
Advanced Functional Programming: Assignment 2 (Thur, 03/21/2019)

Topic: Streams, Generators, Selectors, and Combinations thereof

Submission deadline: Wed, 04/10/2019 (3pm) (three weeks!)

Regarding the deadline for the second submission: Please, refer to
”
Hinweise zu Or-

ganisation und Ablauf der Übung“ available at the homepage of the course.

Store all functions to be written for this assignment in a top-level file assignment2.hs
of your group directory. Comment your program meaningfully; use auxiliary functi-
ons and constants, where reasonable.

Co-recursive Definitions of the Stream of Prime Numbers of increasing
Performance.

The definition primes:

primes = sieve [2..]

sieve (p : ns) = p : sieve [n | n <- ns, mod n p > 0]

of the stream of prime numbers is usually considered the standard definition in the
sense of The Sieve (of Prime Numbers) of Eratosthenes. Due to its reliance on sieve,
the definition of primes is indirectly co-recursive. It is famous for its conciseness
and elegance but infamous for its poor performance.

In fact, the co-recursive definition primes stfwd (stwfd straightforward) of the
stream of prime numbers, which limits the test of divisibility of new prime number
candidates n to (already computed) prime numbers up to the size

√
n, performs

much better:

primes_stfwd = 2 : [n | n <- [3..], isprime n]

isprime n = all (\p -> mod n p > 0) (primefactorsToTry n)

where

primefactorsToTry n = takeWhile (\p -> p*p <= n) primes_stfwd

The simple optimization primes opt of primes, which does not submit all but only
odd natural numbers ≥ 3 for sieving, leads already to a noticeable improvement of
the performance, however, without reaching the one of primes stfwd, in particular,
as the very same optimization idea can be applied to primes stfwd, too, yielding
primes stfwd opt:

primes_opt = 2 : sieve [3,5..]

primes_stfwd_opt = ...

1. Implement primes, primes stfwd, primes opt, and primes stfwd opt as shown
above, and compare (without submission!) their relative performance.

In the following, we focus on further experimenting and practicing computing
with streams. To this end, we develop further more and more performant co-recursive

definitions of the stream of prime numbers, while accepting that the achieved per-
formance gains can not decisively improve on the asymptotically poor behavior.

primes opt achieves its performance improvement by replacing the stream of na-
tural numbers starting from 2 ([2..]) as the stream of prime number candidates
by the stream of the odd natural numbers starting from 3 ([3,5..]) and by expli-
citly extracting 2 as a prime number. Intuitively, primes opt halves the count of
candidates which must be testet for divisibility, compared to primes. In the words
of Baron von Münchhausen: primes pulls itself by grabbing the empty tuft (leeren
Schopf) out of the swamp (Sumpf) [2..], while primes opt does so by grabbing
the one-element tuft 2 and pulling itself out of the partially drained swamp [3,5..]

(cf. Chapter 2.1 regarding tuft and swamp, in particular the co-rexursive tuft/swamp
definition of the stream of Fibonacci numbers with tuft 0:1:[] and the sum of itself
and its remainder as swamp).

It suggests itself to achieve further performance improvements by successively
extending the tuft, while simultaneously draining the swamp; to swamps, where not
only the even numbers, i.e., the multiples of 2 are missing but the multiples of 2 and
3, the multiples of 2, 3, and 5, and so on. Intuitively:

primes = sieve <Stream of nat. numb. from 2> (= sieve [2..])

primes2 = 2 : sieve <Stream of nat. numb. from 3 w/out multiples of 2>

(= 2 : sieve [3,5..])

primes23 = 2 : 3 : sieve <Stream of nat. numb. from 5 w/out multiples of 2,3>

primes235 = 2 : 3 : 5 : sieve <Stream of nat. numb. from 7 w/out multiples of 2,3,5>

primes2357 = ...

primes235711 = ...

Unlike the (swamp) streams <Stream of nat. Numb. from 2> and <Stream of

nat. numb. from 3 w/out multiples of 2> represented by the Haskell expressi-
ons [2..] and [3,5..], respectively, we can not describe the other more and more
drained (swamp) streams similarly easily in terms of Haskell expressions. However,
we can systematically construct them by. To this end, think of a wheel with spikes
on its rim rolling along the stream of natural numbers; only numbers which are hit
by a spike will be kept as elements of the swamp:

5 76 9843 11 1210

6

2

1
5

4
3

w
h
e
e
l2

3 6
5

2
13

4

2
6

5
4

1

3

wheel23

w
h
e
e
l2

3

1
6

5

24
3

w
h
e
e
l2

3

21

3 5

wheel2

1

2

wheel2

2

4

1

7

wheel2

1

2

wheel2

2

6

1

21 8 10 12119

wheel23

1

4

2

3

6

5

2

5

1

6
4

3

w
h
e
e
l2

3

wheel23

1

4

2

3

6

5

2

5

1

6
4

3

w
h
e
e
l2

3

wheel2

1

2

miss miss miss hithithithithit miss

hit miss hit miss miss

miss

hitmiss miss

Note that rolling wheel2 yields the stream of numbers [3,5..] = <Stream of

nat. numb. of 3 w/out multiples of 2>, that of wheel23 the stream of num-
bers [5,7,11,13,17,19,23,25,29,31,...] = <Stream of nat. numb. from 5 w/out

multiples of 2 and 3>. The below two figures illustrate this differently but equi-
valently in a dual fashion, where the stream of numbers is spinned around the wheel
in the shape of a spiral instead of rolling the wheel along the stream of numbers.
Again, this is illustrated for wheel2 and wheel23:

3

4

wheel2

1

2

5

6

7

8

10

9

11

5

11

17

7
13

19

25

6

8

9

10

14

15

16 12

18

21

22
24

20

26

27

30
28

23

29

wheel23

1

4

2

3

6

5

Calling the function spin with wheel resp. wheel2 as swamp generators, and 2 re-
sp. 3 as swamp tufts, the function spin accomplishes the desired; it generates the
(swamp) streams <Stream of nat. numb. from 2> and <Stream of nat. numb. from

3 w/out multiples of 2>:

wheel = 1 : wheel

wheel2 = 2 : wheel2

spin (x:xs) n = n : spin xs (n+x)

wheel ->> [1..]

wheel2 ->> [2..]

spin wheel 2 ->> [2..]

spin wheel2 3 ->> [3,5..]

Together, this enables the co-recursive definitions primes wheel and primes wheel2

of the stream of prime numbers, which could replace the original definitions of
primes and primes opt equivalently:

primes_wheel = sieve (spin wheel 2) (->> sieve [2..])

primes_wheel2 = 2 : sieve (spin wheel2 3) (->> sieve [3,5..])

primes = primes_wheel

primes_opt = primes_wheel2

Next, we extend the idea of rolling wheels along the stream of natural numbers to
wheels of increasing circumferences: wheel2 has circumference 2 (= 1∗2) and hence 2

positions, where a spike can be or not , wheel23 has circumference 2 ∗ 3 (= 1 ∗ 2 ∗ 3)
and hence 6 positions, where a spike can be or not, wheel235 has circumference
2 ∗ 3 ∗ 5 (= 1 ∗ 2 ∗ 3 ∗ 5) and hence 30 positions, where a spike can be or not, etc.;
wheel as a special case can be thought of as of circumference 1 and hence having 1
position, where a spike can be or not (and actually a spike is).

As seen already, primes wheel and primes wheel2 match the definitions of
primes and primes opt but unlike as primes and primes opt can systematical-
ly be extended (using function spin) to definitions of the stream of prime numbers
for wheels of increasing circumferences:

wheel = 1 : wheel

wheel2 = 2 : wheel2

wheel23 = <tuft> : wheel23

wheel235 = <tuft> : wheel235

wheel2357 = <tuft> : wheel2357

wheel235711 = <tuft> : wheel235711

spin (x:xs) n = n : spin xs (n+x)

primes_wheel = sieve (spin wheel 2) (Tuft empty, swamp origin 2.

Makes swamp [2..])

primes_wheel2 = 2 : sieve (spin wheel2 3) (Tuft 2, swamp origin 3.

Makes swamp [3,5..])

primes_wheel23 = <tuft> : sieve (spin wheel23 <swamp origin>)

primes_wheel235 = <tuft> : sieve (spin wheel235 <swamp origin>)

primes_wheel2357 = <tuft> : sieve (spin wheel2357 <swamp origin>)

primes_wheel235711 = <tuft> : sieve (spin wheel235711 <swamp origin>)

Complete the co-recursive definitions of the

2. wheels wheel23, wheel235, wheel2357, and wheel235711, i.e., find the appro-
priate tufts such that the multiples of 2, 3, of 2, 3, 5, of 2, 3, 5, 7, of 2, 3, 5,
7, 11, respectively, are missed when the wheels are rolled along the stream of
natural numbers.

3. streams of prime numbers primes wheel23, primes wheel235, primes wheel2357,
and primes wheel235711 induced by the respective wheels, i.e., find the ap-
propriate missing tufts and swamp origins, such that the sieving taking place
in the various definitions is applied to the swamps:

<Stream of nat. numb. from 5 w/out multiples of 2 and 3>

<Stream of nat. numb. from 7 w/out multiples of 2, 3 and 5>

<Stream of nat. numb. from 11 w/out multiples of 2, 3, 5 and 7>

<Stream of nat. numb. from 13 w/out multiples of 2, 3, 5, 7 and 11>

4. Compute the stream tufts of the tufts of the infinite stream of wheels wheel,
wheel2, wheel23, wheel235, wheel2357, etc.

type Nat1 = Integer

type Wheel_Tuft = [Nat1]

tufts :: [Wheel_Tuft]

tufts ->> [[1],[2],...

5. Using tufts, write a function wheels such that:

wheels 0 == wheel

wheels 1 == wheel2

wheels 2 == wheel23

wheels 3 == wheel235

wheels 4 == wheel2357

wheels n == wheel235...p, p nth prime number

6. Using tufts or/and wheels, write a stream function primes tailored wheel,
such that the following equalities hold:

primes tailored wheel 0 == primes wheel

primes tailored wheel 1 == primes wheel2

primes tailored wheel 2 == primes wheel23

primes tailored wheel 3 == primes wheel235

primes tailored wheel 4 == primes wheel2357

primes tailored wheel n == primes wheel235...p, p nth prime number

7. Without submission:

• Test all definitions of the stream of prime numbers for functional cor-
rectness and compare their relative performances, also with the ones of
primes stfwd and primes stfwd opt.

• Obviously, the marginal benefit of the wheel-based optimization idea de-
creases: Every second natural number is a multiple of 2, only every third a
multiple of 3, only every fifth a multiple of 5, etc. Moreover, many multip-
les of 3 are also multiples of 2, many multiples of 5 are also multiples of 2
or/and 3, etc. I.e.,, the tufts of the definitions primes wheel... increase
prime number by prime number, the achieved further drain of the swamps,
however, gets slower and slower.

– Can you confirm the decrease of the additional performance gains when
observing and comparing the performance gains of your implementati-
ons of primes wheel... and primes tailored wheel, respectively?

– Can you roughly quantify the respective performance gains from primes wheel

to primes wheel2 to primes wheel23 etc. resp. from primes tailored wheel

n to primes tailored wheel n+1 for some n by factors?

• What is the reason that primes performs so poorly, that the performance
gain delivered by primes wheel... resp. primes tailored wheel is over-
all moderate (and decreasing) for increasing wheel sizes? Where is efficiency
lost?

• primes, primes wheel..., primes tailored wheel yield unquestionable
faithfully the result of the Sieve of Eratosthenes. Does this also hold for
the concrete way of operationalization? Does it also faithfully mimic the
approach of the Sieve of Eratosthenes? Could the reason for the loss of
efficiency be hidden here?

Important: Do not use self-defined modules! If you want to re-use functions (writ-
ten for earlier assignments), copy these functions to the new submission file. An
import declaration for self-defined modules will fail, since only the submission file
assignmenti.hs , where i, 1 ≤ i ≤ 8 (tentatively), denotes the running number of
the assignment, willl be copied for the (semi-automatic) evaluation. No other file in
addition to assignmenti.hs will be copied.

