
Advanced Functional Programming: Assignment 4 (Wed, 05/15/2019)

Topic: Algorithm Patterns: Backtracking and Priority-first Search

Submission deadline: Wed, 05/22/2019 (3pm)

Regarding the deadline for the second submission: Please, refer to
”
Hinweise zu Or-

ganisation und Ablauf der Übung“ available at the homepage of the course.

Store all functions to be written for this assignment in a top-level file assignment4.hs
of your group directory. Comment your program meaningfully; use auxiliary functi-
ons and constants, where reasonable.

We reconsider the dartboard problem of Assignment 3 but this time, want to solve
it using the algorithm patterns for backtracking and priority-first search instead of
generators, selectors, filters, and transformers.

Problem recalled: We throw at a dartboard with k differently numbered segments.
There are no double or triple (value) segments, and there is no bullseye in the
centre. Throwing n darts, every segment can be hit multiple times. Always true:
Every throw hits, no throw fails (the dartboard)!

type Nat1 = Int -- Natural numbers starting from 1

type Numbers = Nat1 -- Values of dartboard segments

type Dartboard = [Numbers] -- Dartboard characterized by a list

of purely ascending values

type Turn = [Numbers] -- Reached scores of a turn (Wurffolge); only

-- scores occurring on the dartboard are possible,

-- also more than once.

type Turns = [Turn] -- Stream of turns

type TargetScore = Nat1 -- Desired overall score > 0

type Throws = Nat1 -- Number of darts of a turn > 0

Questions of interest: Is it possible to reach with some number of darts a score of
exactly m? Is it possible to reach with exactly n darts a score of exactly m? How
many darts are at the minimum required to reach exactly a score of m?

1. In order to answer these questions, implement 3 Haskell functions:

bt_dart_ts :: Dartboard -> TargetScore -> Turns

bt_dart_tst :: Dartboard -> TargetScore -> Throws -> Turns

bt_dart_tsml :: Dartboard -> TargetScore -> Turns

whose meaning coincides with those of their counterparts dart ts, dart tst,
and dart tsml of Assignment 3, whose implementations, howerver, make use
of the higher order function for backtracking search:

searchDfs :: (Eq node) => (node -> [node]) -> (node -> Bool)

-> node -> [node]



its argument functions:

succ :: node -> [node]

goal :: node -> Bool

and possibly two further functions sort :: Turn -> Turn and sort lex ::

Turns -> Turns for sorting a turn descendingly and a sequence of turns lexi-
cographically ascendingly, respectively.

To this end, define a data type:

data Node = ...

which carries enough information such that it can also be used for the following
exercises, make it an instance of type class Eq, and implement three pairs of
functions over it:

succ_ts :: Node -> [Node]

goal_ts :: Node -> Bool

succ_tst :: Node -> [Node]

goal_tst :: Node -> Bool

succ_tsml :: Node -> [Node]

goal_tsml :: Node -> Bool

such that bt dart ts, bt dart tst, and bt dart tsml get there intended mea-
ning, when calling searchDfs together with one of these function pairs and the
sorting functions for sorting a turn and a sequence of turns, i.e.:

• dart ts yields the (finite number of) turns reaching the target score.

• dart tst yields the (finite number of) turns reaching the target score with
the given number of darts.

• dart tsml yields the (finite number of) turns reaching the target score
with the smallest number of darts.

As in Assignment 3, each turn of a result list delivered by the functions dart ts,
dart tst, and dart tsml shall be ordered descendingly, the turns themselves
lexicographically ascending. Depending on the choice of the arguments, the
result of each of the functions may be the empty list, if there are no turns
matching the requirements.

Examples:

db = [6,7,16,17,26,27,36,37,46,47]

bt_dart_ts db 23 ->> sort_lex [[7,16],[6,17]] ->> [[6,17],[7,16]]

bt_dart_tst db 55 4 ->> sort_lex [[7,16,16,16],[6,16,16,17],[6,6,7,36],[6,6,6,37],...]

bt_dart_tsml db 100 ->> sort_lex [[6,47,47],[7,46,47],[16,37,47],[17,36,47],[17,37,46],...]

bt_dart_ts db 15 ->> []



2. The higher-order function searchPfs for priority-first search of Chapter 3.3 is
designed to search for all solutions within a search space.

Modifying the implementation of searchPfs, write a new higher-order function

searchPfsFst :: (Ord node) => (node -> [node]) -> (node -> Bool)

-> node -> [node]

which terminates the priority-first search once the first solution has been found.
Since there may be no solutions at all in the search space, we keep the result
type [node] of searchPfs for searchPfsFst, which allows us to indicate the
result of a failed search by yielding the empty list as result.

3. Using searchPfsFst, implement two Haskell functions:

psf_low :: Dartboard -> Targetscore -> Turns

psf_high :: Dartboard -> Targetscore -> Turns

with the following meaning. Function psf low yields the turn with the lowest-
valued throws yielding the desired overall score, psf high yields vice versa the
turn with the highest-valued throws with this property. I.e., starting from the
lowest-valued dartboard segment, the lowest-valued turn contains each value
so many times such that taking this value again would prevent reaching the
desired overall score. Vice versa, starting from the highest-valued dartboard
segment, the highest-valued turn contains each value so many times such that
taking this value again would prevent reaching the desired overall score. In any
case the turns of the result lists of both functions shall be ordered ascendingly.

To this end, make your data type Node an instance of the type class Ord and
implement two pairs of argument functions:

succ_low :: Node -> [Node]

goal_high :: Node -> Bool

succ_low :: Node -> [Node]

goal_high :: Node -> Bool

for the call of searchPfsFst in psf low and psf high. Is it possible to im-
plement psf low or psf high without referring to sort and to possibly suc-
ceed with a shared function goal for resp. instead of two dedicated functions
goal low and goal high? If so, you can implement one of the two functions in
terms of the other one.

Example:

db = [6,7,16,17,26,27,36,37,46,47]

psf_low db 55 ->> [[6,6,6,6,6,6,6,6,7]]

psf_high db 55 ->> [[6,6,6,37]]



Important: Do not use self-defined modules! If you want to re-use functions (writ-
ten for earlier assignments), copy these functions to the new submission file. An
import declaration for self-defined modules will fail, since only the submission file
assignmenti.hs , where i, 1 ≤ i ≤ 8 (tentatively), denotes the running number of
the assignment, willl be copied for the (semi-automatic) evaluation. No other file in
addition to assignmenti.hs will be copied.


