
Advanced Functional Programming: Assignment 3 (Wed, 04/12/2019)

Topics: Functional Pearls, Functional Arrays, and Streams

Submission deadline: Wed, 05/15/2019 (3pm) (> four weeks!)

Regarding the deadline for the second submission: Please, refer to
”
Hinweise zu Or-

ganisation und Ablauf der Übung“ available at the homepage of the course.

Store all functions to be written for this assignment in a top-level file assignment3.hs
of your group directory. Comment your program meaningfully; use auxiliary functi-
ons and constants, where reasonable.

Functional Pearls: Solving Sudoku Puzzles

1. Implement the simple Sudoku solver solve (cf. slide 327) of Chapter 4.5 and
its two improved/optimized versions called solve, too (cf. slides 345 and 353,
resp.). In order to avoid name clashes replace the name solve by the unique
identifiers solve, solve opt1, and solve opt2:

solve = filter valid . expand . choices (cf. slide 327)

solve_opt1 = filter valid . expand . prune . choices (cf. slide 345)

solve_opt2 = search . choices (cf. slide 353)

Use the same naming convention (i.e., adding the postfix opt1 resp. opt2)
for renaming auxiliary functions of solve opt1 and solve opt2 should their
implementation differ for solve, solve opt1, and solve opt2.

2. The Sudoku solver of Chapter 4.5 models grids representing Sudoku puzzles as
lists of rows, i.e., lists of lists:

type Matrix a = [Row a]

type Row a = [a]

type Grid = Matrix Digit

type Digit = Char

In this exercise, we want to use (static) functional arrays instead of lists of lists
to model grids and hence Sudoku puzzles:

import Array

data Index = One | Two | Three | Four | Five | Six | Seven | Eight | Nine

deriving (Eq,Ord,Enum,Show)

instance Ix Index where...

type Arr_Matrix a = Array Index Arr_Row a

type Arr_Row a = Array Index a

type Arr_Grid = Arr_Matrix Digit

type Digit = Char

Complete the instance-declaration for type Index and (re-) implement the
three Sudoku solvers of excersise 1 using the array representation of grids in-
stead of the lists of lists representation of exercise 1 (i.e., except of this type
change the algorithmic idea shall be the same as in exercise 1, i.e., (re-) imple-
menting does not mean to convert the array representation of the initial grid
into the lists of lists representation of exercise 1 which is then solved by the sol-
vers of exercise 1, and afterwards retransformed into the array representation).
Add the prefix arr or Arr (depending on the usage context), where necessary
in order to resolve name clashes with (auxiliary) function and type names used
in exercise 1. If types (e.g., Digit) or functions can just be reused from exercise
1, do so and re-use them and do not introduce renamed copies of them:

arr_solve = ...

arr_solve_opt1 = ...

arr_solve_opt2 = ...

3. In exercise 2, grids are modelled as arrays of arrays. In this exercise, we want
to use two-dimensional arrays instead:

type Arr2_Matrix a = Array (Index,Index) a

type Arr2_Grid = Arr2_Matrix Digit

(Re-) implement the three Sudoku solvers of excersise 1 using the new array
representation of grids. In order to resolve possible name clashes, add the prefix
arr2 or Arr2 (depending on the usage context) to (auxiliary) function and
type names analogously to exercise 2.

arr2_solve = ...

arr2_solve_opt1 = ...

arr2_solve_opt2 = ...

4. In this exercise we consider a variant of Soduko puzzles called color Soduku
puzzles :

7 8

194

9 2

6 5 3

3

5

7

4 9 7

162

9

1

2

3

1

5

4

5

1 8 4 6

3 9

5 24

9 37 2

1

5 6 1 3

6 7 4

9

9

8

153

Color areas consist always of 9 cells; different color areas are disjoint, they do
not overlap. The color areas of a color Soduko puzzle may or may not cover the
whole grid as illustrated above.

A color Soduko puzzle is correctly solved, if all rows, columns, boxes, and areas
of the same color contain the digits from ‘1’ to ‘9’ exactly once.

Using the grid representation of excercise 1 (i.e., lists of lists), adapt solve opt1,
and solve opt2 of exercise 1 to two new color Soduko solvers csolve opt1 and
csolve opt2, which take advantage of the color areas of color Soduku puzz-
les, which enable another pruning step, namely pruning by color areas. Except
of taking advantage of this additional pruning opportunity, csolve opt1 and
csolve opt2 shall match their counterparts of exercise 1:

type Col_Area = [(Index,Index)]

type Col_Areas = [Col_Area]

csolve :: Grid -> Col_Areas -> [Grids]

csolve g a = solve g (i.e, csolve coincides with solve of exercise 1)

csolve_opt1 :: Grid -> Col_Areas -> [Grids]

csolve_opt1 = ...

csolve_opt2 :: Grid -> Col_Areas -> [Grids]

csolve_opt2 = ...

In order to resolve possible name clashes between function names, add the prefix
c to (auxiliary) function names, which require a deviating implementation from
the one of exercise 1.

5. Without submission: Test all Sudoku solvers by means of (valid) initial grids
of your own choice. An initial grid is valid, if it does not contain duplicates in
any row, column, box, or color area. Compare the relative performance of the
different solvers. Are there significant differences? If so, what might be the
reasons for them? If not, why not?

Note: The solvers will only be tested with valid initial grids. The naive solvers
solve, arr solve, and arr2 solve, and csolve can only be expected to terminate
in reasonable time when applied to almost completely filled initial grids.

Programming with Streams: Generators, Filters, Selectors, etc.

1. Every Throw a Hit!

We throw darts at a dartboard with k differently numbered segments. There
are no double or triple (value) segments. There is also no bullseye in the centre.
Every segment can multiply be hit when n darts are thrown. Always true: Every
throw hits, no throw fails (the dartboard)!

Is it possible to reach with some number of darts a score of exactly m? Is it
possible to reach with exactly n darts a score of exactly m? How many darts
are at the minimum required to reach exactly a score of m?

To answer questions like these, generators, filters, transformers, and selectors
shall be implemented and appropiately be combined:

type Nat1 = Int -- Natural numbers starting from 1

type Numbers = Nat1 -- Values of dartboard segments

type Dartboard = [Numbers] -- Dartboard characterized by a list

of purely ascending values

type Turn = [Numbers] -- Reached scores of a turn (Wurffolge); only

-- scores occurring on the dartboard are possible,

-- also more than once.

type Turns = [Turn] -- Stream of turns

type TargetScore = Nat1 -- Desired overall score > 0

type Throws = Nat1 -- Number of darts of a turn > 0

gen_turns :: Dartboard -> Turns

filter_turns_ts :: Turns -> TargetScore -> Turns

filter_turns_th :: Turns -> Throws -> Turns

select_turns_minl :: Turns -> Turns

transf_sort_turns :: Turns -> Turns

where the functions shall have the following meaning:

• gen turns: Generates a stream of turns in accordance with the numbered
segments of the dartboard, e.g., all turns with 1 dart, subsequently all
turns with 2 darts, etc. Take care that your generator is fair and does not
generate duplicates, i.e., generates every turn with a finite number of darts
eventually, while not generating duplicates of turns in form of permutations
(turns like [7,23,12], [23,7,12], [12,7,23], etc. are considered duplicates; only
one of them shall be generated).

• filter turns ts: Filters the input stream for those turns, whose summed
overall score matches the target score.

• filter turns th: Filters the input stream for those turns with the given
number of darts.

• select turns minl: Picks from the input list the turns with the smallest
number of darts.

• transf sort turns: Sorts the turns of the input stream descendingly.

Using the above generators, filters, transformers, and selectors, implement the
following functions:

dart_ts :: Dartboard -> TargetScore -> Turns

dart_tst :: Dartboard -> TargetScore -> Throws -> Turns

dart_tsml :: Dartboard -> TargetScore -> Turns

which shall have the following meaning:

• dart ts yields the (finite number of) turns reaching the target score.

• dart tst yields the (finite number of) turns reaching the target score with
the given number of darts.

• dart tsml yields the (finite number of) turns reaching the target score
with the smallest number of darts.

Each turn of a result list delivered by the functions dart ts, dart tst, and
dart tsml shall be ordered descendingly, the turns themselves shall be ordered
lexicographically ascending.

Examples:

db = [6,7,16,17,26,27,36,37,46,47]

dart_ts db 23 ->> sort_lex [[7,16],[6,17]] ->> [[6,17],[7,16]]

dart_tst db 55 4 ->> sort_lex [[7,16,16,16],[6,16,16,17],[6,6,7,36],[6,6,6,37],...]

dart_tsml db 100 ->> sort_lex [[6,47,47],[7,46,47],[16,37,47],[17,36,47],[17,37,46],...]

dart_ts db 15 ->> []

Important: Do not use self-defined modules! If you want to re-use functions (writ-
ten for earlier assignments), copy these functions to the new submission file. An
import declaration for self-defined modules will fail, since only the submission file
assignmenti.hs , where i, 1 ≤ i ≤ 8 (tentatively), denotes the running number of
the assignment, willl be copied for the (semi-automatic) evaluation. No other file in
addition to assignmenti.hs will be copied.

