v q) == if is_emptyQ q

then v

else frontQ q

5) deQ emptyQ == undef

6) deQ (enQ v q) == if is_emptyQ q

then emptyQ

else enQ ((deQ q) v)

Homework: Prove that the above laws enforce a first-in/first-
out (FIFO) behaviour of queues.

73/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Implementation A

...of the ADT queue as a new type (user-invisible):

newtype Queue a = Q [a]

emptyQ = Q []

is_emptyQ (Q []) = True

is_emptyQ _ = False

enQ x (Q q) = Q (q ++ [x])

deQ (Q []) = error "Queue is empty"

deQ (Q (_:xs)) = Q xs

frontQ (Q []) = error "Queue is empty"

frontQ (Q (x:_)) = x

74/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Implementation B
...of the ADT queue as a new type (user-invisible):

newtype Queue a = Q ([a],[a])︷︸︸︷
front

︷︸︸︷
rear (in reverse order)

of the queue)

emptyQ = Q ([],[])

is_emptyQ (Q ([],[])) = True

is_emptyQ _ = False

enQ x (Q ([],[])) = Q ([x],[])

enQ y (Q (xs,ys)) = Q (xs,y:ys)

deQ (Q ([],[])) = error "Queue is empty"

deQ (Q ([],ys)) = Q (tail(reverse ys),[])

deQ (Q (x:xs,ys) = Q (xs,ys)

frontQ (Q ([],[])) = error "Queue is empty"

frontQ (Q ([],ys) = last ys

frontQ (Q (x:xs,ys) = x
75/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Verification

Specifier and implementer of the ADT queue can prove,
respectively:

Lemma 8.3.1 (Consistency, Completeness)

The 6 laws of the of the behaviour specification of the ADT
queue are consistent and complete.

Lemma 8.3.2 (Soundness)

The implementations A and B satisfy the 6 laws of the
behaviour specification of the ADT queue.

76/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Exercise 8.3.3

Implementation B of the ADT queue is more efficient than
implementation A. Why?

77/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Chapter 8.4

Priority Queues

78/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Interface/Behaviour Specification
...of the ADT priority queue, named PQueue (user-visible):

module PQueue (PQueue,emptyPQ,is_emptyPQ,

enPQ,dePQ,frontPQ) where

-- Interface Spec.: Signatures of priority queue op’s

emptyPQ :: PQueue a

is_emptyPQ :: PQueue a -> Bool

enPQ :: (Ord a) => a -> PQueue a -> PQueue a

dePQ :: (Ord a) => PQueue a -> PQueue a

frontPQ :: (Ord a) => PQueue a -> a

-- Behaviour Spec.: Laws for priority queue operations

...Homework!

Note: Each entry of a priority queue has a priority associated with

it. The dequeue operation always removes the entry with the high-

est (or lowest) priority, which is ensured by the enqueue operation,

which places a new element according to its priority in a queue.
79/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Implementation
...of the ADT priority queue as a new type (user-invisible):

newtype PQueue a = PQ [a]

emptyPQ = PQ []

is_emptyPQ (PQ []) = True

is_emptyPQ _ = False

enPQ x (PQ pq) = PQ (insert x pq)

where

insert x [] = [x]

insert x r@(e:r′) | x <= e = x:r -- the smaller the

-- higher the priority

| otherwise = e:insert x r′

dePQ (PQ []) = error "Priority queue is empty"

dePQ (PQ (_:xs)) = PQ xs

frontPQ (PQ []) = error "Priority queue is empty"

frontPQ (PQ (x:_)) = x
80/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Verification

Specifier and implementer of the ADT priority queue need to
show, respectively:

I The laws of the behaviour specification of the ADT prio-
rity queues are consistent and complete.

I The implementation satisfies the laws of the behaviour
specification of the ADT priority queue.

...where the specification of the laws was left as homework.

81/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.5.1

8.5.2

8.6

8.7

8.8

Chap. 3

Final
Note

Chapter 8.5

Tables

82/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.5.1

8.5.2

8.6

8.7

8.8

Chap. 3

Final
Note

Chapter 8.5.1

Tables as Functions and Lists

83/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.5.1

8.5.2

8.6

8.7

8.8

Chap. 3

Final
Note

Interface/Behaviour Specification
...of the ADT table, named Table (user-visible):

module Table (Table,new_T,find_T,upd_T) where

-- Interface Spec.: Signatures of table operations

new_T :: (Eq b) => [(b,a)] -> Table a b

find_T :: (Eq b) => Table a b -> b -> a

upd_T :: (Eq b) => (b,a) -> Table a b -> Table a b

-- Behaviour Spec.: Laws for table operations
Intuitively:
-- new_T assoc_list: create a new table and ini-

-- tialize it with the data of assoc_list.

-- find_T tab ind: retrieve information stored in

-- table tab at index ind.

-- upd_T (ind,val) tab: update the entry of table

-- tab stored at index ind with value val.

Details: Homework!

84/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.5.1

8.5.2

8.6

8.7

8.8

Chap. 3

Final
Note

Implementation A

...of the ADT table as a function (user-invisible):

newtype Table a b = Tbl (b -> a)

new_T assoc_list =

foldr upd_T

(Tbl (-> eror "Item not found"))

assoc_list

find_T (Tbl f) index = f index

upd_T (index,value) (Tbl f) = Tbl g

where g j | j==index = value

| otherwise = f j

85/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.5.1

8.5.2

8.6

8.7

8.8

Chap. 3

Final
Note

Implementation B

...of the ADT table as a new type (user-invisible):

newtype Table a b = Tbl [(b,a)]

new_T assoc_list = Tbl assoc_list

find_T (Tbl []) i = error "Item not found"

find_T (Tbl ((j,value):r)) index

| index==j = value

| otherwise = find_T (Tbl r) index

upd_T e (Tbl []) = Tbl [e]

upd_T e′@(index,_) (Tbl (e@(j,_):r))

| index==j = Tbl (e′:r)

| otherwise = Tbl (e:r′)

where Tbl r′ = upd_T e′ (Tbl r)

86/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.5.1

8.5.2

8.6

8.7

8.8

Chap. 3

Final
Note

Verification

Specifier and implementer of the ADT table need to show,
respectively:

I The laws of the behaviour specification of the ADT table
are consistent and complete.

I The implementation satisfies the laws of the behaviour
specification of the ADT table.

...where the specification of the laws was left as homework.

87/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.5.1

8.5.2

8.6

8.7

8.8

Chap. 3

Final
Note

Chapter 8.5.2

Tables as Arrays

88/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.5.1

8.5.2

8.6

8.7

8.8

Chap. 3

Final
Note

Interface/Behaviour Specification

...of the ADT table, named Table′ (user-visible):

module Tab (Table′,new_T′,find_T′,upd_T′) where

-- Interface Spec.: Signatures of table operations

new_T′ :: (Ix b) => [(b,a)] -> Table′ a b

find_T′ :: (Ix b) => Table′ a b -> b -> a

upd_T′ :: (Ix b) => (b,a) -> Table′ a b

-> Table′ a b

-- Behaviour Spec.: Laws for table operations

...Homework!

Note: The signatures of the table operations have been en-
larged by the context (Ix b) => in order to be prepared for
array manipulations.

89/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.5.1

8.5.2

8.6

8.7

8.8

Chap. 3

Final
Note

Implementation

...of the ADT table as a new type (user-invisible):

newtype Table′ a b = Tbl′ (Array b a)

new_T′ assoc_list = Tbl′ (array (low,high) assoc_list)

where indices = map fst assoc_list

low = minimum indices

high = maximum indices

find_T′ (Tbl′ a) index = a ! index

upd_T′ p@(index,value) (Tbl′ a) = Tbl′ (a // [p])

90/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.5.1

8.5.2

8.6

8.7

8.8

Chap. 3

Final
Note

Note

– new T′ takes an association list of index/value pairs and
returns the corresponding table.

To this end, new T′ determines first the list of indices
indices of association list assoc list, and based on
this the boundaries of the new table array by computing
the minimum low and the maximum high index of
assoc list; afterwards it constructs the new table array
applying the function array to the pair of array bounds
(low,high) and association list assoc list.

– find T′ and upd T′ are used to retrieve and update
values in the table array, respectively. Note that find T′

returns a system error, not a user error, when applied to
an invalid index.

91/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.5.1

8.5.2

8.6

8.7

8.8

Chap. 3

Final
Note

Verification

Specifier and implementer of the ADT table need to show,
respectively:

I The laws for table are consistent and complete.

I The implementation satisfies the laws of the ADT opera-
tions of the ADT table.

...whose specification was left as homework.

92/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Chapter 8.6

Displaying ADT Values in Haskell

93/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Displaying ADT Values

...is often necessary but requires some special care, especially
in Haskell.

The reasons for this are twofold:

1. ADT values can only be accessed using the ADT opera-
tions. Usually, it is crude and cumbersome to display all
values of a complex ADT value like a stack or a queue
using only the ADT operations, e.g., by completely
popping a whole stack.

2. Displaying ADT values straightforwardly in terms of their
CDT representations can reveal the internal structure of
the CDT breaking the ADT principles of information hi-
ding and (possibly) security.

94/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

In Haskell

...breaking the principles of information hiding and (possibly)
security always happens if the CDT implementing an ADT is
made an instance of the type class Show using an automatic

I deriving-clause

which is demonstrated next considering stacks for illustration.

95/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

The Problem: Automatic deriving-Clauses
...are unsafe:

data Stack a = Empty

| Stk a (Stack a) deriving Show

newtype Stack a = Stk [a] deriving Show

type Stack a = [a] -- Lists are instance of Show;

-- hence, no deriving clause

-- required.

because displaying stack values reveals their internal structure:

push 3 (push 2 (push 1 emptyS))

->> Stk 3 (Stk 2 (Stk 1 Empty))

push 3 (push 2 (push 1 emptyS))

->> Stk [3,2,1]

push 3 (push 2 (push 1 emptyS))

->> [3,2,1] ->> (3:2:1:[]) 96/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

A Note on Information Hiding and Security (1)
Information hiding

I is broken for all three implementation variants as algebraic
type, new type, and type alias: Displaying stack values
discloses their internal structure and data constructors.

Security

I is broken for the variant as type alias: All list operations
are immediately available to create, access, and manipu-
late stack values using arbitrary list operations. There-
fore, type aliases of basic types are not considered valid
ADT implementations.

I is preserved for the variants as algebraic type and new
type: This is because the data value constructors Empty

and Stk are not exported from the module. A user of the
module can thus not use or create a stack value by any
other way than the operations exported by the module.

97/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

A Note on Information Hiding and Security (2)
This holds anlogously for the other ADT implementations:

Stacks

data Stack a = Empty

| Stk a (Stack a) deriving Show

newtype Stack a = Stk [a] deriving Show

type Stack a = [a]

Queues and Priority Queues

newtype Queue a = Q [a] deriving Show

newtype PQueue a = PQ [a] deriving Show

Tables

newtype Table a b = Tbl [(b,a)] deriving Show

newtype Table a b = Tbl (Array b a) deriving Show

...straightforward and easy but unsafe and (possibly) insecure.
98/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Remedy: Explicit instance-Declarations (1)

...the safe, secure, and thus recommended way for displaying
ADT values, here stacks:

A) instance (Show a) => Show (Stack a) where

showsPrec _ Empty str = showChar ‘-‘ str

showsPrec _ (Stk x s) str

= shows x (showChar ‘|‘ (shows s str))

B) instance (Show a) => Show (Stack a) where

showsPrec _ (Stk []) str = showChar ‘-‘ str

showsPrec _ (Stk (x:xs)) str

= shows x (showChar ‘|‘ (shows (Stk xs) str))

C) instance (Show a) => Show (Stack a) where

showsPrec _ [] str = showChar ‘-‘ str

showsPrec _ (x:xs) str

= shows x (showChar ‘|‘ (shows xs str))

99/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Remedy: Explicit instance-Declarations (2)

This way, the very same output for all 3 implementations:

push 3 (push 2 (push 1 emptyS)) ->> 3|2|1|-

No implementation details about the internal data structure
are disclosed:

I Independently of the chosen implementation A, B, (or C),
the output is the same.

I Hence, the actually chosen implementation of the ADT
Stack remains hidden. It is not disclosed to the user (of
the module).

Note: The first argument of showsPrec is an unused prece-
dence value.

100/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Challenge: Displaying Tables

...represented as functions because there is no general mean-
ingful way to display a function. An instance declaration for

newtype Table a b = Tbl (b -> a)

for the type class Show could thus be chosen minimal/trivial:

instance Show (Table a b) where

showsPrec _ _ str = showString "<<A Table>>" str

101/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Chapter 8.7

Summary

102/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Abstract Data Types

...are not a first-class citizen in Haskell.

Nonetheless, specifying and implementing ADTs using modules
ensures all three design goals strived for with ADTs:

I Separation of concerns: Separation of specification (inter-
face and behaviour specification) and implementation of a
data type (in terms of a CDT and CDT operations mat-
ching the ADT operations).

I Information hiding: No disclosure of the internal structure
of the CDT, the representation and implementation of its
values and the operations working on them.

I Security: CDT values implementing their (only) implicitly
defined ADT counterparts can exclusively be created,
accessed, and manipulated by using the ADT operations
implemented by their CDT counterparts.

103/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Note

Due to limitations of the module concept in Haskell, the

I behaviour specification of ADTs can only be given as
comments.

If ADT values need to be displayed, this can be done by

I by making the underlying CDT a member of the type
class Show.

This should always be done by means of an explicit

I instance-declaration

since a (more convenient) deriving-clause, if possible, would
reveal the internal representation of the CDT values, especially
the data constructors of the CDT breaking the information
hiding principle of ADTs (though the constructors could not be
used by a user since they are not exported from the module).

104/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Benefits of Using Abstract Data Types
...evolve directly from the ‘by-design built-in’ ADT properties:

I Separation of concerns, i.e., the separation of the specifi-
cation and implementation of a data type

enables

I Information hiding: Only the interface and the behaviour
specification of the ADT are publicly known; its imple-
mentation as a CDT and operations on it are hidden.

This ensures:

I Security of the data (structure) and its data values from
uncontrolled, unintended, or not permitted access.

Altogether, this enables:

I Simple exchangeability of the CDT implementation of an
ADT (e.g., simplicity vs. scalability/performance).

I Modularization and programming-load sharing supporting
programming-in-the-large.

105/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Relevance of Abstract Data Types

...there are many more examples of data structures, which can
be specified and implemented in terms of abstract data types
in order to benefit from the built-in ADT properties such as
separation of concerns, information hiding, security, exchange-
ability, modularity, etc., including

– Sets

– Heaps

– Trees (binary search trees, balanced trees,...)

– ...

and also

– Arrays

as illustrated next.

106/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Arrays as Abstract Data Type in Haskell (1)

module Array (

module Ix, -- export all of Ix (for convenience)

Array, array, listarray (!), bounds, indices,

elems, assocs, accumArray, (//),

accum, ixmap) where

import Ix

infixl 9 !, // ... -- Operator precedence

data (Ix a) => Array a b = ... -- Abstract

array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b

listArray :: (Ix a) => (a,a) -> [b] -> Array a b

(!) :: (Ix a) => Array a b -> a -> b

bounds :: (Ix a) => Array a b (a,a)

indices :: (Ix a) => Array a b -> [a]

elems :: (Ix a) => Array a b -> [b]

assocs :: (Ix a) => Array a b -> [(a,b)]

107/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Arrays as Abstract Data Type in Haskell (2)

accumArray :: (Ix a) => (b -> c -> b) -> b

-> (a,a) -> [(a,c)] -> Array a b

(//) :: (Ix a) => Array a b -> [(a,b)]

-> Array a b

accum :: (Ix a) => (b -> c -> b) -> Array a b

-> [(a,c)] -> Array a b

ixmap :: (Ix a, Ix b) => (a,a) -> (a -> b)

-> Array b c -> Array a c

instance Functor (Array a) where...

instance (Ix a, Eq b) => Eq (Array a b) where...

instance (Ix a, Ord b) => Ord (Array a b) where...

instance (Ix a, Show a, Show b)

=> Show (Array a b) where...

instance (Ix a, Read a, Read b)

=> Read (Array a b) where...

108/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Arrays as Abstract Data Type in Haskell (3)

For the definition of the functions and instance declarations of
the module Array, see:

– Simon Peyton Jones (Ed.). Haskell 98: Language and
Libraries. The Revised Report. Cambridge University
Press, 173-178, 2003. (Chapter 16, Arrays)

109/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Chapter 8.8

References, Further Reading

110/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Chapter 8: Basic Reading (1)

Origins

John V. Guttag. Abstract Data Types and the Develop-
ment of Data Structures. Communications of the ACM
20(6):396-404, 1977.

John V. Guttag, James J. Horning. The Algebra Specifi-
cation of Abstract Data Types. Acta Informatica
10(1):27-52, 1978.

John V. Guttag, Ellis Horowitz, David R. Musser. Abstract
Data Types and Software Validation. Communications of
the ACM 21(12):1048-1064, 1978.

Basics, Fundamentals

Manoochehr Azmoodeh. Abstract Data Types and Algor-
ithms. Macmillan Education, 1988.

111/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Chapter 8: Basic Reading (2)

Textbook Representations using Haskell

Richard Bird. Introduction to Functional Programming
using Haskell. Prentice-Hall, 2nd edition, 1998. (Chapter
8, Abstract data types)

Antonie J.T. Davie. An Introduction to Functional Pro-
gramming Systems using Haskell. Cambridge University
Press, 1992. (Chapter 4.5, Abstract Types and Modules)

Fethi Rabhi, Guy Lapalme. Algorithms – A Functional
Programming Approach. Addison-Wesley, 1999. (Chapter
5, Abstract Data Types)

Simon Thompson. Haskell – The Craft of Functional Prog-
ramming. Addison-Wesley/Pearson, 3rd edition, 2011.
(Chapter 16, Abstract data types)

112/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chap. 3

Final
Note

Chapter 8: Selected Further Reading

Handbook Representations, Beyond Haskell

Gerhard Goos, Wolf Zimmermann. Programmiersprachen.
In Informatik-Handbuch, Peter Rechenberg, Gustav Pom-
berger (Hrsg.), Carl Hanser Verlag, 4. Auflage, 515-562,
2006. (Kapitel 2.1, Methodische Grundlagen: Abstrakte
Datentypen, Grundlegende abstrakte Datentypen)

Peter Pepper. Funktionale Programmierung in OPAL, ML,
Haskell und Gofer. Springer-V., 2. Auflage, 2003. (Kapitel
14.1, Abstrakte Datentypen; Kapitel 14.3, Generische ab-
strakte Datentypen; Kapitel 14.4, Abstrakte Datentypen in
ML und Gofer; Kapitel 15.3, Ein abstrakter Datentyp für
Sequenzen)

113/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3

Programming with Higher-Order Functions:
Algorithm Patterns

114/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Motivation

Programming with higher-order functions

I Many powerful and general algorithmic principles can be
encapsulated in a suitable higher-order function (HoF).

I This allows to design a collection or a class of algorithms
(instead of designing an algorithm for only a particular
application).

Conceptually

I this emphasizes the essence of the underlying algorithmic
principle.

Pragmatically

I this makes these algorithmic principles easily re-usable.

115/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Outline

In this chapter, we demonstrate this reconsidering an array of
well-known top-down and bottom-up design principles of algor-
ithms.

I Top-down: Starting from the initial problem, the algor-
ithm works down to the solution by considering sub-
problems or alternatives.

– Divide-and-conquer (cf. LVA 185.A03 FP, Chap. 18.1)
– Backtracking search
– Priority-first search
– Greedy search

I Bottom-up: Starting from small problem instances, the
algorithm works up to the solution of the initial problem
by combining solutions of smaller problem instances to
solutions of larger ones.

– Dynamic programming

116/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3.1

Divide-and-Conquer

117/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Divide and Conquer
Given: A problem instance P .

Sought: A solution S of P .

Algorithmic Idea:

– If a problem instance is simple/small enough, solve it:
directly or by means of some basic algorithm.

– Otherwise, divide the problem instance into smaller sub-
problem instances by applying the division strategy recur-
sively until all subproblem instances are simple enough to
be solved directly.

– Combine the solutions of the subproblem instances to the
solution of the initial problem instance.

Applicability Requirement:

– No generation of identical subproblem instances during
problem division (otherwise, a performance issue!)

118/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Illustrating the Divide-and-Conquer Principle
...successive stages of a divide-and-conquer algorithm:

divide phase

combine phase

indivisible
problems

solutions

solve phase}

initial problem

subproblems

of subproblems

solution of the
initial problem

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.

Addison-Wesley, 1999, page 156.
119/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Divide-and-Conquer as HoF (1)

Setting:

A problem with

– problem instances of kind p

– solution instances of kind s

Objective:

A higher-order function (HoF) divide and conquer solving

– suitably parameterized problem instances of kind p using
the ‘divide and conquer’ principle.

120/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Divide-and-Conquer as HoF (2)

The arguments of divide and conquer:

– indiv :: p -> Bool: ...yields True, if the problem in-
stance can/need not be divided further (e.g., it can easily
be solved by some basic algorithm).

– solve :: p -> s: ...yields the solution of a problem in-
stance that can/need not be divided further.

– divide :: p -> [p]: ...divides a problem instance into
a list of subproblem instances.

– combine :: p -> [s] -> s: Given a problem instance
and the list of solutions of the subproblem instances de-
rived from it, combine yields the solution of the problem
instance.

121/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Divide-and-Conquer as HoF (3)

The HoF Implementation:

divide_and_conquer :: (p -> Bool) -> (p -> s) ->︷ ︸︸ ︷
Simple enough?

︷ ︸︸ ︷
Solve!

(p -> [p]) -> (p -> [s] -> s) ->︷ ︸︸ ︷
Divide

︷ ︸︸ ︷
Combine

p -> s︷ ︸︸ ︷
Problem instance

︷ ︸︸ ︷
Solution

divide_and_conquer indiv solve divide combine pi

= dac pi

where

dac pi′

| indiv pi′ = solve pi′

| otherwise = combine pi′ (map dac (divide pi′))

122/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Typical Applications of Divide-and-Conquer

Application fields such as

– Numerical analysis

– Cryptography

– Image processing

– Sorting

– ...

Especially

– Quicksort

– Mergesort

– Binomial coefficients

– ...

123/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Example: Quicksort

quickSort :: Ord a => [a] -> [a]

quickSort ls

= divide_and_conquer indiv solve divide combine ls

where

indiv ls = length ls <= 1

solve = id

divide (l:ls) = [[x | x <- ls, x <= l],

[x | x <- ls, x > l]]

combine (l:_) [l1,l2] = l1 ++ [l] ++ l2

124/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Counterexample: Fibonacci Numbers (Pitfall!)
...not every problem that can be modeled as a ‘divide and con-
quer’ problem is also suitable for it.

Consider:

fib :: Integer -> Integer

fib n

= divide_and_conquer indiv solve divide combine n

where

indiv n = (n == 0) || (n == 1)

solve n

| n == 0 = 0

| n == 1 = 1

| otherwise = error "Problem must be divided"

divide n = [n-2,n-1]

combine _ [l1,l2] = l1 + l2

...shows exponential runtime behaviour due to recomputations!
125/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Illustrating

...the divide-and-conquer computation of the Fibonacci num-
bers (recomputing the solution to many subproblems!):

fib 4

fib 1 fib 0

fib 2

fib 3

fib 1 fib 1

fib 2

fib 0

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.

Addison-Wesley, 1999, page 179.
126/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3.2

Backtracking Search

127/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Backtracking Search
Given: A problem instance P .

Sought: A solution S of P .

Algorithmic Idea:

– Search for a particular solution of the problem by a syste-
matic trial-and-error exploration of the solution space.

Applicability Requirements:

– A set of all possible situations or nodes constituting the
search (node) space; these are the potential solutions that
need to be explored.

– A set of legal moves from a node to other nodes, called
the successors of that node.

– An initial node.

– A goal node, i.e., the solution.
128/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Illustrating the Backtracking Search Principle
...general stages of a backtracking algorithm:

Step 1

Step 2

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9 Step 10

partial solutions

(dead ends)
solutions

Step 3

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.

Addison-Wesley, 1999, page 162.
129/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Illustrating Backtracking Search (Cont’d)
Underlying assumptions

– When exploring the graph, each visited path can lead to
the goal node with an equal chance.

– Sometimes, however, it might be known that the current
path will not lead to the solution.

– In such cases, one backtracks to the next level up the tree
and tries a different alternative.

Note

– The above process is similar to a depth-first graph traver-
sal; this is illustrated in the preceding figure.

– Not all backtracking algorithms stop when the first goal
node is reached.

– Some backtracking algorithms work by selecting all valid
solutions in the search space.

130/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Backtracking Search as HoF (1)

Setting:

A problem with

– problem instances of kind p

– solution instances of kind s

Objective:

A higher-order function (HoF) search dfs solving

– suitably parameterized problem instances of kind p using
the ‘backtracking’ principle.

131/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Backtracking Search as HoF (2)

Note

– Often, the search space is large.

In such cases, the graph forming the search space

– should not be stored explicitly, i.e., in its entirety, in
memory (using explicitly represented graphs) but

– be generated on-the-fly as computation proceeds (using
implicitly represented graphs).

This requires

– a problem-dependent instance of type variable node

representing information of nodes in the search space

– a successor function succ of type (node -> [node]),
which generates the list of successors of a node, i.e., the
nodes of its local environment.

132/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Backtracking Search as HoF (3)

Implementation assumptions:

– The search space graph is acyclic and implicitely stored.

– All solutions shall be computed (Note: The HoF can be
adjusted to terminate after finding the first solution.)

The arguments of search dfs:

– node: A type representing node information.

– succ :: node -> [node]: A function yielding the list
of successors of a node (its local environment).

– goal :: node -> Bool: A function checking whether a
node is a solution.

133/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Backtracking Search as HoF (4)
The HoF Implementation:

search_dfs :: (Eq node) => (node -> [node]) ->︷ ︸︸ ︷
Computing successors
(node -> Bool) ->︷ ︸︸ ︷

Solution?
node -> [node]︷ ︸︸ ︷

Initial node
︷ ︸︸ ︷
Solution nodes

search_dfs succ goal n -- n for node

= (search (push n empty))

where

search s -- s for stack

| is_empty s = []

| goal (top s) = top s : search (pop s)

| otherwise

= let m = top s

in search (foldr push (pop s) (succ m))
134/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Interface and Behaviour Specification

...of the abstract data type (ADT) stack, named Stack (user-
visible), cf. Chapter 8.2:

module Stack (Stack,empty,is_empty,push,pop,top)

where

-- Interface Spec.: Signatures of stack operations

empty :: Stack a

is_empty :: Stack a -> Bool

push :: a -> Stack a -> Stack a

pop :: Stack a -> Stack a

top :: Stack a -> a

-- Behaviour Spec.: Laws for stack operations

Laws (1) thru (6) -- cf. Chapter 8.2 for laws and

-- and different implementations.

135/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Typical Applications of Backtracking Search

Application fields such as

– Knapsack problems

– Game strategies

– ...

Especially

– The eight-tile problem

– The n-queens problem

– Towers of Hanoi

– ...

136/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Example: The Eight-Tile Problem (8TP)

12 6

4 8

357

2 6

4 8

357

1

12 6

8

357

4

12 6

4 8

37

5

12 6

4

357

8

21 3

8 4

567

move north move west move south move east

initial configuration

goal configuration

(g8T)

(s8T)

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.

Addison-Wesley, 1999, page 160.
137/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

A Backtracking Search Impl. for 8TP (1)

Modeling the board:

type Position = (Int,Int)

type Board = Array Int Position

The initial board (initial configuration):

s8T :: Board

s8T = array (0,8) [(0,(2,2)),(1,(1,2)),(2,(1,1)),

(3,(3,3)),(4,(2,1)),(5,(3,2)),

(6,(1,3)),(7,(3,1)),(8,(2,3))]

The final board (goal configuration):

g8T :: Board

g8T = array (0,8) [(0,(2,2)),(1,(1,1)),(2,(1,2)),

(3,(1,3)),(4,(2,3)),(5,(3,3)),

(6,(3,2)),(7,(3,1)),(8,(2,1))]

138/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

A Backtracking Search Impl. for 8TP (2)

Computing the distance of board fields (Manhattan distance =
horizontal plus vertical distance):

mandist :: Position -> Position -> Int

mandist (x1,y1) (x2,y2) = abs (x1-x2) + abs (y1-y2)

Computing all moves (board fields are adjacent iff their Man-
hattan distance equals 1):

allMoves :: Board -> [Board]

allMoves b = [b//[0,b!i),(i,b!0)]

| i<-[1..8], mandist (b!0) (b!i)==1]

...the list of configurations reachable in one move is obtained
by placing the space at position i and indicating that tile i is
now where the space was.

139/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

A Backtracking Search Impl. for 8TP (3)
Modeling nodes in the search graph:

data Boards = BDS [Board]

...corresponds to the intermediate configurations from the ini-
tial configuration to the current configuration in reverse order.

The successor function:

succ8Tile :: Boards -> [Boards]

succ8Tile (BDS (n@(b:bs)))

= filter (notIn bs) [BDS (b′:n) | b′ <- allMoves b]

where

notIn bs (BDS (b:_))

= not (elem (elems b) (map elems bs))

...computes all successors that have not been encountered
before; the notIn-test ensures that only nodes are considered
that have not been encountered before.

140/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

A Backtracking Search Impl. for 8TP (4)

The goal function:

goal8Tile :: Boards -> Bool

goal8Tile (BDS (n:_)) = elems n == elems g8T

Putting things together:

A depth-first search producing the first sequence of moves (in
reverse order), which lead to the goal configuration:

dfs8Tile :: [[Position]]

dfs8Tile = map elems ls

where ((BDS ls):_)

= search_dfs succ8Tile goal8Tile (BDS [s8T])

141/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3.3

Priority-first Search

142/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Priority-first Search (1)

Given: A problem instance P .

Sought: A solution S of P .

Algorithmic Idea

– Similar to backtracking search, i.e., searching for a partic-
ular solution of the problem by a systematic trial-and-
error exploration of the search space but the candidate
nodes are ordered such that always the most promising
node is first (priority-first search/best-first search).

Note: While plain backtracking search proceeds unguidedly
and can thus be considered blind, priority-first search/best-first
search benefits from (hopefully accurate) information pointing
it towards the ‘most promising’ node.

143/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Priority-first Search (2)

Applicability Requirements

– A set of all possible situations or nodes constituting the
search (node) space; these are the potential solutions that
need to be explored.

– A comparison criterion for comparing and ordering candi-
date nodes wrt their (expected) ‘quality’ to investigate
‘more promising’ nodes before ‘less promising’ nodes.

– A set of legal moves from a node to other nodes, called
the successors of that node.

– An initial node.

– A goal node, i.e., a solution.

144/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Illustrating Different Search Strategies
1

2 6 3

5

4

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.

Addison-Wesley, 1999, page 167.

Nodes above are ordered according to their identifier value
(‘smaller’ means ‘more promising’):

– Depth-first search proceeds using ord.: [1,2,5,4,6,3]

– Breadth-first search proceeds using ord.: [1,2,6,3,5,4]

– Priority-first search can use the most promising ordering,
i.e.: [1,2,3,5,4,6]. 145/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Priority-first Search as HoF (1)

Setting:

A problem with

– problem instances of kind p

– solution instances of kind s

Objective:

A higher-order function (HoF) search pfs solving

– suitably parameterized problem instances of kind p using
the ‘priority-first/best-first’ principle.

146/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Priority-first Search as HoF (2)
Implementation assumptions:

– The search space graph is acyclic and implicitely stored.

– All solutions shall be computed (Note: The HoF can be
adjusted to terminate after finding the first solution.)

The arguments of search pfs:

– node: A type representing node information.

– <=: A comparison criterion for nodes; usually, this is the
relator <= of the type class Ord. Often, the relator <= can
not exactly be defined but only in terms of a plausible
heuristics.

– succ :: node -> [node]: A function yielding the list
of successors of a node (its local environment).

– goal :: node -> Bool: A function checking whether a
node is a solution.

147/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Priority-first Search as HoF (3)
The HoF Implementation:

search_pfs :: (Ord node) => (node -> [node]) ->︷ ︸︸ ︷
Computing successors
(node -> Bool) ->︷ ︸︸ ︷

Solution?
node -> [node]︷ ︸︸ ︷

Initial node
︷ ︸︸ ︷
Solution nodes

search_pfs succ goal n -- n for node

= search (enPQ n emptyPQ)

where

search pq -- pq for priority queue

| is_emptyPQ pq = []

| goal (frontPQ pq) = frontPQ pq : search (dePQ pq)

| otherwise

= let m = frontPQ pq

in search (foldr enPQ (dePQ pq) (succ m))
148/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Interface and Behaviour Specification
...of the abstract data type (ADT) priority queue, named
PQueue (user-visible), cf. Chapter 8.3:

module PQueue (PQueue,emptyPQ,is_emptyPQ,

enPQ,dePQ,frontPQ) where

-- Interface Spec.: Signatures of priority queue

-- operations

emptyPQ :: PQueue a

is_emptyPQ :: PQueue a -> Bool

enPQ :: (Ord a) => a -> PQueue a -> PQueue a

dePQ :: (Ord a) => PQueue a -> PQueue a

frontPQ :: (Ord a) => PQueue a -> a

-- Behaviour Spec.: Laws for priority queue operations

-- cf. Chapter 8.4 for different

-- implementations of priority queues.

149/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Typical Applications of Priority-first Search

Application fields such as

– Game strategies

– ...

Especially

– The eight-tile problem

– ...

150/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Example: A Priority-first Search for 8TP
Comparing nodes heuristically: ...by summing the distance of
each square from its home position to its destination as an
estimate of the number of moves that will be required to
transform the current node into the goal node.

heur :: Board -> Int

heur b = sum [mandist (b!i) (g8T!i) | i<-[0..8]]

instance Eq Boards

where BDS (b1:_) == BDS (b2:_) = heur b1 == heur b2

instance Ord Boards

where BDS (b1:_) <= BDS (b2:_) = heur b1 <= heur b2

pfs8Tile :: [[Position]]

pfs8Tile = map elems ls

where ((BDS ls):_)

= search_pfs succ8Tile goal8Tile (BDS [s8T])

151/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3.4

Greedy Search

152/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Greedy Search (1)
Given: A problem instance P .

Sought: A solution S of P .

Algorithmic Idea

– Similar to priority-first/best-first search but limiting the
search to immediate successors of a node (greedy search/
hill climbing search).

Note: Maintaining the priority queue in priority-first search
may be costly in terms of time and memory. Greedy search
avoids this time and memory penalty by maintaining a much
smaller priority queue considering immediate successors only
(the search commits itself to each step taken during the
search). Hence, only a single path of the search space is ex-
plored instead of its entirety what ensures efficiency. Optima-
lity, however, requires the absence of local minimums.

153/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Greedy Search (2)

Applicability Requirements

– A set of all possible situations or nodes constituting the
search (node) space; these are the potential solutions that
need to be explored.

– A set of legal moves from a node to other nodes, called
the successors of that node.

– An initial node.

– A goal node, i.e., a solution.

– There shall be no local minimums, i.e., no locally best
solutions.

Note: If local minimums exist but are known to be ‘close’
(enough) to the optimal solution, a greedy search might still
be giving a reasonably ‘good,’ not necessarily optimal solu-
tion. Greedy search then becomes a heuristic algorithm.

154/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Illustrating the Greedy Search Principle
...successive stages of a greedy algorithm:

Possible choice

Selected choice

Step 1

Step 2

Step 3

Candidate node

This path constitutes

the "optimal" solution

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.

Addison-Wesley, 1999, page 171.
155/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Greedy Search as HoF (1)

Setting:

A problem with

– problem instances of kind p

– solution instances of kind s

Objective:

A higher-order function (HoF) search greedy solving

– suitably parameterized problem instances of kind p using
the ‘greedy/hill climbing’ principle.

156/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Greedy Search as HoF (2)

Implementation assumptions:

– The search space graph is acyclic and implicitely stored.

– There are no local minimums, i.e., no locally best solu-
tions.

The arguments of search greedy:

– node: A type representing node information.

– <=: A comparison criterion for nodes; usually, this is the
relator <= of the type class Ord.

– succ :: node -> [node]: A function yielding the list
of successors of a node (its local environment).

– goal :: node -> Bool: A function checking whether a
node is a solution.

157/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Greedy Search as HoF (3)
The HoF Implementation:

search_greedy :: (Ord node) => (node -> [node]) ->︷ ︸︸ ︷
Computing successors
(node -> Bool) ->︷ ︸︸ ︷

Solution?
node -> [node]︷ ︸︸ ︷

Initial node
︷ ︸︸ ︷
Solution nodes

search_greedy succ goal n -- n for node

= search (enPQ n emptyPQ)

where

search pq -- pq for priority queue

| is_emptyPQ pq = []

| goal (frontPQ pq) = [frontPQ pq]

| otherwise

= let m = frontPQ pq

in search (foldr enPQ emptyPQ (succ m))
158/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Note

...the essential difference of search greedy compared to
search pfs is the replacement of (dePQ pq) by emptyPQ in
the recursive call to search to remove old candidate nodes
from the priority queue:

search_pfs: ...search (foldr enPQ (dePQ pq) (succ m))

search_greedy: ...search (foldr enPQ emptyPQ (succ m))

Refer to Chapter 8.4 for details on priority queues as abstract
data type (ADT).

159/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Typical Applications of Greedy Search

Application fields such as

– Graph algorithms

– ...

Especially

– Prim’s minimum spanning tree algorithm

– The money change problem (MCP)

– ...

160/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Example: A Greedy Search for MCP (1)
Problem statement: Give money change with the least number
of coins.

Modeling coins:

coins :: [Int]

coins = [1,2,5,10,20,50,100]

Modeling nodes (remaining amount of money and change used
so far, i.e., the coins that have been returned so far):

type NodeChange = (Int,SolChange)

type SolChange = [Int]

Computing successor nodes (by removing every possible coin
from the remaining amount):

succCoins :: NodeChange -> [NodeChange]

succCoins (r,p) = [(r-c,c:p) | c <- coins, r-c >= 0]

161/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Example: A Greedy Search for MCP (2)

The goal function:

goalCoins :: NodeChange -> Bool

goalCoins (v,_) = v == 0

Putting things together:

change :: Int -> SolChange

change amount

= snd (head (search_greedy succCoins goalCoins

(amount,[])))

Example: change 199 ->> [2,2,5,20,20,50,100]

Note: For coins = [1,3,6,12,24,30] the above algorithm
can yield suboptimal solutions: E.g., change 48 ->> [30,

12,6] instead of the optimal solution [24,24].
162/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3.5

Dynamic Programming

163/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Dynamic Programming

Given: A problem instance P .

Sought: A solution S of P .

Algorithmic Idea

– Solve (the) smaller instances of the problem first

– Save the solutions of these smaller problem instances

– Use these results to solve larger problem instances

Note: Top-down algorithms as in the previous chapters might
suffer from generating a large number of identical subpro-
blems. This replication of work can severely impair perfor-
mance. Dynamic programming aims at overcoming this short-
coming by systematically precomputing and reusing results in a
bottom-up fashion, i.e., from smaller to larger problem instan-
ces.

164/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Illustrating Dynamic Programming for fib
...the dynamic programming computation of the Fibonacci
numbers (no recomputation of solutions of subproblems!):

fib 4

fib 3

fib 2

fib 1

fib 0

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.

Addison-Wesley, 1999, page 179.
165/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Illustrating Divide-and-Conquer for fib

...the divide-and-conquer computation of the Fibonacci num-
bers (numerous recomputations of solutions of subproblems!):

fib 4

fib 1 fib 0

fib 2

fib 3

fib 1 fib 1

fib 2

fib 0

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.

Addison-Wesley, 1999, page 179.
166/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Dynamic Programming as HoF (1)

Setting:

A problem with

– problem instances of kind p

– solution instances of kind s

Objective:

A higher-order function (HoF) dynamic solving

– suitably parameterized problem instances of kind p using
the ‘dynamic programming’ principle.

167/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Dynamic Programming as HoF (2)

The arguments of dynamic:

– compute :: (Ix coord) => Table entry coord ->

coord -> entry: Given a table and an index, compute
computes the corresponding entry in the table (possibly
using other entries in the table).

– bnds :: (Ix coord) => (coord,coord): The argu-
ment bnds specifies the boundaries of the table. Since
the type of the index is in the class Ix, all indices in the
table can be generated from these boundaries using the
function range.

168/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementing Dynamic Programming as HoF (3)

The HoF Implementation:

dynamic :: (Ix coord) =>

(Table entry coord -> coord -> entry) ->︷ ︸︸ ︷
Computing the table entry at some coordinates
(coord,coord) -> (Table entry coord)︷ ︸︸ ︷

Specifying table bounds
︷ ︸︸ ︷

Result table

dynamic compute bnds = t

where

t = newTable (map (\coord -> (coord,compute t coord))

(range bnds))

169/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Interface/Behaviour Specification

...of the abstract data type (ADT) table, named Table (user-
visible), cf. Chapter 8.5.2:

module Tab (Table′,new_T′,find_T′,upd_T′) where

-- Interface Spec.: Signatures of table operations

new_T′ :: (Ix b) => [(b,a)] -> Table′ a b

find_T′ :: (Ix b) => Table′ a b -> b -> a

upd_T′ :: (Ix b) => (b,a) -> Table′ a b -> Table′ a b

-- Behaviour Spec.: Laws for table operations

...

170/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Implementation
...of the ADT table as a new type using array (user-invisible):

newtype Table′ a b = Tbl′ (Array b a)

new_T′ assoc_list = Tbl′ (array (low,high) assoc_list)

where indices = map fst assoc_list

low = minimum indices

high = maximum indices

find (Tbl′ a) index = a ! index

upd_T′ p@(index,value) (Tbl′ a) = Tbl′ (a // [p])

Note:

– new T′ takes an association list of index/value pairs and re-
turns the corresponding table; the boundaries of the new
table are determined by computing the maximum and the
minimum key in the argument association list.

– find T′ and upd T′ allow to retrieve and update values in the
table. find T′ returns a system error, not a user error, when
applied to an invalid key. 171/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Typical Applications of Dynamic Programming

Application fields such as

– Graph algorithms

– Search algorithms

– ...

Especially

– Shortest paths for all pairs of nodes of a graph

– Fibonacci numbers

– Chained matrix multiplication

– Optimal binary search (in trees)

– The travelling salesman problem

– ...

172/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Example: Computing Fibonacci Numbers

Defining the problem-dependent parameters:

bndsFibs :: Int -> (Int,Int)

bndsFibs n = (0,n)

compFib :: Table Int Int -> Int -> Int

compFib t i

| i <= 1 = i

| otherwise = find t (i-1) + find t (i-2)

Putting things together:

fib :: Int -> Int

fib n = find t n

where t = dynamic compFib (bndsFib n)

173/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3.6

Dynamic Programming vs. Memoization

174/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Dynamic Programming vs. Memoization

Overall

I Dynamic programming and memoization enjoy very much
the same characterics and offer the programmer quite
similar benefits.

I In practice, differences in behaviour are minor and strong-
ly problem-dependent.

I In general, both techniques are similarly powerful.

Conceptual difference

I Memoization opportunistically computes and stores argu-
ment/result pairs on a by-need basis (‘lazy’ approach).

I Dynamic programming systematically precomputes and
stores argument/result pairs before they are needed
(‘eager’ approach).

175/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Minor Benefits of Dynamic Programming

I Memory efficiency: For some problems the dynamic pro-
gramming solution can be adjusted to use asymptotically
less memory: Limited history recurrence, i.e., only a limi-
ted number of preceding values need to be remembered
(e.g., two for the computation of Fibonacci numbers)
which allows to reuse memory during computation.

I Run-time performance: The systematic programmer-con-
trolled filling of the argument/result pairs table allows
sometimes slightly more efficient (by a constant factor)
implementations.

176/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Minor Benefits of Memoization

I Freedom of conceptual overhead: The programmer does
not need to think about in what order argument/result
pairs need to be computed and how to be stored in the
memo table. In dynamic programming all table entries are
computed systematically when needed.

I Freedom of computational overhead: Only argument/re-
sult pairs are computed and stored when needed. In dyna-
mic programming they are systematically precomputed
when and before they are needed.

177/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3.7

References, Further Reading

178/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3.1–3.4: Basic Reading

Divide and Conquer, Greedy Algorithms, Memoziation in Haskell

Richard Bird, Philip Wadler. An Introduction to Functional
Programming. Prentice Hall, 1988. (Chapter 6.4, Divide
and Conquer; Chapter 6.5, Search and Enumeration)

Fethi Rabhi, Guy Lapalme. Algorithms – A Functional
Programming Approach. Addison-Wesley, 1999. (Chapter
5, Abstract data types; Chapter 8, Top-down design
techniques)

Simon Thompson. Haskell – The Craft of Functional Pro-
gramming. Addison-Wesley/Pearson, 2nd edition, 1999.
(Chapter 19.6, Avoiding recomputation: memoization –
Greedy algorithms)

179/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3.1–3.4: Selected Further Reading (1)

Divide and Conquer beyond Haskell

Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman. The
Design and Analysis of Computer Algorithms. Addison-
Wesley, 1974. (Chapter 2.6, Divide-and-conquer)

Jon Kleinberg, Éva Tardos. Algorithm Design. Addison-
Wesley/Pearson, 2006. (Chapter 5, Divide and Conquer)

Robert Sedgewick. Algorithmen. Addison-Wesley/Pearson,
2. Auflage, 2002. (Kapitel 5, Rekursion - Teile und Herr-
sche)

Steven S. Skiena. The Algorithm Design Manual. Sprin-
ger-V, 1998. (Chapter 3.6, Divide and Conquer)

180/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3.1–3.4: Selected Further Reading (2)

Backtracking beyond Haskell

James R. Bitner, Edward M. Reingold. Backtrack Pro-
gramming Techniques. Communications of the ACM
18(11):651-656, 1975.

Gunter Saake, Kai-Uwe Sattler. Algorithmen und Daten-
strukturen – Eine Einführung mit Java. dpunkt.verlag,
4. überarbeitete Auflage, 2010. (Kapitel 8.4, Rekursion:
Backtracking)

Robert Sedgewick. Algorithmen. Addison-Wesley/Pearson,
2. Auflage, 2002. (Kapitel 44, Erschöpfendes Durchsuchen
- Backtracking)

181/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3.1–3.4: Selected Further Reading (3)

Greedy Algorithms beyond Haskell

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Ri-
vest, Clifford Stein. Introduction to Algorithms. MIT
Press, 2nd edition, 2001. (Chapter 16, Greedy Algorithms)

Jon Kleinberg, Éva Tardos. Algorithm Design. Addison-
Wesley/Pearson, 2006. (Chapter 4, Greedy Algorithms;
Chapter 5, Divide and Conquer)

Gunter Saake, Kai-Uwe Sattler. Algorithmen und Daten-
strukturen – Eine Einführung mit Java. dpunkt.verlag,
4. überarbeitete Auflage, 2010. (Kapitel 8.2, Algorithmen-
muster: Greedy)

182/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3.5–3.6: Basic Reading

Dynamic Programming, Memoization in Haskell

Fethi Rabhi, Guy Lapalme. Algorithms – A Functional
Programming Approach. Addison-Wesley, 1999. (Chapter
5, Abstract data types; Chapter 9, Dynamic programming)

Simon Thompson. Haskell – The Craft of Functional Pro-
gramming. Addison-Wesley/Pearson, 2nd edition, 1999.
(Chapter 19.6, Avoiding recomputation: memoization –
dynamic programming)

Simon Thompson. Haskell – The Craft of Functional Pro-
gramming. Addison-Wesley/Pearson, 3rd edition, 2011.
(Chapter 20.6, Avoiding recomputation: memoization –
dynamic programming)

183/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3.5–3.6: Selected Further Reading (1)

Dynamic Programming, Memoization beyond Haskell

Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman. The
Design and Analysis of Computer Algorithms. Addison-
Wesley, 1974. (Chapter 2.8, Dynamic programming)

Richard E. Bellman. Dynamic Programming. Princeton
University Press, 1957.

Richard E. Bellman, Stuart E. Dreyfus. Applied Dynamic
Programming. Princeton University Press, 1957.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Ri-
vest, Clifford Stein. Introduction to Algorithms. MIT Press,
2nd edition, 2001. (Chapter 15, Dynamic Programming)

184/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3.5–3.6: Selected Further Reading (2)

Max Hailperin, Barbara Kaiser, Karl Knight. Concrete
Abstractions – An Introduction to Computer Science using
Scheme. Brooks/Cole Publishing Company, 1999.
(Chapter 12, Dynamic Programming; Chapter 12.5,
Comparing Memoization and Dynamic Programming)

Jon Kleinberg, Éva Tardos. Algorithm Design. Addison-
Wesley/Pearson, 2006. (Chapter 6, Dynamic Program-
ming)

Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung. Springer-V., 2006. (Kapitel 16.3.2, Ein allgemeines
Schema für die globale Suche)

185/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Final
Note

Chapter 3.5–3.6: Selected Further Reading (3)

Gunter Saake, Kai-Uwe Sattler. Algorithmen und Datens-
trukturen – Eine Einführung mit Java. dpunkt.verlag,
4. überarbeitete Auflage, 2010. (Kapitel 8.5, Dynamische
Programmierung)

Robert Sedgewick. Algorithmen. Addison-Wesley/Pearson,
2. Auflage, 2002. (Kapitel 42, Dynamische Programmie-
rung)

Steven S. Skiena. The Algorithm Design Manual. Sprin-
ger-V., 1998. (Chapter 3.1, Dynamic Programming; Chap-
ter 3.2, Limitations of Dynamic Programming)

186/187

Lecture 2

Detailed
Outline

Chap. 7

Towards
ADTs

Chap. 8

Chap. 3

Final
Note

Final Note

...for additional information and details refer to

I full course notes

available at the homepage of the course at:

http:://www.complang.tuwien.ac.at/knoop/

ffp185A05 ss2020.html

187/187

	Lecture 2
	Detailed Outline
	7 Functional Arrays
	7.1 Motivation
	7.2 Functional Arrays
	7.3 Summary
	7.4 References, Further Reading

	Towards ADTs
	8 Abstract Data Types
	8.1 Motivation
	8.2 Stacks
	8.3 Queues
	8.4 Priority Queues
	8.5 Tables
	8.6 Displaying ADT Values in Haskell
	8.7 Summary
	8.8 References, Further Reading

	3 Programming with Higher-Order Functions: Algorithmic Patterns
	3.1 Divide-and-Conquer
	3.2 Backtracking Search
	3.3 Priority-first Search
	3.4 Greedy Search
	3.5 Dynamic Programming
	3.6 Dynamic Programming vs. Memoization
	3.7 References, Further Reading

	Final Note

