Advanced Functional Programming: Assignment 6 (Wed, 05/29/2019)

Topic: Monadic vs. Non-Monadic Programming
Submission deadline: Wed, 06/05/2019 (3pm)

Regarding the deadline for the second submission: Please, refer to ,Hinweise zu
Organisation und Ablauf der Ubung® available at the homepage of the course.

Store all functions to be written for this assignment in a top-level file assignment6.hs
of your group directory. Comment your program meaningfully; use auxiliary func-
tions and constants, where reasonable.

1. Numbering leafs: We consider the problem of leaf numbering of Chapter 11.5.2:

PN N

label

VANWAS -V ANVAN

however, with respect to the tree type Treel a:

data Treel a = Leave a | Node [Treel a] deriving Show

1.1

1.2

1.3

Monadic programming: Following the model of the monadic implementa-
tion of function label :: Tree a -> Tree Int of Chapter 11.5.2, imple-
ment a function:

labell :: Treel a -> Treel Int

solving the same problem as function label, however, for trees of type
Treel a instead of Tree a. Like label, also labell shall number leafs
from ‘left to right,” and rely on monadic programming.

Non-monadic programming: Implement a function label2 :: Treel a ->
Treel Int which is functionally equivalent to labell but does not make
use of monadic programming.

Without submission: Comparing your implementations of labell and
label2, do you consider one of them easier to obtain or more comprehen-
sible? What is the reasoning underlying your assessment?

2. Renaming node labels: We consider the problem of node label renaming of
Chapter 11.5.3, however, rename the tree type of Chapter 11.5.3 as follows:

data Tree2 a = Nil | Node a (Tree a) (Tree a) deriving Show

Note that function number of Chapter 11.5.3 replaces a node label by the smal-
lest free number, i.e., not yet used number when the label is first reached in
the course of a prefix traversal of the tree as illustrated in the below figure:



"Mozart"

0
/ \
""Schubert" "Bach" 1 4
N number (ChapA1145A3)/ \ VAR
"Beethoven" e) \/\ o)
N numberl / \ N

""Haydn'" '"Bach" ""Beethoven"

<N/ N\ /NN /\/\ / A\ /2\

"Schubert" "Salieri" "Mozart"O O "Haydn" 00 0 O 0

AN P ANIAN N\

O  "Beethoven'"'"Bach'O O '"'Haydn" O O O 4 O 3 o O
ZERNA /\ / \ /\ /\
o O o O

(@] OO O o O (@] O

O

2.1 Non-monadic programming: Implement a function

numberl :: Eq a => Tree2 a -> Tree2 Int

that is functionally equivalent to function number :: Eq a => Tree a
-> Tree Int of Chapter 11.5.3 but does not make use of monadic pro-
gramming.

Next, we consider a variant of the node label renaming problem of Chapter
11.5.3. In this variant, node labels shall be replaced by the smallest number
not yet used when a label is first reached in the course of an infix (instead of a
prefix) traversal of the tree as illustrated in the figure below:

"Mozart" 5
/ \
""Schubert"  "Bach" 3
i N number2 / \ VAR
""Beethoven" O e} O
PN N \n@ / \ N
"Haydn" "Bach" ""Beethoven' 1
N/ N\ /NN / \ / \ /N /N
"Schul)crl”o e} "Salieri" "Mozart"O O "Haydn" 0O 0 5 o O 2
/N /N [\ / \ / AZRN [\
O  '"Beethoven'""Bach'O O '"Haydn" O O @] 1 3 OO0 2 o O
RN /N /N /N /\
@] O O O o O @] O O O O O

2.2 Monadic programming: Adapt the monadic implementation of function
number :: Eq a => Tree a -> Tree Int of Chapter 11.5.3 to a function

number?2 :: Eq a => Tree2 a -> Tree2 Int

solving the modified renaming task using monadic programming.

2.3 Non-monadic programming: Adapt the implementation of function number1
:: Eq a => Tree2 a -> Tree2 Int to a function

number3 :: Eq a => Tree2 a -> Tree2 Int

that is functionally equivalent to number2 but does not make use of mona-
dic programming.

2.4 Without submission: If you compare the conceptual and implementa-
tional effort of adapting the implementation of number to number2 and of
numberl to number3, do you consider them roughly the same? Are there
differences making one of them easier to adapt? If so, why?



Important: Do not use self-defined modules! If you want to re-use functions (writ-
ten for earlier assignments), copy these functions to the new submission file. An
import declaration for self-defined modules will fail, since only the submission file
assignmenti.hs , where i, 1 < i < 8 (fentatively), denotes the running number of
the assignment, willl be copied for the (semi-automatic) evaluation. No other file in
addition to assignment:.hs will be copied.



