
Advanced Functional Programming: Assignment 8 (Mon, 06/10/2019)

Topic: Automatic Program Testing with QuickCheck

Submission deadline: Wed, 06/19/2019 (3pm)

Regarding the deadline for the second submission: Please, refer to
”
Hinweise zu Or-

ganisation und Ablauf der Übung“ available at the homepage of the course.

Store all functions to be written for this assignment in a top-level file assignment8.hs
of your group directory. Comment your program meaningfully; use auxiliary functi-
ons and constants, where reasonable.

1. Consider the standard implementation fib of the Fibonacci function, its signi-
ficantly more efficient stream based implementation fibfast, and the faulty
implementation fibfaulty:

fib :: Int -> Int

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

fibstream :: [Int]

fibstream = 0 : 1 : zipWith (+) fibstream (tail fibstream)

fibfast :: Int -> Int

fibfast n = fibstream!!n

fibfaulty :: Int -> Int

fibfaulty n

| n == 0 = 0

| n == 1 = 1

| n <= 10 = fibfaulty (n-1) + fibfaulty (n-2)

| True = fibfaulty (n-1) + fibfaulty (n-3)

1.1 Define properties for testing, if fibfast and fibfaulty can be considered
faithful implementation variants of the standard implementation fib of the
Fibonacci function. Properties with postfix

• -A shall do this in the most straightforward way offered by QuickCheck,
i.e., every integer generated by QuickCheck shall be used as a test input.

• -B shall consider only non-negative integers as test inputs using a pre-
condition for filtering test case candidates generated by QuickCheck
appropriately.

• -C shall use a generator making sure that only non-negative integers
are generated as test inputs by QuickCheck.

prop_fib_fibfast_A :: Int -> Bool

prop_fib_fibfast_A n = ...



prop_fib_fibfast_B :: Int -> Property

prop_fib_fibfast_B n = ...

prop_fib_fibfast_C :: Int -> Property

prop_fib_fibfast_C n = ...

prop_fib_fibfaulty_A :: Int -> Bool

prop_fib_fibfaulty_A n = ...

prop_fib_fibfaulty_B :: Int -> Property

prop_fib_fibfaulty_B n = ...

prop_fib_fibfaulty_C :: Int -> Property

prop_fib_fibfaulty_C n = ...

1.2 The implementation of fib has exponential time complexity. For large(r)
test cases the property checks thus take an unduly amount of time. To cope
with this, define two new properties prop fib fibfast B2 and
prop fib fibfast C2. The implementations of these properties shall ensu-
re that only non-negative values smaller or equal 20 are used as test inputs.
Refining the implementations of prop fib fibfast B and
prop fib fibfast C, respectively, the implementations of
prop fib fibfast B2 and prop fib fibfast C2 shall achieve this using
a more sophisticated precondition for test case filtering and a more sophi-
sticaed generator, respectively.

prop_fib_fibfast_B2 :: Int -> Property

prop_fib_fibfast_B2 n = ...

prop_fib_fibfast_C2 :: Int -> Property

prop_fib_fibfast_C2 n = ...

1.5 Using the QuickCheck combinators trivial, classify, and collect, re-
spectively, extend the implementations of prop fib fibfast B2 and
prop fib fibfast C2 to get more detailed and informative reports. Using

• trivial, prop fib fibfast B2 trivial and prop fib fibfast C2 trivial

shall report the percentage of trivial test inputs. As trivial we consider
the test inputs 0 and 1. A possible report could thus be:

OK, passed 100 tests (37% trivial).

• classify, prop fib fibfast B2 classify and prop fib fibfast C2 classify

shall report the percentages of test inputs in the ranges 0 ≤ test input ≤
1, 2 ≤ test input ≤ 10, and 11 ≤ test input . A possible report could
thus be:

OK, passed 100 tests.

42% of test inputs in the range [0..1].

37% of test inputs in the range [2..10].

21% of test inputs in the range [11..].

• collect, prop fib fibfast B2 collect and prop fib fibfast C2 collect

shall report the percentages of all test inputs, i.e., the histogram of test
inputs. An excerpt of a possible report could thus be:



OK, passed 100 tests.

24% 0.

15% 1.

12% 3.

16% 4.

...

11% 20.

2. Integer stacks can be implemented in terms of lists:

type Stack = [Int]

empty = []

is_empty [] = True

is_empty _ = False

push x xs = (x:xs)

pop [] = error "Stack is empty"

pop (_:xs) = xs

top [] = error "Stack is empty"

top (x:_) = x

The above implementation is a correct implementation of integer stacks iff the
operations satisfy the laws (a),...,(f):

(a) is_empty empty == True

(b) is_empty (push v s) == False

(c) top empty == undefined

(d) top (push v s) == v

(e) pop empty == undefined

(f) pop (push v s) == s

Obviously, the implementations of top and pop satisfy law (c) and (e), respec-
tively. Implement properties prop a, prop b, prop d, and prop f allowing to
test that the operations in charge also obey the laws (a), (b), (d), and (f):

prop_a :: Bool

prop_a = ...

prop_b :: Int -> Stack -> Property

prop_b n ns = ...

prop_d :: Int -> Stack -> Property

prop_d n ns = ...

prop_f :: Int -> Stack -> Property

prop_f n ns = ...

Self-defined generators for integer or stack values are not required but differently
detailed reports. Property prop a shall just deliver the default report, whereas
reports generated by



• prop b shall indicate the percentage of trivial test inputs. A test input is
considered trivial, if it involves the empty stack or a singleton stack. A
report could thus be:

OK, passed 100 tests (24% trivial).

• prop d shall indicate the percentages of test inputs involving the empty
stack, singleton stacks, stacks of size 2, and stacks with more than two
entries. A report could thus be:

OK, passed 100 tests.

37% of test inputs: the empty stack.

28% of test inputs: a singleton stack.

12% of test inputs: a stack of size 2.

23% of test inputs: a large stack.

• prop f shall yield a histogram of the sizes of the stacks involved in the test
inputs. A report could thus be:

OK, passed 100 tests.

34% 0.

25% 1.

18% 2.

12% 4.

11% 6.

3. Consider the following two implementations of stacks with totally defined pop
and top operations. Note that the second component of a Stack2 value exposes
the top element of the stack, if there is one.

newtype Stack1 a = Stk1 (Maybe [a]) deriving (Eq,Show)

is_valid1 (Stk1 (Just _)) = True

is_valid1 (Stk1 Nothing) = False

empty1 = Stk1 (Just [])

is_empty1 (Stk1 (Just [])) = True

is_empty1 _ = False

push1 x (Stk1 (Just xs)) = Stk1 (Just (x:xs))

pust1 x (Stk1 Nothing) = Stk1 (Just [x])

pop1 (Stk1 (Just [])) = Stk1 Nothing

pop1 (Stk1 (Just (_:xs))) = Stk1 (Just xs)

pop1 (Stk1 Nothing) = Stk1 Nothing

top1 :: (Eq a,Show a) => Stack1 a -> Maybe a

top1 (Stk1 (Just [])) = Nothing

top1 (Stk1 (Just (x:_))) = Just x

top1 (Stk1 Nothing) = Nothing

newtype Stack2 a = Stk2 ([a],Maybe a) deriving (Eq,Show)

is_valid2 (Stk2 ([],Nothing)) = True

is_valid2 (Stk2 (_,Nothing)) = False



is_valid2 (Stk2 ([],Just x)) = False

is_valid2 (Stk2 (xs,Just x))

| head xs == x = True

| True = False

empty2 = Stk2 ([],Nothing)

is_empty2 (Stk2 ([],Nothing)) = True

is_empty2 _ = False

push2 x (Stk2 (xs,_) = Stk2 (x:xs,Just x)

pop2 (Stk2 ([],_)) = Stk2 ([],Nothing)

pop2 (Stk2 ([x:[],_)) = Stk2 ([],Nothing)

pop2 (Stk2 ([x:xs,_)) = Stk2 (xs,Just (head xs))

top2 :: (Eq a,Show a) => Stack2 a -> Maybe a

top2 (Stk2 (_,x)) = x

3.1 The above two stack implementations are correct iff their operations sa-
tisfy the laws (a),...,(f) with ‘undefined’ replaced by Nothing. Implement
properties allowing to check this for some of the laws. To this end, ma-
ke Stack1 and Stack2 instances of the required type (constructor) classes
of QuickCheck, and implement generators for (Stack1 Int) and (Stack2

Int) values.

prop_stk1_b :: Int -> Stack1 Int -> Property

prop_stk1_b n stk1 = ... -- checks law b

prop_stk1_d :: Int -> Stack1 Int -> Property

prop_stk1_d n stk1 = ... -- checks law d

prop_stk1_f :: Int -> Stack1 Int -> Property

prop_stk1_f n stk1 = ... -- checks law f

prop_stk2_b :: Int -> Stack2 Int -> Property

prop_stk2_b n stk2 = ... -- checks law b

prop_stk2_d :: Int -> Stack2 Int -> Property

prop_stk2_d n stk1 = ... -- checks law d

prop_stk2_f :: Int -> Stack2 Int -> Property

prop_stk2_f n stk1 = ... -- checks law f

3.2 The functions retrieve1 and retrieve2 link Stack1 and Stack2 values:

retrieve1 :: (Stack1 a) -> (Stack2 a)

retrieve1 (Stk1 Nothing) = Stk2 ([],Nothing)

retrieve1 (Stk1 Just []) = Stk2 ([],Nothing)

retrieve1 (Stk1 (Just xs)) = Stk2 (xs,Just (head xs))

retrieve2 :: (Stack2 a) -> (Stack1 a)

retrieve2 (Stk2 ([],Nothing) = Stk1 (Just [])

retrieve2 (Stk2 ([],_) = Stk1 Nothing

retrieve2 (Stk2 (xs,Just x))

| head xs == x = Stk1 (Just xs)

| True = Stk1 Nothing



retrieve2 (Stk2 (xs,Nothing)) = Stk1 Nothing

Implement properties allowing to check that both implementations can
mutually be considered implementation variants of each other. To this end
implement properties for tessting this partially, again for Int stacks. Re-
using the generators of Exercise 3.1, complete the below property definiti-
ons where necessary, and add type signatures for them:

prop_isvalid1 stk1 = forall <insert generator> $

is_valid1 stk1 == is_valid2 (retrieve1 stk1)

prop_empty1 = retrieve1 empty1 == empty2

prop_push1 n stk1 = forall <insert generator> $

retrieve1 (push1 n stk1) == push2 n (retrieve1 stk1)

prop_pop1 stk1 = forall <insert generator> $

retrieve1 (pop1 stk1) == pop2 (retrieve1 stk1)

prop_top1 stk1 = forall <insert generator> $

top1 stk1 == top2 (retrieve1 stk1)

prop_isvalid_pop1 stk1 = forall <insert generator> $

is_valid2 (retrieve1 (pop1 stk1)) ==

is_valid2 (pop2 (retrieve1 stk1))

prop_isvalid2 stk2 = forall <insert generator> $

is_valid2 stk2 == is_valid1 (retrieve2 stk2)

prop_empty2 = retrieve2 empty2 == empty1

prop_push2 n stk2 = forall <insert generator> $

retrieve2 (push2 n stk2) == push1 n (retrieve2 stk2)

prop_pop2 stk2 = forall <insert generator> $

retrieve2 (pop2 stk2) == pop1 (retrieve2 stk2)

prop_top2 stk2 = forall <insert generator> $

top2 stk2 == top1 (retrieve2 stk2)

prop_isvalid_pop2 stk2 = forall <insert generator> $

is_valid1 (retrieve2 (pop2 stk2)) ==

is_valid1 (pop1 (retrieve2 stk2))

3.3 Without submission: Are there properties of Exercise 3.1 and 3.2 which
can be falsified? If so, what are the reasons for this? Faulty/sloppy im-
plementations of stack operations? Faulty/sloppy implementations of the
retrieve functions? Faulty/sloppy generator implementations, which can
generate non-wellformed stack values? Other reasons? Can possible faults
be fixed such that all properties can successfully be checked?

3.4 Without submission: Develop variants of the property definitions of Ex-
cercise 3.2 which provide more detailed information on the kind of stack
values used as test inputs.



Important: Do not use self-defined modules! If you want to re-use functions (writ-
ten for earlier assignments), copy these functions to the new submission file. An
import declaration for self-defined modules will fail, since only the submission file
assignmenti.hs , where i, 1 ≤ i ≤ 8 (tentatively), denotes the running number of
the assignment, willl be copied for the (semi-automatic) evaluation. No other file in
addition to assignmenti.hs will be copied.


